Eco-Friendly Preparation of Biomass-Derived Porous Carbon and Its Electrochemical Properties
High-porosity activated carbon (AC) was prepared from low-cost coconut shells (CS) using KOH as an activating agent with different KOH/char mass ratios. To cut down the amount of KOH used for AC preparation, freezing pretreatment for a certain number of times was carried out on CS before carbonizati...
Saved in:
Published in | ACS omega Vol. 7; no. 26; pp. 22689 - 22697 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
05.07.2022
|
Online Access | Get full text |
Cover
Loading…
Abstract | High-porosity activated carbon (AC) was prepared from low-cost coconut shells (CS) using KOH as an activating agent with different KOH/char mass ratios. To cut down the amount of KOH used for AC preparation, freezing pretreatment for a certain number of times was carried out on CS before carbonization, which resulted in the maximum increase in the specific surface area (S BET) and total pore volume of 92.8 and 44.4%, respectively, in the resultant biochar. For the sake of description, AC from CS undergoing x times of freezing pretreatment and with a KOH/char ratio of y is denoted as AC-xy. The S BET values of AC-13 and AC-24 are 193 and 166 m2 g–1 larger than that of AC-05 (2217 m2 g–1), respectively. At a current density of 0.25 A g–1, the specific gravimetric capacitance (C g) values of AC-05, AC-13, and AC-24 are 386, 403, and 425 F g–1. Moreover, a symmetric supercapacitor based on AC-24 exhibits a high energy density of 14.7 Wh kg–1 at a power density of 120 W kg–1. The energy density retention rate of AC-24 is 71.1% with the power density increased by about 110 times, indicating excellent rate capability. Additionally, a capacitance retention rate of about 95% after 3000 cycles implies an outstanding cycle lifetime of an AC-24-based capacitor. The freezing strategy developed here provides a novel route for low-cost and eco-friendly production of AC from biomass wastes for high-performance supercapacitors. |
---|---|
AbstractList | High-porosity activated carbon (AC) was prepared from low-cost coconut shells (CS) using KOH as an activating agent with different KOH/char mass ratios. To cut down the amount of KOH used for AC preparation, freezing pretreatment for a certain number of times was carried out on CS before carbonization, which resulted in the maximum increase in the specific surface area (S BET) and total pore volume of 92.8 and 44.4%, respectively, in the resultant biochar. For the sake of description, AC from CS undergoing x times of freezing pretreatment and with a KOH/char ratio of y is denoted as AC-xy. The S BET values of AC-13 and AC-24 are 193 and 166 m2 g–1 larger than that of AC-05 (2217 m2 g–1), respectively. At a current density of 0.25 A g–1, the specific gravimetric capacitance (C g) values of AC-05, AC-13, and AC-24 are 386, 403, and 425 F g–1. Moreover, a symmetric supercapacitor based on AC-24 exhibits a high energy density of 14.7 Wh kg–1 at a power density of 120 W kg–1. The energy density retention rate of AC-24 is 71.1% with the power density increased by about 110 times, indicating excellent rate capability. Additionally, a capacitance retention rate of about 95% after 3000 cycles implies an outstanding cycle lifetime of an AC-24-based capacitor. The freezing strategy developed here provides a novel route for low-cost and eco-friendly production of AC from biomass wastes for high-performance supercapacitors. High-porosity activated carbon (AC) was prepared from low-cost coconut shells (CS) using KOH as an activating agent with different KOH/char mass ratios. To cut down the amount of KOH used for AC preparation, freezing pretreatment for a certain number of times was carried out on CS before carbonization, which resulted in the maximum increase in the specific surface area (S BET) and total pore volume of 92.8 and 44.4%, respectively, in the resultant biochar. For the sake of description, AC from CS undergoing x times of freezing pretreatment and with a KOH/char ratio of y is denoted as AC-xy. The S BET values of AC-13 and AC-24 are 193 and 166 m2 g-1 larger than that of AC-05 (2217 m2 g-1), respectively. At a current density of 0.25 A g-1, the specific gravimetric capacitance (C g) values of AC-05, AC-13, and AC-24 are 386, 403, and 425 F g-1. Moreover, a symmetric supercapacitor based on AC-24 exhibits a high energy density of 14.7 Wh kg-1 at a power density of 120 W kg-1. The energy density retention rate of AC-24 is 71.1% with the power density increased by about 110 times, indicating excellent rate capability. Additionally, a capacitance retention rate of about 95% after 3000 cycles implies an outstanding cycle lifetime of an AC-24-based capacitor. The freezing strategy developed here provides a novel route for low-cost and eco-friendly production of AC from biomass wastes for high-performance supercapacitors.High-porosity activated carbon (AC) was prepared from low-cost coconut shells (CS) using KOH as an activating agent with different KOH/char mass ratios. To cut down the amount of KOH used for AC preparation, freezing pretreatment for a certain number of times was carried out on CS before carbonization, which resulted in the maximum increase in the specific surface area (S BET) and total pore volume of 92.8 and 44.4%, respectively, in the resultant biochar. For the sake of description, AC from CS undergoing x times of freezing pretreatment and with a KOH/char ratio of y is denoted as AC-xy. The S BET values of AC-13 and AC-24 are 193 and 166 m2 g-1 larger than that of AC-05 (2217 m2 g-1), respectively. At a current density of 0.25 A g-1, the specific gravimetric capacitance (C g) values of AC-05, AC-13, and AC-24 are 386, 403, and 425 F g-1. Moreover, a symmetric supercapacitor based on AC-24 exhibits a high energy density of 14.7 Wh kg-1 at a power density of 120 W kg-1. The energy density retention rate of AC-24 is 71.1% with the power density increased by about 110 times, indicating excellent rate capability. Additionally, a capacitance retention rate of about 95% after 3000 cycles implies an outstanding cycle lifetime of an AC-24-based capacitor. The freezing strategy developed here provides a novel route for low-cost and eco-friendly production of AC from biomass wastes for high-performance supercapacitors. High-porosity activated carbon (AC) was prepared from low-cost coconut shells (CS) using KOH as an activating agent with different KOH/char mass ratios. To cut down the amount of KOH used for AC preparation, freezing pretreatment for a certain number of times was carried out on CS before carbonization, which resulted in the maximum increase in the specific surface area ( S BET ) and total pore volume of 92.8 and 44.4%, respectively, in the resultant biochar. For the sake of description, AC from CS undergoing x times of freezing pretreatment and with a KOH/char ratio of y is denoted as AC- xy . The S BET values of AC-13 and AC-24 are 193 and 166 m 2 g –1 larger than that of AC-05 (2217 m 2 g –1 ), respectively. At a current density of 0.25 A g –1 , the specific gravimetric capacitance ( C g ) values of AC-05, AC-13, and AC-24 are 386, 403, and 425 F g –1 . Moreover, a symmetric supercapacitor based on AC-24 exhibits a high energy density of 14.7 Wh kg –1 at a power density of 120 W kg –1 . The energy density retention rate of AC-24 is 71.1% with the power density increased by about 110 times, indicating excellent rate capability. Additionally, a capacitance retention rate of about 95% after 3000 cycles implies an outstanding cycle lifetime of an AC-24-based capacitor. The freezing strategy developed here provides a novel route for low-cost and eco-friendly production of AC from biomass wastes for high-performance supercapacitors. |
Author | Wang, Junlong Zhang, Qi Deng, Meigen |
AuthorAffiliation | Jiangxi Provincial Key Laboratory of Electric Energy Storage & Conversion |
AuthorAffiliation_xml | – name: Jiangxi Provincial Key Laboratory of Electric Energy Storage & Conversion |
Author_xml | – sequence: 1 givenname: Junlong surname: Wang fullname: Wang, Junlong – sequence: 2 givenname: Qi surname: Zhang fullname: Zhang, Qi – sequence: 3 givenname: Meigen orcidid: 0000-0001-8429-1842 surname: Deng fullname: Deng, Meigen email: dengmeigen@jxufe.edu.cn |
BookMark | eNp9kc1P3DAQxS1ExQLl3mOOPTSLv-I4l0rtdheQkOBAb0jWxJksRom9tbNI_Pd1u4tEkejJtua9n8bvnZBDHzwS8onROaOcnYNNYcQ1zLnNT0kPyDGXNS2ZkOLw1X1GzlJ6pJQypbnm6ojMRKUZ05ofk_ulDeUqOvTd8FzcRtxAhMkFX4S--O7CCCmVPzC6J-yK2xDDNhULiG0WgO-KqykVywHtFIN9wNFZGDIkbDBODtNH8qGHIeHZ_jwlP1fLu8VleX1zcbX4dl2CrNVUVrWsaN9aaLVgiA2tOZeq11ZqKlvLda9ELZFz6Gwjmpa2EkVDJfC-EkJZcUq-7ribbTtiZ9FPEQaziW6E-GwCOPPvxLsHsw5PpuGKNqzKgM97QAy_tpgmM7pkcRjAY_6x4UprmvNqeJaqndTGkFLE3lg3_U0sk91gGDV_2jEv7Zh9O9lI3xhf9vuP5cvOkifmMWyjzym-L_8NEeKlZw |
CitedBy_id | crossref_primary_10_3390_c9040109 crossref_primary_10_1016_j_cplett_2024_141238 crossref_primary_10_3389_fbael_2024_1422400 crossref_primary_10_1021_acs_energyfuels_4c01398 crossref_primary_10_1039_D3EW00464C crossref_primary_10_1002_cphc_202400569 crossref_primary_10_1016_j_jelechem_2023_117992 crossref_primary_10_1007_s42823_023_00565_5 crossref_primary_10_1515_zpch_2021_3149 crossref_primary_10_1002_est2_677 crossref_primary_10_1039_D3NJ03537A crossref_primary_10_1016_j_diamond_2024_111623 crossref_primary_10_1016_j_est_2023_106954 crossref_primary_10_1149_1945_7111_ad9412 crossref_primary_10_1016_j_est_2023_109818 crossref_primary_10_1007_s10934_024_01649_x crossref_primary_10_1021_acsomega_3c03563 crossref_primary_10_3390_catal13020449 crossref_primary_10_1016_j_biombioe_2025_107773 crossref_primary_10_1016_j_jaap_2024_106652 crossref_primary_10_1002_advs_202406235 crossref_primary_10_1016_j_est_2023_109293 crossref_primary_10_3390_molecules29071569 crossref_primary_10_1021_acssusresmgt_4c00142 crossref_primary_10_1002_cnma_202400112 crossref_primary_10_1016_j_diamond_2023_110248 crossref_primary_10_1016_j_snb_2024_136463 crossref_primary_10_1007_s13369_024_09564_8 |
Cites_doi | 10.1039/C6GC01172A 10.1016/j.jallcom.2018.06.267 10.1021/acsami.0c01655 10.1016/S0378-3820(02)00049-8 10.1016/j.renene.2020.08.092 10.1039/C5TA09043A 10.1007/s10800-014-0708-9 10.1021/ie403950t 10.1126/science.1132195 10.1016/j.jpowsour.2014.07.115 10.1016/S1872-5805(17)60134-3 10.1021/acsomega.0c04190 10.3390/su11020414 10.1016/j.fuproc.2005.12.002 10.1016/j.jpowsour.2009.08.048 10.1021/acsomega.0c04117 10.1142/S1793604713500665 10.20964/2016.11.01 10.1016/j.arabjc.2020.102958 10.1016/S0008-6223(02)00279-8 10.1016/S1872-5805(13)60080-3 10.1021/ef3009234 10.20964/2018.12.19 10.1039/C9TA03295A 10.1016/j.electacta.2012.09.082 10.1016/j.wasman.2020.11.043 10.1039/C6RA26141H 10.1002/smll.201401041 10.1016/S0008-6223(03)00141-6 10.1016/j.jpowsour.2011.10.070 10.1039/C5TA04721H 10.1016/j.ijbiomac.2020.04.123 10.1016/j.micromeso.2020.110178 10.1021/acsomega.0c06171 10.1016/j.electacta.2018.09.104 10.1007/s10854-018-8615-1 10.3390/ma14020318 10.1002/ange.200703864 10.1021/jp010086y 10.1016/S0016-2361(03)00153-4 10.1016/j.micromeso.2015.06.041 10.1016/j.jpowsour.2006.02.065 10.1002/cssc.201802894 10.1016/j.carbon.2004.08.034 10.1016/S1872-5805(21)60038-0 10.1002/cnma.202000531 10.1016/j.electacta.2004.01.005 10.1016/j.jallcom.2019.02.304 10.1002/asia.202001342 10.20964/2020.11.10 10.1016/j.mseb.2013.12.004 10.1007/s10008-012-1946-6 10.1039/c3ta10897j 10.1039/D0RA09182K |
ContentType | Journal Article |
Copyright | 2022 The Authors. Published by American Chemical Society 2022 The Authors. Published by American Chemical Society. 2022 The Authors. Published by American Chemical Society 2022 The Authors |
Copyright_xml | – notice: 2022 The Authors. Published by American Chemical Society – notice: 2022 The Authors. Published by American Chemical Society. – notice: 2022 The Authors. Published by American Chemical Society 2022 The Authors |
DBID | N~. AAYXX CITATION 7X8 5PM |
DOI | 10.1021/acsomega.2c02140 |
DatabaseName | American Chemical Society (ACS) Open Access CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: N~. name: American Chemical Society (ACS) Open Access url: https://pubs.acs.org sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2470-1343 |
EndPage | 22697 |
ExternalDocumentID | PMC9260915 10_1021_acsomega_2c02140 a753354346 |
GrantInformation_xml | – fundername: ; grantid: 60901051 – fundername: ; grantid: 2021Szvup053 – fundername: ; grantid: GJJ170323 |
GroupedDBID | 53G ABFRP ABUCX ACS ADACO ADBBV AFEFF ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV EBS GROUPED_DOAJ HYE N~. OK1 RPM VF5 AAFWJ AAHBH AAYXX ABBLG ADUCK AFPKN CITATION M~E 7X8 5PM |
ID | FETCH-LOGICAL-a476t-57450fbcab831ee9072246f8c4804bc28f6374e22adc939b0b4e3904a2f5336c3 |
IEDL.DBID | N~. |
ISSN | 2470-1343 |
IngestDate | Thu Aug 21 14:00:29 EDT 2025 Fri Jul 11 01:03:31 EDT 2025 Tue Jul 01 01:22:46 EDT 2025 Thu Apr 24 23:11:26 EDT 2025 Thu Jul 07 05:52:00 EDT 2022 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 26 |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a476t-57450fbcab831ee9072246f8c4804bc28f6374e22adc939b0b4e3904a2f5336c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-8429-1842 |
OpenAccessLink | http://dx.doi.org/10.1021/acsomega.2c02140 |
PMID | 35811882 |
PQID | 2688088292 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9260915 proquest_miscellaneous_2688088292 crossref_citationtrail_10_1021_acsomega_2c02140 crossref_primary_10_1021_acsomega_2c02140 acs_journals_10_1021_acsomega_2c02140 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-05 |
PublicationDateYYYYMMDD | 2022-07-05 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-05 day: 05 |
PublicationDecade | 2020 |
PublicationTitle | ACS omega |
PublicationTitleAlternate | ACS Omega |
PublicationYear | 2022 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref52/cit52 ref23/cit23 Brebu M. (ref24/cit24) 2010; 44 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref2/cit2 doi: 10.1039/C6GC01172A – ident: ref30/cit30 doi: 10.1016/j.jallcom.2018.06.267 – ident: ref45/cit45 doi: 10.1021/acsami.0c01655 – ident: ref28/cit28 doi: 10.1016/S0378-3820(02)00049-8 – ident: ref47/cit47 doi: 10.1016/j.renene.2020.08.092 – ident: ref21/cit21 doi: 10.1039/C5TA09043A – ident: ref52/cit52 doi: 10.1007/s10800-014-0708-9 – ident: ref36/cit36 doi: 10.1021/ie403950t – ident: ref39/cit39 doi: 10.1126/science.1132195 – ident: ref37/cit37 doi: 10.1016/j.jpowsour.2014.07.115 – ident: ref23/cit23 doi: 10.1016/S1872-5805(17)60134-3 – ident: ref7/cit7 doi: 10.1021/acsomega.0c04190 – ident: ref1/cit1 doi: 10.3390/su11020414 – volume: 44 start-page: 353 year: 2010 ident: ref24/cit24 publication-title: Cellul. Chem. Technol. – ident: ref25/cit25 doi: 10.1016/j.fuproc.2005.12.002 – ident: ref53/cit53 doi: 10.1016/j.jpowsour.2009.08.048 – ident: ref6/cit6 doi: 10.1021/acsomega.0c04117 – ident: ref18/cit18 doi: 10.1142/S1793604713500665 – ident: ref33/cit33 doi: 10.20964/2016.11.01 – ident: ref9/cit9 doi: 10.1016/j.arabjc.2020.102958 – ident: ref15/cit15 doi: 10.1016/S0008-6223(02)00279-8 – ident: ref17/cit17 doi: 10.1016/S1872-5805(13)60080-3 – ident: ref26/cit26 doi: 10.1021/ef3009234 – ident: ref12/cit12 doi: 10.20964/2018.12.19 – ident: ref29/cit29 doi: 10.1039/C9TA03295A – ident: ref11/cit11 doi: 10.1016/j.electacta.2012.09.082 – ident: ref49/cit49 doi: 10.1016/j.wasman.2020.11.043 – ident: ref10/cit10 doi: 10.1039/C6RA26141H – ident: ref48/cit48 doi: 10.1002/smll.201401041 – ident: ref34/cit34 doi: 10.1016/S0008-6223(03)00141-6 – ident: ref46/cit46 doi: 10.1016/j.jpowsour.2011.10.070 – ident: ref20/cit20 doi: 10.1039/C5TA04721H – ident: ref44/cit44 doi: 10.1016/j.ijbiomac.2020.04.123 – ident: ref43/cit43 doi: 10.1016/j.micromeso.2020.110178 – ident: ref8/cit8 doi: 10.1021/acsomega.0c06171 – ident: ref31/cit31 doi: 10.1016/j.electacta.2018.09.104 – ident: ref51/cit51 doi: 10.1007/s10854-018-8615-1 – ident: ref4/cit4 doi: 10.3390/ma14020318 – ident: ref41/cit41 doi: 10.1002/ange.200703864 – ident: ref38/cit38 doi: 10.1021/jp010086y – ident: ref27/cit27 doi: 10.1016/S0016-2361(03)00153-4 – ident: ref54/cit54 doi: 10.1016/j.micromeso.2015.06.041 – ident: ref40/cit40 doi: 10.1016/j.jpowsour.2006.02.065 – ident: ref32/cit32 doi: 10.1002/cssc.201802894 – ident: ref22/cit22 doi: 10.1016/j.carbon.2004.08.034 – ident: ref3/cit3 doi: 10.1016/S1872-5805(21)60038-0 – ident: ref42/cit42 doi: 10.1002/cnma.202000531 – ident: ref35/cit35 doi: 10.1016/j.electacta.2004.01.005 – ident: ref50/cit50 doi: 10.1016/j.jallcom.2019.02.304 – ident: ref5/cit5 doi: 10.1002/asia.202001342 – ident: ref14/cit14 doi: 10.20964/2020.11.10 – ident: ref16/cit16 doi: 10.1016/j.mseb.2013.12.004 – ident: ref19/cit19 doi: 10.1007/s10008-012-1946-6 – ident: ref55/cit55 doi: 10.1039/c3ta10897j – ident: ref13/cit13 doi: 10.1039/D0RA09182K |
SSID | ssj0001682826 |
Score | 2.3728814 |
Snippet | High-porosity activated carbon (AC) was prepared from low-cost coconut shells (CS) using KOH as an activating agent with different KOH/char mass ratios. To cut... High-porosity activated carbon (AC) was prepared from low-cost coconut shells (CS) using KOH as an activating agent with different KOH/char mass ratios. To cut... |
SourceID | pubmedcentral proquest crossref acs |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 22689 |
Title | Eco-Friendly Preparation of Biomass-Derived Porous Carbon and Its Electrochemical Properties |
URI | http://dx.doi.org/10.1021/acsomega.2c02140 https://www.proquest.com/docview/2688088292 https://pubmed.ncbi.nlm.nih.gov/PMC9260915 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA6iB72IP3H-GBH04KGzTdOkOercmIIiqLCDUJLXVAVtZZ2CF_92X7rOOZHhpZcmgb73yntfXvJ9hBwoxxDDIgQ5SoLHAX8pI2LtGQU2ZWClzdzWwOWV6N3xi37Un9Dk_O7gs-BYQ1m82AfdYuD4vRCeLzCBUedELj9bk_0UgdihUldjXPpeEPKw7kr-tYjLRVBO56JJgTl9PPJHvumukOW6UKQnI8-ukjmbr5HF9lifbZ3cd6Dwuo6mOH3-oNcDO2LxLnJaZPT0yZ37Kb0zDLB3m9LrYoAQn7b1wOAAnaf0fFjSzkgDB2rSAFykeHXnrG25Qe66ndt2z6u1EjzNpRh6keSRnxnQJg4DaxHyOqa4LAYe-9wAizMRSm4Z0ymoUBnfcBsqn2uWYcEnINwk83mR2y1CQSAoxNQZxk6DI0uVFjrmOtapEhakbJBDtF1Sx3qZVG1sFiRjGye1jRvkeGzdBGrCcad78TxjxtH3jNcR2caMsftjhyVoeNfm0LlFUyZVdCBwUKxB5JQnvxd1nNrTb_Knx4pbWyG-U0G0_c9v3CFLzN2HcPu90S6ZHw7e7B5WKUPTxCq9fdOsMD4-Lz87zSpgvwBiCOlS |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5V5VAuvBHLoxgJDhyyTRzHjo_tsqsttFUFrdQDUmRPnFJRkmqTRWp_PeNssssiVME1sUf2ZJx5-huAt9ojxPCEnBytMBBIR8rK1ARWo8s5OuUKHxo4PJLTU_HxLDnbgKi_C0OLqIlS3SbxV-gC0Q49q364czPk6GG-yEu_Q7YI90K9O_qyCqtIciHaJmtcqDCIYhF3ycm_EfEqCet1lbSyM9erJH9TO5P78Hm54Lba5Ptw3tgh3vyB5fhfO3oA9zojlO0upOYhbLjyEWyN-t5vj-HrGKtg4iGQ88trdjxzC4TwqmRVwfYufE1RHXwg4f3pcnZczap5zUZmZmmAKXO239RsvOivgx0gARGprnwNt6ufwOlkfDKaBl0fhsAIJZsgUSIJC4vGpnHkHLnTHoWuSFGkobDI00LGSjjOTY461ja0wsU6FIYXZExKjJ_CZlmV7hkwlORwklqOU9_fo8i1kSYVJjW5lg6VGsA7YkvWnaM6a1PkPMp6XmUdrwaw03-yDDswc99T4_KWGe-XM64WQB63jH3TS0FGjPcpFFM6YmXGJf3vyCnRfABqTTyWRD1e9_qb8uJbi9utyXfUUfL8H_f4GramJ4cH2cH-0acXcJf7exc-rpy8hM1mNnevyBpq7HYr_78AdzIHvg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA5DQX0RrzivEfTBh2qbpknzqLuweRl7UPBBKEma6mC2Y52CL_52T7rWORDxtW0O7UnSc76c5PsQOhGWIYYEAHIE1w7VMKUUC6WjhDYx0YabxC4N3PVY54FePwaPNRRUZ2HgJXKwlBdFfDurR3FSMgx4F3A9ezXP8pxoS_UFSH0RshHXKjb0Ps9nSysMYEQhtEYodx3Pp35ZoPzNiA1LOp8PS7Ncc36n5I_Q015Dq2XOiC-nnbyOaibdQMuNSqptEz21dOa0LWNxPPzA_bGZEnpnKc4SfDWwW4Bypwlj7d3EuJ-NAe3jhhwreECmMe5OctyayuHokj8AjGQju-Xa5Fvood26b3ScUjbBkZSziRNwGriJ0lKFvmcMoF9LGpeEmoYuVZqECfM5NYTIWAtfKFdR4wuXSpJA7se0v40W0iw1OwhrBvgQoqgfWjmOJBaSyZDKUMaCGc15HZ2C76Jy2OdRUdEmXlT5OCp9XEcXlXcjXXKPWwmM4R8tzr5bjKa8G388e1x1WASOtxUPmRpwZUQY_J4AQwhSR3yuJ7-NWnrt-Tvp4KWg2RYA9YQX7P7zG4_QUr_Zjm67vZs9tELsKQm7Chzso4XJ-M0cQO4yUYfFSP0CrHDs5g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Eco-Friendly+Preparation+of+Biomass-Derived+Porous+Carbon+and+Its+Electrochemical+Properties&rft.jtitle=ACS+omega&rft.au=Wang%2C+Junlong&rft.au=Zhang%2C+Qi&rft.au=Deng%2C+Meigen&rft.date=2022-07-05&rft.pub=American+Chemical+Society&rft.issn=2470-1343&rft.eissn=2470-1343&rft.volume=7&rft.issue=26&rft.spage=22689&rft.epage=22697&rft_id=info:doi/10.1021%2Facsomega.2c02140&rft.externalDocID=a753354346 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2470-1343&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2470-1343&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2470-1343&client=summon |