Enhancing the Curie Temperature of Ferromagnetic Semiconductor (Ga,Mn)As to 200 K via Nanostructure Engineering

We demonstrate by magneto-transport measurements that a Curie temperature as high as 200 K can be obtained in nanostructures of (Ga,Mn)As. Heavily Mn-doped (Ga,Mn)As films were patterned into nanowires and then subject to low-temperature annealing. Resistance and Hall effect measurements demonstrate...

Full description

Saved in:
Bibliographic Details
Published inNano letters Vol. 11; no. 7; pp. 2584 - 2589
Main Authors Chen, Lin, Yang, Xiang, Yang, Fuhua, Zhao, Jianhua, Misuraca, Jennifer, Xiong, Peng, von Molnár, Stephan
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 13.07.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We demonstrate by magneto-transport measurements that a Curie temperature as high as 200 K can be obtained in nanostructures of (Ga,Mn)As. Heavily Mn-doped (Ga,Mn)As films were patterned into nanowires and then subject to low-temperature annealing. Resistance and Hall effect measurements demonstrated a consistent increase of T C with decreasing wire width down to about 300 nm. This observation is attributed primarily to the increase of the free surface in the narrower wires, which allows the Mn interstitials to diffuse out at the sidewalls, thus enhancing the efficiency of annealing. These results may provide useful information on optimal structures for (Ga,Mn)As-based nanospintronic devices operational at relatively high temperatures.
AbstractList We demonstrate by magneto-transport measurements that a Curie temperature as high as 200 K can be obtained in nanostructures of (Ga,Mn)As. Heavily Mn-doped (Ga,Mn)As films were patterned into nanowires and then subject to low-temperature annealing. Resistance and Hall effect measurements demonstrated a consistent increase of T(C) with decreasing wire width down to about 300 nm. This observation is attributed primarily to the increase of the free surface in the narrower wires, which allows the Mn interstitials to diffuse out at the sidewalls, thus enhancing the efficiency of annealing. These results may provide useful information on optimal structures for (Ga,Mn)As-based nanospintronic devices operational at relatively high temperatures.
We demonstrate by magneto-transport measurements that a Curie temperature as high as 200 K can be obtained in nanostructures of (Ga,Mn)As. Heavily Mn-doped (Ga,Mn)As films were patterned into nanowires and then subject to low-temperature annealing. Resistance and Hall effect measurements demonstrated a consistent increase of TC with decreasing wire width down to about 300 nm. This observation is attributed primarily to the increase of the free surface in the narrower wires, which allows the Mn interstitials to diffuse out at the sidewalls, thus enhancing the efficiency of annealing. These results may provide useful information on optimal structures for (Ga,Mn)As-based nanospintronic devices operational at relatively high temperatures.
We demonstrate by magneto-transport measurements that a Curie temperature as high as 200 K can be obtained in nanostructures of (Ga,Mn)As. Heavily Mn-doped (Ga,Mn)As films were patterned into nanowires and then subject to low-temperature annealing. Resistance and Hall effect measurements demonstrated a consistent increase of T(C) with decreasing wire width down to about 300 nm. This observation is attributed primarily to the increase of the free surface in the narrower wires, which allows the Mn interstitials to diffuse out at the sidewalls, thus enhancing the efficiency of annealing. These results may provide useful information on optimal structures for (Ga,Mn)As-based nanospintronic devices operational at relatively high temperatures.We demonstrate by magneto-transport measurements that a Curie temperature as high as 200 K can be obtained in nanostructures of (Ga,Mn)As. Heavily Mn-doped (Ga,Mn)As films were patterned into nanowires and then subject to low-temperature annealing. Resistance and Hall effect measurements demonstrated a consistent increase of T(C) with decreasing wire width down to about 300 nm. This observation is attributed primarily to the increase of the free surface in the narrower wires, which allows the Mn interstitials to diffuse out at the sidewalls, thus enhancing the efficiency of annealing. These results may provide useful information on optimal structures for (Ga,Mn)As-based nanospintronic devices operational at relatively high temperatures.
Author Zhao, Jianhua
Xiong, Peng
Yang, Fuhua
Chen, Lin
Yang, Xiang
Misuraca, Jennifer
von Molnár, Stephan
AuthorAffiliation Chinese Academy of Sciences
Florida State University
AuthorAffiliation_xml – name: Chinese Academy of Sciences
– name: Florida State University
Author_xml – sequence: 1
  givenname: Lin
  surname: Chen
  fullname: Chen, Lin
– sequence: 2
  givenname: Xiang
  surname: Yang
  fullname: Yang, Xiang
– sequence: 3
  givenname: Fuhua
  surname: Yang
  fullname: Yang, Fuhua
– sequence: 4
  givenname: Jianhua
  surname: Zhao
  fullname: Zhao, Jianhua
  email: jhzhao@red.semi.ac.cn
– sequence: 5
  givenname: Jennifer
  surname: Misuraca
  fullname: Misuraca, Jennifer
– sequence: 6
  givenname: Peng
  surname: Xiong
  fullname: Xiong, Peng
– sequence: 7
  givenname: Stephan
  surname: von Molnár
  fullname: von Molnár, Stephan
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24343702$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21696165$$D View this record in MEDLINE/PubMed
BookMark eNqN0U1vEzEQBmALFdEPOPAHkC-IViLUH2s7e6yitEUUOFDOq4l3nLratYPtReLf11FDkFCFONmHxzOeeY_JQYgBCXnN2QfOBD8Pg2Ccz834jBxxJdlMt6042N_nzSE5zvmeMdZKxV6QQ8F1q7lWRyQuwx0E68Oaljukiyl5pLc4bjBBmRLS6OglphRHWAcs3tJvOHobQz_ZEhM9vYL3n8PZRaYlUsEY_UR_eqBfIMRcUjXbGsuw9gEx1S4vyXMHQ8ZXu_OEfL9c3i6uZzdfrz4uLm5m0BhdZlytHNe9FXKlndK6AWGk1pr3wME50D0TwLEVzLhmxTRjXNaZUDkAsNbJE_Luse4mxR8T5tKNPlscBggYp9zN50ppYbiu8vSfkhslG2OMUv9JJVe80jc7Oq1G7LtN8iOkX93vzVfwdgcgWxhc2qaQ_7hGNtIwUd3Zo7Mp5pzQ7Qln3Tb9bp9-ted_WesLFB9DSeCHJ1_sfgE2d_dxSqGG8oR7AEEXuxg
CitedBy_id crossref_primary_10_3367_UFNe_2018_11_038486
crossref_primary_10_1007_s11467_024_1432_5
crossref_primary_10_1103_PhysRevApplied_12_014020
crossref_primary_10_1103_PhysRevB_101_075204
crossref_primary_10_1016_j_scib_2018_05_036
crossref_primary_10_1088_1674_4926_45_4_042101
crossref_primary_10_1038_srep40558
crossref_primary_10_7567_1882_0786_ab3f4b
crossref_primary_10_1016_j_jmmm_2022_169886
crossref_primary_10_1021_acs_jpcc_9b07951
crossref_primary_10_1002_apxr_202400124
crossref_primary_10_7498_aps_73_20231940
crossref_primary_10_1007_s11433_013_5320_1
crossref_primary_10_1063_1_4973201
crossref_primary_10_1134_S0021364014230027
crossref_primary_10_1155_2022_4291923
crossref_primary_10_1038_s41598_023_29169_9
crossref_primary_10_1021_acs_nanolett_7b03721
crossref_primary_10_1016_j_jmmm_2024_172019
crossref_primary_10_15407_spqeo27_03_302
crossref_primary_10_1088_0953_8984_25_34_346001
crossref_primary_10_1007_s11172_022_3468_4
crossref_primary_10_1103_PhysRevB_99_014431
crossref_primary_10_1002_adfm_202304749
crossref_primary_10_7567_JJAP_53_04EM05
crossref_primary_10_1063_1_5006926
crossref_primary_10_1016_j_jmmm_2022_169630
crossref_primary_10_1021_nl304740k
crossref_primary_10_1103_PhysRevB_103_075107
crossref_primary_10_1038_srep25748
crossref_primary_10_1063_1_4979555
crossref_primary_10_1088_2053_1591_ad1e0d
crossref_primary_10_1002_pssb_201552330
crossref_primary_10_1063_1_4773317
crossref_primary_10_1088_1674_4926_40_8_081508
crossref_primary_10_1063_1_5010988
crossref_primary_10_1088_1674_4926_40_8_081506
crossref_primary_10_1088_0022_3727_46_17_175005
crossref_primary_10_1088_1674_4926_40_8_081505
crossref_primary_10_1038_s41598_021_86205_2
crossref_primary_10_1088_1674_4926_40_8_081504
crossref_primary_10_1038_s41598_023_41895_8
crossref_primary_10_1063_1_4870423
crossref_primary_10_1063_1_4948692
crossref_primary_10_1103_PhysRevB_100_054438
crossref_primary_10_1088_1402_4896_ac8959
crossref_primary_10_1088_1674_4926_40_8_081502
crossref_primary_10_1063_5_0015358
crossref_primary_10_1088_1674_4926_34_8_083003
crossref_primary_10_1088_1674_4926_40_8_081501
crossref_primary_10_1103_PhysRevB_92_144403
crossref_primary_10_1063_1_4838036
crossref_primary_10_1016_j_spmi_2014_05_018
crossref_primary_10_1039_C8RA06343E
crossref_primary_10_1038_s41598_017_08394_z
crossref_primary_10_1016_j_jmmm_2017_11_001
crossref_primary_10_1088_0953_8984_27_1_015501
crossref_primary_10_1088_1674_1056_ab8219
crossref_primary_10_1209_0295_5075_120_47005
crossref_primary_10_1016_j_jallcom_2023_171893
crossref_primary_10_1002_wcms_1313
crossref_primary_10_1209_0295_5075_107_17004
crossref_primary_10_1103_PhysRevB_96_104415
crossref_primary_10_1016_j_jallcom_2016_06_112
crossref_primary_10_1016_j_jmmm_2022_169518
crossref_primary_10_1088_1674_1056_ab892e
crossref_primary_10_1088_1674_1056_27_6_067103
crossref_primary_10_1002_advs_202103173
crossref_primary_10_1038_s41598_020_64836_1
crossref_primary_10_1039_D3TC01879B
crossref_primary_10_1039_C6NR02190E
crossref_primary_10_1103_PhysRevB_95_075203
crossref_primary_10_35848_1347_4065_ab9401
crossref_primary_10_1063_1_4870521
crossref_primary_10_1103_PhysRevB_96_104423
crossref_primary_10_1038_s41524_024_01362_y
crossref_primary_10_1103_PhysRevB_90_085123
crossref_primary_10_1038_srep23295
crossref_primary_10_1063_1_5127583
crossref_primary_10_7498_aps_64_077501
crossref_primary_10_3390_nano10112229
crossref_primary_10_1063_1_5022828
crossref_primary_10_1088_1674_1056_acf44a
crossref_primary_10_1007_s40843_023_2863_2
crossref_primary_10_7567_APEX_9_123001
crossref_primary_10_1021_acs_nanolett_2c03203
crossref_primary_10_1134_S1063785020070299
crossref_primary_10_1103_PhysRevB_95_224418
crossref_primary_10_1063_1_4881636
crossref_primary_10_1103_PhysRevB_99_155201
crossref_primary_10_1088_1361_648X_abe077
crossref_primary_10_1088_1674_4926_40_8_080301
crossref_primary_10_1016_j_jcis_2023_09_031
crossref_primary_10_1088_1674_4926_40_8_081510
crossref_primary_10_7498_aps_70_20201966
crossref_primary_10_1016_j_jpcs_2017_05_031
crossref_primary_10_1103_PhysRevB_96_205415
crossref_primary_10_1016_j_apsusc_2019_01_164
crossref_primary_10_1016_j_jmmm_2022_169276
crossref_primary_10_1007_s12274_023_5972_8
crossref_primary_10_7498_aps_63_047501
crossref_primary_10_7498_aps_66_176113
crossref_primary_10_1063_1_4967778
crossref_primary_10_3389_fmats_2022_891135
crossref_primary_10_1063_1_5083175
crossref_primary_10_1007_s40766_020_0002_0
crossref_primary_10_1088_1674_4926_43_7_072501
crossref_primary_10_4028_p_jIM2w4
crossref_primary_10_1038_ncomms13810
crossref_primary_10_1007_s11433_012_4966_4
crossref_primary_10_1038_ncomms13497
crossref_primary_10_1088_1674_1056_27_9_097502
crossref_primary_10_12677_CMP_2018_71005
crossref_primary_10_7567_APEX_11_063005
crossref_primary_10_1038_s41598_017_09729_6
crossref_primary_10_1016_j_jmmm_2017_01_102
crossref_primary_10_1088_1674_4926_45_1_012101
crossref_primary_10_1093_nsr_nwt022
crossref_primary_10_1039_C5TC02936H
crossref_primary_10_1063_1_4799164
crossref_primary_10_1016_j_ssc_2020_114091
crossref_primary_10_1063_1_4896539
crossref_primary_10_1103_PhysRevB_108_014421
crossref_primary_10_1063_5_0031605
crossref_primary_10_1016_j_jmmm_2021_168695
crossref_primary_10_1038_s41598_021_95475_9
crossref_primary_10_1063_1_3677990
crossref_primary_10_1039_C8NR07501H
crossref_primary_10_1088_1674_1056_ab38ac
crossref_primary_10_1209_0295_5075_105_67004
crossref_primary_10_1103_PhysRevB_102_094432
crossref_primary_10_1103_PhysRevB_109_024407
crossref_primary_10_1088_1674_1056_28_5_057501
crossref_primary_10_1016_j_pmatsci_2022_101036
crossref_primary_10_1063_1_4792652
crossref_primary_10_1088_1361_6528_ad209f
crossref_primary_10_1063_1_4961565
crossref_primary_10_1039_D4CP00239C
crossref_primary_10_1016_j_scib_2019_02_011
crossref_primary_10_1103_PhysRevB_105_195155
crossref_primary_10_1007_s40843_019_1212_x
crossref_primary_10_1021_acsami_1c07680
crossref_primary_10_1063_5_0072128
crossref_primary_10_1088_0953_8984_28_2_026003
crossref_primary_10_1088_0022_3727_49_17_175303
crossref_primary_10_3390_nano13172435
crossref_primary_10_1016_j_jmmm_2022_170242
crossref_primary_10_1016_j_mssp_2025_109487
crossref_primary_10_1038_s41598_018_20751_0
crossref_primary_10_1016_j_jmmm_2019_03_091
crossref_primary_10_1134_S0020168514090076
crossref_primary_10_1088_0953_8984_24_21_215801
crossref_primary_10_1016_j_jmmm_2015_02_042
crossref_primary_10_1038_ncomms12866
crossref_primary_10_1088_1367_2630_ad309f
crossref_primary_10_1007_s40843_022_2025_x
crossref_primary_10_1016_j_cjph_2024_08_013
crossref_primary_10_1007_s10854_017_7700_1
crossref_primary_10_1063_5_0189159
crossref_primary_10_1103_PhysRevB_102_245112
crossref_primary_10_1007_s40843_023_2657_2
crossref_primary_10_1038_srep15191
crossref_primary_10_1038_s41467_017_02077_z
crossref_primary_10_1103_PhysRevB_89_115323
crossref_primary_10_1063_1_5007094
crossref_primary_10_1103_RevModPhys_86_187
crossref_primary_10_1088_1674_4926_40_9_092501
crossref_primary_10_1155_2012_480813
crossref_primary_10_1007_s11433_022_2042_x
crossref_primary_10_1016_j_jmmm_2018_07_049
crossref_primary_10_1103_PhysRevLett_111_027203
crossref_primary_10_1021_nl301226k
crossref_primary_10_1016_j_sse_2019_03_015
crossref_primary_10_1155_2023_8860586
crossref_primary_10_1063_1_5124704
crossref_primary_10_1088_1361_6528_ab70fa
crossref_primary_10_1038_srep15507
crossref_primary_10_1103_PhysRevB_93_184417
crossref_primary_10_1134_S0021364015020149
crossref_primary_10_3390_cryst10050359
crossref_primary_10_1103_PhysRevB_105_L121201
crossref_primary_10_3938_jkps_62_1485
crossref_primary_10_1103_PhysRevB_100_035204
crossref_primary_10_3390_nano14030263
crossref_primary_10_1016_j_nimb_2018_11_013
crossref_primary_10_1007_s11051_018_4238_y
crossref_primary_10_3390_mi7120223
crossref_primary_10_1038_s41598_019_43754_x
crossref_primary_10_1103_PhysRevB_101_155142
crossref_primary_10_1209_0295_5075_118_17003
crossref_primary_10_1007_s11664_016_5036_x
crossref_primary_10_1016_j_cap_2024_11_008
crossref_primary_10_1016_j_jmmm_2013_09_004
crossref_primary_10_1088_0953_8984_25_19_196005
crossref_primary_10_1103_PhysRevB_93_224403
crossref_primary_10_1016_j_physleta_2015_08_012
crossref_primary_10_1016_j_tsf_2016_09_019
crossref_primary_10_1103_PhysRevApplied_11_054058
crossref_primary_10_1063_1_4757917
crossref_primary_10_1016_j_materresbull_2013_04_066
crossref_primary_10_1103_PhysRevB_102_245203
crossref_primary_10_1016_j_physleta_2021_127229
crossref_primary_10_1103_PhysRevLett_124_027201
crossref_primary_10_1063_5_0117597
crossref_primary_10_1016_j_physleta_2020_126815
crossref_primary_10_1007_s11433_013_5356_2
crossref_primary_10_1063_5_0174268
crossref_primary_10_35848_1882_0786_aba4d9
crossref_primary_10_1103_PhysRevMaterials_3_084417
crossref_primary_10_1103_PhysRevB_94_075205
crossref_primary_10_1002_adfm_202002513
crossref_primary_10_1063_1_4852496
crossref_primary_10_1039_D3CP02267F
crossref_primary_10_1002_adfm_202406339
crossref_primary_10_3762_bjnano_9_230
crossref_primary_10_1103_PhysRevB_101_054413
crossref_primary_10_1088_1674_1056_22_2_027504
crossref_primary_10_1039_D4NR02869D
crossref_primary_10_3390_ma16103701
crossref_primary_10_1155_2013_213594
crossref_primary_10_3390_nano10112192
crossref_primary_10_1088_0256_307X_40_6_067502
crossref_primary_10_12693_APhysPolA_124_873
crossref_primary_10_1088_2053_1591_aabe65
crossref_primary_10_3390_condmat3040042
crossref_primary_10_1088_0268_1242_29_3_035004
crossref_primary_10_1016_j_jallcom_2019_153235
crossref_primary_10_1063_1_5134728
crossref_primary_10_1039_D0CP00824A
crossref_primary_10_1016_j_jmmm_2021_168064
crossref_primary_10_1088_1361_6463_ab7796
crossref_primary_10_7498_aps_68_20191114
crossref_primary_10_7567_1347_4065_ab3017
crossref_primary_10_1134_S0020168522010150
crossref_primary_10_1088_1674_4926_43_11_112501
crossref_primary_10_1016_j_rinp_2023_107307
crossref_primary_10_1088_2053_1591_ab4e40
crossref_primary_10_3389_fphy_2016_00009
crossref_primary_10_1088_1674_1056_23_9_096103
crossref_primary_10_1051_epjconf_201818506003
crossref_primary_10_1051_epjconf_201818506001
crossref_primary_10_1002_adma_201503547
crossref_primary_10_1007_s11434_014_0398_z
crossref_primary_10_1007_s40843_023_2697_x
crossref_primary_10_1103_PhysRevB_84_121202
crossref_primary_10_1016_j_jmmm_2019_166295
crossref_primary_10_1063_1_4867299
crossref_primary_10_1088_1674_1056_22_8_088505
crossref_primary_10_1134_S0020168515080117
crossref_primary_10_35848_1347_4065_abcadc
crossref_primary_10_1063_5_0157124
crossref_primary_10_1103_PhysRevB_88_075205
crossref_primary_10_7498_aps_73_20231949
crossref_primary_10_1088_0256_307X_30_4_047501
crossref_primary_10_1039_D4TC01753F
crossref_primary_10_1007_s11433_012_4959_3
crossref_primary_10_1016_j_physe_2021_114731
crossref_primary_10_1007_s10948_020_05545_8
crossref_primary_10_1039_D2NR05244J
crossref_primary_10_7498_aps_62_187102
crossref_primary_10_1134_S0036023622020188
crossref_primary_10_1038_srep12416
crossref_primary_10_1016_j_matdes_2017_02_037
crossref_primary_10_1021_acsaelm_0c00938
Cites_doi 10.1063/1.2884683
10.1038/nmat1325
10.1103/PhysRevLett.20.665
10.1063/1.2927481
10.1103/PhysRevLett.93.216602
10.1103/PhysRevB.65.201303
10.1007/978-3-662-05003-3
10.1103/PhysRevB.77.041306
10.1063/1.3259821
10.1038/nphys1455
10.1063/1.2715095
10.1038/45509
10.1063/1.1819522
10.1103/PhysRevLett.88.207208
10.1063/1.118061
10.1103/PhysRevLett.99.077201
10.1103/PhysRevLett.87.026602
10.1126/science.287.5455.1019
10.1063/1.2713176
10.1063/1.1900938
10.1103/PhysRev.108.1394
10.1126/science.1086608
10.1063/1.2150809
10.1103/PhysRevLett.98.026601
10.1103/PhysRevLett.101.077201
10.1103/PhysRevB.63.195205
10.1103/PhysRevB.72.115207
10.1063/1.2362971
10.1063/1.3063046
10.1038/nature02441
10.1016/j.physe.2008.06.011
10.1103/PhysRevLett.101.117208
10.1109/TED.2007.894622
10.1038/nature07318
10.1126/science.281.5379.951
ContentType Journal Article
Copyright Copyright © 2011 American Chemical Society
2015 INIST-CNRS
Copyright_xml – notice: Copyright © 2011 American Chemical Society
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1021/nl201187m
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE
Materials Research Database

MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1530-6992
EndPage 2589
ExternalDocumentID 21696165
24343702
10_1021_nl201187m
i02664444
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
123
4.4
55A
5VS
7~N
AABXI
ABMVS
ABPTK
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
PK8
RNS
ROL
TN5
UI2
VF5
VG9
W1F
X
---
-~X
6P2
AAHBH
AAYOK
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
53G
AFFNX
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-a476t-15bf16dc23b6f5664a2736661da1affa6d02a1e9207f4b060013169e5faaaccf3
IEDL.DBID ACS
ISSN 1530-6984
1530-6992
IngestDate Mon Jul 21 11:26:45 EDT 2025
Fri Jul 11 16:03:09 EDT 2025
Wed Jul 30 10:57:20 EDT 2025
Mon Jul 21 05:59:26 EDT 2025
Mon Jul 21 09:17:08 EDT 2025
Tue Jul 01 00:42:42 EDT 2025
Thu Apr 24 23:12:01 EDT 2025
Thu Aug 27 13:42:53 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords molecular-beam epitaxy
magnetotransport phenomena
magnetic properties of nanostructures
Magnetic semiconductors
Curie point
Semiconductor materials
Electrical properties
Ferromagnetic materials
Annealing temperature
Manganese additions
Hall effect
Nanostructures
Gallium additions
Thin films
Nanowires
Magnetoresistance
Thermal annealing
Nanostructured materials
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a476t-15bf16dc23b6f5664a2736661da1affa6d02a1e9207f4b060013169e5faaaccf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 21696165
PQID 1753473151
PQPubID 23500
PageCount 6
ParticipantIDs proquest_miscellaneous_885562716
proquest_miscellaneous_1753477755
proquest_miscellaneous_1753473151
pubmed_primary_21696165
pascalfrancis_primary_24343702
crossref_primary_10_1021_nl201187m
crossref_citationtrail_10_1021_nl201187m
acs_journals_10_1021_nl201187m
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-07-13
PublicationDateYYYYMMDD 2011-07-13
PublicationDate_xml – month: 07
  year: 2011
  text: 2011-07-13
  day: 13
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
PublicationTitle Nano letters
PublicationTitleAlternate Nano Lett
PublicationYear 2011
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Ohno Y (ref8/cit8) 1999; 402
Wenisch J (ref32/cit32) 2007; 99
Chiba D (ref5/cit5) 2006; 89
Chiba D (ref7/cit7) 2008; 455
Sheu B. L (ref24/cit24) 2006; 99
Dietl T. (ref2/cit2) 2008
Chen L (ref12/cit12) 2009; 95
Ohno H. (ref1/cit1) 1996; 69
Dietl T (ref3/cit3) 2007; 54
Pu Y (ref35/cit35) 2008; 101
Yamanouchi M (ref11/cit11) 2004; 428
Schott G. M (ref19/cit19) 2004; 85
Novák V (ref29/cit29) 2008; 101
Dietl T (ref14/cit14) 2001; 63
Arrott A (ref36/cit36) 1957; 108
Fisher M. E (ref30/cit30) 1968; 20
Chiba D (ref10/cit10) 2004; 93
Cho Y. J (ref18/cit18) 2008; 93
Chiba D (ref4/cit4) 2003; 301
Sawicki M (ref6/cit6) 2009; 6
Jungwirth T (ref33/cit33) 2002; 88
Wang K. Y (ref15/cit15) 2005; 72
Ohya S (ref21/cit21) 2007; 90
Dietl T (ref13/cit13) 2000; 287
Yu K. M (ref27/cit27) 2002; 65
Awschalom D. D. (ref26/cit26) 2002
Tanaka M (ref9/cit9) 2001; 87
Wang W. Z (ref17/cit17) 2008; 41
Mack S (ref22/cit22) 2008; 92
Eid K. F (ref23/cit23) 2005; 86
Chun S. H (ref34/cit34) 2007; 98
Ohno H. (ref25/cit25) 1998; 281
Wurstbauer U (ref16/cit16) 2008; 92
Chiba D (ref20/cit20) 2007; 90
MacDonald A. H (ref28/cit28) 2005; 4
Neumaier D (ref31/cit31) 2008; 77
References_xml – volume: 92
  start-page: 102506
  year: 2008
  ident: ref16/cit16
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2884683
– volume: 4
  start-page: 195
  year: 2005
  ident: ref28/cit28
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1325
– volume: 20
  start-page: 665
  year: 1968
  ident: ref30/cit30
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.20.665
– volume: 92
  start-page: 192502
  year: 2008
  ident: ref22/cit22
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2927481
– volume-title: Semiconductors and semimetals: Spintronics
  year: 2008
  ident: ref2/cit2
– volume: 93
  start-page: 216602
  year: 2004
  ident: ref10/cit10
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.216602
– volume: 65
  start-page: 201303(R)
  year: 2002
  ident: ref27/cit27
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.65.201303
– volume-title: Semiconductor Spintronics and Quantum Computation
  year: 2002
  ident: ref26/cit26
  doi: 10.1007/978-3-662-05003-3
– volume: 77
  start-page: 041306(R)
  year: 2008
  ident: ref31/cit31
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.77.041306
– volume: 95
  start-page: 182505
  year: 2009
  ident: ref12/cit12
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3259821
– volume: 6
  start-page: 22
  year: 2009
  ident: ref6/cit6
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1455
– volume: 90
  start-page: 122503
  year: 2007
  ident: ref20/cit20
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2715095
– volume: 402
  start-page: 790
  year: 1999
  ident: ref8/cit8
  publication-title: Nature (London)
  doi: 10.1038/45509
– volume: 85
  start-page: 4678
  year: 2004
  ident: ref19/cit19
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1819522
– volume: 88
  start-page: 207208
  year: 2002
  ident: ref33/cit33
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.88.207208
– volume: 69
  start-page: 363
  year: 1996
  ident: ref1/cit1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.118061
– volume: 99
  start-page: 077201
  year: 2007
  ident: ref32/cit32
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.077201
– volume: 87
  start-page: 026602
  year: 2001
  ident: ref9/cit9
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.87.026602
– volume: 287
  start-page: 1019
  year: 2000
  ident: ref13/cit13
  publication-title: Science
  doi: 10.1126/science.287.5455.1019
– volume: 90
  start-page: 112503
  year: 2007
  ident: ref21/cit21
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2713176
– volume: 86
  start-page: 152505
  year: 2005
  ident: ref23/cit23
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1900938
– volume: 108
  start-page: 1394
  year: 1957
  ident: ref36/cit36
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.108.1394
– volume: 301
  start-page: 943
  year: 2003
  ident: ref4/cit4
  publication-title: Science
  doi: 10.1126/science.1086608
– volume: 99
  start-page: 08D501
  year: 2006
  ident: ref24/cit24
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2150809
– volume: 98
  start-page: 026601
  year: 2007
  ident: ref34/cit34
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.026601
– volume: 101
  start-page: 077201
  year: 2008
  ident: ref29/cit29
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.077201
– volume: 63
  start-page: 195205
  year: 2001
  ident: ref14/cit14
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.63.195205
– volume: 72
  start-page: 115207
  year: 2005
  ident: ref15/cit15
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.72.115207
– volume: 89
  start-page: 162505
  year: 2006
  ident: ref5/cit5
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2362971
– volume: 93
  start-page: 262505
  year: 2008
  ident: ref18/cit18
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3063046
– volume: 428
  start-page: 539
  year: 2004
  ident: ref11/cit11
  publication-title: Nature (London)
  doi: 10.1038/nature02441
– volume: 41
  start-page: 84
  year: 2008
  ident: ref17/cit17
  publication-title: Physica E
  doi: 10.1016/j.physe.2008.06.011
– volume: 101
  start-page: 117208
  year: 2008
  ident: ref35/cit35
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.117208
– volume: 54
  start-page: 945
  year: 2007
  ident: ref3/cit3
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2007.894622
– volume: 455
  start-page: 515
  year: 2008
  ident: ref7/cit7
  publication-title: Nature (London)
  doi: 10.1038/nature07318
– volume: 281
  start-page: 951
  year: 1998
  ident: ref25/cit25
  publication-title: Science
  doi: 10.1126/science.281.5379.951
SSID ssj0009350
Score 2.5197768
Snippet We demonstrate by magneto-transport measurements that a Curie temperature as high as 200 K can be obtained in nanostructures of (Ga,Mn)As. Heavily Mn-doped...
SourceID proquest
pubmed
pascalfrancis
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2584
SubjectTerms Annealing
Arsenicals - chemistry
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science; rheology
Curie temperature
Exact sciences and technology
Gallium - chemistry
Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties
Magnetic properties and materials
Magnetic properties of nanostructures
Magnetics
Manganese
Manganese - chemistry
Materials science
Nanoscale materials and structures: fabrication and characterization
Nanostructure
Nanostructures - chemistry
Nanotechnology
Nanowires
Optimization
Physics
Quantum wires
Semiconductors
Small particles and nanoscale materials
Studies of specific magnetic materials
Surface Properties
Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)
Temperature
Wire
Title Enhancing the Curie Temperature of Ferromagnetic Semiconductor (Ga,Mn)As to 200 K via Nanostructure Engineering
URI http://dx.doi.org/10.1021/nl201187m
https://www.ncbi.nlm.nih.gov/pubmed/21696165
https://www.proquest.com/docview/1753473151
https://www.proquest.com/docview/1753477755
https://www.proquest.com/docview/885562716
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9swDCa67rJh2PuRPQLtceiAurNkPexjkDUrNnSXtkBvBq1I3bBWKpJ0h_36UXaSplizHg3QtkSR5kdL_AjwQZlcV6WusgobSlC88Bl65zIjKRbYRjRWpQLn_e9670h-PVbHG_B-zQ6-4J_CqWh7Yp_dgttClyZlWIPhwSWzbtG2YSXPpTyoKuWCPmj11hR67PRK6Ll3jlPSgu_aV6zHl22cGT2Az4tqne54ya-di1mzY__8S974vyk8hPtznMkGnWE8gg0XHsPdFfbBJxB3w480rHDCCAWyYWpexw4d4eiOZ5lFz0ZuMolneBJSrSM7SCfpY0gUsXHCtr7g9n74OJiyWWTkBuwb-_0TGX2vY8dKm56x8sancDTaPRzuZfP-CxlKo2cZV43nemxF0WhPsE8iYR1Kd_gYOXqPepwL5K4SufGyyXXL3aMrpzwiWuuLZ7AZYnAvgNEFZSY55tpbiZSCOW-kFCSoG-WV6kGfFqie-8-0brfGBa-XmuvB1mLtajtnL09NNE6vE323FD3vKDuuE-pfMYClpEiltiYXPXi7sIiaPC5to2Bw8YLGRhmeNAVBpZtkjEkzY2tkylIR-KR8tQfPO4u7HASpUXOtXt6klldwp_vJbTJevIZNWl33hlDSrOm3XvIXvgoLOA
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9NAEB6VcgCEeD9SICwIpCLh4l3vIz5wiEJDSppemkq9uWtnt1Rt11WcFsFP4a_w55i1nUdRq54qcYw0Wq9nZ3e-L975BuCdUKGMWzIOYp0iQbHMBtoaEyiOuSBLWZoJX-A82JK9Hf5tV-wuwe9pLQxOosCRivIj_lxdgH5yR6xsjX1cX6Dsm58_kJ4Vnze-4Fq-Z6y7Puz0grqDQKC5kpOAitRSOcpYlEqLwIVrzNYI2OlIU22tlqOQaWpiFirL01CW6jMyNsJqrbPMRjjuDbiJoId5YtfubM8FfaOy-yseGEi_4hafqhYtTtVnvKw4l_HunugCnW-rrhmXw9oyvXXvw5-ZY8pbLYdrp5N0Lfv1j2bk_-m5B3CvRtWkXW2Dh7Bk3CO4s6C1-Bjydffde8PtE8S8pONb9ZGhQdZQqUqT3JKuGY_zY73vfGUn2fZ1A7nzgrj5mKx-1R8H7kO7IJOc4KYnfXJ2oAlmp7zS4PVjLDzxCexcyxs_hWWXO_McCP5AHhbqUNqMayScxirOGRrKVFghGtDEhUrq06JIyosAjCazlWrA6jRkkqzWavctQ44uMn07Mz2pBEouMmqei7uZJfOFxSpkDXgzDcQEzxf_0Ug7k5_i3JDPchUhMLzKRin_ZuQSm1ZLINRGdt6AZ1WgzyeBbpRUipWr3PIabvWGg81kc2Or_wJuV3_vq4BGL2EZV9q8Qnw4SZvlRiWwd93x_RcQZG46
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1tb9MwED6NISEmxPugvBSDQBoSGYnjl-YDH6puZaNsQtom7VtwXHsgNrtqOhD8GP4Kf41zknYd2rRPk_gY6eQ4d2ffPbHvOYCXXMYi64gsylSBAMVSGylrTCQZxgJd0ELzUOC8tS029tiHfb6_AL-ntTA4iRJHKqtD_LCqR0PbMAwkb90hrdpjHzWXKAfm5w-EaOW7zTW05ytK--u7vY2o6SIQKSbFJEp4YRMx1DQthMXkhSmM2Ji0J0OVKGuVGMZUJSajsbSsiEXFQCMyw61SSmub4rhX4Go4HgzgrtvbOSH1TasOsLhpIATLOmzKXDQ_1RD1dHkq6t0YqRINYOvOGeentlWI69-CPzPlVDdbvq0eT4pV_esf3sj_V3u34WaTXZNuvRzuwIJxd2FpjnPxHvh19yVoxB0QzH1JL7TsI7sG0UPNLk28JX0zHvsjdeBChSfZCfUD3gViXD8mK-_Vmy33uluSiSe4-MmAfP-qCEYpX3PxhjHm3ngf9i7li5dh0XlnHgLBB8RjsYqF1Uwh8DRWMkZRUBTcct6CNhorb3aNMq8uBNAkn1mqBStTt8l1w9keWoccniX6YiY6qolKzhJqn_K9mSQNBcYypi14PnXGHPeZcHiknPHHODfEtUymmCBeJCNl-DJyjkynwzHlRpTegge1s59MAtUoEsEfXaSWZ3Dt01o__7i5PXgM1-u__DJK0iewiIY2TzFNnBTtaq0S-HzZ7v0XH65wvQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+the+Curie+temperature+of+ferromagnetic+semiconductor+%28Ga%2CMn%29As+to+200+K+via+nanostructure+engineering&rft.jtitle=Nano+letters&rft.au=Chen%2C+Lin&rft.au=Yang%2C+Xiang&rft.au=Yang%2C+Fuhua&rft.au=Zhao%2C+Jianhua&rft.date=2011-07-13&rft.issn=1530-6992&rft.eissn=1530-6992&rft.volume=11&rft.issue=7&rft.spage=2584&rft_id=info:doi/10.1021%2Fnl201187m&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon