NosP Signaling Modulates the NO/H-NOX-Mediated Multicomponent c‑Di-GMP Network and Biofilm Formation in Shewanella oneidensis

Biofilms form when bacteria aggregate in a self-secreted exopolysaccharide matrix; they are resistant to antibiotics and implicated in disease. Nitric oxide (NO) is known to mediate biofilm formation in many bacteria via ligation to H-NOX (heme-NO/oxygen binding) domains. Most NO-responsive bacteria...

Full description

Saved in:
Bibliographic Details
Published inBiochemistry (Easton) Vol. 58; no. 48; pp. 4827 - 4841
Main Authors Nisbett, Lisa-Marie, Binnenkade, Lucas, Bacon, Bezalel, Hossain, Sajjad, Kotloski, Nicholas J, Brutinel, Evan D, Hartmann, Raimo, Drescher, Knut, Arora, Dhruv P, Muralidharan, Sandhya, Thormann, Kai M, Gralnick, Jeffrey A, Boon, Elizabeth M
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 03.12.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Biofilms form when bacteria aggregate in a self-secreted exopolysaccharide matrix; they are resistant to antibiotics and implicated in disease. Nitric oxide (NO) is known to mediate biofilm formation in many bacteria via ligation to H-NOX (heme-NO/oxygen binding) domains. Most NO-responsive bacteria, however, lack H-NOX domain-containing proteins. We have identified another NO-sensing protein (NosP), which is predicted to be involved in two-component signaling and biofilm regulation in many species. Here, we demonstrate that NosP participates in the previously described H-NOX/NO-responsive multicomponent c-di-GMP signaling network in Shewanella oneidensis. Strains lacking either nosP or its co-cistronic kinase nahK (previously hnoS) produce immature biofilms, while hnoX and hnoK (kinase responsive to NO/H-NOX) mutants result in wild-type biofilm architecture. We demonstrate that NosP regulates the autophosphorylation activity of NahK as well as HnoK. HnoK and NahK have been shown to regulate three response regulators (HnoB, HnoC, and HnoD) that together comprise a NO-responsive multicomponent c-di-GMP signaling network. Here, we propose that NosP/NahK adds regulation on top of H-NOX/HnoK to modulate this c-di-GMP signaling network, and ultimately biofilm formation, by governing the flux of phosphate through both HnoK and NahK. In addition, it appears that NosP and H-NOX act to counter each other in a push–pull mechanism; NosP/NahK promotes biofilm formation through inhibition of H-NOX/HnoK signaling, which itself reduces the extent of biofilm formation. Addition of NO results in a reduction of c-di-GMP and biofilm formation, primarily through disinhibition of HnoK activity.
AbstractList Biofilms form when bacteria aggregate in a self-secreted exopolysaccharide matrix; they are resistant to antibiotics and implicated in disease. Nitric oxide (NO) is known to mediate biofilm formation in many bacteria via ligation to H-NOX (heme-NO/oxygen binding) domains. Most NO-responsive bacteria, however, lack H-NOX domain-containing proteins. We have identified another NO-sensing protein (NosP), which is predicted to be involved in two-component signaling and biofilm regulation in many species. Here, we demonstrate that NosP participates in the previously described H-NOX/NO-responsive multicomponent c-di-GMP signaling network in Shewanella oneidensis. Strains lacking either nosP or its co-cistronic kinase nahK (previously hnoS) produce immature biofilms, while hnoX and hnoK (kinase responsive to NO/H-NOX) mutants result in wild-type biofilm architecture. We demonstrate that NosP regulates the autophosphorylation activity of NahK as well as HnoK. HnoK and NahK have been shown to regulate three response regulators (HnoB, HnoC, and HnoD) that together comprise a NO-responsive multicomponent c-di-GMP signaling network. Here, we propose that NosP/NahK adds regulation on top of H-NOX/HnoK to modulate this c-di-GMP signaling network, and ultimately biofilm formation, by governing the flux of phosphate through both HnoK and NahK. In addition, it appears that NosP and H-NOX act to counter each other in a push-pull mechanism; NosP/NahK promotes biofilm formation through inhibition of H-NOX/HnoK signaling, which itself reduces the extent of biofilm formation. Addition of NO results in a reduction of c-di-GMP and biofilm formation, primarily through disinhibition of HnoK activity.Biofilms form when bacteria aggregate in a self-secreted exopolysaccharide matrix; they are resistant to antibiotics and implicated in disease. Nitric oxide (NO) is known to mediate biofilm formation in many bacteria via ligation to H-NOX (heme-NO/oxygen binding) domains. Most NO-responsive bacteria, however, lack H-NOX domain-containing proteins. We have identified another NO-sensing protein (NosP), which is predicted to be involved in two-component signaling and biofilm regulation in many species. Here, we demonstrate that NosP participates in the previously described H-NOX/NO-responsive multicomponent c-di-GMP signaling network in Shewanella oneidensis. Strains lacking either nosP or its co-cistronic kinase nahK (previously hnoS) produce immature biofilms, while hnoX and hnoK (kinase responsive to NO/H-NOX) mutants result in wild-type biofilm architecture. We demonstrate that NosP regulates the autophosphorylation activity of NahK as well as HnoK. HnoK and NahK have been shown to regulate three response regulators (HnoB, HnoC, and HnoD) that together comprise a NO-responsive multicomponent c-di-GMP signaling network. Here, we propose that NosP/NahK adds regulation on top of H-NOX/HnoK to modulate this c-di-GMP signaling network, and ultimately biofilm formation, by governing the flux of phosphate through both HnoK and NahK. In addition, it appears that NosP and H-NOX act to counter each other in a push-pull mechanism; NosP/NahK promotes biofilm formation through inhibition of H-NOX/HnoK signaling, which itself reduces the extent of biofilm formation. Addition of NO results in a reduction of c-di-GMP and biofilm formation, primarily through disinhibition of HnoK activity.
Biofilms form when bacteria aggregate in a self-secreted exopolysaccharide matrix; they are resistant to antibiotics and implicated in disease. Nitric oxide (NO) is known to mediate biofilm formation in many bacteria via ligation to H-NOX (heme-NO/oxygen binding) domains. Most NO-responsive bacteria, however, lack H-NOX domain-containing proteins. We have identified another NO-sensing protein (NosP), which is predicted to be involved in two-component signaling and biofilm regulation in many species. Here, we demonstrate that NosP participates in the previously described H-NOX/NO-responsive multicomponent c-di-GMP signaling network in Shewanella oneidensis. Strains lacking either nosP or its co-cistronic kinase nahK (previously hnoS) produce immature biofilms, while hnoX and hnoK (kinase responsive to NO/H-NOX) mutants result in wild-type biofilm architecture. We demonstrate that NosP regulates the autophosphorylation activity of NahK as well as HnoK. HnoK and NahK have been shown to regulate three response regulators (HnoB, HnoC, and HnoD) that together comprise a NO-responsive multicomponent c-di-GMP signaling network. Here, we propose that NosP/NahK adds regulation on top of H-NOX/HnoK to modulate this c-di-GMP signaling network, and ultimately biofilm formation, by governing the flux of phosphate through both HnoK and NahK. In addition, it appears that NosP and H-NOX act to counter each other in a push–pull mechanism; NosP/NahK promotes biofilm formation through inhibition of H-NOX/HnoK signaling, which itself reduces the extent of biofilm formation. Addition of NO results in a reduction of c-di-GMP and biofilm formation, primarily through disinhibition of HnoK activity.
Biofilms form when bacteria aggregate in a self-secreted exopolysaccharide matrix; they are resistant to antibiotics and implicated in disease. Nitric oxide (NO) is known to mediate biofilm formation in many bacteria via ligation to H-NOX (heme-NO/oxygen binding) domains. Most NO-responsive bacteria, however, lack H-NOX domain-containing proteins. We have identified another NO-sensing protein (NosP), which is predicted to be involved in two-component signaling and biofilm regulation in many species. Here, we demonstrate that NosP participates in the previously described H-NOX/NO-responsive multicomponent c-di-GMP signaling network in Shewanella oneidensis . Strains lacking either nosP or its co-cistronic kinase nahK (previously hnoS ) produce immature biofilms, while hnoX and hnoK (kinase responsive to NO/H-NOX) mutants result in wild-type biofilm architecture. We demonstrate that NosP regulates the autophosphorylation activity of NahK as well as HnoK. HnoK and NahK have been shown to regulate three response regulators (HnoB, HnoC, and HnoD) that together comprise a NO-responsive multicomponent c-di-GMP signaling network. Here, we propose that NosP/NahK adds regulation on top of H-NOX/HnoK to modulate this c-di-GMP signaling network, and ultimately biofilm formation, by governing the flux of phosphate through both HnoK and NahK. In addition, it appears that NosP and H-NOX act to counter each other in a push–pull mechanism; NosP/NahK promotes biofilm formation through inhibition of H-NOX/HnoK signaling, which itself reduces the extent of biofilm formation. Addition of NO results in a reduction of c-di-GMP and biofilm formation, primarily through disinhibition of HnoK activity.
Biofilms form when bacteria aggregate in a self-secreted exopolysaccharide matrix; they are resistant to antibiotics and implicated in disease. Nitric oxide (NO) is known to mediate biofilm formation in many bacteria via ligation to H-NOX (heme-NO/oxygen binding) domains. Most NO-responsive bacteria, however, lack H-NOX domain-containing proteins. We have identified another NO-sensing protein (NosP), which is predicted to be involved in two-component signaling and biofilm regulation in many species. Here, we demonstrate that NosP participates in the previously described H-NOX/NO-responsive multicomponent c-di-GMP signaling network in . Strains lacking either or its co-cistronic kinase (previously ) produce immature biofilms, while and (kinase responsive to NO/H-NOX) mutants result in wild-type biofilm architecture. We demonstrate that NosP regulates the autophosphorylation activity of NahK as well as HnoK. HnoK and NahK have been shown to regulate three response regulators (HnoB, HnoC, and HnoD) that together comprise a NO-responsive multicomponent c-di-GMP signaling network. Here, we propose that NosP/NahK adds regulation on top of H-NOX/HnoK to modulate this c-di-GMP signaling network, and ultimately biofilm formation, by governing the flux of phosphate through both HnoK and NahK. In addition, it appears that NosP and H-NOX act to counter each other in a push-pull mechanism; NosP/NahK promotes biofilm formation through inhibition of H-NOX/HnoK signaling, which itself reduces the extent of biofilm formation. Addition of NO results in a reduction of c-di-GMP and biofilm formation, primarily through disinhibition of HnoK activity.
Author Drescher, Knut
Hartmann, Raimo
Nisbett, Lisa-Marie
Kotloski, Nicholas J
Bacon, Bezalel
Muralidharan, Sandhya
Binnenkade, Lucas
Hossain, Sajjad
Gralnick, Jeffrey A
Boon, Elizabeth M
Brutinel, Evan D
Thormann, Kai M
Arora, Dhruv P
AuthorAffiliation Institute for Microbiology and Molecular Biology
Department of Chemistry
Institute of Chemical Biology & Drug Discovery
Philipps-Universität Marburg
University of MinnesotaTwin Cities
Graduate Program in Biochemistry and Structural Biology
Department of Plant and Microbial Biology
Department of Physics
AuthorAffiliation_xml – name: Institute for Microbiology and Molecular Biology
– name: University of MinnesotaTwin Cities
– name: Department of Chemistry
– name: Philipps-Universität Marburg
– name: Graduate Program in Biochemistry and Structural Biology
– name: Department of Physics
– name: Department of Plant and Microbial Biology
– name: Institute of Chemical Biology & Drug Discovery
– name: @ Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York 11794-3400, United States
– name: Graduate Program in Biochemistry and Structural Biology, Stony Brook University, Stony Brook, New York 11794-3400, United States
– name: Institute for Microbiology and Molecular Biology, Justus-Liebig-Universität Giessen, D-35392 Giessen, Germany
– name: Department of Plant and Microbial Biology, University of Minnesota—Twin Cities, St. Paul, Minnesota 55108, United States
– name: Department of Physics, Philipps-Universität Marburg, Renthof 6, 35032 Marburg, Germany
– name: Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, 35043 Marburg, Germany
– name: Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
Author_xml – sequence: 1
  givenname: Lisa-Marie
  surname: Nisbett
  fullname: Nisbett, Lisa-Marie
  organization: Graduate Program in Biochemistry and Structural Biology
– sequence: 2
  givenname: Lucas
  surname: Binnenkade
  fullname: Binnenkade, Lucas
  organization: Institute for Microbiology and Molecular Biology
– sequence: 3
  givenname: Bezalel
  surname: Bacon
  fullname: Bacon, Bezalel
  organization: Graduate Program in Biochemistry and Structural Biology
– sequence: 4
  givenname: Sajjad
  surname: Hossain
  fullname: Hossain, Sajjad
  organization: Department of Chemistry
– sequence: 5
  givenname: Nicholas J
  surname: Kotloski
  fullname: Kotloski, Nicholas J
  organization: University of MinnesotaTwin Cities
– sequence: 6
  givenname: Evan D
  surname: Brutinel
  fullname: Brutinel, Evan D
  organization: University of MinnesotaTwin Cities
– sequence: 7
  givenname: Raimo
  surname: Hartmann
  fullname: Hartmann, Raimo
– sequence: 8
  givenname: Knut
  surname: Drescher
  fullname: Drescher, Knut
  organization: Philipps-Universität Marburg
– sequence: 9
  givenname: Dhruv P
  surname: Arora
  fullname: Arora, Dhruv P
  organization: Department of Chemistry
– sequence: 10
  givenname: Sandhya
  surname: Muralidharan
  fullname: Muralidharan, Sandhya
  organization: Department of Chemistry
– sequence: 11
  givenname: Kai M
  surname: Thormann
  fullname: Thormann, Kai M
  organization: Institute for Microbiology and Molecular Biology
– sequence: 12
  givenname: Jeffrey A
  orcidid: 0000-0001-9250-7770
  surname: Gralnick
  fullname: Gralnick, Jeffrey A
  organization: University of MinnesotaTwin Cities
– sequence: 13
  givenname: Elizabeth M
  orcidid: 0000-0003-1891-839X
  surname: Boon
  fullname: Boon, Elizabeth M
  email: elizabeth.boon@stonybrook.edu
  organization: Institute of Chemical Biology & Drug Discovery
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31682418$$D View this record in MEDLINE/PubMed
BookMark eNqFUstuEzEUtVARTQtfgIS8ZDOJ7ZnxzGyQoPSB1CSVChI768a-k7jM2GE806qr8gv8Il-C06QVsKArP-45R-fqnAOy57xDQl5zNuZM8AnoMF5Yr1fYjqsFYwWTz8iI54IlWVXle2TEGJOJqCTbJwchXMVnxorsBdlPuSxFxssRuZv5cEEv7dJBY92STr0ZGugx0H6FdDafnCWz-ddkisbGX0OnQ9Nb7dt19OJ6qn_9-PnRJqfTCzrD_sZ33yg4Qz9YX9umpSe-a6G33lHr6OUKb8Bh0wCNZGvQBRtekuc1NAFf7c5D8uXk-PPRWXI-P_109P48gawo-0TKuuQ1AMuLFEEDl5koa2FMLRguCg2pLBjDDESOdclAGL65VNoA5kKX6SF5t9VdD4sWjY7mO2jUurMtdLfKg1V_T5xdqaW_VoWoGJciCrzdCXT--4ChV60NerONQz8EJXLOeZnlGX8amnIhChkziNA3f9p69PMQUASkW4DufAgd1o8QztSmBirWQO1qoHY1iKzqH5a2_X0QcTfbPMGdbLmb4ZUfutiM8F_Gb0edzvE
CitedBy_id crossref_primary_10_1021_acs_biochem_3c00187
crossref_primary_10_1093_femsre_fuad034
crossref_primary_10_1002_adbi_202100773
crossref_primary_10_1016_j_bbrc_2020_06_048
crossref_primary_10_1042_BST20220845
crossref_primary_10_1039_D3CS00537B
crossref_primary_10_1080_10408398_2023_2279687
crossref_primary_10_1246_cl_200945
crossref_primary_10_1073_pnas_2006534117
crossref_primary_10_1128_msystems_01518_21
crossref_primary_10_1038_s42004_021_00471_9
crossref_primary_10_1039_D3SC01685D
crossref_primary_10_1016_j_jhazmat_2025_137820
crossref_primary_10_1016_j_mcpro_2023_100679
crossref_primary_10_1093_femsml_uqad026
crossref_primary_10_1128_jb_00276_23
crossref_primary_10_1021_acsbiomaterials_2c01536
crossref_primary_10_1093_fqsafe_fyac044
crossref_primary_10_3389_fcimb_2022_850030
crossref_primary_10_1016_j_cej_2023_147430
crossref_primary_10_3390_ijms231810778
Cites_doi 10.1021/ja211576b
10.1016/j.molcel.2012.03.023
10.1021/bi971917m
10.1002/9780470123096.ch2
10.1089/ars.2012.4564
10.1016/0968-0004(77)90042-1
10.1016/S0076-6879(07)23026-5
10.1021/bi401597m
10.1002/0471140856.tx0803s00
10.1128/JB.02483-14
10.1016/j.cub.2017.09.041
10.1016/0360-8352(96)00127-1
10.1021/bi9525435
10.1016/j.bbrc.2015.07.121
10.1021/acschembio.8b00360
10.1371/journal.pbio.0030334
10.1021/cb300215t
10.1016/j.bbrc.2012.04.037
10.1021/bi201753f
10.1021/bi501476n
10.1007/978-1-62703-441-8_3
10.1073/pnas.0800247105
10.1093/bioinformatics/btm384
10.1128/JB.186.23.8096-8104.2004
10.1021/acs.biochem.8b00451
10.1109/TSMC.1979.4310076
10.1021/jm00115a013
10.1021/acsinfecdis.7b00027
10.1073/pnas.1318128110
10.1128/mBio.00206-15
10.1021/bi970201o
10.1111/j.1365-2958.2010.07259.x
10.3389/fmicb.2016.01568
10.1074/jbc.M116.746743
10.1074/jbc.M600557200
10.1128/JB.185.24.7111-7119.2003
10.1128/JB.188.7.2681-2691.2006
10.1016/0003-2697(76)90527-3
10.1021/bi7019035
10.1038/nrmicro1947
10.1016/j.biochi.2017.06.014
10.1016/j.mib.2006.01.005
10.1038/ismej.2010.153
10.1099/mic.0.27099-0
10.1021/acs.biochem.6b01133
10.1021/bi9519718
10.1186/s12859-017-1934-z
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1021/acs.biochem.9b00706
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic


AGRICOLA
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Architecture
EISSN 1520-4995
EndPage 4841
ExternalDocumentID PMC7290162
31682418
10_1021_acs_biochem_9b00706
d249081962
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM118894
– fundername: NIGMS NIH HHS
  grantid: T32 GM136572
– fundername: NIGMS NIH HHS
  grantid: T32 GM092714
GroupedDBID -
.K2
02
23N
55
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABOCM
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DU5
DZ
EBS
ED
ED~
F5P
GNL
IH9
IHE
JG
JG~
K2
KM
L7B
LG6
P2P
ROL
TN5
UI2
VF5
VG9
VQA
W1F
WH7
X
X7M
YZZ
ZA5
---
-DZ
-~X
.55
4.4
53G
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
XSW
ZCA
~02
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-a478t-66f81faa0573eaca16428f2ddf20eb7ca36700e4a25ef80a2d15ef89cdae52c83
IEDL.DBID ACS
ISSN 0006-2960
1520-4995
IngestDate Thu Aug 21 18:05:58 EDT 2025
Thu Jul 10 22:41:13 EDT 2025
Fri Jul 11 10:10:26 EDT 2025
Mon Jul 21 06:00:00 EDT 2025
Tue Jul 01 03:33:47 EDT 2025
Thu Apr 24 23:11:48 EDT 2025
Thu Aug 27 13:44:19 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 48
Language English
License http://pubs.acs.org/page/policy/authorchoice_termsofuse.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a478t-66f81faa0573eaca16428f2ddf20eb7ca36700e4a25ef80a2d15ef89cdae52c83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author Contributions
L.-M.N., L.B., B.B., S.H., N.J.K., E.D.B., R.H., K.D., D.P.A., S.M., K.M.T., J.A.G., and E.M.B. have made major contributions to the acquisition, analysis, or interpretation of the data; L.-M.N., K.M.T., J.A.G., and E.M.B. to the conception or design of the study; and L.-M.N. and E.M.B. to the writing of the manuscript.
ORCID 0000-0003-1891-839X
0000-0001-9250-7770
OpenAccessLink https://pubs.acs.org/doi/pdf/10.1021/acs.biochem.9b00706
PMID 31682418
PQID 2312276168
PQPubID 23479
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7290162
proquest_miscellaneous_2511184541
proquest_miscellaneous_2312276168
pubmed_primary_31682418
crossref_primary_10_1021_acs_biochem_9b00706
crossref_citationtrail_10_1021_acs_biochem_9b00706
acs_journals_10_1021_acs_biochem_9b00706
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-12-03
PublicationDateYYYYMMDD 2019-12-03
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-03
  day: 03
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Biochemistry (Easton)
PublicationTitleAlternate Biochemistry
PublicationYear 2019
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref46/cit46
Giovannetti R. (ref34/cit34) 2012
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref24/cit24
ref38/cit38
ref44/cit44
ref7/cit7
References_xml – ident: ref2/cit2
  doi: 10.1021/ja211576b
– ident: ref8/cit8
  doi: 10.1016/j.molcel.2012.03.023
– ident: ref25/cit25
  doi: 10.1021/bi971917m
– ident: ref40/cit40
  doi: 10.1002/9780470123096.ch2
– ident: ref39/cit39
  doi: 10.1089/ars.2012.4564
– ident: ref41/cit41
  doi: 10.1016/0968-0004(77)90042-1
– ident: ref27/cit27
  doi: 10.1016/S0076-6879(07)23026-5
– ident: ref44/cit44
  doi: 10.1021/bi401597m
– ident: ref33/cit33
  doi: 10.1002/0471140856.tx0803s00
– ident: ref46/cit46
  doi: 10.1128/JB.02483-14
– ident: ref13/cit13
  doi: 10.1016/j.cub.2017.09.041
– start-page: 87
  volume-title: Macro to Nano Spectroscopy
  year: 2012
  ident: ref34/cit34
– ident: ref15/cit15
  doi: 10.1016/0360-8352(96)00127-1
– ident: ref24/cit24
  doi: 10.1021/bi9525435
– ident: ref23/cit23
  doi: 10.1016/j.bbrc.2015.07.121
– ident: ref4/cit4
  doi: 10.1021/acschembio.8b00360
– ident: ref26/cit26
  doi: 10.1371/journal.pbio.0030334
– ident: ref43/cit43
  doi: 10.1021/cb300215t
– ident: ref29/cit29
  doi: 10.1016/j.bbrc.2012.04.037
– ident: ref10/cit10
  doi: 10.1021/bi201753f
– ident: ref1/cit1
  doi: 10.1021/bi501476n
– ident: ref16/cit16
  doi: 10.1007/978-1-62703-441-8_3
– ident: ref31/cit31
  doi: 10.1073/pnas.0800247105
– ident: ref5/cit5
  doi: 10.1093/bioinformatics/btm384
– ident: ref9/cit9
  doi: 10.1128/JB.186.23.8096-8104.2004
– ident: ref7/cit7
  doi: 10.1021/acs.biochem.8b00451
– ident: ref14/cit14
  doi: 10.1109/TSMC.1979.4310076
– ident: ref35/cit35
  doi: 10.1021/jm00115a013
– ident: ref3/cit3
  doi: 10.1021/acsinfecdis.7b00027
– ident: ref42/cit42
  doi: 10.1073/pnas.1318128110
– ident: ref45/cit45
  doi: 10.1128/mBio.00206-15
– ident: ref20/cit20
  doi: 10.1021/bi970201o
– ident: ref38/cit38
  doi: 10.1111/j.1365-2958.2010.07259.x
– ident: ref12/cit12
  doi: 10.3389/fmicb.2016.01568
– ident: ref48/cit48
  doi: 10.1074/jbc.M116.746743
– ident: ref19/cit19
  doi: 10.1074/jbc.M600557200
– ident: ref30/cit30
  doi: 10.1128/JB.185.24.7111-7119.2003
– ident: ref47/cit47
  doi: 10.1128/JB.188.7.2681-2691.2006
– ident: ref17/cit17
  doi: 10.1016/0003-2697(76)90527-3
– ident: ref18/cit18
  doi: 10.1021/bi7019035
– ident: ref22/cit22
  doi: 10.1038/nrmicro1947
– ident: ref37/cit37
  doi: 10.1016/j.biochi.2017.06.014
– ident: ref28/cit28
  doi: 10.1016/j.mib.2006.01.005
– ident: ref11/cit11
  doi: 10.1038/ismej.2010.153
– ident: ref6/cit6
  doi: 10.1099/mic.0.27099-0
– ident: ref32/cit32
  doi: 10.1021/acs.biochem.6b01133
– ident: ref36/cit36
  doi: 10.1021/bi9519718
– ident: ref21/cit21
  doi: 10.1186/s12859-017-1934-z
SSID ssj0004074
Score 2.415379
Snippet Biofilms form when bacteria aggregate in a self-secreted exopolysaccharide matrix; they are resistant to antibiotics and implicated in disease. Nitric oxide...
SourceID pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4827
SubjectTerms antibiotics
architecture
bacteria
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
biofilm
Biofilms
Cyclic GMP - analogs & derivatives
Cyclic GMP - metabolism
exopolysaccharides
Gene Expression Regulation, Bacterial
Heme - metabolism
mutants
nitric oxide
Nitric Oxide - metabolism
phosphates
protein phosphorylation
proteins
Shewanella - genetics
Shewanella - physiology
Shewanella oneidensis
Signal Transduction
strains
Title NosP Signaling Modulates the NO/H-NOX-Mediated Multicomponent c‑Di-GMP Network and Biofilm Formation in Shewanella oneidensis
URI http://dx.doi.org/10.1021/acs.biochem.9b00706
https://www.ncbi.nlm.nih.gov/pubmed/31682418
https://www.proquest.com/docview/2312276168
https://www.proquest.com/docview/2511184541
https://pubmed.ncbi.nlm.nih.gov/PMC7290162
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLbQeIAXLhuXcpOREOIBd7GTON5jKZQKqdmkMqlvkePYWwRNp6UVghf4C_xFfgnnOElZN1TtLUrsWD624-_E53wfIa-EyQ3PC8PMgXUMCZWY4k6yBFwxI01ojPUBsqkcH0efZvHsQrL6pRN8wfe1qft5ifJR8z4S-CVIsH1TSJWgrzUYTv-lQQYt6TI4yQKQeUcy9P-X4HZk6s3t6ArGvBwqeWHvGd0laZfB04ScfOmvlnnf_LhK6Hi9bt0jd1oUSgfNtLlPbthql-wNKvDA59_pa-rjQv0P911ya9hpwu2Rn-miPqLT8gThe3VCJ4sC5b9sTQFH0vRwf8zSwxmbeP0PW1Cf3otR64sKekbNn1-_35fs4-SIpk34OdVVQd-VqBs-p6MukZKWFZ2e2m8aY3A0hcoofVqX9QNyPPrweThmrYQD01GilkxKB0OvNdIuwidec3R3nCgKJwKbJ0Yjf1xgIy1i61SgRcHx4sAU2sbCqPAh2amglceE8jBSTudOmcBFKgiVjm0RO8BsSnBrVY-8AZtm7RKsM3-6LniGN1tDZ62he0R0g56ZlgodFTm-bq_0dl3prGEC2V78ZTebMhgkPIYBoy1WdQaIWohEcqm2lAEcDL53HPEeedTMwHWjKDUGuAtqJxtzc10AGcM3n1TlqWcOT_DUXIon1zfVU3IbIKJXzAjCZ2Rneb6yzwGGLfMXfvH9BTjyMxw
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3LbtQwFLVKWZQNj5bH8DQSIBZkGjsvd8FimDJMaSetNK00u-A4Thu1kyCSUVU28Av8A7_Cj_Al3OtJpkxBIzaV2EWJnVjXdnyufHwOIc-4ihWLE2WpDZ1aKKhkCZb6VgCpmPKVo5Q2BNnQ7x-470feaIl8b87CQCNKeFNpNvHP1QXYOt6LM3SRGrdRxy-w_ZpKua3PTiFRK19vbUKvPue893a_27dqLwFLuoGoLN9PoQ1Sov4f_GskQ9yd8iRJua3jQEkUMrO1K7mnU2FLnjC82FCJ1B5XwoH3XiFXAf5wTPE63eH56Uu71nqG3JxDQtBoG_290bgKqnJ-FfwD2l5kaP625PVukB-zYBmmy3F7UsVt9fmCjuT_Hs2b5HqNuWlnOklukSWdr5K1Ti6rYnxGX1DDgjXbC6tkpds44K2RL2FR7tFhdojJSn5IB0WCZme6pICaabi73rfC3ZE1MG4nOqHmMDNy9IscAkrVz6_fNjPr3WCPhlOyPZV5Qt9k6JI-pr3m2CjNcjo80qcSGUeSQmU0ei2z8jY5uJSw3CHLOXzlHqHMcUUq41QoO3WF7Qjp6cRLAaEKzrQWLfIS-jCqfzhlZLgEnEV4s-7YqO7YFuHNWItULfyO_iMniyu9mlX6ONU9WVz8aTOII-gk3HSCoBWTMoL8gfPAZ75YUAZQPxOu57IWuTsd-LOPorEaoEyoHcxNiVkB1Eeff5JnR0YnPUCOgM_v_3uonpCV_v5gJ9rZCrcfkGsAjo1XiO08JMvVp4l-BAC0ih-b-U_Jh8ueIr8ARQ-YEw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LjtMwFLWGQQI2PGZ4lKeRALEgndjNw7NgUVpKh6GZSmWk7oLj2DMRNBmRVqNhA7_AX_Ar_AZfwr1uUuiAKjazYBc5dmLd68e98vE5hDziKlEsSZWjtrVxkFDJEcwETgipmApUSyltAbJR0N_3Xo_98Rr5Vt-FgU6U8KXSHuLjrD5KTcUwwLawPMlQSWrSRC6_0A0qOOWuPjmGZK18vtMFzz7mvPfybafvVHoCjvRCMXWCwEA_pEQOQFhvJMPY2_A0NdzVSagkkpm52pPc10a4kqcMH7ZVKrXPlWjBd8-R83hQiGleuzP6dQPTrfieIT_nkBTU_EZ_7zTuhKpc3gn_CG9PozR_2_Z6V8j3hcEs2uV9czZNmurTKS7J_8GiV8nlKvam7flkuUbWdL5BNtu5nBaTE_qEWjSsPWbYIBc7tRLeJvkcFeWQjrIDTFryAzooUhQ90yWF6JlGe1t9J9obOwOreqJTai81I1a_yMGoVP348rWbOa8GQxrNQfdU5il9kaFa-oT26uujNMvp6FAfS0QeSQqNUfC1zMrrZP9MzHKDrOfwl1uEspYnjEyMUK7xhNsS0tepbyBSFZxpLRrkKfgwrhaeMraYAs5iLKwcG1eObRBej7dYVQTwqEPyYXWjZ4tGR3P-k9XVH9YDOQYn4eETGK2YlTHkEZyHAQvEijoQ_TPh-R5rkJvzwb_4KQqsQbQJrcOlabGogDzpy2_y7NDypYeIFQj47X831QNyYdjtxW92ot075BLEyFYyxG3dJevTjzN9D-LQaXLfLgGUvDvrGfITR4Kalg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NosP+Signaling+Modulates+the+NO%2FH-NOX-Mediated+Multicomponent+c-Di-GMP+Network+and+Biofilm+Formation+in+Shewanella+oneidensis&rft.jtitle=Biochemistry+%28Easton%29&rft.au=Nisbett%2C+Lisa-Marie&rft.au=Binnenkade%2C+Lucas&rft.au=Bacon%2C+Bezalel&rft.au=Hossain%2C+Sajjad&rft.date=2019-12-03&rft.issn=0006-2960&rft.eissn=1520-4995&rft.volume=58&rft.issue=48&rft.spage=4827&rft.epage=4841&rft_id=info:doi/10.1021%2Facs.biochem.9b00706&rft_id=info%3Apmid%2F31682418&rft.externalDocID=PMC7290162
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-2960&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-2960&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-2960&client=summon