Data-Driven Strategies for Accelerated Materials Design

Conspectus The ongoing revolution of the natural sciences by the advent of machine learning and artificial intelligence sparked significant interest in the material science community in recent years. The intrinsically high dimensionality of the space of realizable materials makes traditional approac...

Full description

Saved in:
Bibliographic Details
Published inAccounts of chemical research Vol. 54; no. 4; pp. 849 - 860
Main Authors Pollice, Robert, dos Passos Gomes, Gabriel, Aldeghi, Matteo, Hickman, Riley J, Krenn, Mario, Lavigne, Cyrille, Lindner-D’Addario, Michael, Nigam, AkshatKumar, Ser, Cher Tian, Yao, Zhenpeng, Aspuru-Guzik, Alán
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 16.02.2021
Subjects
Online AccessGet full text
ISSN0001-4842
1520-4898
1520-4898
DOI10.1021/acs.accounts.0c00785

Cover

Loading…
Abstract Conspectus The ongoing revolution of the natural sciences by the advent of machine learning and artificial intelligence sparked significant interest in the material science community in recent years. The intrinsically high dimensionality of the space of realizable materials makes traditional approaches ineffective for large-scale explorations. Modern data science and machine learning tools developed for increasingly complicated problems are an attractive alternative. An imminent climate catastrophe calls for a clean energy transformation by overhauling current technologies within only several years of possible action available. Tackling this crisis requires the development of new materials at an unprecedented pace and scale. For example, organic photovoltaics have the potential to replace existing silicon-based materials to a large extent and open up new fields of application. In recent years, organic light-emitting diodes have emerged as state-of-the-art technology for digital screens and portable devices and are enabling new applications with flexible displays. Reticular frameworks allow the atom-precise synthesis of nanomaterials and promise to revolutionize the field by the potential to realize multifunctional nanoparticles with applications from gas storage, gas separation, and electrochemical energy storage to nanomedicine. In the recent decade, significant advances in all these fields have been facilitated by the comprehensive application of simulation and machine learning for property prediction, property optimization, and chemical space exploration enabled by considerable advances in computing power and algorithmic efficiency. In this Account, we review the most recent contributions of our group in this thriving field of machine learning for material science. We start with a summary of the most important material classes our group has been involved in, focusing on small molecules as organic electronic materials and crystalline materials. Specifically, we highlight the data-driven approaches we employed to speed up discovery and derive material design strategies. Subsequently, our focus lies on the data-driven methodologies our group has developed and employed, elaborating on high-throughput virtual screening, inverse molecular design, Bayesian optimization, and supervised learning. We discuss the general ideas, their working principles, and their use cases with examples of successful implementations in data-driven material discovery and design efforts. Furthermore, we elaborate on potential pitfalls and remaining challenges of these methods. Finally, we provide a brief outlook for the field as we foresee increasing adaptation and implementation of large scale data-driven approaches in material discovery and design campaigns.
AbstractList The ongoing revolution of the natural sciences by the advent of machine learning and artificial intelligence sparked significant interest in the material science community in recent years. The intrinsically high dimensionality of the space of realizable materials makes traditional approaches ineffective for large-scale explorations. Modern data science and machine learning tools developed for increasingly complicated problems are an attractive alternative. An imminent climate catastrophe calls for a clean energy transformation by overhauling current technologies within only several years of possible action available. Tackling this crisis requires the development of new materials at an unprecedented pace and scale. For example, organic photovoltaics have the potential to replace existing silicon-based materials to a large extent and open up new fields of application. In recent years, organic light-emitting diodes have emerged as state-of-the-art technology for digital screens and portable devices and are enabling new applications with flexible displays. Reticular frameworks allow the atom-precise synthesis of nanomaterials and promise to revolutionize the field by the potential to realize multifunctional nanoparticles with applications from gas storage, gas separation, and electrochemical energy storage to nanomedicine. In the recent decade, significant advances in all these fields have been facilitated by the comprehensive application of simulation and machine learning for property prediction, property optimization, and chemical space exploration enabled by considerable advances in computing power and algorithmic efficiency.In this Account, we review the most recent contributions of our group in this thriving field of machine learning for material science. We start with a summary of the most important material classes our group has been involved in, focusing on small molecules as organic electronic materials and crystalline materials. Specifically, we highlight the data-driven approaches we employed to speed up discovery and derive material design strategies. Subsequently, our focus lies on the data-driven methodologies our group has developed and employed, elaborating on high-throughput virtual screening, inverse molecular design, Bayesian optimization, and supervised learning. We discuss the general ideas, their working principles, and their use cases with examples of successful implementations in data-driven material discovery and design efforts. Furthermore, we elaborate on potential pitfalls and remaining challenges of these methods. Finally, we provide a brief outlook for the field as we foresee increasing adaptation and implementation of large scale data-driven approaches in material discovery and design campaigns.
The ongoing revolution of the natural sciences by the advent of machine learning and artificial intelligence sparked significant interest in the material science community in recent years. The intrinsically high dimensionality of the space of realizable materials makes traditional approaches ineffective for large-scale explorations. Modern data science and machine learning tools developed for increasingly complicated problems are an attractive alternative. An imminent climate catastrophe calls for a clean energy transformation by overhauling current technologies within only several years of possible action available. Tackling this crisis requires the development of new materials at an unprecedented pace and scale. For example, organic photovoltaics have the potential to replace existing silicon-based materials to a large extent and open up new fields of application. In recent years, organic light-emitting diodes have emerged as state-of-the-art technology for digital screens and portable devices and are enabling new applications with flexible displays. Reticular frameworks allow the atom-precise synthesis of nanomaterials and promise to revolutionize the field by the potential to realize multifunctional nanoparticles with applications from gas storage, gas separation, and electrochemical energy storage to nanomedicine. In the recent decade, significant advances in all these fields have been facilitated by the comprehensive application of simulation and machine learning for property prediction, property optimization, and chemical space exploration enabled by considerable advances in computing power and algorithmic efficiency.In this Account, we review the most recent contributions of our group in this thriving field of machine learning for material science. We start with a summary of the most important material classes our group has been involved in, focusing on small molecules as organic electronic materials and crystalline materials. Specifically, we highlight the data-driven approaches we employed to speed up discovery and derive material design strategies. Subsequently, our focus lies on the data-driven methodologies our group has developed and employed, elaborating on high-throughput virtual screening, inverse molecular design, Bayesian optimization, and supervised learning. We discuss the general ideas, their working principles, and their use cases with examples of successful implementations in data-driven material discovery and design efforts. Furthermore, we elaborate on potential pitfalls and remaining challenges of these methods. Finally, we provide a brief outlook for the field as we foresee increasing adaptation and implementation of large scale data-driven approaches in material discovery and design campaigns.The ongoing revolution of the natural sciences by the advent of machine learning and artificial intelligence sparked significant interest in the material science community in recent years. The intrinsically high dimensionality of the space of realizable materials makes traditional approaches ineffective for large-scale explorations. Modern data science and machine learning tools developed for increasingly complicated problems are an attractive alternative. An imminent climate catastrophe calls for a clean energy transformation by overhauling current technologies within only several years of possible action available. Tackling this crisis requires the development of new materials at an unprecedented pace and scale. For example, organic photovoltaics have the potential to replace existing silicon-based materials to a large extent and open up new fields of application. In recent years, organic light-emitting diodes have emerged as state-of-the-art technology for digital screens and portable devices and are enabling new applications with flexible displays. Reticular frameworks allow the atom-precise synthesis of nanomaterials and promise to revolutionize the field by the potential to realize multifunctional nanoparticles with applications from gas storage, gas separation, and electrochemical energy storage to nanomedicine. In the recent decade, significant advances in all these fields have been facilitated by the comprehensive application of simulation and machine learning for property prediction, property optimization, and chemical space exploration enabled by considerable advances in computing power and algorithmic efficiency.In this Account, we review the most recent contributions of our group in this thriving field of machine learning for material science. We start with a summary of the most important material classes our group has been involved in, focusing on small molecules as organic electronic materials and crystalline materials. Specifically, we highlight the data-driven approaches we employed to speed up discovery and derive material design strategies. Subsequently, our focus lies on the data-driven methodologies our group has developed and employed, elaborating on high-throughput virtual screening, inverse molecular design, Bayesian optimization, and supervised learning. We discuss the general ideas, their working principles, and their use cases with examples of successful implementations in data-driven material discovery and design efforts. Furthermore, we elaborate on potential pitfalls and remaining challenges of these methods. Finally, we provide a brief outlook for the field as we foresee increasing adaptation and implementation of large scale data-driven approaches in material discovery and design campaigns.
The ongoing revolution of the natural sciences by the advent of machine learning and artificial intelligence sparked significant interest in the material science community in recent years. The intrinsically high dimensionality of the space of realizable materials makes traditional approaches ineffective for large-scale explorations. Modern data science and machine learning tools developed for increasingly complicated problems are an attractive alternative. An imminent climate catastrophe calls for a clean energy transformation by overhauling current technologies within only several years of possible action available. Tackling this crisis requires the development of new materials at an unprecedented pace and scale. For example, organic photovoltaics have the potential to replace existing silicon-based materials to a large extent and open up new fields of application. In recent years, organic light-emitting diodes have emerged as state-of-the-art technology for digital screens and portable devices and are enabling new applications with flexible displays. Reticular frameworks allow the atom-precise synthesis of nanomaterials and promise to revolutionize the field by the potential to realize multifunctional nanoparticles with applications from gas storage, gas separation, and electrochemical energy storage to nanomedicine. In the recent decade, significant advances in all these fields have been facilitated by the comprehensive application of simulation and machine learning for property prediction, property optimization, and chemical space exploration enabled by considerable advances in computing power and algorithmic efficiency. In this Account, we review the most recent contributions of our group in this thriving field of machine learning for material science. We start with a summary of the most important material classes our group has been involved in, focusing on small molecules as organic electronic materials and crystalline materials. Specifically, we highlight the data-driven approaches we employed to speed up discovery and derive material design strategies. Subsequently, our focus lies on the data-driven methodologies our group has developed and employed, elaborating on high-throughput virtual screening, inverse molecular design, Bayesian optimization, and supervised learning. We discuss the general ideas, their working principles, and their use cases with examples of successful implementations in data-driven material discovery and design efforts. Furthermore, we elaborate on potential pitfalls and remaining challenges of these methods. Finally, we provide a brief outlook for the field as we foresee increasing adaptation and implementation of large scale data-driven approaches in material discovery and design campaigns.
Conspectus The ongoing revolution of the natural sciences by the advent of machine learning and artificial intelligence sparked significant interest in the material science community in recent years. The intrinsically high dimensionality of the space of realizable materials makes traditional approaches ineffective for large-scale explorations. Modern data science and machine learning tools developed for increasingly complicated problems are an attractive alternative. An imminent climate catastrophe calls for a clean energy transformation by overhauling current technologies within only several years of possible action available. Tackling this crisis requires the development of new materials at an unprecedented pace and scale. For example, organic photovoltaics have the potential to replace existing silicon-based materials to a large extent and open up new fields of application. In recent years, organic light-emitting diodes have emerged as state-of-the-art technology for digital screens and portable devices and are enabling new applications with flexible displays. Reticular frameworks allow the atom-precise synthesis of nanomaterials and promise to revolutionize the field by the potential to realize multifunctional nanoparticles with applications from gas storage, gas separation, and electrochemical energy storage to nanomedicine. In the recent decade, significant advances in all these fields have been facilitated by the comprehensive application of simulation and machine learning for property prediction, property optimization, and chemical space exploration enabled by considerable advances in computing power and algorithmic efficiency. In this Account, we review the most recent contributions of our group in this thriving field of machine learning for material science. We start with a summary of the most important material classes our group has been involved in, focusing on small molecules as organic electronic materials and crystalline materials. Specifically, we highlight the data-driven approaches we employed to speed up discovery and derive material design strategies. Subsequently, our focus lies on the data-driven methodologies our group has developed and employed, elaborating on high-throughput virtual screening, inverse molecular design, Bayesian optimization, and supervised learning. We discuss the general ideas, their working principles, and their use cases with examples of successful implementations in data-driven material discovery and design efforts. Furthermore, we elaborate on potential pitfalls and remaining challenges of these methods. Finally, we provide a brief outlook for the field as we foresee increasing adaptation and implementation of large scale data-driven approaches in material discovery and design campaigns.
Author Lavigne, Cyrille
Yao, Zhenpeng
Ser, Cher Tian
Hickman, Riley J
Pollice, Robert
dos Passos Gomes, Gabriel
Aldeghi, Matteo
Nigam, AkshatKumar
Aspuru-Guzik, Alán
Lindner-D’Addario, Michael
Krenn, Mario
AuthorAffiliation Chemical Physics Theory Group, Department of Chemistry
Department of Computer Science
Lebovic Fellow
Vector Institute for Artificial Intelligence
Canadian Institute for Advanced Research (CIFAR)
AuthorAffiliation_xml – name: Department of Computer Science
– name: Vector Institute for Artificial Intelligence
– name: Canadian Institute for Advanced Research (CIFAR)
– name: Chemical Physics Theory Group, Department of Chemistry
– name: Lebovic Fellow
Author_xml – sequence: 1
  givenname: Robert
  orcidid: 0000-0001-8836-6266
  surname: Pollice
  fullname: Pollice, Robert
  organization: Department of Computer Science
– sequence: 2
  givenname: Gabriel
  orcidid: 0000-0002-8235-5969
  surname: dos Passos Gomes
  fullname: dos Passos Gomes, Gabriel
  organization: Department of Computer Science
– sequence: 3
  givenname: Matteo
  orcidid: 0000-0003-0019-8806
  surname: Aldeghi
  fullname: Aldeghi, Matteo
  organization: Vector Institute for Artificial Intelligence
– sequence: 4
  givenname: Riley J
  surname: Hickman
  fullname: Hickman, Riley J
  organization: Department of Computer Science
– sequence: 5
  givenname: Mario
  surname: Krenn
  fullname: Krenn, Mario
  organization: Vector Institute for Artificial Intelligence
– sequence: 6
  givenname: Cyrille
  orcidid: 0000-0003-2778-1866
  surname: Lavigne
  fullname: Lavigne, Cyrille
  organization: Department of Computer Science
– sequence: 7
  givenname: Michael
  surname: Lindner-D’Addario
  fullname: Lindner-D’Addario, Michael
  organization: Department of Computer Science
– sequence: 8
  givenname: AkshatKumar
  orcidid: 0000-0002-5152-2082
  surname: Nigam
  fullname: Nigam, AkshatKumar
  organization: Department of Computer Science
– sequence: 9
  givenname: Cher Tian
  surname: Ser
  fullname: Ser, Cher Tian
  organization: Department of Computer Science
– sequence: 10
  givenname: Zhenpeng
  orcidid: 0000-0001-8286-8257
  surname: Yao
  fullname: Yao, Zhenpeng
  organization: Department of Computer Science
– sequence: 11
  givenname: Alán
  orcidid: 0000-0002-8277-4434
  surname: Aspuru-Guzik
  fullname: Aspuru-Guzik, Alán
  email: aspuru@utoronto.ca
  organization: Canadian Institute for Advanced Research (CIFAR)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33528245$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1784732$$D View this record in Osti.gov
BookMark eNqFUV1PHCEUJcamrrb_oGkmferLrHwO4EMT4_bDROND22fCMndWzCwoMCb992Wyq7F9aF-Ayz3ncC7nGB2GGAChdwQvCabk1Lq8tM7FKZS8xA5jqcQBWhBBccuVVodogTEm9czpETrO-a6WlHfyNTpiTFBFuVggubLFtqvkHyE030uyBTYecjPE1Jw7ByPMV31zXdfk7ZibFWS_CW_Qq6FW8Ha_n6CfXz7_uPjWXt18vbw4v2otl11piepsD6wTeuCEaC1gbTtKtcWDlL3QrmeCWK3Wgmo2KI2d47R3He6pUlhZdoI-7XTvp_UWegehehzNffJbm36ZaL35sxP8rdnERyOVZhLTKvBhJxBz8SY7X8DduhgCuGKIVFyyGfRx_0qKDxPkYrY-1-FHGyBO2VCuhCCScVWh718aenby9KUVwHcAl2LOCYZnCMFmTs7U5MxTcmafXKWd_UWrVm3xcR7Lj_8j4x157t7FKYWayb8pvwEJ_rMj
CitedBy_id crossref_primary_10_3390_molecules28217371
crossref_primary_10_1021_acs_jpca_4c03820
crossref_primary_10_1016_j_commatsci_2024_112958
crossref_primary_10_1038_s41578_022_00466_5
crossref_primary_10_1002_advs_202412554
crossref_primary_10_1063_5_0180987
crossref_primary_10_1039_D4CP04214J
crossref_primary_10_1038_s41524_023_01134_0
crossref_primary_10_1002_cjce_25358
crossref_primary_10_1016_j_cis_2025_103482
crossref_primary_10_1039_D1TC03256A
crossref_primary_10_1021_acsbiomaterials_2c01357
crossref_primary_10_1021_acs_est_4c08298
crossref_primary_10_1021_acs_jcim_2c00608
crossref_primary_10_1021_acs_jpclett_4c03234
crossref_primary_10_1002_idm2_12020
crossref_primary_10_1016_j_jobe_2024_110923
crossref_primary_10_1038_s41597_023_02116_z
crossref_primary_10_31617_3_2024_135_03
crossref_primary_10_1021_acs_jpcc_4c03634
crossref_primary_10_1149_2162_8777_ac6894
crossref_primary_10_1016_j_matt_2022_03_005
crossref_primary_10_1063_5_0049708
crossref_primary_10_1002_adma_202413695
crossref_primary_10_1093_chemle_upae090
crossref_primary_10_1016_j_coelec_2024_101494
crossref_primary_10_3390_pr11020330
crossref_primary_10_1002_adts_202100337
crossref_primary_10_1021_acs_chemrev_1c00108
crossref_primary_10_1002_mats_202400008
crossref_primary_10_1039_D4SC05000B
crossref_primary_10_1016_j_jma_2024_04_006
crossref_primary_10_1039_D2ME00137C
crossref_primary_10_1016_j_patter_2022_100588
crossref_primary_10_1038_s41570_022_00416_3
crossref_primary_10_1021_acs_accounts_3c00095
crossref_primary_10_1021_acs_jpclett_1c03526
crossref_primary_10_1021_acsabm_2c00346
crossref_primary_10_1103_PhysRevX_11_031044
crossref_primary_10_1021_acs_joc_1c01038
crossref_primary_10_1007_s42107_023_00878_w
crossref_primary_10_1039_D2TA10043F
crossref_primary_10_1039_D3DD00213F
crossref_primary_10_1039_D4DD00130C
crossref_primary_10_1016_j_ccr_2024_216249
crossref_primary_10_1080_00405000_2021_2022827
crossref_primary_10_1021_acs_chemmater_4c01343
crossref_primary_10_1038_s41524_023_01194_2
crossref_primary_10_1021_acs_iecr_2c00335
crossref_primary_10_1080_27660400_2023_2197519
crossref_primary_10_1039_D2TC03789K
crossref_primary_10_1002_smll_202405940
crossref_primary_10_1002_adma_202409175
crossref_primary_10_1002_aisy_202200331
crossref_primary_10_1021_acs_jcim_4c01300
crossref_primary_10_1039_D4SC07438F
crossref_primary_10_1021_acsaem_1c03612
crossref_primary_10_1039_D1CP02963K
crossref_primary_10_3390_polym15244729
crossref_primary_10_1021_acs_molpharmaceut_3c00162
crossref_primary_10_1039_D3SC05607D
crossref_primary_10_1016_j_inoche_2024_113577
crossref_primary_10_1038_s41467_021_26921_5
crossref_primary_10_32604_cmc_2025_060109
crossref_primary_10_1007_s10853_024_09383_0
crossref_primary_10_1021_acs_jpcc_2c01622
crossref_primary_10_1007_s40192_022_00280_5
crossref_primary_10_1016_j_seppur_2021_119196
crossref_primary_10_1016_j_mcat_2025_114877
crossref_primary_10_1007_s40843_024_3026_8
crossref_primary_10_1016_j_matre_2021_100047
crossref_primary_10_1016_j_mattod_2022_05_020
crossref_primary_10_1021_acs_chemrev_3c00223
crossref_primary_10_1002_poc_4458
crossref_primary_10_1080_17460441_2022_2084608
crossref_primary_10_1039_D3DD00078H
crossref_primary_10_1039_D4FD00113C
crossref_primary_10_1039_D3CP00917C
crossref_primary_10_3390_nano12071041
crossref_primary_10_1002_adom_202403199
crossref_primary_10_1002_cphc_202200061
crossref_primary_10_1063_5_0160937
crossref_primary_10_1002_aenm_202401658
crossref_primary_10_1021_jacsau_3c00576
crossref_primary_10_1007_s40192_024_00357_3
crossref_primary_10_1016_j_cep_2023_109385
crossref_primary_10_1002_adts_202300159
crossref_primary_10_1002_aisy_202200073
crossref_primary_10_1080_27660400_2023_2284130
crossref_primary_10_1021_acsami_4c15600
crossref_primary_10_1002_advs_202405262
crossref_primary_10_1021_acsengineeringau_3c00055
crossref_primary_10_1016_j_colsurfa_2024_136057
crossref_primary_10_1002_cmtd_202100107
crossref_primary_10_26599_NR_2025_94907251
crossref_primary_10_1016_j_nanoen_2021_106868
crossref_primary_10_1039_D3PY00565H
crossref_primary_10_1039_D1DD00010A
crossref_primary_10_1016_j_aichem_2023_100028
crossref_primary_10_1039_D2CC00532H
crossref_primary_10_1016_j_addr_2022_114172
crossref_primary_10_1088_1674_1056_ac5d2d
crossref_primary_10_1016_j_nxener_2024_100159
crossref_primary_10_1002_inf2_70005
crossref_primary_10_1016_j_electacta_2024_145285
crossref_primary_10_1088_2053_1583_ad4661
crossref_primary_10_1016_j_coelec_2024_101629
crossref_primary_10_1002_aenm_202102355
crossref_primary_10_1002_adma_202201345
crossref_primary_10_1021_jacs_3c11399
crossref_primary_10_1038_s44296_025_00050_2
crossref_primary_10_1080_17460441_2021_1925247
crossref_primary_10_1016_j_pmatsci_2022_101043
crossref_primary_10_1016_j_matt_2022_07_033
crossref_primary_10_1021_acsnano_2c08411
crossref_primary_10_1007_s11426_022_1506_1
crossref_primary_10_1039_D4CC04200J
crossref_primary_10_1126_sciadv_abj3906
crossref_primary_10_1002_aic_17644
crossref_primary_10_1039_D2SC02257E
crossref_primary_10_1016_j_cnsns_2021_105989
crossref_primary_10_1080_19942060_2024_2391988
crossref_primary_10_3390_jcs7030110
crossref_primary_10_1039_D4DD00093E
crossref_primary_10_1016_j_coche_2022_100795
crossref_primary_10_1002_aenm_202200389
crossref_primary_10_1021_acs_jpca_2c09030
crossref_primary_10_1039_D2ME00023G
crossref_primary_10_1007_s11244_021_01543_9
crossref_primary_10_1021_acscatal_4c00650
crossref_primary_10_1016_j_mtcomm_2024_108043
crossref_primary_10_3390_en16227633
crossref_primary_10_1016_j_aichem_2024_100075
crossref_primary_10_1021_acs_cgd_3c00828
crossref_primary_10_1038_s41587_024_02526_3
crossref_primary_10_1021_acs_chemmater_4c00762
crossref_primary_10_1039_D2MA00223J
crossref_primary_10_1088_1361_665X_adadcd
crossref_primary_10_1021_acs_jctc_2c00331
crossref_primary_10_1063_5_0057162
crossref_primary_10_1063_5_0102857
crossref_primary_10_1109_ACCESS_2022_3230065
crossref_primary_10_1038_s44160_023_00294_7
crossref_primary_10_1021_acspolymersau_2c00053
crossref_primary_10_1016_j_solmat_2024_112881
crossref_primary_10_1002_aenm_202202380
crossref_primary_10_1021_acsmacrolett_2c00060
crossref_primary_10_1515_rams_2023_0179
crossref_primary_10_1063_5_0201701
crossref_primary_10_1039_D2DD00003B
crossref_primary_10_1039_D3SC05306G
crossref_primary_10_1038_s43588_024_00616_5
crossref_primary_10_1021_jacs_4c01352
crossref_primary_10_3390_ma14247884
crossref_primary_10_1002_aisy_202200399
crossref_primary_10_1080_14686996_2024_2423600
crossref_primary_10_21303_2461_4262_2024_003296
crossref_primary_10_1063_5_0151122
crossref_primary_10_1038_s44160_022_00231_0
crossref_primary_10_1021_acs_chemmater_1c01201
crossref_primary_10_1007_s11426_024_2072_4
crossref_primary_10_1016_j_checat_2022_02_009
crossref_primary_10_1002_cjce_25525
crossref_primary_10_1021_jacs_4c03789
crossref_primary_10_1016_j_energy_2023_130197
crossref_primary_10_1002_adts_202401344
crossref_primary_10_1002_bkcs_12516
crossref_primary_10_1016_j_ensm_2025_104009
crossref_primary_10_1093_toxres_tfaf011
crossref_primary_10_1016_j_nxmate_2024_100145
crossref_primary_10_1021_acs_chemrev_4c00572
crossref_primary_10_1115_1_4062310
crossref_primary_10_1021_jacs_2c06833
crossref_primary_10_1021_acs_jpclett_3c01200
crossref_primary_10_1016_j_actamat_2024_120137
crossref_primary_10_1039_D3DD00156C
crossref_primary_10_1002_adma_202305602
crossref_primary_10_3390_app14188143
crossref_primary_10_1063_5_0061799
crossref_primary_10_1016_j_compchemeng_2023_108345
crossref_primary_10_1016_j_jiec_2024_09_035
crossref_primary_10_1002_ange_202107369
crossref_primary_10_1038_s41597_024_03979_6
crossref_primary_10_1016_j_ensm_2024_103538
crossref_primary_10_1039_D3RA02492J
crossref_primary_10_1557_s43579_023_00433_3
crossref_primary_10_1016_j_xcrp_2022_101025
crossref_primary_10_1021_acspolymersau_1c00035
crossref_primary_10_1007_s11665_022_06995_y
crossref_primary_10_1021_jacs_1c08181
crossref_primary_10_1038_s41524_023_01185_3
crossref_primary_10_1038_s41524_021_00670_x
crossref_primary_10_1007_s11696_024_03301_z
crossref_primary_10_1039_D2DD00133K
crossref_primary_10_1021_acs_jpclett_1c01010
crossref_primary_10_1002_adfm_202422716
crossref_primary_10_1021_acs_jcim_3c01702
crossref_primary_10_1016_j_chbah_2024_100064
crossref_primary_10_1002_anie_202107369
crossref_primary_10_1021_acsmaterialslett_3c00350
crossref_primary_10_1016_j_tchem_2022_100012
crossref_primary_10_1021_jacs_4c17283
crossref_primary_10_1002_qua_70036
crossref_primary_10_1016_j_yjoc_2024_100077
crossref_primary_10_1016_j_matdes_2022_110799
crossref_primary_10_1002_admt_202300427
crossref_primary_10_1016_j_est_2025_115363
crossref_primary_10_1002_adhm_202401312
crossref_primary_10_1016_j_cartre_2022_100234
crossref_primary_10_1108_RJTA_10_2021_0124
crossref_primary_10_1002_mgea_14
crossref_primary_10_1016_j_seppur_2024_128056
crossref_primary_10_1021_acs_jcim_2c00812
crossref_primary_10_1021_acs_est_4c00060
crossref_primary_10_1063_5_0076545
crossref_primary_10_1155_2022_6934740
crossref_primary_10_1039_D4CS00423J
crossref_primary_10_1016_j_xcrp_2022_101126
crossref_primary_10_1039_D4MH01464B
crossref_primary_10_3390_catal15040309
crossref_primary_10_1039_D4DD00199K
crossref_primary_10_1557_s43578_023_00892_3
crossref_primary_10_1021_acs_chemmater_2c01294
crossref_primary_10_1016_j_apsadv_2023_100523
crossref_primary_10_1039_D1ME00093D
crossref_primary_10_1039_D3CP01240A
crossref_primary_10_1016_j_bea_2022_100038
crossref_primary_10_1021_acs_jcim_3c01918
crossref_primary_10_2174_0113852728249020230921072236
crossref_primary_10_1016_j_ceramint_2024_11_503
crossref_primary_10_1039_D3DD00005B
crossref_primary_10_1038_s41467_023_38169_2
crossref_primary_10_1016_j_matt_2022_10_007
crossref_primary_10_1021_acs_jcim_4c01583
crossref_primary_10_1016_j_xinn_2021_100179
crossref_primary_10_1039_D3DD00257H
crossref_primary_10_1039_D1DD00009H
crossref_primary_10_1002_jcc_70017
crossref_primary_10_1039_D4DD00203B
crossref_primary_10_1186_s13321_023_00691_2
crossref_primary_10_1016_j_solmat_2023_112258
crossref_primary_10_1021_acsmaterialsau_3c00061
crossref_primary_10_2139_ssrn_4608727
crossref_primary_10_1039_D0CS01336F
crossref_primary_10_1021_acsmaterialslett_4c02424
Cites_doi 10.1038/33647
10.1038/nmat4717
10.1021/ci00057a005
10.1073/pnas.102102699
10.1021/jz200866s
10.1016/j.joule.2018.07.005
10.1038/s41586-018-0337-2
10.1038/nenergy.2016.102
10.1021/acsenergylett.9b01332
10.1016/j.cogsc.2020.100370
10.1088/2632-2153/aba947
10.1039/c1ee02056k
10.1126/scirobotics.aat5559
10.1126/science.136.3518.760
10.1021/acs.cgd.9b01050
10.1126/sciadv.aaz8867
10.1038/ncomms1451
10.1002/adma.202070110
10.1039/C8SC02239A
10.1038/nbt.1665
10.1093/jnci/djk018
10.1149/2.0351704jes
10.1107/S0108768102006948
10.1039/D0SC00445F
10.1016/j.scib.2020.01.001
10.1002/aenm.201802994
10.1016/j.trechm.2019.02.007
10.1002/aenm.201702056
10.1039/C9TA03219C
10.26434/chemrxiv.13146404.v1
10.1021/acs.chemrev.6b00127
10.1021/acscentsci.7b00572
10.1038/s42256-020-00271-1
10.1146/annurev-matsci-070214-020823
10.1021/acs.jpca.9b06215
10.1021/acscentsci.8b00307
10.1371/journal.pone.0229862
10.1016/0167-9236(94)00041-2
10.1038/s41557-018-0045-4
10.1038/s41586-020-2442-2
10.1039/C3EE42756K
10.1126/science.aax1566
10.1021/acs.jpclett.9b02333
10.1021/acscentsci.7b00550
10.1021/jacs.8b13295
10.1126/science.aat2663
10.1016/j.joule.2017.10.006
10.1039/C9QM00716D
10.1126/science.aav2211
10.26434/chemrxiv.13087319.v1
10.1039/C4SC03030C
10.3998/ergo.12405314.0002.006
10.1016/j.chempr.2020.08.008
10.1039/C9CP06792B
10.1021/acs.chemrev.9b00339
10.1038/nmat4462
10.1002/adfm.201501919
10.1021/cm502594j
10.1109/JPROC.2015.2494218
10.1021/acs.chemrev.6b00215
10.1073/pnas.1131854100
10.26434/chemrxiv.13008500.v1
ContentType Journal Article
Copyright 2021 American Chemical Society
2021 American Chemical Society 2021 American Chemical Society
Copyright_xml – notice: 2021 American Chemical Society
– notice: 2021 American Chemical Society 2021 American Chemical Society
CorporateAuthor Univ. of Minnesota, Minneapolis, MN (United States)
CorporateAuthor_xml – name: Univ. of Minnesota, Minneapolis, MN (United States)
DBID AAYXX
CITATION
NPM
7X8
OIOZB
OTOTI
5PM
DOI 10.1021/acs.accounts.0c00785
DatabaseName CrossRef
PubMed
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-4898
EndPage 860
ExternalDocumentID PMC7893702
1784732
33528245
10_1021_acs_accounts_0c00785
a358912250
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
02
23M
55A
5GY
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DZ
EBS
ED
ED~
F5P
GNL
IH2
IH9
JG
JG~
K2
LG6
P2P
RNS
ROL
TWZ
UI2
UPT
VF5
VG9
W1F
WH7
X
YZZ
---
-DZ
-~X
4.4
53G
5ZA
6J9
6P2
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACGFO
ADHLV
AFXLT
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
XSW
ZCA
~02
NPM
7X8
ABFRP
OIOZB
OTOTI
5PM
ID FETCH-LOGICAL-a476t-186ade3659f411995eba6229a0f77d59cd351a98b5293f890cc42dc60d28808a3
IEDL.DBID ACS
ISSN 0001-4842
1520-4898
IngestDate Thu Aug 21 13:59:29 EDT 2025
Thu May 18 22:26:23 EDT 2023
Fri Jul 11 00:15:22 EDT 2025
Mon Jul 21 06:06:58 EDT 2025
Thu Apr 24 23:01:50 EDT 2025
Tue Jul 01 03:16:06 EDT 2025
Thu Feb 18 05:21:55 EST 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html
This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a476t-186ade3659f411995eba6229a0f77d59cd351a98b5293f890cc42dc60d28808a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Natural Sciences and Engineering Research Council of Canada (NSERC)
USDOE Office of Science (SC), Basic Energy Sciences (BES)
SC0008688; FG02-17ER16362; 191127; PGSD3-534584-2019; J4309; HR00111920027; N00014-19-1-2134
Swiss National Science Foundation (SNSF)
US Department of the Navy, Office of Naval Research (ONR)
Austrian Science Fund (FWF)
Defense Advanced Research Projects Agency (DARPA)
ORCID 0000-0002-8235-5969
0000-0002-5152-2082
0000-0001-8286-8257
0000-0003-2778-1866
0000-0002-8277-4434
0000-0001-8836-6266
0000-0003-0019-8806
0000000300198806
0000000327781866
0000000188366266
0000000282774434
0000000182868257
0000000282355969
0000000251522082
OpenAccessLink https://www.osti.gov/servlets/purl/1784732
PMID 33528245
PQID 2485517348
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7893702
osti_scitechconnect_1784732
proquest_miscellaneous_2485517348
pubmed_primary_33528245
crossref_primary_10_1021_acs_accounts_0c00785
crossref_citationtrail_10_1021_acs_accounts_0c00785
acs_journals_10_1021_acs_accounts_0c00785
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-16
PublicationDateYYYYMMDD 2021-02-16
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-16
  day: 16
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Accounts of chemical research
PublicationTitleAlternate Acc. Chem. Res
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref3/cit3
ref27/cit27
Guimaraes G. L. (ref45/cit45)
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref71/cit71
ref37/cit37
ref20/cit20
ref48/cit48
ref74/cit74
Hey T. (ref5/cit5) 2009
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
Duvenaud D. K. (ref60/cit60) 2015
Friederich P. (ref70/cit70)
ref21/cit21
ref42/cit42
ref46/cit46
ref13/cit13
ref67/cit67
ref24/cit24
ref38/cit38
Häse F. (ref49/cit49)
ref50/cit50
ref54/cit54
Roelofs R. (ref63/cit63) 2019
ref6/cit6
ref36/cit36
ref18/cit18
Goodfellow I. (ref59/cit59) 2016
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
Häse F. (ref51/cit51)
ref72/cit72
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref43/cit43
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref73/cit73
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
Flam-Shepherd D. (ref61/cit61)
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
Cawley G. C. (ref64/cit64) 2010; 11
ref7/cit7
References_xml – ident: ref37/cit37
  doi: 10.1038/33647
– start-page: 2224
  volume-title: Advances in Neural Information Processing Systems 28
  year: 2015
  ident: ref60/cit60
– ident: ref1/cit1
  doi: 10.1038/nmat4717
– ident: ref46/cit46
  doi: 10.1021/ci00057a005
– ident: ref65/cit65
  doi: 10.1073/pnas.102102699
– ident: ref12/cit12
  doi: 10.1021/jz200866s
– ident: ref23/cit23
  doi: 10.1016/j.joule.2018.07.005
– ident: ref58/cit58
  doi: 10.1038/s41586-018-0337-2
– ident: ref20/cit20
  doi: 10.1038/nenergy.2016.102
– ident: ref19/cit19
  doi: 10.1021/acsenergylett.9b01332
– volume-title: Deep Learning
  year: 2016
  ident: ref59/cit59
– ident: ref43/cit43
  doi: 10.1016/j.cogsc.2020.100370
– ident: ref47/cit47
  doi: 10.1088/2632-2153/aba947
– ident: ref13/cit13
  doi: 10.1039/c1ee02056k
– ident: ref53/cit53
  doi: 10.1126/scirobotics.aat5559
– ident: ref7/cit7
  doi: 10.1126/science.136.3518.760
– ident: ref61/cit61
  publication-title: arXiv (Machine Learning)
– start-page: 9179
  volume-title: Advances in Neural Information Processing Systems 32
  year: 2019
  ident: ref63/cit63
– ident: ref32/cit32
  doi: 10.1021/acs.cgd.9b01050
– ident: ref55/cit55
  doi: 10.1126/sciadv.aaz8867
– ident: ref45/cit45
  publication-title: arXiv (Machine Learning)
– ident: ref15/cit15
  doi: 10.1038/ncomms1451
– ident: ref56/cit56
  doi: 10.1002/adma.202070110
– ident: ref70/cit70
  publication-title: arXiv (Machine Learning)
– ident: ref52/cit52
  doi: 10.1039/C8SC02239A
– ident: ref67/cit67
  doi: 10.1038/nbt.1665
– ident: ref66/cit66
  doi: 10.1093/jnci/djk018
– ident: ref25/cit25
  doi: 10.1149/2.0351704jes
– ident: ref30/cit30
  doi: 10.1107/S0108768102006948
– ident: ref69/cit69
  doi: 10.1039/D0SC00445F
– ident: ref11/cit11
  doi: 10.1016/j.scib.2020.01.001
– ident: ref29/cit29
  doi: 10.1002/aenm.201802994
– ident: ref42/cit42
  doi: 10.1016/j.trechm.2019.02.007
– ident: ref22/cit22
  doi: 10.1002/aenm.201702056
– ident: ref18/cit18
  doi: 10.1039/C9TA03219C
– ident: ref57/cit57
  doi: 10.26434/chemrxiv.13146404.v1
– volume-title: The Fourth Paradigm: Data-Intensive Scientific Discovery
  year: 2009
  ident: ref5/cit5
– ident: ref48/cit48
– ident: ref9/cit9
  doi: 10.1021/acs.chemrev.6b00127
– ident: ref44/cit44
  doi: 10.1021/acscentsci.7b00572
– ident: ref2/cit2
  doi: 10.1038/s42256-020-00271-1
– ident: ref34/cit34
  doi: 10.1146/annurev-matsci-070214-020823
– ident: ref39/cit39
  doi: 10.1021/acs.jpca.9b06215
– ident: ref4/cit4
  doi: 10.1021/acscentsci.8b00307
– ident: ref54/cit54
  doi: 10.1371/journal.pone.0229862
– ident: ref8/cit8
  doi: 10.1016/0167-9236(94)00041-2
– ident: ref28/cit28
  doi: 10.1038/s41557-018-0045-4
– ident: ref74/cit74
  doi: 10.1038/s41586-020-2442-2
– ident: ref14/cit14
  doi: 10.1039/C3EE42756K
– ident: ref73/cit73
  doi: 10.1126/science.aax1566
– ident: ref38/cit38
  doi: 10.1021/acs.jpclett.9b02333
– ident: ref49/cit49
  publication-title: arXiv (Machine Learning)
– ident: ref71/cit71
  doi: 10.1021/acscentsci.7b00550
– ident: ref24/cit24
  doi: 10.1021/jacs.8b13295
– ident: ref35/cit35
  doi: 10.1126/science.aat2663
– ident: ref16/cit16
  doi: 10.1016/j.joule.2017.10.006
– ident: ref17/cit17
  doi: 10.1039/C9QM00716D
– ident: ref72/cit72
  doi: 10.1126/science.aav2211
– ident: ref3/cit3
– ident: ref40/cit40
  doi: 10.26434/chemrxiv.13087319.v1
– volume: 11
  start-page: 2079
  issue: 70
  year: 2010
  ident: ref64/cit64
  publication-title: J. Mach. Learn. Res.
– ident: ref21/cit21
  doi: 10.1039/C4SC03030C
– ident: ref6/cit6
  doi: 10.3998/ergo.12405314.0002.006
– ident: ref31/cit31
  doi: 10.1016/j.chempr.2020.08.008
– ident: ref41/cit41
  doi: 10.1039/C9CP06792B
– ident: ref26/cit26
  doi: 10.1021/acs.chemrev.9b00339
– ident: ref27/cit27
  doi: 10.1038/nmat4462
– ident: ref51/cit51
  publication-title: arXiv (Machine Learning)
– ident: ref62/cit62
  doi: 10.1002/adfm.201501919
– ident: ref33/cit33
  doi: 10.1021/cm502594j
– ident: ref50/cit50
  doi: 10.1109/JPROC.2015.2494218
– ident: ref10/cit10
  doi: 10.1021/acs.chemrev.6b00215
– ident: ref36/cit36
  doi: 10.1073/pnas.1131854100
– ident: ref68/cit68
  doi: 10.26434/chemrxiv.13008500.v1
SSID ssj0002467
Score 2.690305
Snippet Conspectus The ongoing revolution of the natural sciences by the advent of machine learning and artificial intelligence sparked significant interest in the...
The ongoing revolution of the natural sciences by the advent of machine learning and artificial intelligence sparked significant interest in the material...
The ongoing revolution of the natural sciences by the advent of machine learning and artificial intelligence sparked significant interest in the material...
SourceID pubmedcentral
osti
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 849
SubjectTerms Algorithms
MATERIALS SCIENCE
Materials,Molecules
Molecular design
Optimization
Title Data-Driven Strategies for Accelerated Materials Design
URI http://dx.doi.org/10.1021/acs.accounts.0c00785
https://www.ncbi.nlm.nih.gov/pubmed/33528245
https://www.proquest.com/docview/2485517348
https://www.osti.gov/servlets/purl/1784732
https://pubmed.ncbi.nlm.nih.gov/PMC7893702
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7R5UAvLa_CtoCCxIVDlthxHPtY7XZVIRUOsNLeLMd2BCrKoiZ76a_vTB5btoC2vSa2I8-MPZ_jmW8APiQiEJGSjq0qeCxYmcW2tHhY0aWQohDBe_qhf_FFni_E52W2vD0o3r3B5-yTdTUO3VZOqCeJI5-W7cFjLhFpExSaftvsvFzIjiMTj8hCCT6kyv1nFHJIrt5ySKMVLqx_gc27MZN_OKH5IXwdUnm62JPLybopJu76b2bHe87vKRz0eDQ67QzoGTwK1XN4Mh3KwL2AfGYbG8-uaFeMBi7bUEcIdqNT59Br0SMfXdimM-Zo1gaFvITF_Oz79Dzuqy3EVuSyiZmS1odUZqglRonbobCSc22TMs99pp1PM2a1KjJECKXSiXOCeycTz3EPUDY9glG1qsJriARiNFegqDRqWwelsHtZWDQHlnrJ9Rg-4qxNv1pq016Ec2bo4SAK04tiDOmgHuN62nKqnvFrR6940-t3R9uxo_0Jad4g7CDuXEdBRq4xLEfnnfIxvB8MwqD06UrFVmG1rk1LCMeIIWgMrzoD2XyPstkUFzh2vmU6mwbE7L39pvr5o2X4zglFJvz4AXI6gX1O4TZUq0a-gVFztQ5vES81xbt2kdwAzswS4Q
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6V5VAu5U2X8ggSFw5ZYsdx7ONql2qBbi-0qDfLsR0VgbKoyV749czkBVuBql4d24nHY8_neOYbgLeJCESkpGOrCh4LVmaxLS0eVnQppChE8J5-6K9P5epcfLrILvYgG2Jh8CNq7KluL_H_sAuw91RmuwQK9SxxZNqyO3AX8QgnT7754su4AXMhO6pMPCkLJfgQMfefXsguuXrHLk02uL7-hTmvu07-ZYuO78PXcRStC8r32bYpZu7XNYLHWw_zARz06DSad-r0EPZC9Qj2F0NSuMeQL21j4-UV7ZHRwGwb6gihbzR3Dm0YFflobZtOtaNl6yLyBM6PP5wtVnGfeyG2IpdNzJS0PqQywzljFMYdCis51zYp89xn2vk0Y1arIkO8UCqdOCe4dzLxHHcEZdOnMKk2VTiESCBicwVKTOPc66AUNi8Li8rBUi-5nsI7HLXp105t2mtxzgwVDqIwvSimkA6zZFxPYk65NH7c0CoeW_3sSDxuqH9ECmAQhBCTriOXI9cYlqMpT_kU3gx6YVD6dMFiq7DZ1qalh2PEFzSFZ52ejO-j2DbFBfad72jQWIF4vnefVN8uW77vnDBlwp_fQk6vYX91tj4xJx9PPx_BPU6OOJTFRr6ASXO1DS8RSTXFq3bd_AapYRtC
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7BIgEX3o-lPILEhUOW2HEc-7ja7ao8WiFBpYqL5diOWrXKVk32wq9nJi91K1BFr47txOPPnnFm_A3Ah0QEIlLSsVUFjwUrs9iWFg8ruhRSFCJ4Tz_09w_k3qH4cpQdXUr1hR9RY09168SnVX3uy55hgH2ictslUahniSP1lt2GO-S5o2i--eLHuAlzITu6TDwtCyX4cGvuH72QbnL1lm6arHGN_c3uvBo-eUkfrR7Cr3EkbRjK6WzTFDP3-wrJ442G-gge9FZqNO9g9RhuheoJ3FsMyeGeQr60jY2XF7RXRgPDbagjNIGjuXOoy6jIR_u26SAeLdtQkWdwuNr9udiL-xwMsRW5bGKmpPUhlRnOHaPr3KGwknNtkzLPfaadTzNmtSoytBtKpRPnBPdOJp7jzqBs-hwm1boKLyESaLm5AqWmEQM6KIXNy8IiSFjqJddT-IijNv0aqk3rHufMUOEgCtOLYgrpMFPG9WTmlFPj7JpW8djqvCPzuKb-DoHAoDFCjLqOQo9cY1iOKj3lU3g_YMOg9MnRYquw3tSmpYljxBs0hRcdVsb30R03xQX2nW-haKxAfN_bT6qT45b3OyfbMuGv_kNO7-Du9-XKfPt88HUH7nOKx6FkNvI1TJqLTXiDBlVTvG2Xzh-six3F
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-Driven+Strategies+for+Accelerated+Materials+Design&rft.jtitle=Accounts+of+chemical+research&rft.au=Pollice%2C+Robert&rft.au=Dos+Passos+Gomes%2C+Gabriel&rft.au=Aldeghi%2C+Matteo&rft.au=Hickman%2C+Riley+J&rft.date=2021-02-16&rft.eissn=1520-4898&rft.volume=54&rft.issue=4&rft.spage=849&rft_id=info:doi/10.1021%2Facs.accounts.0c00785&rft_id=info%3Apmid%2F33528245&rft.externalDocID=33528245
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon