Data-Driven Strategies for Accelerated Materials Design
Conspectus The ongoing revolution of the natural sciences by the advent of machine learning and artificial intelligence sparked significant interest in the material science community in recent years. The intrinsically high dimensionality of the space of realizable materials makes traditional approac...
Saved in:
Published in | Accounts of chemical research Vol. 54; no. 4; pp. 849 - 860 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
16.02.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0001-4842 1520-4898 1520-4898 |
DOI | 10.1021/acs.accounts.0c00785 |
Cover
Loading…
Abstract | Conspectus The ongoing revolution of the natural sciences by the advent of machine learning and artificial intelligence sparked significant interest in the material science community in recent years. The intrinsically high dimensionality of the space of realizable materials makes traditional approaches ineffective for large-scale explorations. Modern data science and machine learning tools developed for increasingly complicated problems are an attractive alternative. An imminent climate catastrophe calls for a clean energy transformation by overhauling current technologies within only several years of possible action available. Tackling this crisis requires the development of new materials at an unprecedented pace and scale. For example, organic photovoltaics have the potential to replace existing silicon-based materials to a large extent and open up new fields of application. In recent years, organic light-emitting diodes have emerged as state-of-the-art technology for digital screens and portable devices and are enabling new applications with flexible displays. Reticular frameworks allow the atom-precise synthesis of nanomaterials and promise to revolutionize the field by the potential to realize multifunctional nanoparticles with applications from gas storage, gas separation, and electrochemical energy storage to nanomedicine. In the recent decade, significant advances in all these fields have been facilitated by the comprehensive application of simulation and machine learning for property prediction, property optimization, and chemical space exploration enabled by considerable advances in computing power and algorithmic efficiency. In this Account, we review the most recent contributions of our group in this thriving field of machine learning for material science. We start with a summary of the most important material classes our group has been involved in, focusing on small molecules as organic electronic materials and crystalline materials. Specifically, we highlight the data-driven approaches we employed to speed up discovery and derive material design strategies. Subsequently, our focus lies on the data-driven methodologies our group has developed and employed, elaborating on high-throughput virtual screening, inverse molecular design, Bayesian optimization, and supervised learning. We discuss the general ideas, their working principles, and their use cases with examples of successful implementations in data-driven material discovery and design efforts. Furthermore, we elaborate on potential pitfalls and remaining challenges of these methods. Finally, we provide a brief outlook for the field as we foresee increasing adaptation and implementation of large scale data-driven approaches in material discovery and design campaigns. |
---|---|
AbstractList | The ongoing revolution of the natural sciences by the advent of machine learning and artificial intelligence sparked significant interest in the material science community in recent years. The intrinsically high dimensionality of the space of realizable materials makes traditional approaches ineffective for large-scale explorations. Modern data science and machine learning tools developed for increasingly complicated problems are an attractive alternative. An imminent climate catastrophe calls for a clean energy transformation by overhauling current technologies within only several years of possible action available. Tackling this crisis requires the development of new materials at an unprecedented pace and scale. For example, organic photovoltaics have the potential to replace existing silicon-based materials to a large extent and open up new fields of application. In recent years, organic light-emitting diodes have emerged as state-of-the-art technology for digital screens and portable devices and are enabling new applications with flexible displays. Reticular frameworks allow the atom-precise synthesis of nanomaterials and promise to revolutionize the field by the potential to realize multifunctional nanoparticles with applications from gas storage, gas separation, and electrochemical energy storage to nanomedicine. In the recent decade, significant advances in all these fields have been facilitated by the comprehensive application of simulation and machine learning for property prediction, property optimization, and chemical space exploration enabled by considerable advances in computing power and algorithmic efficiency.In this Account, we review the most recent contributions of our group in this thriving field of machine learning for material science. We start with a summary of the most important material classes our group has been involved in, focusing on small molecules as organic electronic materials and crystalline materials. Specifically, we highlight