Eco-Friendly Preparation of Biomass-Derived Porous Carbon and Its Electrochemical Properties

High-porosity activated carbon (AC) was prepared from low-cost coconut shells (CS) using KOH as an activating agent with different KOH/char mass ratios. To cut down the amount of KOH used for AC preparation, freezing pretreatment for a certain number of times was carried out on CS before carbonizati...

Full description

Saved in:
Bibliographic Details
Published inACS omega Vol. 7; no. 26; pp. 22689 - 22697
Main Authors Wang, Junlong, Zhang, Qi, Deng, Meigen
Format Journal Article
LanguageEnglish
Published American Chemical Society 05.07.2022
Online AccessGet full text

Cover

Loading…
Abstract High-porosity activated carbon (AC) was prepared from low-cost coconut shells (CS) using KOH as an activating agent with different KOH/char mass ratios. To cut down the amount of KOH used for AC preparation, freezing pretreatment for a certain number of times was carried out on CS before carbonization, which resulted in the maximum increase in the specific surface area (S BET) and total pore volume of 92.8 and 44.4%, respectively, in the resultant biochar. For the sake of description, AC from CS undergoing x times of freezing pretreatment and with a KOH/char ratio of y is denoted as AC-xy. The S BET values of AC-13 and AC-24 are 193 and 166 m2 g–1 larger than that of AC-05 (2217 m2 g–1), respectively. At a current density of 0.25 A g–1, the specific gravimetric capacitance (C g) values of AC-05, AC-13, and AC-24 are 386, 403, and 425 F g–1. Moreover, a symmetric supercapacitor based on AC-24 exhibits a high energy density of 14.7 Wh kg–1 at a power density of 120 W kg–1. The energy density retention rate of AC-24 is 71.1% with the power density increased by about 110 times, indicating excellent rate capability. Additionally, a capacitance retention rate of about 95% after 3000 cycles implies an outstanding cycle lifetime of an AC-24-based capacitor. The freezing strategy developed here provides a novel route for low-cost and eco-friendly production of AC from biomass wastes for high-performance supercapacitors.
AbstractList High-porosity activated carbon (AC) was prepared from low-cost coconut shells (CS) using KOH as an activating agent with different KOH/char mass ratios. To cut down the amount of KOH used for AC preparation, freezing pretreatment for a certain number of times was carried out on CS before carbonization, which resulted in the maximum increase in the specific surface area (S BET) and total pore volume of 92.8 and 44.4%, respectively, in the resultant biochar. For the sake of description, AC from CS undergoing x times of freezing pretreatment and with a KOH/char ratio of y is denoted as AC-xy. The S BET values of AC-13 and AC-24 are 193 and 166 m2 g–1 larger than that of AC-05 (2217 m2 g–1), respectively. At a current density of 0.25 A g–1, the specific gravimetric capacitance (C g) values of AC-05, AC-13, and AC-24 are 386, 403, and 425 F g–1. Moreover, a symmetric supercapacitor based on AC-24 exhibits a high energy density of 14.7 Wh kg–1 at a power density of 120 W kg–1. The energy density retention rate of AC-24 is 71.1% with the power density increased by about 110 times, indicating excellent rate capability. Additionally, a capacitance retention rate of about 95% after 3000 cycles implies an outstanding cycle lifetime of an AC-24-based capacitor. The freezing strategy developed here provides a novel route for low-cost and eco-friendly production of AC from biomass wastes for high-performance supercapacitors.
High-porosity activated carbon (AC) was prepared from low-cost coconut shells (CS) using KOH as an activating agent with different KOH/char mass ratios. To cut down the amount of KOH used for AC preparation, freezing pretreatment for a certain number of times was carried out on CS before carbonization, which resulted in the maximum increase in the specific surface area (S BET) and total pore volume of 92.8 and 44.4%, respectively, in the resultant biochar. For the sake of description, AC from CS undergoing x times of freezing pretreatment and with a KOH/char ratio of y is denoted as AC-xy. The S BET values of AC-13 and AC-24 are 193 and 166 m2 g-1 larger than that of AC-05 (2217 m2 g-1), respectively. At a current density of 0.25 A g-1, the specific gravimetric capacitance (C g) values of AC-05, AC-13, and AC-24 are 386, 403, and 425 F g-1. Moreover, a symmetric supercapacitor based on AC-24 exhibits a high energy density of 14.7 Wh kg-1 at a power density of 120 W kg-1. The energy density retention rate of AC-24 is 71.1% with the power density increased by about 110 times, indicating excellent rate capability. Additionally, a capacitance retention rate of about 95% after 3000 cycles implies an outstanding cycle lifetime of an AC-24-based capacitor. The freezing strategy developed here provides a novel route for low-cost and eco-friendly production of AC from biomass wastes for high-performance supercapacitors.High-porosity activated carbon (AC) was prepared from low-cost coconut shells (CS) using KOH as an activating agent with different KOH/char mass ratios. To cut down the amount of KOH used for AC preparation, freezing pretreatment for a certain number of times was carried out on CS before carbonization, which resulted in the maximum increase in the specific surface area (S BET) and total pore volume of 92.8 and 44.4%, respectively, in the resultant biochar. For the sake of description, AC from CS undergoing x times of freezing pretreatment and with a KOH/char ratio of y is denoted as AC-xy. The S BET values of AC-13 and AC-24 are 193 and 166 m2 g-1 larger than that of AC-05 (2217 m2 g-1), respectively. At a current density of 0.25 A g-1, the specific gravimetric capacitance (C g) values of AC-05, AC-13, and AC-24 are 386, 403, and 425 F g-1. Moreover, a symmetric supercapacitor based on AC-24 exhibits a high energy density of 14.7 Wh kg-1 at a power density of 120 W kg-1. The energy density retention rate of AC-24 is 71.1% with the power density increased by about 110 times, indicating excellent rate capability. Additionally, a capacitance retention rate of about 95% after 3000 cycles implies an outstanding cycle lifetime of an AC-24-based capacitor. The freezing strategy developed here provides a novel route for low-cost and eco-friendly production of AC from biomass wastes for high-performance supercapacitors.
High-porosity activated carbon (AC) was prepared from low-cost coconut shells (CS) using KOH as an activating agent with different KOH/char mass ratios. To cut down the amount of KOH used for AC preparation, freezing pretreatment for a certain number of times was carried out on CS before carbonization, which resulted in the maximum increase in the specific surface area ( S BET ) and total pore volume of 92.8 and 44.4%, respectively, in the resultant biochar. For the sake of description, AC from CS undergoing x times of freezing pretreatment and with a KOH/char ratio of y is denoted as AC- xy . The S BET values of AC-13 and AC-24 are 193 and 166 m 2 g –1 larger than that of AC-05 (2217 m 2 g –1 ), respectively. At a current density of 0.25 A g –1 , the specific gravimetric capacitance ( C g ) values of AC-05, AC-13, and AC-24 are 386, 403, and 425 F g –1 . Moreover, a symmetric supercapacitor based on AC-24 exhibits a high energy density of 14.7 Wh kg –1 at a power density of 120 W kg –1 . The energy density retention rate of AC-24 is 71.1% with the power density increased by about 110 times, indicating excellent rate capability. Additionally, a capacitance retention rate of about 95% after 3000 cycles implies an outstanding cycle lifetime of an AC-24-based capacitor. The freezing strategy developed here provides a novel route for low-cost and eco-friendly production of AC from biomass wastes for high-performance supercapacitors.
Author Wang, Junlong
Zhang, Qi
Deng, Meigen
AuthorAffiliation Jiangxi Provincial Key Laboratory of Electric Energy Storage & Conversion
AuthorAffiliation_xml – name: Jiangxi Provincial Key Laboratory of Electric Energy Storage & Conversion
Author_xml – sequence: 1
  givenname: Junlong
  surname: Wang
  fullname: Wang, Junlong
– sequence: 2
  givenname: Qi
  surname: Zhang
  fullname: Zhang, Qi
– sequence: 3
  givenname: Meigen
  orcidid: 0000-0001-8429-1842
  surname: Deng
  fullname: Deng, Meigen
  email: dengmeigen@jxufe.edu.cn
BookMark eNp9kc1P3DAQxS1ExQLl3mOOPTSLv-I4l0rtdheQkOBAb0jWxJksRom9tbNI_Pd1u4tEkejJtua9n8bvnZBDHzwS8onROaOcnYNNYcQ1zLnNT0kPyDGXNS2ZkOLw1X1GzlJ6pJQypbnm6ojMRKUZ05ofk_ulDeUqOvTd8FzcRtxAhMkFX4S--O7CCCmVPzC6J-yK2xDDNhULiG0WgO-KqykVywHtFIN9wNFZGDIkbDBODtNH8qGHIeHZ_jwlP1fLu8VleX1zcbX4dl2CrNVUVrWsaN9aaLVgiA2tOZeq11ZqKlvLda9ELZFz6Gwjmpa2EkVDJfC-EkJZcUq-7ribbTtiZ9FPEQaziW6E-GwCOPPvxLsHsw5PpuGKNqzKgM97QAy_tpgmM7pkcRjAY_6x4UprmvNqeJaqndTGkFLE3lg3_U0sk91gGDV_2jEv7Zh9O9lI3xhf9vuP5cvOkifmMWyjzym-L_8NEeKlZw
CitedBy_id crossref_primary_10_3390_c9040109
crossref_primary_10_1016_j_cplett_2024_141238
crossref_primary_10_3389_fbael_2024_1422400
crossref_primary_10_1021_acs_energyfuels_4c01398
crossref_primary_10_1039_D3EW00464C
crossref_primary_10_1002_cphc_202400569
crossref_primary_10_1016_j_jelechem_2023_117992
crossref_primary_10_1007_s42823_023_00565_5
crossref_primary_10_1515_zpch_2021_3149
crossref_primary_10_1002_est2_677
crossref_primary_10_1039_D3NJ03537A
crossref_primary_10_1016_j_diamond_2024_111623
crossref_primary_10_1016_j_est_2023_106954
crossref_primary_10_1149_1945_7111_ad9412
crossref_primary_10_1016_j_est_2023_109818
crossref_primary_10_1007_s10934_024_01649_x
crossref_primary_10_1021_acsomega_3c03563
crossref_primary_10_3390_catal13020449
crossref_primary_10_1016_j_biombioe_2025_107773
crossref_primary_10_1016_j_jaap_2024_106652
crossref_primary_10_1002_advs_202406235
crossref_primary_10_1016_j_est_2023_109293
crossref_primary_10_3390_molecules29071569
crossref_primary_10_1021_acssusresmgt_4c00142
crossref_primary_10_1002_cnma_202400112
crossref_primary_10_1016_j_diamond_2023_110248
crossref_primary_10_1016_j_snb_2024_136463
crossref_primary_10_1007_s13369_024_09564_8
Cites_doi 10.1039/C6GC01172A
10.1016/j.jallcom.2018.06.267
10.1021/acsami.0c01655
10.1016/S0378-3820(02)00049-8
10.1016/j.renene.2020.08.092
10.1039/C5TA09043A
10.1007/s10800-014-0708-9
10.1021/ie403950t
10.1126/science.1132195
10.1016/j.jpowsour.2014.07.115
10.1016/S1872-5805(17)60134-3
10.1021/acsomega.0c04190
10.3390/su11020414
10.1016/j.fuproc.2005.12.002
10.1016/j.jpowsour.2009.08.048
10.1021/acsomega.0c04117
10.1142/S1793604713500665
10.20964/2016.11.01
10.1016/j.arabjc.2020.102958
10.1016/S0008-6223(02)00279-8
10.1016/S1872-5805(13)60080-3
10.1021/ef3009234
10.20964/2018.12.19
10.1039/C9TA03295A
10.1016/j.electacta.2012.09.082
10.1016/j.wasman.2020.11.043
10.1039/C6RA26141H
10.1002/smll.201401041
10.1016/S0008-6223(03)00141-6
10.1016/j.jpowsour.2011.10.070
10.1039/C5TA04721H
10.1016/j.ijbiomac.2020.04.123
10.1016/j.micromeso.2020.110178
10.1021/acsomega.0c06171
10.1016/j.electacta.2018.09.104
10.1007/s10854-018-8615-1
10.3390/ma14020318
10.1002/ange.200703864
10.1021/jp010086y
10.1016/S0016-2361(03)00153-4
10.1016/j.micromeso.2015.06.041
10.1016/j.jpowsour.2006.02.065
10.1002/cssc.201802894
10.1016/j.carbon.2004.08.034
10.1016/S1872-5805(21)60038-0
10.1002/cnma.202000531
10.1016/j.electacta.2004.01.005
10.1016/j.jallcom.2019.02.304
10.1002/asia.202001342
10.20964/2020.11.10
10.1016/j.mseb.2013.12.004
10.1007/s10008-012-1946-6
10.1039/c3ta10897j
10.1039/D0RA09182K
ContentType Journal Article
Copyright 2022 The Authors. Published by American Chemical Society
2022 The Authors. Published by American Chemical Society.
2022 The Authors. Published by American Chemical Society 2022 The Authors
Copyright_xml – notice: 2022 The Authors. Published by American Chemical Society
– notice: 2022 The Authors. Published by American Chemical Society.
– notice: 2022 The Authors. Published by American Chemical Society 2022 The Authors
DBID N~.
AAYXX
CITATION
7X8
5PM
DOI 10.1021/acsomega.2c02140
DatabaseName American Chemical Society (ACS) Open Access
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: N~.
  name: American Chemical Society (ACS) Open Access
  url: https://pubs.acs.org
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2470-1343
EndPage 22697
ExternalDocumentID PMC9260915
10_1021_acsomega_2c02140
a753354346
GrantInformation_xml – fundername: ;
  grantid: 60901051
– fundername: ;
  grantid: 2021Szvup053
– fundername: ;
  grantid: GJJ170323
GroupedDBID 53G
ABFRP
ABUCX
ACS
ADACO
ADBBV
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
EBS
GROUPED_DOAJ
HYE
N~.
OK1
RPM
VF5
AAFWJ
AAHBH
AAYXX
ABBLG
ADUCK
AFPKN
CITATION
M~E
7X8
5PM
ID FETCH-LOGICAL-a476t-57450fbcab831ee9072246f8c4804bc28f6374e22adc939b0b4e3904a2f5336c3
IEDL.DBID N~.
ISSN 2470-1343
IngestDate Thu Aug 21 14:00:29 EDT 2025
Fri Jul 11 01:03:31 EDT 2025
Tue Jul 01 01:22:46 EDT 2025
Thu Apr 24 23:11:26 EDT 2025
Thu Jul 07 05:52:00 EDT 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 26
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a476t-57450fbcab831ee9072246f8c4804bc28f6374e22adc939b0b4e3904a2f5336c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8429-1842
OpenAccessLink http://dx.doi.org/10.1021/acsomega.2c02140
PMID 35811882
PQID 2688088292
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9260915
proquest_miscellaneous_2688088292
crossref_citationtrail_10_1021_acsomega_2c02140
crossref_primary_10_1021_acsomega_2c02140
acs_journals_10_1021_acsomega_2c02140
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-05
PublicationDateYYYYMMDD 2022-07-05
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-05
  day: 05
PublicationDecade 2020
PublicationTitle ACS omega
PublicationTitleAlternate ACS Omega
PublicationYear 2022
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref52/cit52
ref23/cit23
Brebu M. (ref24/cit24) 2010; 44
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref2/cit2
  doi: 10.1039/C6GC01172A
– ident: ref30/cit30
  doi: 10.1016/j.jallcom.2018.06.267
– ident: ref45/cit45
  doi: 10.1021/acsami.0c01655
– ident: ref28/cit28
  doi: 10.1016/S0378-3820(02)00049-8
– ident: ref47/cit47
  doi: 10.1016/j.renene.2020.08.092
– ident: ref21/cit21
  doi: 10.1039/C5TA09043A
– ident: ref52/cit52
  doi: 10.1007/s10800-014-0708-9
– ident: ref36/cit36
  doi: 10.1021/ie403950t
– ident: ref39/cit39
  doi: 10.1126/science.1132195
– ident: ref37/cit37
  doi: 10.1016/j.jpowsour.2014.07.115
– ident: ref23/cit23
  doi: 10.1016/S1872-5805(17)60134-3
– ident: ref7/cit7
  doi: 10.1021/acsomega.0c04190
– ident: ref1/cit1
  doi: 10.3390/su11020414
– volume: 44
  start-page: 353
  year: 2010
  ident: ref24/cit24
  publication-title: Cellul. Chem. Technol.
– ident: ref25/cit25
  doi: 10.1016/j.fuproc.2005.12.002
– ident: ref53/cit53
  doi: 10.1016/j.jpowsour.2009.08.048
– ident: ref6/cit6
  doi: 10.1021/acsomega.0c04117
– ident: ref18/cit18
  doi: 10.1142/S1793604713500665
– ident: ref33/cit33
  doi: 10.20964/2016.11.01
– ident: ref9/cit9
  doi: 10.1016/j.arabjc.2020.102958
– ident: ref15/cit15
  doi: 10.1016/S0008-6223(02)00279-8
– ident: ref17/cit17
  doi: 10.1016/S1872-5805(13)60080-3
– ident: ref26/cit26
  doi: 10.1021/ef3009234
– ident: ref12/cit12
  doi: 10.20964/2018.12.19
– ident: ref29/cit29
  doi: 10.1039/C9TA03295A
– ident: ref11/cit11
  doi: 10.1016/j.electacta.2012.09.082
– ident: ref49/cit49
  doi: 10.1016/j.wasman.2020.11.043
– ident: ref10/cit10
  doi: 10.1039/C6RA26141H
– ident: ref48/cit48
  doi: 10.1002/smll.201401041
– ident: ref34/cit34
  doi: 10.1016/S0008-6223(03)00141-6
– ident: ref46/cit46
  doi: 10.1016/j.jpowsour.2011.10.070
– ident: ref20/cit20
  doi: 10.1039/C5TA04721H
– ident: ref44/cit44
  doi: 10.1016/j.ijbiomac.2020.04.123
– ident: ref43/cit43
  doi: 10.1016/j.micromeso.2020.110178
– ident: ref8/cit8
  doi: 10.1021/acsomega.0c06171
– ident: ref31/cit31
  doi: 10.1016/j.electacta.2018.09.104
– ident: ref51/cit51
  doi: 10.1007/s10854-018-8615-1
– ident: ref4/cit4
  doi: 10.3390/ma14020318
– ident: ref41/cit41
  doi: 10.1002/ange.200703864
– ident: ref38/cit38
  doi: 10.1021/jp010086y
– ident: ref27/cit27
  doi: 10.1016/S0016-2361(03)00153-4
– ident: ref54/cit54
  doi: 10.1016/j.micromeso.2015.06.041
– ident: ref40/cit40
  doi: 10.1016/j.jpowsour.2006.02.065
– ident: ref32/cit32
  doi: 10.1002/cssc.201802894
– ident: ref22/cit22
  doi: 10.1016/j.carbon.2004.08.034
– ident: ref3/cit3
  doi: 10.1016/S1872-5805(21)60038-0
– ident: ref42/cit42
  doi: 10.1002/cnma.202000531
– ident: ref35/cit35
  doi: 10.1016/j.electacta.2004.01.005
– ident: ref50/cit50
  doi: 10.1016/j.jallcom.2019.02.304
– ident: ref5/cit5
  doi: 10.1002/asia.202001342
– ident: ref14/cit14
  doi: 10.20964/2020.11.10
– ident: ref16/cit16
  doi: 10.1016/j.mseb.2013.12.004
– ident: ref19/cit19
  doi: 10.1007/s10008-012-1946-6
– ident: ref55/cit55
  doi: 10.1039/c3ta10897j
– ident: ref13/cit13
  doi: 10.1039/D0RA09182K
SSID ssj0001682826
Score 2.3728814
Snippet High-porosity activated carbon (AC) was prepared from low-cost coconut shells (CS) using KOH as an activating agent with different KOH/char mass ratios. To cut...
High-porosity activated carbon (AC) was prepared from low-cost coconut shells (CS) using KOH as an activating agent with different KOH/char mass ratios. To cut...
SourceID pubmedcentral
proquest
crossref
acs
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 22689
Title Eco-Friendly Preparation of Biomass-Derived Porous Carbon and Its Electrochemical Properties
URI http://dx.doi.org/10.1021/acsomega.2c02140
https://www.proquest.com/docview/2688088292
https://pubmed.ncbi.nlm.nih.gov/PMC9260915
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA6iB72IP3H-GBH04KGzTdOkOercmIIiqLCDUJLXVAVtZZ2CF_92X7rOOZHhpZcmgb73yntfXvJ9hBwoxxDDIgQ5SoLHAX8pI2LtGQU2ZWClzdzWwOWV6N3xi37Un9Dk_O7gs-BYQ1m82AfdYuD4vRCeLzCBUedELj9bk_0UgdihUldjXPpeEPKw7kr-tYjLRVBO56JJgTl9PPJHvumukOW6UKQnI8-ukjmbr5HF9lifbZ3cd6Dwuo6mOH3-oNcDO2LxLnJaZPT0yZ37Kb0zDLB3m9LrYoAQn7b1wOAAnaf0fFjSzkgDB2rSAFykeHXnrG25Qe66ndt2z6u1EjzNpRh6keSRnxnQJg4DaxHyOqa4LAYe-9wAizMRSm4Z0ymoUBnfcBsqn2uWYcEnINwk83mR2y1CQSAoxNQZxk6DI0uVFjrmOtapEhakbJBDtF1Sx3qZVG1sFiRjGye1jRvkeGzdBGrCcad78TxjxtH3jNcR2caMsftjhyVoeNfm0LlFUyZVdCBwUKxB5JQnvxd1nNrTb_Knx4pbWyG-U0G0_c9v3CFLzN2HcPu90S6ZHw7e7B5WKUPTxCq9fdOsMD4-Lz87zSpgvwBiCOlS
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5V5VAuvBHLoxgJDhyyTRzHjo_tsqsttFUFrdQDUmRPnFJRkmqTRWp_PeNssssiVME1sUf2ZJx5-huAt9ojxPCEnBytMBBIR8rK1ARWo8s5OuUKHxo4PJLTU_HxLDnbgKi_C0OLqIlS3SbxV-gC0Q49q364czPk6GG-yEu_Q7YI90K9O_qyCqtIciHaJmtcqDCIYhF3ycm_EfEqCet1lbSyM9erJH9TO5P78Hm54Lba5Ptw3tgh3vyB5fhfO3oA9zojlO0upOYhbLjyEWyN-t5vj-HrGKtg4iGQ88trdjxzC4TwqmRVwfYufE1RHXwg4f3pcnZczap5zUZmZmmAKXO239RsvOivgx0gARGprnwNt6ufwOlkfDKaBl0fhsAIJZsgUSIJC4vGpnHkHLnTHoWuSFGkobDI00LGSjjOTY461ja0wsU6FIYXZExKjJ_CZlmV7hkwlORwklqOU9_fo8i1kSYVJjW5lg6VGsA7YkvWnaM6a1PkPMp6XmUdrwaw03-yDDswc99T4_KWGe-XM64WQB63jH3TS0FGjPcpFFM6YmXGJf3vyCnRfABqTTyWRD1e9_qb8uJbi9utyXfUUfL8H_f4GramJ4cH2cH-0acXcJf7exc-rpy8hM1mNnevyBpq7HYr_78AdzIHvg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA5DQX0RrzivEfTBh2qbpknzqLuweRl7UPBBKEma6mC2Y52CL_52T7rWORDxtW0O7UnSc76c5PsQOhGWIYYEAHIE1w7VMKUUC6WjhDYx0YabxC4N3PVY54FePwaPNRRUZ2HgJXKwlBdFfDurR3FSMgx4F3A9ezXP8pxoS_UFSH0RshHXKjb0Ps9nSysMYEQhtEYodx3Pp35ZoPzNiA1LOp8PS7Ncc36n5I_Q015Dq2XOiC-nnbyOaibdQMuNSqptEz21dOa0LWNxPPzA_bGZEnpnKc4SfDWwW4Bypwlj7d3EuJ-NAe3jhhwreECmMe5OctyayuHokj8AjGQju-Xa5Fvood26b3ScUjbBkZSziRNwGriJ0lKFvmcMoF9LGpeEmoYuVZqECfM5NYTIWAtfKFdR4wuXSpJA7se0v40W0iw1OwhrBvgQoqgfWjmOJBaSyZDKUMaCGc15HZ2C76Jy2OdRUdEmXlT5OCp9XEcXlXcjXXKPWwmM4R8tzr5bjKa8G388e1x1WASOtxUPmRpwZUQY_J4AQwhSR3yuJ7-NWnrt-Tvp4KWg2RYA9YQX7P7zG4_QUr_Zjm67vZs9tELsKQm7Chzso4XJ-M0cQO4yUYfFSP0CrHDs5g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Eco-Friendly+Preparation+of+Biomass-Derived+Porous+Carbon+and+Its+Electrochemical+Properties&rft.jtitle=ACS+omega&rft.au=Wang%2C+Junlong&rft.au=Zhang%2C+Qi&rft.au=Deng%2C+Meigen&rft.date=2022-07-05&rft.pub=American+Chemical+Society&rft.issn=2470-1343&rft.eissn=2470-1343&rft.volume=7&rft.issue=26&rft.spage=22689&rft.epage=22697&rft_id=info:doi/10.1021%2Facsomega.2c02140&rft.externalDocID=a753354346
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2470-1343&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2470-1343&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2470-1343&client=summon