Enhancing the Curie Temperature of Ferromagnetic Semiconductor (Ga,Mn)As to 200 K via Nanostructure Engineering
We demonstrate by magneto-transport measurements that a Curie temperature as high as 200 K can be obtained in nanostructures of (Ga,Mn)As. Heavily Mn-doped (Ga,Mn)As films were patterned into nanowires and then subject to low-temperature annealing. Resistance and Hall effect measurements demonstrate...
Saved in:
Published in | Nano letters Vol. 11; no. 7; pp. 2584 - 2589 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
13.07.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We demonstrate by magneto-transport measurements that a Curie temperature as high as 200 K can be obtained in nanostructures of (Ga,Mn)As. Heavily Mn-doped (Ga,Mn)As films were patterned into nanowires and then subject to low-temperature annealing. Resistance and Hall effect measurements demonstrated a consistent increase of T C with decreasing wire width down to about 300 nm. This observation is attributed primarily to the increase of the free surface in the narrower wires, which allows the Mn interstitials to diffuse out at the sidewalls, thus enhancing the efficiency of annealing. These results may provide useful information on optimal structures for (Ga,Mn)As-based nanospintronic devices operational at relatively high temperatures. |
---|---|
AbstractList | We demonstrate by magneto-transport measurements that a Curie temperature as high as 200 K can be obtained in nanostructures of (Ga,Mn)As. Heavily Mn-doped (Ga,Mn)As films were patterned into nanowires and then subject to low-temperature annealing. Resistance and Hall effect measurements demonstrated a consistent increase of T(C) with decreasing wire width down to about 300 nm. This observation is attributed primarily to the increase of the free surface in the narrower wires, which allows the Mn interstitials to diffuse out at the sidewalls, thus enhancing the efficiency of annealing. These results may provide useful information on optimal structures for (Ga,Mn)As-based nanospintronic devices operational at relatively high temperatures. We demonstrate by magneto-transport measurements that a Curie temperature as high as 200 K can be obtained in nanostructures of (Ga,Mn)As. Heavily Mn-doped (Ga,Mn)As films were patterned into nanowires and then subject to low-temperature annealing. Resistance and Hall effect measurements demonstrated a consistent increase of TC with decreasing wire width down to about 300 nm. This observation is attributed primarily to the increase of the free surface in the narrower wires, which allows the Mn interstitials to diffuse out at the sidewalls, thus enhancing the efficiency of annealing. These results may provide useful information on optimal structures for (Ga,Mn)As-based nanospintronic devices operational at relatively high temperatures. We demonstrate by magneto-transport measurements that a Curie temperature as high as 200 K can be obtained in nanostructures of (Ga,Mn)As. Heavily Mn-doped (Ga,Mn)As films were patterned into nanowires and then subject to low-temperature annealing. Resistance and Hall effect measurements demonstrated a consistent increase of T(C) with decreasing wire width down to about 300 nm. This observation is attributed primarily to the increase of the free surface in the narrower wires, which allows the Mn interstitials to diffuse out at the sidewalls, thus enhancing the efficiency of annealing. These results may provide useful information on optimal structures for (Ga,Mn)As-based nanospintronic devices operational at relatively high temperatures.We demonstrate by magneto-transport measurements that a Curie temperature as high as 200 K can be obtained in nanostructures of (Ga,Mn)As. Heavily