the data-driven approaches we employed to speed up discovery and derive material design strategies. Subsequently, our focus lies on the data-driven methodologies our group has developed and employed, elaborating on high-throughput virtual screening, inverse molecular design, Bayesian optimization, and supervised learning. We discuss the general ideas, their working principles, and their use cases with examples of successful implementations in data-driven material discovery and design efforts. Furthermore, we elaborate on potential pitfalls and remaining challenges of these methods. Finally, we provide a brief outlook for the field as we foresee increasing adaptation and implementation of large scale data-driven approaches in material discovery and design campaigns. The ongoing revolution of the natural sciences by the advent of machine learning and artificial intelligence sparked significant interest in the material science community in recent years. The intrinsically high dimensionality of the space of realizable materials makes traditional approaches ineffective for large-scale explorations. Modern data science and machine learning tools developed for increasingly complicated problems are an attractive alternative. An imminent climate catastrophe calls for a clean energy transformation by overhauling current technologies within only several years of possible action available. Tackling this crisis requires the development of new materials at an unprecedented pace and scale. For example, organic photovoltaics have the potential to replace existing silicon-based materials to a large extent and open up new fields of application. In recent years, organic light-emitting diodes have emerged as state-of-the-art technology for digital screens and portable devices and are enabling new applications with flexible displays. Reticular frameworks allow the atom-precise synthesis of nanomaterials and promise to revolutionize the field by the potential to realize multifunctional nanoparticles with applications from gas storage, gas separation, and electrochemical energy storage to nanomedicine. In the recent decade, significant advances in all these fields have been facilitated by the comprehensive application of simulation and machine learning for property prediction, property optimization, and chemical space exploration enabled by considerable advances in computing power and algorithmic efficiency.In this Account, we review the most recent contributions of our group in this thriving field of machine learning for material science. We start with a summary of the most important material classes our group has been involved in, focusing on small molecules as organic electronic materials and crystalline materials. Specifically, we highlight the data-driven approaches we employed to speed up discovery and derive material design strategies. Subsequently, our focus lies on the data-driven methodologies our group has developed and employed, elaborating on high-throughput virtual screening, inverse molecular design, Bayesian optimization, and supervised learning. We discuss the general ideas, their working principles, and their use cases with examples of successful implementations in data-driven material discovery and design efforts. Furthermore, we elaborate on potential pitfalls and remaining challenges of these methods. Finally, we provide a brief outlook for the field as we foresee increasing adaptation and implementation of large scale data-driven approaches in material discovery and design campaigns.The ongoing revolution of the natural sciences by the advent of machine learning and artificial intelligence sparked significant interest in the material science community in recent years. The intrinsically high dimensionality of the space of realizable materials makes traditional approaches ineffective for large-scale explorations. Modern data science and machine learning tools developed for increasingly complicated problems are an attractive alternative. An imminent climate catastrophe calls for a clean energy transformation by overhauling current technologies within only several years of possible action available. Tackling this crisis requires the development of new materials at an unprecedented pace and scale. For example, organic photovoltaics have the potential to replace existing silicon-based materials to a large extent and open up new fields of application. In recent years, organic light-emitting diodes have emerged as state-of-the-art technology for digital screens and portable devices and are enabling new applications with flexible displays. Reticular frameworks allow the atom-precise synthesis of nanomaterials and promise to revolutionize the field by the potential to realize multifunctional nanoparticles with applications from gas storage, gas separation, and electrochemical energy storage to nanomedicine. In the recent decade, significant advances in all these fields have been facilitated by the comprehensive application of simulation and machine learning for property prediction, property optimization, and chemical space exploration enabled by considerable advances in computing power and algorithmic efficiency.In this Account, we review the most recent contributions of our group in this thriving field of machine learning for material science. We start with a summary of the most important material classes our group has been involved in, focusing on small molecules as organic electronic materials and crystalline materials. Specifically, we highlight the data-driven approaches we employed to speed up discovery and derive material design strategies. Subsequently, our focus lies on the data-driven methodologies our group has developed and employed, elaborating on high-throughput virtual screening, inverse molecular design, Bayesian optimization, and supervised learning. We discuss the general ideas, their working principles, and their use cases with examples of successful implementations in data-driven material discovery and design efforts. Furthermore, we elaborate on potential pitfalls and remaining challenges of these methods. Finally, we provide a brief outlook for the field as we foresee increasing adaptation and implementation of large scale data-driven approaches in material discovery and design campaigns. The ongoing revolution of the natural sciences by the advent of machine learning and artificial intelligence sparked significant interest in the material science community in recent years. The intrinsically high dimensionality of the space of realizable materials makes traditional approaches ineffective for large-scale explorations. Modern data science and machine learning tools developed for increasingly complicated problems are an attractive alternative. An imminent climate catastrophe calls for a clean energy transformation by overhauling current technologies within only several years of possible action available. Tackling this crisis requires the development of new materials at an unprecedented pace and scale. For example, organic photovoltaics have the potential to replace existing silicon-based materials to a large extent and open up new fields of application. In recent years, organic light-emitting diodes have emerged as state-of-the-art technology for digital screens and portable devices and are enabling new applications with flexible displays. Reticular frameworks allow the atom-precise synthesis of nanomaterials and promise to revolutionize the field by the potential to realize multifunctional nanoparticles with applications from gas storage, gas separation, and electrochemical energy storage to nanomedicine. In the recent decade, significant advances in all these fields have been facilitated by the comprehensive application of simulation and machine learning for property prediction, property optimization, and chemical space exploration enabled by considerable advances in computing power and algorithmic efficiency. In this Account, we review the most recent contributions of our group in this thriving field of machine learning for material science. We start with a summary of the most important material classes our group has been involved in, focusing on small molecules as organic electronic materials and crystalline materials. Specifically, we highlight the data-driven approaches we employed to speed up discovery and derive material design strategies. Subsequently, our focus lies on the data-driven methodologies our group has developed and employed, elaborating on high-throughput virtual screening, inverse molecular design, Bayesian optimization, and supervised learning. We discuss the general ideas, their working principles, and their use cases with examples of successful implementations in data-driven material discovery and design efforts. Furthermore, we elaborate on potential pitfalls and remaining challenges of these methods. Finally, we provide a brief outlook for the field as we foresee increasing adaptation and implementation of large scale data-driven approaches in material discovery and design campaigns. Conspectus The ongoing revolution of the natural sciences by the advent of machine learning and artificial intelligence sparked significant interest in the material science community in recent years. The intrinsically high dimensionality of the space of realizable materials makes traditional approaches ineffective for large-scale explorations. Modern data science and machine learning tools developed for increasingly complicated problems are an attractive alternative. An imminent climate catastrophe calls for a clean energy transformation by overhauling current technologies within only several years of possible action available. Tackling this crisis requires the development of new materials at an unprecedented pace and scale. For example, organic photovoltaics have the potential to replace existing silicon-based materials to a large extent and open up new fields of application. In recent years, organic light-emitting diodes have emerged as state-of-the-art technology for digital screens and portable devices and are enabling new applications with flexible displays. Reticular frameworks allow the atom-precise synthesis of nanomaterials and promise to revolutionize the field by the potential to realize multifunctional nanoparticles with applications from gas storage, gas separation, and electrochemical energy storage to nanomedicine. In the recent decade, significant advances in all these fields have been facilitated by the comprehensive application of simulation and machine learning for property prediction, property optimization, and chemical space exploration enabled by considerable advances in computing power and algorithmic efficiency. In this Account, we review the most recent contributions of our group in this thriving field of machine learning for material science. We start with a summary of the most important material classes our group has been involved in, focusing on small molecules as organic electronic materials and crystalline materials. Specifically, we highlight the data-driven approaches we employed to speed up discovery and derive material design strategies. Subsequently, our focus lies on the data-driven methodologies our group has developed and employed, elaborating on high-throughput virtual screening, inverse molecular design, Bayesian optimization, and supervised learning. We discuss the general ideas, their working principles, and their use cases with examples of successful implementations in data-driven material discovery and design efforts. Furthermore, we elaborate on potential pitfalls and remaining challenges of these methods. Finally, we provide a brief outlook for the field as we foresee increasing adaptation and implementation of large scale data-driven approaches in material discovery and design campaigns. |
Author | Lavigne, Cyrille Yao, Zhenpeng Ser, Cher Tian Hickman, Riley J Pollice, Robert dos Passos Gomes, Gabriel Aldeghi, Matteo Nigam, AkshatKumar Aspuru-Guzik, Alán Lindner-D’Addario, Michael Krenn, Mario |
AuthorAffiliation | Chemical Physics Theory Group, Department of Chemistry Department of Computer Science Lebovic Fellow Vector Institute for Artificial Intelligence Canadian Institute for Advanced Research (CIFAR) |
AuthorAffiliation_xml | – name: Department of Computer Science – name: Vector Institute for Artificial Intelligence – name: Canadian Institute for Advanced Research (CIFAR) – name: Chemical Physics Theory Group, Department of Chemistry – name: Lebovic Fellow |
Author_xml | – sequence: 1 givenname: Robert orcidid: 0000-0001-8836-6266 surname: Pollice fullname: Pollice, Robert organization: Department of Computer Science – sequence: 2 givenname: Gabriel orcidid: 0000-0002-8235-5969 surname: dos Passos Gomes fullname: dos Passos Gomes, Gabriel organization: Department of Computer Science – sequence: 3 givenname: Matteo orcidid: 0000-0003-0019-8806 surname: Aldeghi fullname: Aldeghi, Matteo organization: Vector Institute for Artificial Intelligence – sequence: 4 givenname: Riley J surname: Hickman fullname: Hickman, Riley J organization: Department of Computer Science – sequence: 5 givenname: Mario surname: Krenn fullname: Krenn, Mario organization: Vector Institute for Artificial Intelligence – sequence: 6 givenname: Cyrille orcidid: 0000-0003-2778-1866 surname: Lavigne fullname: Lavigne, Cyrille organization: Department of Computer Science – sequence: 7 givenname: Michael surname: Lindner-D’Addario fullname: Lindner-D’Addario, Michael organization: Department of Computer Science – sequence: 8 givenname: AkshatKumar orcidid: 0000-0002-5152-2082 surname: Nigam fullname: Nigam, AkshatKumar organization: Department of Computer Science – sequence: 9 givenname: Cher Tian surname: Ser fullname: Ser, Cher Tian organization: Department of Computer Science – sequence: 10 givenname: Zhenpeng orcidid: 0000-0001-8286-8257 surname: Yao fullname: Yao, Zhenpeng organization: Department of Computer Science – sequence: 11 givenname: Alán orcidid: 0000-0002-8277-4434 surname: Aspuru-Guzik fullname: Aspuru-Guzik, Alán email: aspuru@utoronto.ca organization: Canadian Institute for Advanced Research (CIFAR) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33528245$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1784732$$D View this record in Osti.gov |
BookMark | eNqFUV1PHCEUJcamrrb_oGkmferLrHwO4EMT4_bDROND22fCMndWzCwoMCb992Wyq7F9aF-Ayz3ncC7nGB2GGAChdwQvCabk1Lq8tM7FKZS8xA5jqcQBWhBBccuVVodogTEm9czpETrO-a6WlHfyNTpiTFBFuVggubLFtqvkHyE030uyBTYecjPE1Jw7ByPMV31zXdfk7ZibFWS_CW_Qq6FW8Ha_n6CfXz7_uPjWXt18vbw4v2otl11piepsD6wTeuCEaC1gbTtKtcWDlL3QrmeCWK3Wgmo2KI2d47R3He6pUlhZdoI-7XTvp_UWegehehzNffJbm36ZaL35sxP8rdnERyOVZhLTKvBhJxBz8SY7X8DduhgCuGKIVFyyGfRx_0qKDxPkYrY-1-FHGyBO2VCuhCCScVWh718aenby9KUVwHcAl2LOCYZnCMFmTs7U5MxTcmafXKWd_UWrVm3xcR7Lj_8j4x157t7FKYWayb8pvwEJ_rMj |
CitedBy_id | crossref_primary_10_3390_molecules28217371 crossref_primary_10_1021_acs_jpca_4c03820 crossref_primary_10_1016_j_commatsci_2024_112958 crossref_primary_10_1038_s41578_022_00466_5 crossref_primary_10_1002_advs_202412554 crossref_primary_10_1063_5_0180987 crossref_primary_10_1039_D4CP04214J crossref_primary_10_1038_s41524_023_01134_0 crossref_primary_10_1002_cjce_25358 crossref_primary_10_1016_j_cis_2025_103482 crossref_primary_10_1039_D1TC03256A crossref_primary_10_1021_acsbiomaterials_2c01357 crossref_primary_10_1021_acs_est_4c08298 crossref_primary_10_1021_acs_jcim_2c00608 crossref_primary_10_1021_acs_jpclett_4c03234 crossref_primary_10_1002_idm2_12020 crossref_primary_10_1016_j_jobe_2024_110923 crossref_primary_10_1038_s41597_023_02116_z crossref_primary_10_31617_3_2024_135_03 crossref_primary_10_1021_acs_jpcc_4c03634 crossref_primary_10_1149_2162_8777_ac6894 crossref_primary_10_1016_j_matt_2022_03_005 crossref_primary_10_1063_5_0049708 crossref_primary_10_1002_adma_202413695 crossref_primary_10_1093_chemle_upae090 crossref_primary_10_1016_j_coelec_2024_101494 crossref_primary_10_3390_pr11020330 crossref_primary_10_1002_adts_202100337 crossref_primary_10_1021_acs_chemrev_1c00108 crossref_primary_10_1002_mats_202400008 crossref_primary_10_1039_D4SC05000B crossref_primary_10_1016_j_jma_2024_04_006 crossref_primary_10_1039_D2ME00137C crossref_primary_10_1016_j_patter_2022_100588 crossref_primary_10_1038_s41570_022_00416_3 crossref_primary_10_1021_acs_accounts_3c00095 crossref_primary_10_1021_acs_jpclett_1c03526 crossref_primary_10_1021_acsabm_2c00346 crossref_primary_10_1103_PhysRevX_11_031044 crossref_primary_10_1021_acs_joc_1c01038 crossref_primary_10_1007_s42107_023_00878_w crossref_primary_10_1039_D2TA10043F crossref_primary_10_1039_D3DD00213F crossref_primary_10_1039_D4DD00130C crossref_primary_10_1016_j_ccr_2024_216249 crossref_primary_10_1080_00405000_2021_2022827 crossref_primary_10_1021_acs_chemmater_4c01343 crossref_primary_10_1038_s41524_023_01194_2 crossref_primary_10_1021_acs_iecr_2c00335 crossref_primary_10_1080_27660400_2023_2197519 crossref_primary_10_1039_D2TC03789K crossref_primary_10_1002_smll_202405940 crossref_primary_10_1002_adma_202409175 crossref_primary_10_1002_aisy_202200331 crossref_primary_10_1021_acs_jcim_4c01300 crossref_primary_10_1039_D4SC07438F crossref_primary_10_1021_acsaem_1c03612 crossref_primary_10_1039_D1CP02963K crossref_primary_10_3390_polym15244729 crossref_primary_10_1021_acs_molpharmaceut_3c00162 crossref_primary_10_1039_D3SC05607D crossref_primary_10_1016_j_inoche_2024_113577 crossref_primary_10_1038_s41467_021_26921_5 crossref_primary_10_32604_cmc_2025_060109 crossref_primary_10_1007_s10853_024_09383_0 crossref_primary_10_1021_acs_jpcc_2c01622 crossref_primary_10_1007_s40192_022_00280_5 crossref_primary_10_1016_j_seppur_2021_119196 crossref_primary_10_1016_j_mcat_2025_114877 crossref_primary_10_1007_s40843_024_3026_8 crossref_primary_10_1016_j_matre_2021_100047 crossref_primary_10_1016_j_mattod_2022_05_020 crossref_primary_10_1021_acs_chemrev_3c00223 crossref_primary_10_1002_poc_4458 crossref_primary_10_1080_17460441_2022_2084608 crossref_primary_10_1039_D3DD00078H crossref_primary_10_1039_D4FD00113C crossref_primary_10_1039_D3CP00917C crossref_primary_10_3390_nano12071041 crossref_primary_10_1002_adom_202403199 crossref_primary_10_1002_cphc_202200061 crossref_primary_10_1063_5_0160937 crossref_primary_10_1002_aenm_202401658 crossref_primary_10_1021_jacsau_3c00576 crossref_primary_10_1007_s40192_024_00357_3 crossref_primary_10_1016_j_cep_2023_109385 crossref_primary_10_1002_adts_202300159 crossref_primary_10_1002_aisy_202200073 crossref_primary_10_1080_27660400_2023_2284130 crossref_primary_10_1021_acsami_4c15600 crossref_primary_10_1002_advs_202405262 crossref_primary_10_1021_acsengineeringau_3c00055 crossref_primary_10_1016_j_colsurfa_2024_136057 crossref_primary_10_1002_cmtd_202100107 crossref_primary_10_26599_NR_2025_94907251 crossref_primary_10_1016_j_nanoen_2021_106868 crossref_primary_10_1039_D3PY00565H crossref_primary_10_1039_D1DD00010A crossref_primary_10_1016_j_aichem_2023_100028 crossref_primary_10_1039_D2CC00532H crossref_primary_10_1016_j_addr_2022_114172 crossref_primary_10_1088_1674_1056_ac5d2d crossref_primary_10_1016_j_nxener_2024_100159 crossref_primary_10_1002_inf2_70005 crossref_primary_10_1016_j_electacta_2024_145285 crossref_primary_10_1088_2053_1583_ad4661 crossref_primary_10_1016_j_coelec_2024_101629 crossref_primary_10_1002_aenm_202102355 crossref_primary_10_1002_adma_202201345 crossref_primary_10_1021_jacs_3c11399 crossref_primary_10_1038_s44296_025_00050_2 crossref_primary_10_1080_17460441_2021_1925247 crossref_primary_10_1016_j_pmatsci_2022_101043 crossref_primary_10_1016_j_matt_2022_07_033 crossref_primary_10_1021_acsnano_2c08411 crossref_primary_10_1007_s11426_022_1506_1 crossref_primary_10_1039_D4CC04200J crossref_primary_10_1126_sciadv_abj3906 crossref_primary_10_1002_aic_17644 crossref_primary_10_1039_D2SC02257E crossref_primary_10_1016_j_cnsns_2021_105989 crossref_primary_10_1080_19942060_2024_2391988 crossref_primary_10_3390_jcs7030110 crossref_primary_10_1039_D4DD00093E crossref_primary_10_1016_j_coche_2022_100795 crossref_primary_10_1002_aenm_202200389 crossref_primary_10_1021_acs_jpca_2c09030 crossref_primary_10_1039_D2ME00023G crossref_primary_10_1007_s11244_021_01543_9 crossref_primary_10_1021_acscatal_4c00650 crossref_primary_10_1016_j_mtcomm_2024_108043 crossref_primary_10_3390_en16227633 crossref_primary_10_1016_j_aichem_2024_100075 crossref_primary_10_1021_acs_cgd_3c00828 crossref_primary_10_1038_s41587_024_02526_3 crossref_primary_10_1021_acs_chemmater_4c00762 crossref_primary_10_1039_D2MA00223J crossref_primary_10_1088_1361_665X_adadcd crossref_primary_10_1021_acs_jctc_2c00331 crossref_primary_10_1063_5_0057162 crossref_primary_10_1063_5_0102857 crossref_primary_10_1109_ACCESS_2022_3230065 crossref_primary_10_1038_s44160_023_00294_7 crossref_primary_10_1021_acspolymersau_2c00053 crossref_primary_10_1016_j_solmat_2024_112881 crossref_primary_10_1002_aenm_202202380 crossref_primary_10_1021_acsmacrolett_2c00060 crossref_primary_10_1515_rams_2023_0179 crossref_primary_10_1063_5_0201701 crossref_primary_10_1039_D2DD00003B crossref_primary_10_1039_D3SC05306G crossref_primary_10_1038_s43588_024_00616_5 crossref_primary_10_1021_jacs_4c01352 crossref_primary_10_3390_ma14247884 crossref_primary_10_1002_aisy_202200399 crossref_primary_10_1080_14686996_2024_2423600 crossref_primary_10_21303_2461_4262_2024_003296 crossref_primary_10_1063_5_0151122 crossref_primary_10_1038_s44160_022_00231_0 crossref_primary_10_1021_acs_chemmater_1c01201 crossref_primary_10_1007_s11426_024_2072_4 crossref_primary_10_1016_j_checat_2022_02_009 crossref_primary_10_1002_cjce_25525 crossref_primary_10_1021_jacs_4c03789 crossref_primary_10_1016_j_energy_2023_130197 crossref_primary_10_1002_adts_202401344 crossref_primary_10_1002_bkcs_12516 crossref_primary_10_1016_j_ensm_2025_104009 crossref_primary_10_1093_toxres_tfaf011 crossref_primary_10_1016_j_nxmate_2024_100145 crossref_primary_10_1021_acs_chemrev_4c00572 crossref_primary_10_1115_1_4062310 crossref_primary_10_1021_jacs_2c06833 crossref_primary_10_1021_acs_jpclett_3c01200 crossref_primary_10_1016_j_actamat_2024_120137 crossref_primary_10_1039_D3DD00156C crossref_primary_10_1002_adma_202305602 crossref_primary_10_3390_app14188143 crossref_primary_10_1063_5_0061799 crossref_primary_10_1016_j_compchemeng_2023_108345 crossref_primary_10_1016_j_jiec_2024_09_035 crossref_primary_10_1002_ange_202107369 crossref_primary_10_1038_s41597_024_03979_6 crossref_primary_10_1016_j_ensm_2024_103538 crossref_primary_10_1039_D3RA02492J crossref_primary_10_1557_s43579_023_00433_3 crossref_primary_10_1016_j_xcrp_2022_101025 crossref_primary_10_1021_acspolymersau_1c00035 crossref_primary_10_1007_s11665_022_06995_y crossref_primary_10_1021_jacs_1c08181 crossref_primary_10_1038_s41524_023_01185_3 crossref_primary_10_1038_s41524_021_00670_x crossref_primary_10_1007_s11696_024_03301_z crossref_primary_10_1039_D2DD00133K crossref_primary_10_1021_acs_jpclett_1c01010 crossref_primary_10_1002_adfm_202422716 crossref_primary_10_1021_acs_jcim_3c01702 crossref_primary_10_1016_j_chbah_2024_100064 crossref_primary_10_1002_anie_202107369 crossref_primary_10_1021_acsmaterialslett_3c00350 crossref_primary_10_1016_j_tchem_2022_100012 crossref_primary_10_1021_jacs_4c17283 crossref_primary_10_1002_qua_70036 crossref_primary_10_1016_j_yjoc_2024_100077 crossref_primary_10_1016_j_matdes_2022_110799 crossref_primary_10_1002_admt_202300427 crossref_primary_10_1016_j_est_2025_115363 crossref_primary_10_1002_adhm_202401312 crossref_primary_10_1016_j_cartre_2022_100234 crossref_primary_10_1108_RJTA_10_2021_0124 crossref_primary_10_1002_mgea_14 crossref_primary_10_1016_j_seppur_2024_128056 crossref_primary_10_1021_acs_jcim_2c00812 crossref_primary_10_1021_acs_est_4c00060 crossref_primary_10_1063_5_0076545 crossref_primary_10_1155_2022_6934740 crossref_primary_10_1039_D4CS00423J crossref_primary_10_1016_j_xcrp_2022_101126 crossref_primary_10_1039_D4MH01464B crossref_primary_10_3390_catal15040309 crossref_primary_10_1039_D4DD00199K crossref_primary_10_1557_s43578_023_00892_3 crossref_primary_10_1021_acs_chemmater_2c01294 crossref_primary_10_1016_j_apsadv_2023_100523 crossref_primary_10_1039_D1ME00093D crossref_primary_10_1039_D3CP01240A crossref_primary_10_1016_j_bea_2022_100038 crossref_primary_10_1021_acs_jcim_3c01918 crossref_primary_10_2174_0113852728249020230921072236 crossref_primary_10_1016_j_ceramint_2024_11_503 crossref_primary_10_1039_D3DD00005B crossref_primary_10_1038_s41467_023_38169_2 crossref_primary_10_1016_j_matt_2022_10_007 crossref_primary_10_1021_acs_jcim_4c01583 crossref_primary_10_1016_j_xinn_2021_100179 crossref_primary_10_1039_D3DD00257H crossref_primary_10_1039_D1DD00009H crossref_primary_10_1002_jcc_70017 crossref_primary_10_1039_D4DD00203B crossref_primary_10_1186_s13321_023_00691_2 crossref_primary_10_1016_j_solmat_2023_112258 crossref_primary_10_1021_acsmaterialsau_3c00061 crossref_primary_10_2139_ssrn_4608727 crossref_primary_10_1039_D0CS01336F crossref_primary_10_1021_acsmaterialslett_4c02424 |
Cites_doi | 10.1038/33647 10.1038/nmat4717 10.1021/ci00057a005 10.1073/pnas.102102699 10.1021/jz200866s 10.1016/j.joule.2018.07.005 10.1038/s41586-018-0337-2 10.1038/nenergy.2016.102 10.1021/acsenergylett.9b01332 10.1016/j.cogsc.2020.100370 10.1088/2632-2153/aba947 10.1039/c1ee02056k 10.1126/scirobotics.aat5559 10.1126/science.136.3518.760 10.1021/acs.cgd.9b01050 10.1126/sciadv.aaz8867 10.1038/ncomms1451 10.1002/adma.202070110 10.1039/C8SC02239A 10.1038/nbt.1665 10.1093/jnci/djk018 10.1149/2.0351704jes 10.1107/S0108768102006948 10.1039/D0SC00445F 10.1016/j.scib.2020.01.001 10.1002/aenm.201802994 10.1016/j.trechm.2019.02.007 10.1002/aenm.201702056 10.1039/C9TA03219C 10.26434/chemrxiv.13146404.v1 10.1021/acs.chemrev.6b00127 10.1021/acscentsci.7b00572 10.1038/s42256-020-00271-1 10.1146/annurev-matsci-070214-020823 10.1021/acs.jpca.9b06215 10.1021/acscentsci.8b00307 10.1371/journal.pone.0229862 10.1016/0167-9236(94)00041-2 10.1038/s41557-018-0045-4 10.1038/s41586-020-2442-2 10.1039/C3EE42756K 10.1126/science.aax1566 10.1021/acs.jpclett.9b02333 10.1021/acscentsci.7b00550 10.1021/jacs.8b13295 10.1126/science.aat2663 10.1016/j.joule.2017.10.006 10.1039/C9QM00716D 10.1126/science.aav2211 10.26434/chemrxiv.13087319.v1 10.1039/C4SC03030C 10.3998/ergo.12405314.0002.006 10.1016/j.chempr.2020.08.008 10.1039/C9CP06792B 10.1021/acs.chemrev.9b00339 10.1038/nmat4462 10.1002/adfm.201501919 10.1021/cm502594j 10.1109/JPROC.2015.2494218 10.1021/acs.chemrev.6b00215 10.1073/pnas.1131854100 10.26434/chemrxiv.13008500.v1 |
ContentType | Journal Article |
Copyright | 2021 American Chemical Society 2021 American Chemical Society 2021 American Chemical Society |
Copyright_xml | – notice: 2021 American Chemical Society – notice: 2021 American Chemical Society 2021 American Chemical Society |
CorporateAuthor | Univ. of Minnesota, Minneapolis, MN (United States) |
CorporateAuthor_xml | – name: Univ. of Minnesota, Minneapolis, MN (United States) |
DBID | AAYXX CITATION NPM 7X8 OIOZB OTOTI 5PM |
DOI | 10.1021/acs.accounts.0c00785 |
DatabaseName | CrossRef PubMed MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-4898 |
EndPage | 860 |
ExternalDocumentID | PMC7893702 1784732 33528245 10_1021_acs_accounts_0c00785 a358912250 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 02 23M 55A 5GY 5VS 7~N 85S AABXI ABFLS ABMVS ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DZ EBS ED ED~ F5P GNL IH2 IH9 JG JG~ K2 LG6 P2P RNS ROL TWZ UI2 UPT VF5 VG9 W1F WH7 X YZZ --- -DZ -~X 4.4 53G 5ZA 6J9 6P2 AAYXX ABBLG ABJNI ABLBI ABQRX ACGFO ADHLV AFXLT AGXLV AHGAQ CITATION CUPRZ GGK XSW ZCA ~02 NPM 7X8 ABFRP OIOZB OTOTI 5PM |
ID | FETCH-LOGICAL-a476t-186ade3659f411995eba6229a0f77d59cd351a98b5293f890cc42dc60d28808a3 |
IEDL.DBID | ACS |
ISSN | 0001-4842 1520-4898 |
IngestDate | Thu Aug 21 13:59:29 EDT 2025 Thu May 18 22:26:23 EDT 2023 Fri Jul 11 00:15:22 EDT 2025 Mon Jul 21 06:06:58 EDT 2025 Thu Apr 24 23:01:50 EDT 2025 Tue Jul 01 03:16:06 EDT 2025 Thu Feb 18 05:21:55 EST 2021 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a476t-186ade3659f411995eba6229a0f77d59cd351a98b5293f890cc42dc60d28808a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Natural Sciences and Engineering Research Council of Canada (NSERC) USDOE Office of Science (SC), Basic Energy Sciences (BES) SC0008688; FG02-17ER16362; 191127; PGSD3-534584-2019; J4309; HR00111920027; N00014-19-1-2134 Swiss National Science Foundation (SNSF) US Department of the Navy, Office of Naval Research (ONR) Austrian Science Fund (FWF) Defense Advanced Research Projects Agency (DARPA) |
ORCID | 0000-0002-8235-5969 0000-0002-5152-2082 0000-0001-8286-8257 0000-0003-2778-1866 0000-0002-8277-4434 0000-0001-8836-6266 0000-0003-0019-8806 0000000300198806 0000000327781866 0000000188366266 0000000282774434 0000000182868257 0000000282355969 0000000251522082 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1784732 |
PMID | 33528245 |
PQID | 2485517348 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7893702 osti_scitechconnect_1784732 proquest_miscellaneous_2485517348 pubmed_primary_33528245 crossref_primary_10_1021_acs_accounts_0c00785 crossref_citationtrail_10_1021_acs_accounts_0c00785 acs_journals_10_1021_acs_accounts_0c00785 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-16 |
PublicationDateYYYYMMDD | 2021-02-16 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-16 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Accounts of chemical research |
PublicationTitleAlternate | Acc. Chem. Res |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref3/cit3 ref27/cit27 Guimaraes G. L. (ref45/cit45) ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref71/cit71 ref37/cit37 ref20/cit20 ref48/cit48 ref74/cit74 Hey T. (ref5/cit5) 2009 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 Duvenaud D. K. (ref60/cit60) 2015 Friederich P. (ref70/cit70) ref21/cit21 ref42/cit42 ref46/cit46 ref13/cit13 ref67/cit67 ref24/cit24 ref38/cit38 Häse F. (ref49/cit49) ref50/cit50 ref54/cit54 Roelofs R. (ref63/cit63) 2019 ref6/cit6 ref36/cit36 ref18/cit18 Goodfellow I. (ref59/cit59) 2016 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 Häse F. (ref51/cit51) ref72/cit72 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref43/cit43 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref73/cit73 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 Flam-Shepherd D. (ref61/cit61) ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 Cawley G. C. (ref64/cit64) 2010; 11 ref7/cit7 |
References_xml | – ident: ref37/cit37 doi: 10.1038/33647 – start-page: 2224 volume-title: Advances in Neural Information Processing Systems 28 year: 2015 ident: ref60/cit60 – ident: ref1/cit1 doi: 10.1038/nmat4717 – ident: ref46/cit46 doi: 10.1021/ci00057a005 – ident: ref65/cit65 doi: 10.1073/pnas.102102699 – ident: ref12/cit12 doi: 10.1021/jz200866s – ident: ref23/cit23 doi: 10.1016/j.joule.2018.07.005 – ident: ref58/cit58 doi: 10.1038/s41586-018-0337-2 – ident: ref20/cit20 doi: 10.1038/nenergy.2016.102 – ident: ref19/cit19 doi: 10.1021/acsenergylett.9b01332 – volume-title: Deep Learning year: 2016 ident: ref59/cit59 – ident: ref43/cit43 doi: 10.1016/j.cogsc.2020.100370 – ident: ref47/cit47 doi: 10.1088/2632-2153/aba947 – ident: ref13/cit13 doi: 10.1039/c1ee02056k – ident: ref53/cit53 doi: 10.1126/scirobotics.aat5559 – ident: ref7/cit7 doi: 10.1126/science.136.3518.760 – ident: ref61/cit61 publication-title: arXiv (Machine Learning) – start-page: 9179 volume-title: Advances in Neural Information Processing Systems 32 year: 2019 ident: ref63/cit63 – ident: ref32/cit32 doi: 10.1021/acs.cgd.9b01050 – ident: ref55/cit55 doi: 10.1126/sciadv.aaz8867 – ident: ref45/cit45 publication-title: arXiv (Machine Learning) – ident: ref15/cit15 doi: 10.1038/ncomms1451 – ident: ref56/cit56 doi: 10.1002/adma.202070110 – ident: ref70/cit70 publication-title: arXiv (Machine Learning) – ident: ref52/cit52 doi: 10.1039/C8SC02239A – ident: ref67/cit67 doi: 10.1038/nbt.1665 – ident: ref66/cit66 doi: 10.1093/jnci/djk018 – ident: ref25/cit25 doi: 10.1149/2.0351704jes – ident: ref30/cit30 doi: 10.1107/S0108768102006948 – ident: ref69/cit69 doi: 10.1039/D0SC00445F – ident: ref11/cit11 doi: 10.1016/j.scib.2020.01.001 – ident: ref29/cit29 doi: 10.1002/aenm.201802994 – ident: ref42/cit42 doi: 10.1016/j.trechm.2019.02.007 – ident: ref22/cit22 doi: 10.1002/aenm.201702056 – ident: ref18/cit18 doi: 10.1039/C9TA03219C – ident: ref57/cit57 doi: 10.26434/chemrxiv.13146404.v1 – volume-title: The Fourth Paradigm: Data-Intensive Scientific Discovery year: 2009 ident: ref5/cit5 – ident: ref48/cit48 – ident: ref9/cit9 doi: 10.1021/acs.chemrev.6b00127 – ident: ref44/cit44 doi: 10.1021/acscentsci.7b00572 – ident: ref2/cit2 doi: 10.1038/s42256-020-00271-1 – ident: ref34/cit34 doi: 10.1146/annurev-matsci-070214-020823 – ident: ref39/cit39 doi: 10.1021/acs.jpca.9b06215 – ident: ref4/cit4 doi: 10.1021/acscentsci.8b00307 – ident: ref54/cit54 doi: 10.1371/journal.pone.0229862 – ident: ref8/cit8 doi: 10.1016/0167-9236(94)00041-2 – ident: ref28/cit28 doi: 10.1038/s41557-018-0045-4 – ident: ref74/cit74 doi: 10.1038/s41586-020-2442-2 – ident: ref14/cit14 doi: 10.1039/C3EE42756K – ident: ref73/cit73 doi: 10.1126/science.aax1566 – ident: ref38/cit38 doi: 10.1021/acs.jpclett.9b02333 – ident: ref49/cit49 publication-title: arXiv (Machine Learning) – ident: ref71/cit71 doi: 10.1021/acscentsci.7b00550 – ident: ref24/cit24 doi: 10.1021/jacs.8b13295 – ident: ref35/cit35 doi: 10.1126/science.aat2663 – ident: ref16/cit16 doi: 10.1016/j.joule.2017.10.006 – ident: ref17/cit17 doi: 10.1039/C9QM00716D – ident: ref72/cit72 doi: 10.1126/science.aav2211 – ident: ref3/cit3 – ident: ref40/cit40 doi: 10.26434/chemrxiv.13087319.v1 – volume: 11 start-page: 2079 issue: 70 year: 2010 ident: ref64/cit64 publication-title: J. Mach. Learn. Res. – ident: ref21/cit21 doi: 10.1039/C4SC03030C – ident: ref6/cit6 doi: 10.3998/ergo.12405314.0002.006 – ident: ref31/cit31 doi: 10.1016/j.chempr.2020.08.008 – ident: ref41/cit41 doi: 10.1039/C9CP06792B – ident: ref26/cit26 doi: 10.1021/acs.chemrev.9b00339 – ident: ref27/cit27 doi: 10.1038/nmat4462 – ident: ref51/cit51 publication-title: arXiv (Machine Learning) – ident: ref62/cit62 doi: 10.1002/adfm.201501919 – ident: ref33/cit33 doi: 10.1021/cm502594j – ident: ref50/cit50 doi: 10.1109/JPROC.2015.2494218 – ident: ref10/cit10 doi: 10.1021/acs.chemrev.6b00215 – ident: ref36/cit36 doi: 10.1073/pnas.1131854100 – ident: ref68/cit68 doi: 10.26434/chemrxiv.13008500.v1 |
SSID | ssj0002467 |
Score | 2.690305 |
Snippet | Conspectus The ongoing revolution of the natural sciences by the advent of machine learning and artificial intelligence sparked significant interest in the... The ongoing revolution of the natural sciences by the advent of machine learning and artificial intelligence sparked significant interest in the material... The ongoing revolution of the natural sciences by the advent of machine learning and artificial intelligence sparked significant interest in the material... |
SourceID | pubmedcentral osti proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 849 |
SubjectTerms | Algorithms MATERIALS SCIENCE Materials,Molecules Molecular design Optimization |
Title | Data-Driven Strategies for Accelerated Materials Design |
URI | http://dx.doi.org/10.1021/acs.accounts.0c00785 https://www.ncbi.nlm.nih.gov/pubmed/33528245 https://www.proquest.com/docview/2485517348 https://www.osti.gov/servlets/purl/1784732 https://pubmed.ncbi.nlm.nih.gov/PMC7893702 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7R5UAvLa_CtoCCxIVDlthxHPtY7XZVIRUOsNLeLMd2BCrKoiZ76a_vTB5btoC2vSa2I8-MPZ_jmW8APiQiEJGSjq0qeCxYmcW2tHhY0aWQohDBe_qhf_FFni_E52W2vD0o3r3B5-yTdTUO3VZOqCeJI5-W7cFjLhFpExSaftvsvFzIjiMTj8hCCT6kyv1nFHJIrt5ySKMVLqx_gc27MZN_OKH5IXwdUnm62JPLybopJu76b2bHe87vKRz0eDQ67QzoGTwK1XN4Mh3KwL2AfGYbG8-uaFeMBi7bUEcIdqNT59Br0SMfXdimM-Zo1gaFvITF_Oz79Dzuqy3EVuSyiZmS1odUZqglRonbobCSc22TMs99pp1PM2a1KjJECKXSiXOCeycTz3EPUDY9glG1qsJriARiNFegqDRqWwelsHtZWDQHlnrJ9Rg-4qxNv1pq016Ec2bo4SAK04tiDOmgHuN62nKqnvFrR6940-t3R9uxo_0Jad4g7CDuXEdBRq4xLEfnnfIxvB8MwqD06UrFVmG1rk1LCMeIIWgMrzoD2XyPstkUFzh2vmU6mwbE7L39pvr5o2X4zglFJvz4AXI6gX1O4TZUq0a-gVFztQ5vES81xbt2kdwAzswS4Q |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6V5VAu5U2X8ggSFw5ZYsdx7ONql2qBbi-0qDfLsR0VgbKoyV749czkBVuBql4d24nHY8_neOYbgLeJCESkpGOrCh4LVmaxLS0eVnQppChE8J5-6K9P5epcfLrILvYgG2Jh8CNq7KluL_H_sAuw91RmuwQK9SxxZNqyO3AX8QgnT7754su4AXMhO6pMPCkLJfgQMfefXsguuXrHLk02uL7-hTmvu07-ZYuO78PXcRStC8r32bYpZu7XNYLHWw_zARz06DSad-r0EPZC9Qj2F0NSuMeQL21j4-UV7ZHRwGwb6gihbzR3Dm0YFflobZtOtaNl6yLyBM6PP5wtVnGfeyG2IpdNzJS0PqQywzljFMYdCis51zYp89xn2vk0Y1arIkO8UCqdOCe4dzLxHHcEZdOnMKk2VTiESCBicwVKTOPc66AUNi8Li8rBUi-5nsI7HLXp105t2mtxzgwVDqIwvSimkA6zZFxPYk65NH7c0CoeW_3sSDxuqH9ECmAQhBCTriOXI9cYlqMpT_kU3gx6YVD6dMFiq7DZ1qalh2PEFzSFZ52ejO-j2DbFBfad72jQWIF4vnefVN8uW77vnDBlwp_fQk6vYX91tj4xJx9PPx_BPU6OOJTFRr6ASXO1DS8RSTXFq3bd_AapYRtC |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7BIgEX3o-lPILEhUOW2HEc-7ja7ao8WiFBpYqL5diOWrXKVk32wq9nJi91K1BFr47txOPPnnFm_A3Ah0QEIlLSsVUFjwUrs9iWFg8ruhRSFCJ4Tz_09w_k3qH4cpQdXUr1hR9RY09168SnVX3uy55hgH2ictslUahniSP1lt2GO-S5o2i--eLHuAlzITu6TDwtCyX4cGvuH72QbnL1lm6arHGN_c3uvBo-eUkfrR7Cr3EkbRjK6WzTFDP3-wrJ442G-gge9FZqNO9g9RhuheoJ3FsMyeGeQr60jY2XF7RXRgPDbagjNIGjuXOoy6jIR_u26SAeLdtQkWdwuNr9udiL-xwMsRW5bGKmpPUhlRnOHaPr3KGwknNtkzLPfaadTzNmtSoytBtKpRPnBPdOJp7jzqBs-hwm1boKLyESaLm5AqWmEQM6KIXNy8IiSFjqJddT-IijNv0aqk3rHufMUOEgCtOLYgrpMFPG9WTmlFPj7JpW8djqvCPzuKb-DoHAoDFCjLqOQo9cY1iOKj3lU3g_YMOg9MnRYquw3tSmpYljxBs0hRcdVsb30R03xQX2nW-haKxAfN_bT6qT45b3OyfbMuGv_kNO7-Du9-XKfPt88HUH7nOKx6FkNvI1TJqLTXiDBlVTvG2Xzh-six3F |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-Driven+Strategies+for+Accelerated+Materials+Design&rft.jtitle=Accounts+of+chemical+research&rft.au=Pollice%2C+Robert&rft.au=Dos+Passos+Gomes%2C+Gabriel&rft.au=Aldeghi%2C+Matteo&rft.au=Hickman%2C+Riley+J&rft.date=2021-02-16&rft.eissn=1520-4898&rft.volume=54&rft.issue=4&rft.spage=849&rft_id=info:doi/10.1021%2Facs.accounts.0c00785&rft_id=info%3Apmid%2F33528245&rft.externalDocID=33528245 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon |