Revealing Phase Transition in Ni-Rich Cathodes via a Nondestructive Entropymetry Method
With the expanding requirements of recent energy regulations and economic interest in high-performance batteries, the need to improve battery energy density and safety has gained prominence. High-energy-density lithium batteries, employed in next-generation energy storage devices, rely on nickel-ric...
Saved in:
Published in | ACS omega Vol. 8; no. 41; pp. 37899 - 37907 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
17.10.2023
|
Online Access | Get full text |
Cover
Loading…
Abstract | With the expanding requirements of recent energy regulations and economic interest in high-performance batteries, the need to improve battery energy density and safety has gained prominence. High-energy-density lithium batteries, employed in next-generation energy storage devices, rely on nickel-rich cathode materials. Since they have extremely high charge/discharge capacity, high operating voltage, prolonged cycle life, and lower cost, nickel-rich cathode materials such as Ni-rich NCM (LiNi x > 0.8Co y MnzO2) and Ni-rich NCA (LiNi x > 0.8Co y Al z O2) are of particular interest to researchers. Several in situ characterization methodologies are currently used to understand lithium-ion battery electrode response and deterioration better. Nevertheless, in many contexts, these measurement methodologies must be combined with specially designed cells and electrode materials with distinct forms, which is sometimes inconvenient. As an alternative, thermo-voltammetric dynamic characterization may be utilized to describe the thermal internal characteristics of various electrode materials, such as the structural changes and electrode reactions that occur during charging and discharging. In this paper, a nondestructive entropy measurement method demonstrates that phase change occurs for NCM (LiNi0.83Co0.12Mn0.05O2) and NCA (LiNi0.88Co0.09Al0.03O2) at 40–30% of state of charge (SOC) and 90–80% of SOC, respectively. This is confirmed by ex situ X-ray diffraction (XRD) measurements for these highly popular cathodes. |
---|---|
AbstractList | With the expanding requirements of recent energy regulations
and
economic interest in high-performance batteries, the need to improve
battery energy density and safety has gained prominence. High-energy-density
lithium batteries, employed in next-generation energy storage devices,
rely on nickel-rich cathode materials. Since they have extremely high
charge/discharge capacity, high operating voltage, prolonged cycle
life, and lower cost, nickel-rich cathode materials such as Ni-rich
NCM (LiNi
x
> 0.8
Co
y
Mn
z
O
2
) and Ni-rich NCA
(LiNi
x
> 0.8
Co
y
Al
z
O
2
) are
of particular interest
to researchers. Several in situ characterization methodologies are
currently used to understand lithium-ion battery electrode response
and deterioration better. Nevertheless, in many contexts, these measurement
methodologies must be combined with specially designed cells and electrode
materials with distinct forms, which is sometimes inconvenient. As
an alternative, thermo-voltammetric dynamic characterization may be
utilized to describe the thermal internal characteristics of various
electrode materials, such as the structural changes and electrode
reactions that occur during charging and discharging. In this paper,
a nondestructive entropy measurement method demonstrates that phase
change occurs for NCM (LiNi
0.83
Co
0.12
Mn
0.05
O
2
) and NCA (LiNi
0.88
Co
0.09
Al
0.03
O
2
) at 40–30% of state of charge
(SOC) and 90–80% of SOC, respectively. This is confirmed by
ex situ X-ray diffraction (XRD) measurements for these highly popular
cathodes. With the expanding requirements of recent energy regulations and economic interest in high-performance batteries, the need to improve battery energy density and safety has gained prominence. High-energy-density lithium batteries, employed in next-generation energy storage devices, rely on nickel-rich cathode materials. Since they have extremely high charge/discharge capacity, high operating voltage, prolonged cycle life, and lower cost, nickel-rich cathode materials such as Ni-rich NCM (LiNix > 0.8CoyMnzO2) and Ni-rich NCA (LiNix > 0.8CoyAlzO2) are of particular interest to researchers. Several in situ characterization methodologies are currently used to understand lithium-ion battery electrode response and deterioration better. Nevertheless, in many contexts, these measurement methodologies must be combined with specially designed cells and electrode materials with distinct forms, which is sometimes inconvenient. As an alternative, thermo-voltammetric dynamic characterization may be utilized to describe the thermal internal characteristics of various electrode materials, such as the structural changes and electrode reactions that occur during charging and discharging. In this paper, a nondestructive entropy measurement method demonstrates that phase change occurs for NCM (LiNi0.83Co0.12Mn0.05O2) and NCA (LiNi0.88Co0.09Al0.03O2) at 40-30% of state of charge (SOC) and 90-80% of SOC, respectively. This is confirmed by ex situ X-ray diffraction (XRD) measurements for these highly popular cathodes. With the expanding requirements of recent energy regulations and economic interest in high-performance batteries, the need to improve battery energy density and safety has gained prominence. High-energy-density lithium batteries, employed in next-generation energy storage devices, rely on nickel-rich cathode materials. Since they have extremely high charge/discharge capacity, high operating voltage, prolonged cycle life, and lower cost, nickel-rich cathode materials such as Ni-rich NCM (LiNi x > 0.8Co y MnzO2) and Ni-rich NCA (LiNi x > 0.8Co y Al z O2) are of particular interest to researchers. Several in situ characterization methodologies are currently used to understand lithium-ion battery electrode response and deterioration better. Nevertheless, in many contexts, these measurement methodologies must be combined with specially designed cells and electrode materials with distinct forms, which is sometimes inconvenient. As an alternative, thermo-voltammetric dynamic characterization may be utilized to describe the thermal internal characteristics of various electrode materials, such as the structural changes and electrode reactions that occur during charging and discharging. In this paper, a nondestructive entropy measurement method demonstrates that phase change occurs for NCM (LiNi0.83Co0.12Mn0.05O2) and NCA (LiNi0.88Co0.09Al0.03O2) at 40–30% of state of charge (SOC) and 90–80% of SOC, respectively. This is confirmed by ex situ X-ray diffraction (XRD) measurements for these highly popular cathodes. |
Author | Bakenov, Zhumabay Nuroldayeva, Gulzat Uzakbaiuly, Berik Adair, Desmond |
AuthorAffiliation | Department of Chemical and Materials Engineering National Laboratory Astana Department of Mechanical and Aerospace Engineering Nazarbayev University |
AuthorAffiliation_xml | – name: Department of Chemical and Materials Engineering – name: Nazarbayev University – name: National Laboratory Astana – name: Department of Mechanical and Aerospace Engineering |
Author_xml | – sequence: 1 givenname: Gulzat surname: Nuroldayeva fullname: Nuroldayeva, Gulzat organization: Department of Chemical and Materials Engineering – sequence: 2 givenname: Desmond surname: Adair fullname: Adair, Desmond email: dadair@nu.edu.kz organization: Nazarbayev University – sequence: 3 givenname: Zhumabay orcidid: 0000-0003-2781-4955 surname: Bakenov fullname: Bakenov, Zhumabay organization: National Laboratory Astana – sequence: 4 givenname: Berik orcidid: 0000-0002-0964-0392 surname: Uzakbaiuly fullname: Uzakbaiuly, Berik email: berik.uzakbaiuly@nu.edu.kz organization: National Laboratory Astana |
BookMark | eNp1kUFv1DAQhSPUSpTSO0cfOZB2bCeOc0JoVaBSKVXVqkdrYju7XiX2Yicr7b_H210QPXCyPfPmG_m9d8WJD94WxQcKlxQYvUKdwmiXeMk1cFbVb4ozVjVQUl7xk3_ub4uLlNYAQIVkkomz4vnBbi0Ozi_J_QqTJY8RfXKTC544T-5c-eD0iixwWgVjE9k6JEjugs-PKc56cltLrv0Uw2Y32inuyA-7l74vTnsckr04nufF09frx8X38vbnt5vFl9sSq6aZSsFEXYmGYw8dtp3sgSMIoFUnKa11j4xrJpqqbmvYd5nutQFoKTWSmp7z8-LmwDUB12oT3YhxpwI69VIIcakwTk4PVlVdY1ohamF13mmazvSiNZ2uORhoJWbW5wNrM3ejNdrmb-HwCvq6491KLcNWUailyH5mwscjIYZfc3ZIjS5pOwzobZiTYlKCZCC4zFI4SHUMKUXb_91DQe1DVX9CVcdQ88inw0juqHWYo8_O_l_-GxhaqDI |
CitedBy_id | crossref_primary_10_1007_s42247_024_00668_3 |
Cites_doi | 10.1021/ja108588y 10.1021/acs.jpcc.9b03597 10.1016/j.jpowsour.2013.05.199 10.1016/j.apcatb.2018.11.035 10.1021/acs.chemmater.7b05269 10.1016/j.ensm.2019.08.013 10.1016/j.joule.2019.09.021 10.1007/s10854-019-01062-0 10.1021/acsenergylett.0c02281 10.1016/j.jpowsour.2017.12.034 10.1016/j.tsf.2015.07.075 10.1002/aenm.201300015 10.1088/1674-1056/25/1/010509 10.1002/advs.202003534 10.1149/2.0491811jes 10.1115/1.4062318 10.1016/j.jpowsour.2013.01.063 10.1021/acsenergylett.8b02499 10.1016/j.matlet.2017.04.121 10.1021/acsomega.9b03794 10.1021/acsami.9b12595 10.1002/anie.201409262 10.1002/anie.202000262 10.1002/aenm.201703612 10.1016/j.electacta.2019.04.026 10.1021/acs.chemmater.9b04066 10.1016/j.jpowsour.2011.10.019 10.1039/c3cp53658k 10.1016/j.jpowsour.2013.10.099 10.1038/s41560-018-0122-3 10.1021/acs.energyfuels.1c03757 10.1007/s11581-020-03768-2 10.1126/sciadv.aas9820 10.1021/acs.energyfuels.0c01692 10.1149/1.2209361 10.3390/en13236363 10.1002/elan.201500599 |
ContentType | Journal Article |
Copyright | 2023 The Authors. Published by American Chemical Society 2023 The Authors. Published by American Chemical Society 2023 The Authors |
Copyright_xml | – notice: 2023 The Authors. Published by American Chemical Society – notice: 2023 The Authors. Published by American Chemical Society 2023 The Authors |
DBID | N~. AAYXX CITATION 7X8 5PM DOA |
DOI | 10.1021/acsomega.3c03245 |
DatabaseName | American Chemical Society (ACS) Open Access CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: N~. name: American Chemical Society (ACS) Open Access url: https://pubs.acs.org sourceTypes: Publisher – sequence: 2 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2470-1343 |
EndPage | 37907 |
ExternalDocumentID | oai_doaj_org_article_4b7d96656ec546d7bdf69dbc530d098a 10_1021_acsomega_3c03245 a483337677 |
GrantInformation_xml | – fundername: ; grantid: AP09261149 |
GroupedDBID | 53G ABFRP ABUCX ACS ADBBV AFEFF ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV EBS GROUPED_DOAJ HYE M~E N~. OK1 RPM VF5 AAFWJ AAHBH AAYXX AFPKN CITATION 7X8 5PM |
ID | FETCH-LOGICAL-a477t-62654673af0ba9b8f03a06014b8115cfa23c26745950b8f02cfcd00911d81df33 |
IEDL.DBID | RPM |
ISSN | 2470-1343 |
IngestDate | Tue Oct 22 15:16:03 EDT 2024 Tue Sep 17 21:29:14 EDT 2024 Fri Aug 16 10:52:10 EDT 2024 Fri Aug 23 01:22:28 EDT 2024 Wed Oct 18 03:10:16 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 41 |
Language | English |
License | Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a477t-62654673af0ba9b8f03a06014b8115cfa23c26745950b8f02cfcd00911d81df33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2781-4955 0000-0002-0964-0392 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10586282/ |
PQID | 2880820638 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4b7d96656ec546d7bdf69dbc530d098a pubmedcentral_primary_oai_pubmedcentral_nih_gov_10586282 proquest_miscellaneous_2880820638 crossref_primary_10_1021_acsomega_3c03245 acs_journals_10_1021_acsomega_3c03245 |
PublicationCentury | 2000 |
PublicationDate | 2023-10-17 |
PublicationDateYYYYMMDD | 2023-10-17 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-17 day: 17 |
PublicationDecade | 2020 |
PublicationTitle | ACS omega |
PublicationTitleAlternate | ACS Omega |
PublicationYear | 2023 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref28/cit28 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref7/cit7 |
References_xml | – ident: ref33/cit33 doi: 10.1021/ja108588y – ident: ref36/cit36 doi: 10.1021/acs.jpcc.9b03597 – ident: ref18/cit18 doi: 10.1016/j.jpowsour.2013.05.199 – ident: ref29/cit29 doi: 10.1016/j.apcatb.2018.11.035 – ident: ref3/cit3 doi: 10.1021/acs.chemmater.7b05269 – ident: ref23/cit23 doi: 10.1016/j.ensm.2019.08.013 – ident: ref27/cit27 doi: 10.1016/j.joule.2019.09.021 – ident: ref2/cit2 doi: 10.1007/s10854-019-01062-0 – ident: ref7/cit7 doi: 10.1021/acsenergylett.0c02281 – ident: ref28/cit28 doi: 10.1016/j.jpowsour.2017.12.034 – ident: ref4/cit4 doi: 10.1016/j.tsf.2015.07.075 – ident: ref31/cit31 doi: 10.1002/aenm.201300015 – ident: ref17/cit17 doi: 10.1088/1674-1056/25/1/010509 – ident: ref25/cit25 doi: 10.1002/advs.202003534 – ident: ref37/cit37 doi: 10.1149/2.0491811jes – ident: ref20/cit20 doi: 10.1115/1.4062318 – ident: ref6/cit6 doi: 10.1016/j.jpowsour.2013.01.063 – ident: ref21/cit21 doi: 10.1021/acsenergylett.8b02499 – ident: ref5/cit5 doi: 10.1016/j.matlet.2017.04.121 – ident: ref15/cit15 doi: 10.1021/acsomega.9b03794 – ident: ref32/cit32 doi: 10.1021/acsami.9b12595 – ident: ref10/cit10 doi: 10.1002/anie.201409262 – ident: ref22/cit22 doi: 10.1002/anie.202000262 – ident: ref9/cit9 doi: 10.1002/aenm.201703612 – ident: ref16/cit16 doi: 10.1016/j.electacta.2019.04.026 – ident: ref24/cit24 doi: 10.1021/acs.chemmater.9b04066 – ident: ref34/cit34 doi: 10.1016/j.jpowsour.2011.10.019 – ident: ref35/cit35 doi: 10.1039/c3cp53658k – ident: ref12/cit12 doi: 10.1016/j.jpowsour.2013.10.099 – ident: ref14/cit14 doi: 10.1038/s41560-018-0122-3 – ident: ref26/cit26 doi: 10.1021/acs.energyfuels.1c03757 – ident: ref1/cit1 doi: 10.1007/s11581-020-03768-2 – ident: ref11/cit11 doi: 10.1126/sciadv.aas9820 – ident: ref8/cit8 doi: 10.1021/acs.energyfuels.0c01692 – ident: ref13/cit13 doi: 10.1149/1.2209361 – ident: ref19/cit19 doi: 10.3390/en13236363 – ident: ref30/cit30 doi: 10.1002/elan.201500599 |
SSID | ssj0001682826 |
Score | 2.2965908 |
Snippet | With the expanding requirements of recent energy regulations and economic interest in high-performance batteries, the need to improve battery energy density... With the expanding requirements of recent energy regulations and economic interest in high-performance batteries, the need to improve battery energy density... |
SourceID | doaj pubmedcentral proquest crossref acs |
SourceType | Open Website Open Access Repository Aggregation Database Publisher |
StartPage | 37899 |
SummonAdditionalLinks | – databaseName: American Chemical Society (ACS) Open Access dbid: N~. link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8QwFA4uB72IK44bEfTgoZqlTdqjiiKCg4iit5CtOodpheqAF3-7L5mOWhHx2Cak5L0k3_eatyC0x5kWnhPQAC15knpJYUvZ4DY1ZryW-hAofNUXF3fp5UP28JUm5-cNPqNH2jb10D_qQ24JoH82jWaZJEWoVtB_P_z6nyLAdojV1VgqSUJ5yttbyd8GCVhkmw4WxZT9HZ7Z9ZL8Bjvni2ih5Yv4eKzgJTTlq2U0dzop07aC7m_8CMgeIBC-fgJIwhF9oiMWHlS4P0hC7DwOkX618w0eDTTWuF9X8DDOHTvy-Cz4qz-_DT0Mia9iUelVdHd-dnt6kbTVEhKdSvmSgGWSwanHdUmMLkxeEq5DspXU5MD6bKkZt0zINCsyElqZLa0DhkWpA85acr6GZqq68usIy0LEEFUThsy9Mz5nRtuMCM0YMaKH9kF6ql3tjYoX2YyqiZRVK-UeOpjIVz2Pk2f80fckKOCzX0h7HV_AWlDtLlKpkQ7ss0x4C3N10rhSFM7YjBNHilz30O5EfQrUEO4-dOXr10YxOKdCqnqe91De0Wvni92WavAUE24DBwXDL2cb_5z3JpoPVekDxFG5hWZAm34buMuL2YmL9gOyWerX priority: 102 providerName: American Chemical Society – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iRS_iE9cXEfTgoZombdIedVEWYRcRF_cW8qruwXZh1wX_vZO0le1FLx6bhLTMTPt908wDoQtGFXeMgAbigkWJEzG8UsaHTdWM18TOJwoPR3wwTh4n6WSl1ZePCavLA9eCu0m0sEDJU-5MmnArtC14brVJGbEkz2pqRPIVZyr8XeHgSdD2XBJw7EaZefXh3tQ1MwRIhMcSGOqgUSja32Ga3TjJFeB52EZbDWPEt_WT7qA1V-6ijX7bqG0PvT67JdA9wCD89A6ghAP-hFAsPC3xaBr57Hnsc_0q6-Z4OVVY4VFVwkVdPXbp8L2PWJ99fTjYEg9DW-l9NH64f-kPoqZfQqQSIRYR-CYgIsFUQbTKdVYQpny5lURnwPtMoSgzlIskzVPiZ6kpjAWOFccWWGvB2AFaL6vSHSIsch6SVLXfMnNWu4xqZVLCFaVE8x66BOnJxt7nMhxl01i2UpaNlHvoqpWvnNXlM35Ze-cV8LPOF74OA2AOsjEH-Zc59NB5qz4JavCnH6p01edcUvhS-WL1LOuhrKPXzh27M-X0PZTcBhYKrl9Gj_7jGY_Rpm9a7xEwFidoHVTtToHaLPRZsOJvUuf4dA priority: 102 providerName: Directory of Open Access Journals |
Title | Revealing Phase Transition in Ni-Rich Cathodes via a Nondestructive Entropymetry Method |
URI | http://dx.doi.org/10.1021/acsomega.3c03245 https://search.proquest.com/docview/2880820638 https://pubmed.ncbi.nlm.nih.gov/PMC10586282 https://doaj.org/article/4b7d96656ec546d7bdf69dbc530d098a |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4BF7igQkEsbVdGag89ZNexEyc5lhUIIe0K0SK4WX4FIrHJqktX6oXfztibIHLhwCVSYsdJZiaeb-x5AHznTAnHKXIgLnmUuCzGX8p4t6k14jWx84HC05m4uEku79K7DRBdLExw2je6GtWP81FdPQTfysXcjDs_sfHVdIKYAIF4zsabsIkS-sZGDysrAq0I1u1Jog4bK7Ns5u5ejbihCCC8HsFLPU0UEvb3UGbfR_KN0jn_BLstWiS_1m-1Bxuu3oftSVek7TPcXrsVQj3UP-TqARUSCbonuGGRqiazKvKR88TH-TXWLcmqUkSRWVPjyTpz7MqRM--tvvg_dzgkmYaS0gdwc372Z3IRtbUSIpVk2VOEdkmKcx5XJdWq0HlJufKpVhKdI-YzpWLcMJElaZFS38pMaSziqzi2iFhLzg9hq25qdwQkK0QIUNV-yNxZ7XKmlUmpUIxRLQbwA6knW1lfyrCNzWLZUVm2VB7Az46-crFOnfFO31PPgNd-Pul1uND8vZct62WiM4vWWSqcwW-1mbalKKw2KaeWFrkawEnHPols8DsfqnbNv6VkOEv5RPU8H0De42vvif0WlL6QbruTtuOP3_oFdnyZeq_z4uwrbCGD3TcEM096iGB-8nsYlgLwOHseDYM0vwC0gvn_ |
link.rule.ids | 230,315,730,783,787,867,888,2109,2772,27088,27092,27936,27937,53804,53806,57070,57094,57120,57144 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcigX3qhLeRgJDhySdezESY6warVAd1WhVu3Nsh2njdpNVt3tSvTXd-wkqOGABMfYzsP6PP4-xzNjgI-cKWE5RQSikgexTSM0KePcplrFayLrAoVnczE9ib-fJWdbIPpYGO-0b3QV1leLsK4uvG_lcmHGvZ_Y-Gg2QU2AQjxj4wfwEA2WxvdW6f7fisB1BOt3JZHFxsqsmoU9VyE3FCWEYxIsGnCRT9k_0JlDL8l7tHPwBE77D269TS7Dm7UOze0fuRz_vUdP4XGnRMmXtv4ZbNn6OexM-gPgXsDpT7tBGYncRo4ukOyI5zXv4kWqmsyrwEXlExdD2BR2RTaVIorMmxov2qy0G0v2nSf88tfC4iPJzB9X_RJODvaPJ9OgO4chUHGargNc8yQ4n3JVUq1ynZWUK5fGJdYZ6klTKsYNE2mc5Al1tcyUpkDtFkUFquGS81ewXTe13QWS5sIHv2r3yMwW2mZMK5NQoRijWozgE-IiOztaSb9FziLZ4yc7_EbwuUdOLtu0HH9p-9VB-7udS6jtC5rrc9mBIGOdFrjyS4Q12Nci1UUp8kKbhNOC5pkawYd-YEiEwe2qqNo2NyvJcAZ0SfB5NoJsMGIGbxzW4Djwqbx73F___63vYWd6PDuUh9_mP_bgEUMTc9wapW9gG8G2b1E0rfU7byF3frcZLQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagSMCF8qrYUsBIcOCQxLETJzmWpavy2NUKUVGJg-VX2gg2WTXbleivZ-wkqOHAocc4jhPr83i-iT-PEXrDqOSWEUAgLlmQ2CwGk9JONtUxXh1bt1F4vuDHJ8mn0_S0V1W2vayy1qoK61-rsK7OvbZyvdLRoBOLlvMpcAIg4jmN1qaMbqM7YLSEX4vU_f8VDrEEHVYmwZNFUrfNyp7JkGkCNMJ5Eyga-SOftn_ENcdKyWuuZ7aLfgwf3SlOfoaXGxXqq3_yOd6sVw_Rg56R4sOuziN0y9aP0b3pcBDcE_T9q90CnQQfh5fn4PSw929e6oWrGi-qwO3Ox24vYWNsi7eVxBIvmhouuuy0W4uPnCJ-_XtloUk898dWP0Uns6Nv0-OgP48hkEmWbQKIfVKYV5ksiZKFykvCpEvnkqgceKUuJWWa8ixJi5S4u1SX2gCHi2MDrLhkbA_t1E1tnyGcFdxvglWuydwaZXOqpE4Jl5QSxSfoLWAjentqhV8qp7EYMBQ9hhP0bkBPrLv0HP-p-97B-7eeS6ztC5qLM9EDIRKVGYgAU2419NVkypS8MEqnjBhS5HKCXg-DQwAMbnVF1ra5bAWFmdAlw2f5BOWjUTN64_gOjAWf0nvAfv_mj75Cd5cfZuLLx8Xn5-g-BUtzLjbODtAOYG1fAHfaqJfeSP4APCYbrQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revealing+Phase+Transition+in+Ni-Rich+Cathodes+via+a+Nondestructive+Entropymetry+Method&rft.jtitle=ACS+omega&rft.au=Nuroldayeva%2C+Gulzat&rft.au=Adair%2C+Desmond&rft.au=Bakenov%2C+Zhumabay&rft.au=Uzakbaiuly%2C+Berik&rft.date=2023-10-17&rft.pub=American+Chemical+Society&rft.eissn=2470-1343&rft.volume=8&rft.issue=41&rft.spage=37899&rft.epage=37907&rft_id=info:doi/10.1021%2Facsomega.3c03245&rft.externalDBID=PMC10586282 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2470-1343&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2470-1343&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2470-1343&client=summon |