Mn-doped (Ga,Mn)As films were patterned into nanowires and then subject to low-temperature annealing. Resistance and Hall effect measurements demonstrated a consistent increase of T(C) with decreasing wire width down to about 300 nm. This observation is attributed primarily to the increase of the free surface in the narrower wires, which allows the Mn interstitials to diffuse out at the sidewalls, thus enhancing the efficiency of annealing. These results may provide useful information on optimal structures for (Ga,Mn)As-based nanospintronic devices operational at relatively high temperatures. |
Author | Zhao, Jianhua Xiong, Peng Yang, Fuhua Chen, Lin Yang, Xiang Misuraca, Jennifer von Molnár, Stephan |
AuthorAffiliation | Chinese Academy of Sciences Florida State University |
AuthorAffiliation_xml | – name: Chinese Academy of Sciences – name: Florida State University |
Author_xml | – sequence: 1 givenname: Lin surname: Chen fullname: Chen, Lin – sequence: 2 givenname: Xiang surname: Yang fullname: Yang, Xiang – sequence: 3 givenname: Fuhua surname: Yang fullname: Yang, Fuhua – sequence: 4 givenname: Jianhua surname: Zhao fullname: Zhao, Jianhua email: jhzhao@red.semi.ac.cn – sequence: 5 givenname: Jennifer surname: Misuraca fullname: Misuraca, Jennifer – sequence: 6 givenname: Peng surname: Xiong fullname: Xiong, Peng – sequence: 7 givenname: Stephan surname: von Molnár fullname: von Molnár, Stephan |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24343702$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21696165$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0U1vEzEQBmALFdEPOPAHkC-IViLUH2s7e6yitEUUOFDOq4l3nLratYPtReLf11FDkFCFONmHxzOeeY_JQYgBCXnN2QfOBD8Pg2Ccz834jBxxJdlMt6042N_nzSE5zvmeMdZKxV6QQ8F1q7lWRyQuwx0E68Oaljukiyl5pLc4bjBBmRLS6OglphRHWAcs3tJvOHobQz_ZEhM9vYL3n8PZRaYlUsEY_UR_eqBfIMRcUjXbGsuw9gEx1S4vyXMHQ8ZXu_OEfL9c3i6uZzdfrz4uLm5m0BhdZlytHNe9FXKlndK6AWGk1pr3wME50D0TwLEVzLhmxTRjXNaZUDkAsNbJE_Luse4mxR8T5tKNPlscBggYp9zN50ppYbiu8vSfkhslG2OMUv9JJVe80jc7Oq1G7LtN8iOkX93vzVfwdgcgWxhc2qaQ_7hGNtIwUd3Zo7Mp5pzQ7Qln3Tb9bp9-ted_WesLFB9DSeCHJ1_sfgE2d_dxSqGG8oR7AEEXuxg |
CitedBy_id | crossref_primary_10_3367_UFNe_2018_11_038486 crossref_primary_10_1007_s11467_024_1432_5 crossref_primary_10_1103_PhysRevApplied_12_014020 crossref_primary_10_1103_PhysRevB_101_075204 crossref_primary_10_1016_j_scib_2018_05_036 crossref_primary_10_1088_1674_4926_45_4_042101 crossref_primary_10_1038_srep40558 crossref_primary_10_7567_1882_0786_ab3f4b crossref_primary_10_1016_j_jmmm_2022_169886 crossref_primary_10_1021_acs_jpcc_9b07951 crossref_primary_10_1002_apxr_202400124 crossref_primary_10_7498_aps_73_20231940 crossref_primary_10_1007_s11433_013_5320_1 crossref_primary_10_1063_1_4973201 crossref_primary_10_1134_S0021364014230027 crossref_primary_10_1155_2022_4291923 crossref_primary_10_1038_s41598_023_29169_9 crossref_primary_10_1021_acs_nanolett_7b03721 crossref_primary_10_1016_j_jmmm_2024_172019 crossref_primary_10_15407_spqeo27_03_302 crossref_primary_10_1088_0953_8984_25_34_346001 crossref_primary_10_1007_s11172_022_3468_4 crossref_primary_10_1103_PhysRevB_99_014431 crossref_primary_10_1002_adfm_202304749 crossref_primary_10_7567_JJAP_53_04EM05 crossref_primary_10_1063_1_5006926 crossref_primary_10_1016_j_jmmm_2022_169630 crossref_primary_10_1021_nl304740k crossref_primary_10_1103_PhysRevB_103_075107 crossref_primary_10_1038_srep25748 crossref_primary_10_1063_1_4979555 crossref_primary_10_1088_2053_1591_ad1e0d crossref_primary_10_1002_pssb_201552330 crossref_primary_10_1063_1_4773317 crossref_primary_10_1088_1674_4926_40_8_081508 crossref_primary_10_1063_1_5010988 crossref_primary_10_1088_1674_4926_40_8_081506 crossref_primary_10_1088_0022_3727_46_17_175005 crossref_primary_10_1088_1674_4926_40_8_081505 crossref_primary_10_1038_s41598_021_86205_2 crossref_primary_10_1088_1674_4926_40_8_081504 crossref_primary_10_1038_s41598_023_41895_8 crossref_primary_10_1063_1_4870423 crossref_primary_10_1063_1_4948692 crossref_primary_10_1103_PhysRevB_100_054438 crossref_primary_10_1088_1402_4896_ac8959 crossref_primary_10_1088_1674_4926_40_8_081502 crossref_primary_10_1063_5_0015358 crossref_primary_10_1088_1674_4926_34_8_083003 crossref_primary_10_1088_1674_4926_40_8_081501 crossref_primary_10_1103_PhysRevB_92_144403 crossref_primary_10_1063_1_4838036 crossref_primary_10_1016_j_spmi_2014_05_018 crossref_primary_10_1039_C8RA06343E crossref_primary_10_1038_s41598_017_08394_z crossref_primary_10_1016_j_jmmm_2017_11_001 crossref_primary_10_1088_0953_8984_27_1_015501 crossref_primary_10_1088_1674_1056_ab8219 crossref_primary_10_1209_0295_5075_120_47005 crossref_primary_10_1016_j_jallcom_2023_171893 crossref_primary_10_1002_wcms_1313 crossref_primary_10_1209_0295_5075_107_17004 crossref_primary_10_1103_PhysRevB_96_104415 crossref_primary_10_1016_j_jallcom_2016_06_112 crossref_primary_10_1016_j_jmmm_2022_169518 crossref_primary_10_1088_1674_1056_ab892e crossref_primary_10_1088_1674_1056_27_6_067103 crossref_primary_10_1002_advs_202103173 crossref_primary_10_1038_s41598_020_64836_1 crossref_primary_10_1039_D3TC01879B crossref_primary_10_1039_C6NR02190E crossref_primary_10_1103_PhysRevB_95_075203 crossref_primary_10_35848_1347_4065_ab9401 crossref_primary_10_1063_1_4870521 crossref_primary_10_1103_PhysRevB_96_104423 crossref_primary_10_1038_s41524_024_01362_y crossref_primary_10_1103_PhysRevB_90_085123 crossref_primary_10_1038_srep23295 crossref_primary_10_1063_1_5127583 crossref_primary_10_7498_aps_64_077501 crossref_primary_10_3390_nano10112229 crossref_primary_10_1063_1_5022828 crossref_primary_10_1088_1674_1056_acf44a crossref_primary_10_1007_s40843_023_2863_2 crossref_primary_10_7567_APEX_9_123001 crossref_primary_10_1021_acs_nanolett_2c03203 crossref_primary_10_1134_S1063785020070299 crossref_primary_10_1103_PhysRevB_95_224418 crossref_primary_10_1063_1_4881636 crossref_primary_10_1103_PhysRevB_99_155201 crossref_primary_10_1088_1361_648X_abe077 crossref_primary_10_1088_1674_4926_40_8_080301 crossref_primary_10_1016_j_jcis_2023_09_031 crossref_primary_10_1088_1674_4926_40_8_081510 crossref_primary_10_7498_aps_70_20201966 crossref_primary_10_1016_j_jpcs_2017_05_031 crossref_primary_10_1103_PhysRevB_96_205415 crossref_primary_10_1016_j_apsusc_2019_01_164 crossref_primary_10_1016_j_jmmm_2022_169276 crossref_primary_10_1007_s12274_023_5972_8 crossref_primary_10_7498_aps_63_047501 crossref_primary_10_7498_aps_66_176113 crossref_primary_10_1063_1_4967778 crossref_primary_10_3389_fmats_2022_891135 crossref_primary_10_1063_1_5083175 crossref_primary_10_1007_s40766_020_0002_0 crossref_primary_10_1088_1674_4926_43_7_072501 crossref_primary_10_4028_p_jIM2w4 crossref_primary_10_1038_ncomms13810 crossref_primary_10_1007_s11433_012_4966_4 crossref_primary_10_1038_ncomms13497 crossref_primary_10_1088_1674_1056_27_9_097502 crossref_primary_10_12677_CMP_2018_71005 crossref_primary_10_7567_APEX_11_063005 crossref_primary_10_1038_s41598_017_09729_6 crossref_primary_10_1016_j_jmmm_2017_01_102 crossref_primary_10_1088_1674_4926_45_1_012101 crossref_primary_10_1093_nsr_nwt022 crossref_primary_10_1039_C5TC02936H crossref_primary_10_1063_1_4799164 crossref_primary_10_1016_j_ssc_2020_114091 crossref_primary_10_1063_1_4896539 crossref_primary_10_1103_PhysRevB_108_014421 crossref_primary_10_1063_5_0031605 crossref_primary_10_1016_j_jmmm_2021_168695 crossref_primary_10_1038_s41598_021_95475_9 crossref_primary_10_1063_1_3677990 crossref_primary_10_1039_C8NR07501H crossref_primary_10_1088_1674_1056_ab38ac crossref_primary_10_1209_0295_5075_105_67004 crossref_primary_10_1103_PhysRevB_102_094432 crossref_primary_10_1103_PhysRevB_109_024407 crossref_primary_10_1088_1674_1056_28_5_057501 crossref_primary_10_1016_j_pmatsci_2022_101036 crossref_primary_10_1063_1_4792652 crossref_primary_10_1088_1361_6528_ad209f crossref_primary_10_1063_1_4961565 crossref_primary_10_1039_D4CP00239C crossref_primary_10_1016_j_scib_2019_02_011 crossref_primary_10_1103_PhysRevB_105_195155 crossref_primary_10_1007_s40843_019_1212_x crossref_primary_10_1021_acsami_1c07680 crossref_primary_10_1063_5_0072128 crossref_primary_10_1088_0953_8984_28_2_026003 crossref_primary_10_1088_0022_3727_49_17_175303 crossref_primary_10_3390_nano13172435 crossref_primary_10_1016_j_jmmm_2022_170242 crossref_primary_10_1016_j_mssp_2025_109487 crossref_primary_10_1038_s41598_018_20751_0 crossref_primary_10_1016_j_jmmm_2019_03_091 crossref_primary_10_1134_S0020168514090076 crossref_primary_10_1088_0953_8984_24_21_215801 crossref_primary_10_1016_j_jmmm_2015_02_042 crossref_primary_10_1038_ncomms12866 crossref_primary_10_1088_1367_2630_ad309f crossref_primary_10_1007_s40843_022_2025_x crossref_primary_10_1016_j_cjph_2024_08_013 crossref_primary_10_1007_s10854_017_7700_1 crossref_primary_10_1063_5_0189159 crossref_primary_10_1103_PhysRevB_102_245112 crossref_primary_10_1007_s40843_023_2657_2 crossref_primary_10_1038_srep15191 crossref_primary_10_1038_s41467_017_02077_z crossref_primary_10_1103_PhysRevB_89_115323 crossref_primary_10_1063_1_5007094 crossref_primary_10_1103_RevModPhys_86_187 crossref_primary_10_1088_1674_4926_40_9_092501 crossref_primary_10_1155_2012_480813 crossref_primary_10_1007_s11433_022_2042_x crossref_primary_10_1016_j_jmmm_2018_07_049 crossref_primary_10_1103_PhysRevLett_111_027203 crossref_primary_10_1021_nl301226k crossref_primary_10_1016_j_sse_2019_03_015 crossref_primary_10_1155_2023_8860586 crossref_primary_10_1063_1_5124704 crossref_primary_10_1088_1361_6528_ab70fa crossref_primary_10_1038_srep15507 crossref_primary_10_1103_PhysRevB_93_184417 crossref_primary_10_1134_S0021364015020149 crossref_primary_10_3390_cryst10050359 crossref_primary_10_1103_PhysRevB_105_L121201 crossref_primary_10_3938_jkps_62_1485 crossref_primary_10_1103_PhysRevB_100_035204 crossref_primary_10_3390_nano14030263 crossref_primary_10_1016_j_nimb_2018_11_013 crossref_primary_10_1007_s11051_018_4238_y crossref_primary_10_3390_mi7120223 crossref_primary_10_1038_s41598_019_43754_x crossref_primary_10_1103_PhysRevB_101_155142 crossref_primary_10_1209_0295_5075_118_17003 crossref_primary_10_1007_s11664_016_5036_x crossref_primary_10_1016_j_cap_2024_11_008 crossref_primary_10_1016_j_jmmm_2013_09_004 crossref_primary_10_1088_0953_8984_25_19_196005 crossref_primary_10_1103_PhysRevB_93_224403 crossref_primary_10_1016_j_physleta_2015_08_012 crossref_primary_10_1016_j_tsf_2016_09_019 crossref_primary_10_1103_PhysRevApplied_11_054058 crossref_primary_10_1063_1_4757917 crossref_primary_10_1016_j_materresbull_2013_04_066 crossref_primary_10_1103_PhysRevB_102_245203 crossref_primary_10_1016_j_physleta_2021_127229 crossref_primary_10_1103_PhysRevLett_124_027201 crossref_primary_10_1063_5_0117597 crossref_primary_10_1016_j_physleta_2020_126815 crossref_primary_10_1007_s11433_013_5356_2 crossref_primary_10_1063_5_0174268 crossref_primary_10_35848_1882_0786_aba4d9 crossref_primary_10_1103_PhysRevMaterials_3_084417 crossref_primary_10_1103_PhysRevB_94_075205 crossref_primary_10_1002_adfm_202002513 crossref_primary_10_1063_1_4852496 crossref_primary_10_1039_D3CP02267F crossref_primary_10_1002_adfm_202406339 crossref_primary_10_3762_bjnano_9_230 crossref_primary_10_1103_PhysRevB_101_054413 crossref_primary_10_1088_1674_1056_22_2_027504 crossref_primary_10_1039_D4NR02869D crossref_primary_10_3390_ma16103701 crossref_primary_10_1155_2013_213594 crossref_primary_10_3390_nano10112192 crossref_primary_10_1088_0256_307X_40_6_067502 crossref_primary_10_12693_APhysPolA_124_873 crossref_primary_10_1088_2053_1591_aabe65 crossref_primary_10_3390_condmat3040042 crossref_primary_10_1088_0268_1242_29_3_035004 crossref_primary_10_1016_j_jallcom_2019_153235 crossref_primary_10_1063_1_5134728 crossref_primary_10_1039_D0CP00824A crossref_primary_10_1016_j_jmmm_2021_168064 crossref_primary_10_1088_1361_6463_ab7796 crossref_primary_10_7498_aps_68_20191114 crossref_primary_10_7567_1347_4065_ab3017 crossref_primary_10_1134_S0020168522010150 crossref_primary_10_1088_1674_4926_43_11_112501 crossref_primary_10_1016_j_rinp_2023_107307 crossref_primary_10_1088_2053_1591_ab4e40 crossref_primary_10_3389_fphy_2016_00009 crossref_primary_10_1088_1674_1056_23_9_096103 crossref_primary_10_1051_epjconf_201818506003 crossref_primary_10_1051_epjconf_201818506001 crossref_primary_10_1002_adma_201503547 crossref_primary_10_1007_s11434_014_0398_z crossref_primary_10_1007_s40843_023_2697_x crossref_primary_10_1103_PhysRevB_84_121202 crossref_primary_10_1016_j_jmmm_2019_166295 crossref_primary_10_1063_1_4867299 crossref_primary_10_1088_1674_1056_22_8_088505 crossref_primary_10_1134_S0020168515080117 crossref_primary_10_35848_1347_4065_abcadc crossref_primary_10_1063_5_0157124 crossref_primary_10_1103_PhysRevB_88_075205 crossref_primary_10_7498_aps_73_20231949 crossref_primary_10_1088_0256_307X_30_4_047501 crossref_primary_10_1039_D4TC01753F crossref_primary_10_1007_s11433_012_4959_3 crossref_primary_10_1016_j_physe_2021_114731 crossref_primary_10_1007_s10948_020_05545_8 crossref_primary_10_1039_D2NR05244J crossref_primary_10_7498_aps_62_187102 crossref_primary_10_1134_S0036023622020188 crossref_primary_10_1038_srep12416 crossref_primary_10_1016_j_matdes_2017_02_037 crossref_primary_10_1021_acsaelm_0c00938 |
Cites_doi | 10.1063/1.2884683 10.1038/nmat1325 10.1103/PhysRevLett.20.665 10.1063/1.2927481 10.1103/PhysRevLett.93.216602 10.1103/PhysRevB.65.201303 10.1007/978-3-662-05003-3 10.1103/PhysRevB.77.041306 10.1063/1.3259821 10.1038/nphys1455 10.1063/1.2715095 10.1038/45509 10.1063/1.1819522 10.1103/PhysRevLett.88.207208 10.1063/1.118061 10.1103/PhysRevLett.99.077201 10.1103/PhysRevLett.87.026602 10.1126/science.287.5455.1019 10.1063/1.2713176 10.1063/1.1900938 10.1103/PhysRev.108.1394 10.1126/science.1086608 10.1063/1.2150809 10.1103/PhysRevLett.98.026601 10.1103/PhysRevLett.101.077201 10.1103/PhysRevB.63.195205 10.1103/PhysRevB.72.115207 10.1063/1.2362971 10.1063/1.3063046 10.1038/nature02441 10.1016/j.physe.2008.06.011 10.1103/PhysRevLett.101.117208 10.1109/TED.2007.894622 10.1038/nature07318 10.1126/science.281.5379.951 |
ContentType | Journal Article |
Copyright | Copyright © 2011 American Chemical Society 2015 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2011 American Chemical Society – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1021/nl201187m |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE Materials Research Database MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1530-6992 |
EndPage | 2589 |
ExternalDocumentID | 21696165 24343702 10_1021_nl201187m i02664444 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 123 4.4 55A 5VS 7~N AABXI ABMVS ABPTK ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 LG6 PK8 RNS ROL TN5 UI2 VF5 VG9 W1F X --- -~X 6P2 AAHBH AAYOK AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHLV AHGAQ CITATION CUPRZ GGK 53G AFFNX IQODW CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-a476t-15bf16dc23b6f5664a2736661da1affa6d02a1e9207f4b060013169e5faaaccf3 |
IEDL.DBID | ACS |
ISSN | 1530-6984 1530-6992 |
IngestDate | Mon Jul 21 11:26:45 EDT 2025 Fri Jul 11 16:03:09 EDT 2025 Wed Jul 30 10:57:20 EDT 2025 Mon Jul 21 05:59:26 EDT 2025 Mon Jul 21 09:17:08 EDT 2025 Tue Jul 01 00:42:42 EDT 2025 Thu Apr 24 23:12:01 EDT 2025 Thu Aug 27 13:42:53 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | molecular-beam epitaxy magnetotransport phenomena magnetic properties of nanostructures Magnetic semiconductors Curie point Semiconductor materials Electrical properties Ferromagnetic materials Annealing temperature Manganese additions Hall effect Nanostructures Gallium additions Thin films Nanowires Magnetoresistance Thermal annealing Nanostructured materials |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a476t-15bf16dc23b6f5664a2736661da1affa6d02a1e9207f4b060013169e5faaaccf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 21696165 |
PQID | 1753473151 |
PQPubID | 23500 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_885562716 proquest_miscellaneous_1753477755 proquest_miscellaneous_1753473151 pubmed_primary_21696165 pascalfrancis_primary_24343702 crossref_primary_10_1021_nl201187m crossref_citationtrail_10_1021_nl201187m acs_journals_10_1021_nl201187m |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-07-13 |
PublicationDateYYYYMMDD | 2011-07-13 |
PublicationDate_xml | – month: 07 year: 2011 text: 2011-07-13 day: 13 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States |
PublicationTitle | Nano letters |
PublicationTitleAlternate | Nano Lett |
PublicationYear | 2011 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Ohno Y (ref8/cit8) 1999; 402 Wenisch J (ref32/cit32) 2007; 99 Chiba D (ref5/cit5) 2006; 89 Chiba D (ref7/cit7) 2008; 455 Sheu B. L (ref24/cit24) 2006; 99 Dietl T. (ref2/cit2) 2008 Chen L (ref12/cit12) 2009; 95 Ohno H. (ref1/cit1) 1996; 69 Dietl T (ref3/cit3) 2007; 54 Pu Y (ref35/cit35) 2008; 101 Yamanouchi M (ref11/cit11) 2004; 428 Schott G. M (ref19/cit19) 2004; 85 Novák V (ref29/cit29) 2008; 101 Dietl T (ref14/cit14) 2001; 63 Arrott A (ref36/cit36) 1957; 108 Fisher M. E (ref30/cit30) 1968; 20 Chiba D (ref10/cit10) 2004; 93 Cho Y. J (ref18/cit18) 2008; 93 Chiba D (ref4/cit4) 2003; 301 Sawicki M (ref6/cit6) 2009; 6 Jungwirth T (ref33/cit33) 2002; 88 Wang K. Y (ref15/cit15) 2005; 72 Ohya S (ref21/cit21) 2007; 90 Dietl T (ref13/cit13) 2000; 287 Yu K. M (ref27/cit27) 2002; 65 Awschalom D. D. (ref26/cit26) 2002 Tanaka M (ref9/cit9) 2001; 87 Wang W. Z (ref17/cit17) 2008; 41 Mack S (ref22/cit22) 2008; 92 Eid K. F (ref23/cit23) 2005; 86 Chun S. H (ref34/cit34) 2007; 98 Ohno H. (ref25/cit25) 1998; 281 Wurstbauer U (ref16/cit16) 2008; 92 Chiba D (ref20/cit20) 2007; 90 MacDonald A. H (ref28/cit28) 2005; 4 Neumaier D (ref31/cit31) 2008; 77 |
References_xml | – volume: 92 start-page: 102506 year: 2008 ident: ref16/cit16 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2884683 – volume: 4 start-page: 195 year: 2005 ident: ref28/cit28 publication-title: Nat. Mater. doi: 10.1038/nmat1325 – volume: 20 start-page: 665 year: 1968 ident: ref30/cit30 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.20.665 – volume: 92 start-page: 192502 year: 2008 ident: ref22/cit22 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2927481 – volume-title: Semiconductors and semimetals: Spintronics year: 2008 ident: ref2/cit2 – volume: 93 start-page: 216602 year: 2004 ident: ref10/cit10 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.93.216602 – volume: 65 start-page: 201303(R) year: 2002 ident: ref27/cit27 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.65.201303 – volume-title: Semiconductor Spintronics and Quantum Computation year: 2002 ident: ref26/cit26 doi: 10.1007/978-3-662-05003-3 – volume: 77 start-page: 041306(R) year: 2008 ident: ref31/cit31 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.77.041306 – volume: 95 start-page: 182505 year: 2009 ident: ref12/cit12 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3259821 – volume: 6 start-page: 22 year: 2009 ident: ref6/cit6 publication-title: Nat. Phys. doi: 10.1038/nphys1455 – volume: 90 start-page: 122503 year: 2007 ident: ref20/cit20 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2715095 – volume: 402 start-page: 790 year: 1999 ident: ref8/cit8 publication-title: Nature (London) doi: 10.1038/45509 – volume: 85 start-page: 4678 year: 2004 ident: ref19/cit19 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1819522 – volume: 88 start-page: 207208 year: 2002 ident: ref33/cit33 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.88.207208 – volume: 69 start-page: 363 year: 1996 ident: ref1/cit1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.118061 – volume: 99 start-page: 077201 year: 2007 ident: ref32/cit32 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.077201 – volume: 87 start-page: 026602 year: 2001 ident: ref9/cit9 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.87.026602 – volume: 287 start-page: 1019 year: 2000 ident: ref13/cit13 publication-title: Science doi: 10.1126/science.287.5455.1019 – volume: 90 start-page: 112503 year: 2007 ident: ref21/cit21 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2713176 – volume: 86 start-page: 152505 year: 2005 ident: ref23/cit23 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1900938 – volume: 108 start-page: 1394 year: 1957 ident: ref36/cit36 publication-title: Phys. Rev. doi: 10.1103/PhysRev.108.1394 – volume: 301 start-page: 943 year: 2003 ident: ref4/cit4 publication-title: Science doi: 10.1126/science.1086608 – volume: 99 start-page: 08D501 year: 2006 ident: ref24/cit24 publication-title: J. Appl. Phys. doi: 10.1063/1.2150809 – volume: 98 start-page: 026601 year: 2007 ident: ref34/cit34 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.026601 – volume: 101 start-page: 077201 year: 2008 ident: ref29/cit29 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.077201 – volume: 63 start-page: 195205 year: 2001 ident: ref14/cit14 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.63.195205 – volume: 72 start-page: 115207 year: 2005 ident: ref15/cit15 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.72.115207 – volume: 89 start-page: 162505 year: 2006 ident: ref5/cit5 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2362971 – volume: 93 start-page: 262505 year: 2008 ident: ref18/cit18 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3063046 – volume: 428 start-page: 539 year: 2004 ident: ref11/cit11 publication-title: Nature (London) doi: 10.1038/nature02441 – volume: 41 start-page: 84 year: 2008 ident: ref17/cit17 publication-title: Physica E doi: 10.1016/j.physe.2008.06.011 – volume: 101 start-page: 117208 year: 2008 ident: ref35/cit35 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.117208 – volume: 54 start-page: 945 year: 2007 ident: ref3/cit3 publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2007.894622 – volume: 455 start-page: 515 year: 2008 ident: ref7/cit7 publication-title: Nature (London) doi: 10.1038/nature07318 – volume: 281 start-page: 951 year: 1998 ident: ref25/cit25 publication-title: Science doi: 10.1126/science.281.5379.951 |
SSID | ssj0009350 |
Score | 2.5197768 |
Snippet | We demonstrate by magneto-transport measurements that a Curie temperature as high as 200 K can be obtained in nanostructures of (Ga,Mn)As. Heavily Mn-doped... |
SourceID | proquest pubmed pascalfrancis crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2584 |
SubjectTerms | Annealing Arsenicals - chemistry Condensed matter: electronic structure, electrical, magnetic, and optical properties Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science; rheology Curie temperature Exact sciences and technology Gallium - chemistry Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties Magnetic properties and materials Magnetic properties of nanostructures Magnetics Manganese Manganese - chemistry Materials science Nanoscale materials and structures: fabrication and characterization Nanostructure Nanostructures - chemistry Nanotechnology Nanowires Optimization Physics Quantum wires Semiconductors Small particles and nanoscale materials Studies of specific magnetic materials Surface Properties Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) Temperature Wire |
Title | Enhancing the Curie Temperature of Ferromagnetic Semiconductor (Ga,Mn)As to 200 K via Nanostructure Engineering |
URI | http://dx.doi.org/10.1021/nl201187m https://www.ncbi.nlm.nih.gov/pubmed/21696165 https://www.proquest.com/docview/1753473151 https://www.proquest.com/docview/1753477755 https://www.proquest.com/docview/885562716 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9swDCa67rJh2PuRPQLtceiAurNkPexjkDUrNnSXtkBvBq1I3bBWKpJ0h_36UXaSplizHg3QtkSR5kdL_AjwQZlcV6WusgobSlC88Bl65zIjKRbYRjRWpQLn_e9670h-PVbHG_B-zQ6-4J_CqWh7Yp_dgttClyZlWIPhwSWzbtG2YSXPpTyoKuWCPmj11hR67PRK6Ll3jlPSgu_aV6zHl22cGT2Az4tqne54ya-di1mzY__8S974vyk8hPtznMkGnWE8gg0XHsPdFfbBJxB3w480rHDCCAWyYWpexw4d4eiOZ5lFz0ZuMolneBJSrSM7SCfpY0gUsXHCtr7g9n74OJiyWWTkBuwb-_0TGX2vY8dKm56x8sancDTaPRzuZfP-CxlKo2cZV43nemxF0WhPsE8iYR1Kd_gYOXqPepwL5K4SufGyyXXL3aMrpzwiWuuLZ7AZYnAvgNEFZSY55tpbiZSCOW-kFCSoG-WV6kGfFqie-8-0brfGBa-XmuvB1mLtajtnL09NNE6vE323FD3vKDuuE-pfMYClpEiltiYXPXi7sIiaPC5to2Bw8YLGRhmeNAVBpZtkjEkzY2tkylIR-KR8tQfPO4u7HASpUXOtXt6klldwp_vJbTJevIZNWl33hlDSrOm3XvIXvgoLOA |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9NAEB6VcgCEeD9SICwIpCLh4l3vIz5wiEJDSppemkq9uWtnt1Rt11WcFsFP4a_w55i1nUdRq54qcYw0Wq9nZ3e-L975BuCdUKGMWzIOYp0iQbHMBtoaEyiOuSBLWZoJX-A82JK9Hf5tV-wuwe9pLQxOosCRivIj_lxdgH5yR6xsjX1cX6Dsm58_kJ4Vnze-4Fq-Z6y7Puz0grqDQKC5kpOAitRSOcpYlEqLwIVrzNYI2OlIU22tlqOQaWpiFirL01CW6jMyNsJqrbPMRjjuDbiJoId5YtfubM8FfaOy-yseGEi_4hafqhYtTtVnvKw4l_HunugCnW-rrhmXw9oyvXXvw5-ZY8pbLYdrp5N0Lfv1j2bk_-m5B3CvRtWkXW2Dh7Bk3CO4s6C1-Bjydffde8PtE8S8pONb9ZGhQdZQqUqT3JKuGY_zY73vfGUn2fZ1A7nzgrj5mKx-1R8H7kO7IJOc4KYnfXJ2oAlmp7zS4PVjLDzxCexcyxs_hWWXO_McCP5AHhbqUNqMayScxirOGRrKVFghGtDEhUrq06JIyosAjCazlWrA6jRkkqzWavctQ44uMn07Mz2pBEouMmqei7uZJfOFxSpkDXgzDcQEzxf_0Ug7k5_i3JDPchUhMLzKRin_ZuQSm1ZLINRGdt6AZ1WgzyeBbpRUipWr3PIabvWGg81kc2Or_wJuV3_vq4BGL2EZV9q8Qnw4SZvlRiWwd93x_RcQZG46 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1tb9MwED6NISEmxPugvBSDQBoSGYnjl-YDH6puZaNsQtom7VtwXHsgNrtqOhD8GP4Kf41zknYd2rRPk_gY6eQ4d2ffPbHvOYCXXMYi64gsylSBAMVSGylrTCQZxgJd0ELzUOC8tS029tiHfb6_AL-ntTA4iRJHKqtD_LCqR0PbMAwkb90hrdpjHzWXKAfm5w-EaOW7zTW05ytK--u7vY2o6SIQKSbFJEp4YRMx1DQthMXkhSmM2Ji0J0OVKGuVGMZUJSajsbSsiEXFQCMyw61SSmub4rhX4Go4HgzgrtvbOSH1TasOsLhpIATLOmzKXDQ_1RD1dHkq6t0YqRINYOvOGeentlWI69-CPzPlVDdbvq0eT4pV_esf3sj_V3u34WaTXZNuvRzuwIJxd2FpjnPxHvh19yVoxB0QzH1JL7TsI7sG0UPNLk28JX0zHvsjdeBChSfZCfUD3gViXD8mK-_Vmy33uluSiSe4-MmAfP-qCEYpX3PxhjHm3ngf9i7li5dh0XlnHgLBB8RjsYqF1Uwh8DRWMkZRUBTcct6CNhorb3aNMq8uBNAkn1mqBStTt8l1w9keWoccniX6YiY6qolKzhJqn_K9mSQNBcYypi14PnXGHPeZcHiknPHHODfEtUymmCBeJCNl-DJyjkynwzHlRpTegge1s59MAtUoEsEfXaSWZ3Dt01o__7i5PXgM1-u__DJK0iewiIY2TzFNnBTtaq0S-HzZ7v0XH65wvQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+the+Curie+temperature+of+ferromagnetic+semiconductor+%28Ga%2CMn%29As+to+200+K+via+nanostructure+engineering&rft.jtitle=Nano+letters&rft.au=Chen%2C+Lin&rft.au=Yang%2C+Xiang&rft.au=Yang%2C+Fuhua&rft.au=Zhao%2C+Jianhua&rft.date=2011-07-13&rft.issn=1530-6992&rft.eissn=1530-6992&rft.volume=11&rft.issue=7&rft.spage=2584&rft_id=info:doi/10.1021%2Fnl201187m&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon |