Generalized sorting profile of alluvial fans
Alluvial rivers often exhibit self‐similar gravel size distributions and abrupt gravel‐sand transitions. Experiments suggest that these sorting patterns are established rapidly, but how—and how fast—this convergence occurs in the field is unknown. We examine the establishment of downstream sorting p...
Saved in:
Published in | Geophysical research letters Vol. 41; no. 20; pp. 7191 - 7199 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Washington
Blackwell Publishing Ltd
28.10.2014
John Wiley & Sons, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Alluvial rivers often exhibit self‐similar gravel size distributions and abrupt gravel‐sand transitions. Experiments suggest that these sorting patterns are established rapidly, but how—and how fast—this convergence occurs in the field is unknown. We examine the establishment of downstream sorting patterns in a kilometer‐scale alluvial fan. The sharp transition from canyon to unconfined, channelized fan provides a well‐defined boundary condition. The channel changes from deep and entrenched at the fan apex to shallow and depositional over a short distance, exhibiting nonequilibrium behavior. The resulting gravel‐fining profile is not self‐similar; the particle size distribution narrows until approximate equal mobility is achieved. Downfan, the gravel‐sand transition appears to exhibit a self‐similar form; field and laboratory data collapse when downstream distance is normalized by the location of the transition. Results suggest a generalized sorting profile for alluvial fans as a consequence of the threshold of motion and nonequilibrium channels.
Key Points
Gravel sorting is limited by equal mobility of the grain size distributionThe gravel‐sand transition exhibit a self‐similar formTransient dynamics control channel geometry on fan |
---|---|
AbstractList | Alluvial rivers often exhibit self‐similar gravel size distributions and abrupt gravel‐sand transitions. Experiments suggest that these sorting patterns are established rapidly, but how—and how fast—this convergence occurs in the field is unknown. We examine the establishment of downstream sorting patterns in a kilometer‐scale alluvial fan. The sharp transition from canyon to unconfined, channelized fan provides a well‐defined boundary condition. The channel changes from deep and entrenched at the fan apex to shallow and depositional over a short distance, exhibiting nonequilibrium behavior. The resulting gravel‐fining profile is not self‐similar; the particle size distribution narrows until approximate equal mobility is achieved. Downfan, the gravel‐sand transition appears to exhibit a self‐similar form; field and laboratory data collapse when downstream distance is normalized by the location of the transition. Results suggest a generalized sorting profile for alluvial fans as a consequence of the threshold of motion and nonequilibrium channels.
Key Points
Gravel sorting is limited by equal mobility of the grain size distributionThe gravel‐sand transition exhibit a self‐similar formTransient dynamics control channel geometry on fan Alluvial rivers often exhibit self-similar gravel size distributions and abrupt gravel-sand transitions. Experiments suggest that these sorting patterns are established rapidly, but how--and how fast--this convergence occurs in the field is unknown. We examine the establishment of downstream sorting patterns in a kilometer-scale alluvial fan. The sharp transition from canyon to unconfined, channelized fan provides a well-defined boundary condition. The channel changes from deep and entrenched at the fan apex to shallow and depositional over a short distance, exhibiting nonequilibrium behavior. The resulting gravel-fining profile is not self-similar; the particle size distribution narrows until approximate equal mobility is achieved. Downfan, the gravel-sand transition appears to exhibit a self-similar form; field and laboratory data collapse when downstream distance is normalized by the location of the transition. Results suggest a generalized sorting profile for alluvial fans as a consequence of the threshold of motion and nonequilibrium channels. Abstract Alluvial rivers often exhibit self‐similar gravel size distributions and abrupt gravel‐sand transitions. Experiments suggest that these sorting patterns are established rapidly, but how—and how fast—this convergence occurs in the field is unknown. We examine the establishment of downstream sorting patterns in a kilometer‐scale alluvial fan. The sharp transition from canyon to unconfined, channelized fan provides a well‐defined boundary condition. The channel changes from deep and entrenched at the fan apex to shallow and depositional over a short distance, exhibiting nonequilibrium behavior. The resulting gravel‐fining profile is not self‐similar; the particle size distribution narrows until approximate equal mobility is achieved. Downfan, the gravel‐sand transition appears to exhibit a self‐similar form; field and laboratory data collapse when downstream distance is normalized by the location of the transition. Results suggest a generalized sorting profile for alluvial fans as a consequence of the threshold of motion and nonequilibrium channels. Key Points Gravel sorting is limited by equal mobility of the grain size distribution The gravel‐sand transition exhibit a self‐similar form Transient dynamics control channel geometry on fan |
Author | Jerolmack, Douglas J. Reitz, Meredith D. Miller, Kimberly Litwin |
Author_xml | – sequence: 1 givenname: Kimberly Litwin surname: Miller fullname: Miller, Kimberly Litwin email: klitwin@sas.upenn.edu organization: Department of Earth and Environmental Science, University of Pennsylvania, Pennsylvania, Philadelphia, USA – sequence: 2 givenname: Meredith D. surname: Reitz fullname: Reitz, Meredith D. organization: Lamont Doherty Earth Observatory, Columbia University, New York, Palisades, USA – sequence: 3 givenname: Douglas J. surname: Jerolmack fullname: Jerolmack, Douglas J. organization: Department of Earth and Environmental Science, University of Pennsylvania, Pennsylvania, Philadelphia, USA |
BookMark | eNp9kM1OwzAQhC1UJNrCjQeIxLWB9W_iIyoQEBFUCMTRchIbpYSk2ClQnh5XQYhTT7uHb3ZmZ4JGbdcahI4xnGIAckYAsywHAVLiPTTGkrE4BUhGaAwgw04ScYAm3i8BgALFYzTLTGucbupvU0W-c33dvkQr19m6MVFnI900649aN5HVrT9E-1Y33hz9zil6urp8nF_H-X12Mz_PY80SgeOqIKWlRhpclMANsMIQY0ImITihZcm1La2mTIo0rYAmjOiCi5KmmPIKBKNTdDLcDUHe18b3atmtXRssFZYYJA-P7aYEB0HS4BCo2UCVrvPeGatWrn7TbqMwqG1r6n9rAScD_hkK2OxkVfaQc0LYVhQPotr35utPpN2rEglNuHq-y9TF4pYs0rlQC_oDgep7uA |
CitedBy_id | crossref_primary_10_1002_esp_3872 crossref_primary_10_1016_j_icarus_2021_114831 crossref_primary_10_5194_se_11_2359_2020 crossref_primary_10_3389_feart_2020_00215 crossref_primary_10_1038_ncomms9366 crossref_primary_10_1016_j_jconhyd_2020_103676 crossref_primary_10_1103_PhysRevE_98_012907 crossref_primary_10_1126_sciadv_aao4946 crossref_primary_10_1016_j_earscirev_2021_103838 crossref_primary_10_1038_s42254_019_0111_x crossref_primary_10_1111_sed_13173 crossref_primary_10_3389_feart_2023_1112772 crossref_primary_10_1016_j_quascirev_2021_107339 crossref_primary_10_1029_2018JF004622 crossref_primary_10_1007_s10346_021_01700_x crossref_primary_10_1029_2017JF004501 crossref_primary_10_5194_esurf_5_239_2017 crossref_primary_10_1016_j_catena_2019_01_016 crossref_primary_10_1002_2017GL074231 crossref_primary_10_1016_j_geomorph_2016_03_026 |
Cites_doi | 10.1029/TR035i006p00951 10.1306/D4267DDE‐2B26‐11D7‐8648000102C1865D 10.1306/052203740160 10.1016/S0169‐555X(98)00078‐6 10.1086/620780 10.1061/(ASCE)0733‐9429(1998)124:10(985) 10.1029/2011JF002261 10.1130/B26208.1 10.1002/esp.1877 10.1029/2010JF001821 10.1086/627271 10.1029/WR018i005p01409 10.2110/jsr.2011.2 10.1130/G30922.1 10.2110/jsr.69.32 10.1126/science.258.5089.1757 10.1371/journal.pone.0088657 10.1086/626490 10.1306/D42680E0‐2B26‐11D7‐8648000102C1865D 10.1080/00221689809498379 10.1029/JC090iC04p07341 10.1126/science.203.4376.171 10.1130/0091‐7613(2003)031 10.1017/S0022112078002505 10.1029/2005JF000409 10.1029/2006JF000549 10.1029/94WR02975 10.1029/2001WR000684 10.1029/94WR02532 10.1086/516052 10.1061/(ASCE)0733‐9429(2003)129:2(120) 10.1029/2004WR003692 |
ContentType | Journal Article |
Copyright | 2014. American Geophysical Union. All Rights Reserved. |
Copyright_xml | – notice: 2014. American Geophysical Union. All Rights Reserved. |
DBID | BSCLL AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M |
DOI | 10.1002/2014GL060991 |
DatabaseName | Istex CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Aerospace Database CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Physics |
EISSN | 1944-8007 |
EndPage | 7199 |
ExternalDocumentID | 3577609371 10_1002_2014GL060991 GRL52241 ark_67375_WNG_DPK2P8C6_P |
Genre | article |
GroupedDBID | -DZ -~X 05W 0R~ 1OB 1OC 24P 33P 50Y 5GY 5VS 702 8-1 8R4 8R5 A00 AAESR AAHHS AAIHA AASGY AAXRX AAZKR ABCUV ABPPZ ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEFZC AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFRAH AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB AVUZU AZFZN AZVAB BDRZF BENPR BMXJE BRXPI BSCLL CS3 DCZOG DPXWK DRFUL DRSTM DU5 EBS EJD F5P G-S GODZA HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P-X P2P P2W PYCSY Q2X R.K RNS ROL SUPJJ TN5 TWZ UPT WBKPD WH7 WIH WIN WXSBR WYJ XSW ZZTAW ~02 ~OA ~~A ACBEA AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M |
ID | FETCH-LOGICAL-a4761-db2cf3e9e1bc05e04be2ee99166523cc5afcfa349688d03742ab56c38135d0643 |
ISSN | 0094-8276 |
IngestDate | Thu Oct 10 20:55:01 EDT 2024 Thu Oct 10 20:56:11 EDT 2024 Thu Sep 12 16:27:32 EDT 2024 Sat Aug 24 01:02:40 EDT 2024 Wed Oct 30 09:50:45 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a4761-db2cf3e9e1bc05e04be2ee99166523cc5afcfa349688d03742ab56c38135d0643 |
Notes | istex:3EF59A4ABA977DCA739765359406EF1BEDA16087 ArticleID:GRL52241 ark:/67375/WNG-DPK2P8C6-P |
OpenAccessLink | https://agupubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/2014GL060991 |
PQID | 1650628496 |
PQPubID | 54723 |
PageCount | 9 |
ParticipantIDs | proquest_journals_1910959444 proquest_journals_1650628496 crossref_primary_10_1002_2014GL060991 wiley_primary_10_1002_2014GL060991_GRL52241 istex_primary_ark_67375_WNG_DPK2P8C6_P |
PublicationCentury | 2000 |
PublicationDate | 2014-10-28 28 October 2014 20141028 |
PublicationDateYYYYMMDD | 2014-10-28 |
PublicationDate_xml | – month: 10 year: 2014 text: 2014-10-28 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Geophysical research letters |
PublicationTitleAlternate | Geophys. Res. Lett |
PublicationYear | 2014 |
Publisher | Blackwell Publishing Ltd John Wiley & Sons, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley & Sons, Inc |
References | Adams, J. (1979), Wear of unsound pebbles in river headwaters, Science, 203(4376), 171-172, doi:10.1126/science.203.4376.171. Jerolmack, D. J., and T. A. Brzinski (2010), Equivalence of abrupt grain-size transitions in alluvial rivers and eolian sand seas: A hypothesis, Geology, 38(8), 719-722, doi:10.1130/G30922.1. Hooke, R. L. (1967), Processes on arid-region alluvial fans, J. Geol., 75(4), 438-460. Wilcock, P. R., and S. T. Kenworthy (2002), A two-fraction model for the transport of sand/gravel mixtures, Water Resour. Res., 38(10), 1194, doi:10.1029/2001WR000684. Wolman, M. G. (1954), A method of sampling coarse river-bed material, Eos Trans. AGU, 35, 951-956, doi:10.1029/TR035i006p00951. Stock, J. D., K. M. Schmidt, and D. M. Miller (2008), Controls on alluvial fan long-profiles, Geol. Soc. Am. Bull., 120(5-6), 619-640, doi:10.1130/B26208.1. Jerolmack, D. J., M. D. Reitz, and R. L. Martin (2011), Sorting out abrasion in a gypsum dune field, J. Geophys. Res., 116(F2), F02003, doi:10.1029/2010JF001821. Warrick, J. A., D. M. Rubin, P. Ruggiero, J. N. Harney, A. E. Draut, and D. Buscombe (2009), Cobble cam: Grain-size measurements of sand to boulder from digital photographs and autocorrelation analyses, Earth Surf. Processes Landforms, 34(13), 1811-1821, doi:10.1002/esp.1877. Rubin, D. M. (2004), A simple autocorrelation algorithm for determining grain size from digital images of sediment, J. Sediment. Res., 74(1), 160-165, doi:10.1306/052203740160. Parker, G., and Y. Cui (1998), The arrested gravel front: Stable gravel-sand transitions in rivers. Part 1: Simplified analytical solution, J. Hydraul. Res., 36(1), 75-100, doi:10.1080/00221689809498379. Sneed, E. D., and R. L. Folk (1958), Pebbles in the lower Colorado River, Texas a study in particle morphogenesis, J. Geol., 66, 114-150. Frings, R. M. (2011), Sedimentary characteristics of the gravel-sand transition in the River Rhine, J. Sediment. Res., 81(1), 52-63, doi:10.2110/jsr.2011.2. Wilcock, P., and J. Crowe (2003), Surface-based transport model for mixed-size sediment, J. Hydraul. Eng., 129(2), 120-128, doi:10.1061/(ASCE)0733-9429(2003)129:2(120). Parker, G., P. R. Wilcock, C. Paola, W. E. Dietrich, and J. Pitlick (2007), Physical basis for quasi-universal relations describing bankfull hydraulic geometry of single-thread gravel bed rivers, J. Geophys. Res., 112(F4), F04005, doi:10.1029/2006JF000549. Paola, C., G. Parker, R. Seal, S. K. Sinha, J. B. Southard, and P. R. Wilcock (1992), Downstream fining by selective deposition in a laboratory flume, Science, 258(5089), 1757-1760, doi:10.1126/science.258.5089.1757. Dade, W. B., and P. F. Friend (1998), Grain-size, sediment-transport regime, and channel slope in alluvial rivers, J. Geol., 106, 661-676, doi:10.1086/516052. Ferguson, R. I. (2003), Emergence of abrupt gravel to sand transitions along rivers through sorting processes, Geology, 31(2), 159-162, doi:10.1130/0091-7613(2003)031. Parker, G., and P. C. Klingeman (1982), On why gravel bed streams are paved, Water Resour. Res., 18(5), 1409-1423, doi:10.1029/WR018i005p01409. Paola, C., and R. Seal (1995), Grain size patchiness as a cause of selective deposition and downstream fining, Water Resour. Res., 31(5), 1395-1407, doi:10.1029/94WR02975. Sternberg, H. (1875), Untersuchungen über längen-und Querprofil geschiebeführender Flüsse, Z. Bauwesen, 25, 483-506. Mueller, E. R., J. Pitlick, and J. M. Nelson (2005), Variation in the reference Shields stress for bed load transport in gravel-bed streams and rivers, Water Resour. Res., 41(4), W04006, doi:10.1029/2004WR003692. Knighton, A. D. (1999), The gravel-sand transition in a disturbed catchment, Geomorphology, 27(3-4), 325-341, doi:10.1016/S0169-555X(98)00078-6. Blair, T. C., and J. G. McPherson (1994), Alluvial fans and their natural distinction from rivers based on morphology, hydraulic processes, sedimentary processes, and facies assemblages, J. Sediment. Res., 64(3A), 450-489, doi:10.1306/D4267DDE-2B26-11D7-8648000102C1865D. Reitz, M. D., and D. J. Jerolmack (2012), Experimental alluvial fan evolution: Channel dynamics, slope controls, and shoreline growth, J. Geophys. Res., 117(F2), F02021, doi:10.1029/2011JF002261. Fedele, J. J., and C. Paola (2007), Similarity solutions for fluvial sediment fining by selective deposition, J. Geophys. Res., 112(F2), F02038, doi:10.1029/2005JF000409. Parker, G., C. Paola, K. Whipple, and D. Mohrig (1998), Alluvial fans formed by channelized fluvial and sheet flow. I: Theory, J. Hydraul. Eng., 124(10), 985-995, doi:10.1061/(ASCE)0733-9429(1998)124:10(985). Domokos, G., D. J. Jerolmack, A. Sipos, and À. Török (2014), How river rocks round: Resolving the shape-size paradox, PLoS ONE, 9(2), E88657, doi:10.1371/journal.pone.0088657. Rice, S. (1999), The nature and controls on downstream fining within sedimentary links, J. Sediment. Res., 69(1), 32-39, doi:10.2110/jsr.69.32. Wiberg, P. L., and J. D. Smith (1987), A theoretical model for saltating grains in water, J. Geophys. Res., 7341-7354(C4), doi:10.1029/JC090iC04p07341. Herrick, C. L. (1900), The geology of the white sands of New Mexico, J. Geol., 8(2), 112-128. Parker, G. (1978), Self-formed straight rivers with equilibrium banks and mobile bed. Part 2. The gravel river, J. Fluid Mech., 89(1), 127-146, doi:10.1017/S0022112078002505. Pizzuto, J. E. (1995), Downstream fining in a network of gravel-bedded rivers, Water Resour. Res., 31(3), 753-759, doi:10.1029/94WR02532. Smith, G. H. S., and R. I. Ferguson (1995), The gravel-sand transition along river channels, J. Sediment. Res., 65(2A), 423-430, doi:10.1306/D42680E0-2B26-11D7-8648000102C1865D. 2011; 116 1995; 31 2002; 38 1979; 203 2010; 38 1982; 18 2011; 81 1999; 27 1999; 69 2005; 41 1875; 25 2008; 120 2003; 31 1994; 64 2009; 34 2007; 112 2004; 74 2003; 129 1967; 75 1978; 89 1954; 35 1958; 66 1992; 258 1995; 65 1998; 106 1987; 7341–7354 2014; 9 1998; 124 1900; 8 2012; 117 1998; 36 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_15_1 e_1_2_8_16_1 Sternberg H. (e_1_2_8_28_1) 1875; 25 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 41 issue: 4 year: 2005 article-title: Variation in the reference Shields stress for bed load transport in gravel‐bed streams and rivers publication-title: Water Resour. Res. – volume: 112 issue: F4 year: 2007 article-title: Physical basis for quasi‐universal relations describing bankfull hydraulic geometry of single‐thread gravel bed rivers publication-title: J. Geophys. Res. – volume: 74 start-page: 160 issue: 1 year: 2004 end-page: 165 article-title: A simple autocorrelation algorithm for determining grain size from digital images of sediment publication-title: J. Sediment. Res. – volume: 112 issue: F2 year: 2007 article-title: Similarity solutions for fluvial sediment fining by selective deposition publication-title: J. Geophys. Res. – volume: 31 start-page: 753 issue: 3 year: 1995 end-page: 759 article-title: Downstream fining in a network of gravel‐bedded rivers publication-title: Water Resour. Res. – volume: 35 start-page: 951 year: 1954 end-page: 956 article-title: A method of sampling coarse river‐bed material publication-title: Eos Trans. AGU – volume: 106 start-page: 661 year: 1998 end-page: 676 article-title: Grain‐size, sediment‐transport regime, and channel slope in alluvial rivers publication-title: J. Geol. – volume: 116 issue: F2 year: 2011 article-title: Sorting out abrasion in a gypsum dune field publication-title: J. Geophys. Res. – volume: 117 issue: F2 year: 2012 article-title: Experimental alluvial fan evolution: Channel dynamics, slope controls, and shoreline growth publication-title: J. Geophys. Res. – volume: 65 start-page: 423 issue: 2A year: 1995 end-page: 430 article-title: The gravel‐sand transition along river channels publication-title: J. Sediment. Res. – volume: 124 start-page: 985 issue: 10 year: 1998 end-page: 995 article-title: Alluvial fans formed by channelized fluvial and sheet flow. I: Theory publication-title: J. Hydraul. Eng. – volume: 75 start-page: 438 issue: 4 year: 1967 end-page: 460 article-title: Processes on arid‐region alluvial fans publication-title: J. Geol. – volume: 27 start-page: 325 issue: 3‐4 year: 1999 end-page: 341 article-title: The gravel‐sand transition in a disturbed catchment publication-title: Geomorphology – volume: 129 start-page: 120 issue: 2 year: 2003 end-page: 128 article-title: Surface‐based transport model for mixed‐size sediment publication-title: J. Hydraul. Eng. – volume: 31 start-page: 159 issue: 2 year: 2003 end-page: 162 article-title: Emergence of abrupt gravel to sand transitions along rivers through sorting processes publication-title: Geology – volume: 18 start-page: 1409 issue: 5 year: 1982 end-page: 1423 article-title: On why gravel bed streams are paved publication-title: Water Resour. Res. – volume: 9 issue: 2 year: 2014 article-title: How river rocks round: Resolving the shape‐size paradox publication-title: PLoS ONE – volume: 25 start-page: 483 year: 1875 end-page: 506 article-title: Untersuchungen über längen‐und Querprofil geschiebeführender Flüsse publication-title: Z. Bauwesen – volume: 31 start-page: 1395 issue: 5 year: 1995 end-page: 1407 article-title: Grain size patchiness as a cause of selective deposition and downstream fining publication-title: Water Resour. Res. – volume: 38 start-page: 719 issue: 8 year: 2010 end-page: 722 article-title: Equivalence of abrupt grain‐size transitions in alluvial rivers and eolian sand seas: A hypothesis publication-title: Geology – volume: 69 start-page: 32 issue: 1 year: 1999 end-page: 39 article-title: The nature and controls on downstream fining within sedimentary links publication-title: J. Sediment. Res. – volume: 258 start-page: 1757 issue: 5089 year: 1992 end-page: 1760 article-title: Downstream fining by selective deposition in a laboratory flume publication-title: Science – volume: 89 start-page: 127 issue: 1 year: 1978 end-page: 146 article-title: Self‐formed straight rivers with equilibrium banks and mobile bed. Part 2. The gravel river publication-title: J. Fluid Mech. – volume: 120 start-page: 619 issue: 5–6 year: 2008 end-page: 640 article-title: Controls on alluvial fan long‐profiles publication-title: Geol. Soc. Am. Bull. – volume: 81 start-page: 52 issue: 1 year: 2011 end-page: 63 article-title: Sedimentary characteristics of the gravel‐sand transition in the River Rhine publication-title: J. Sediment. Res. – volume: 8 start-page: 112 issue: 2 year: 1900 end-page: 128 article-title: The geology of the white sands of New Mexico publication-title: J. Geol. – volume: 203 start-page: 171 issue: 4376 year: 1979 end-page: 172 article-title: Wear of unsound pebbles in river headwaters publication-title: Science – volume: 36 start-page: 75 issue: 1 year: 1998 end-page: 100 article-title: The arrested gravel front: Stable gravel‐sand transitions in rivers. Part 1: Simplified analytical solution publication-title: J. Hydraul. Res. – volume: 64 start-page: 450 issue: 3A year: 1994 end-page: 489 article-title: Alluvial fans and their natural distinction from rivers based on morphology, hydraulic processes, sedimentary processes, and facies assemblages publication-title: J. Sediment. Res. – volume: 7341–7354 issue: C4 year: 1987 article-title: A theoretical model for saltating grains in water publication-title: J. Geophys. Res. – volume: 38 start-page: 1194 issue: 10 year: 2002 article-title: A two‐fraction model for the transport of sand/gravel mixtures publication-title: Water Resour. Res. – volume: 34 start-page: 1811 issue: 13 year: 2009 end-page: 1821 article-title: Cobble cam: Grain‐size measurements of sand to boulder from digital photographs and autocorrelation analyses publication-title: Earth Surf. Processes Landforms – volume: 66 start-page: 114 year: 1958 end-page: 150 article-title: Pebbles in the lower Colorado River, Texas a study in particle morphogenesis publication-title: J. Geol. – ident: e_1_2_8_34_1 doi: 10.1029/TR035i006p00951 – ident: e_1_2_8_3_1 doi: 10.1306/D4267DDE‐2B26‐11D7‐8648000102C1865D – ident: e_1_2_8_25_1 doi: 10.1306/052203740160 – ident: e_1_2_8_13_1 doi: 10.1016/S0169‐555X(98)00078‐6 – ident: e_1_2_8_9_1 doi: 10.1086/620780 – ident: e_1_2_8_20_1 doi: 10.1061/(ASCE)0733‐9429(1998)124:10(985) – ident: e_1_2_8_23_1 doi: 10.1029/2011JF002261 – ident: e_1_2_8_29_1 doi: 10.1130/B26208.1 – ident: e_1_2_8_30_1 doi: 10.1002/esp.1877 – ident: e_1_2_8_12_1 doi: 10.1029/2010JF001821 – ident: e_1_2_8_10_1 doi: 10.1086/627271 – ident: e_1_2_8_19_1 doi: 10.1029/WR018i005p01409 – ident: e_1_2_8_8_1 doi: 10.2110/jsr.2011.2 – ident: e_1_2_8_11_1 doi: 10.1130/G30922.1 – ident: e_1_2_8_24_1 doi: 10.2110/jsr.69.32 – ident: e_1_2_8_16_1 doi: 10.1126/science.258.5089.1757 – ident: e_1_2_8_5_1 doi: 10.1371/journal.pone.0088657 – ident: e_1_2_8_27_1 doi: 10.1086/626490 – ident: e_1_2_8_26_1 doi: 10.1306/D42680E0‐2B26‐11D7‐8648000102C1865D – ident: e_1_2_8_18_1 doi: 10.1080/00221689809498379 – ident: e_1_2_8_31_1 doi: 10.1029/JC090iC04p07341 – ident: e_1_2_8_2_1 doi: 10.1126/science.203.4376.171 – ident: e_1_2_8_7_1 doi: 10.1130/0091‐7613(2003)031 – ident: e_1_2_8_17_1 doi: 10.1017/S0022112078002505 – ident: e_1_2_8_6_1 doi: 10.1029/2005JF000409 – ident: e_1_2_8_21_1 doi: 10.1029/2006JF000549 – ident: e_1_2_8_15_1 doi: 10.1029/94WR02975 – ident: e_1_2_8_33_1 doi: 10.1029/2001WR000684 – ident: e_1_2_8_22_1 doi: 10.1029/94WR02532 – ident: e_1_2_8_4_1 doi: 10.1086/516052 – ident: e_1_2_8_32_1 doi: 10.1061/(ASCE)0733‐9429(2003)129:2(120) – volume: 25 start-page: 483 year: 1875 ident: e_1_2_8_28_1 article-title: Untersuchungen über längen‐und Querprofil geschiebeführender Flüsse publication-title: Z. Bauwesen contributor: fullname: Sternberg H. – ident: e_1_2_8_14_1 doi: 10.1029/2004WR003692 |
SSID | ssj0003031 |
Score | 2.3062065 |
Snippet | Alluvial rivers often exhibit self‐similar gravel size distributions and abrupt gravel‐sand transitions. Experiments suggest that these sorting patterns are... Abstract Alluvial rivers often exhibit self‐similar gravel size distributions and abrupt gravel‐sand transitions. Experiments suggest that these sorting... Alluvial rivers often exhibit self-similar gravel size distributions and abrupt gravel-sand transitions. Experiments suggest that these sorting patterns are... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Publisher |
StartPage | 7191 |
SubjectTerms | Alluvial channels alluvial fan Alluvial fans Alluvial rivers Boundary conditions Canyons Channels Collapse Convergence Deep-sea fans Distance Downstream effects downstream fining equal mobility Gravel gravel-sand transition Mobility Movement Particle size Particle size distribution Rivers Sand Sedimentation & deposition selective transport Self-similarity Size distribution sorting |
Title | Generalized sorting profile of alluvial fans |
URI | https://api.istex.fr/ark:/67375/WNG-DPK2P8C6-P/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2014GL060991 https://www.proquest.com/docview/1650628496 https://www.proquest.com/docview/1910959444 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKKiReEJ-ibKA8AC8lkLixkzxWG2tpu6qCFSZerMSxtULWTl0LbH89d7GTZuo0AS9R5CSWdXc5_-58H4S8wsO_IIgTN_RC6QZUKjfuJNrNZJpxzbKYavR3HI15fxoMTthJozGoRS2tV-k7eXVjXsn_cBXGgK-YJfsPnK0mhQG4B_7CFTgM17_isa0ZPbtS6PxerkxmedGEuzjfz_P1T_SI68T65L6X3y3OS_7Yaj-n7bxI7Kkg9iZJcDjDpiH5JRbY-DXbZI6pWdELtn2E7T7RnVsFDw_UcpGfJUbTWohuz5-sg8EPUDPbhO1C-W9H8GyFaWJ8ohvR0Ba1Nqo0DmDMMz1tS11rilxZmaJeTXOGvunataXSTYlYXFhv5HEAtP5m6yqP6_vdz2JycChGH8fDO6RJQemAtmt2v0y_Tat9GTZr0z_RrtWmQcD87-uzXwMoTfzXfl-zPuo2TAFCjh-Q-9Z6cLpGFB6Shpo_Ind7RXfmS7gr4nnlxWPytiYajhUNx4qGs9BOKRoOisYTMj38cLzfd21jDDcJQu67WUql7qhY-an0mPKCVFGlEOlzRjtSskRLnWArgCjKsMAQTVLGJYCzDssQgz4lO_PFXD0jDqOp0l7AMzQs8YhaSU_7XhbxxOOZZi3yuqSGODf1T4SpdE1FnWot8qYgVfVSsvyBMYMhE1_HPXEwGdJJtM_FpEX2SloK-ytdCB_sBA5AKeY3PwZMGzOQp6BF2gX5b12L6H0aMYSmz2-fbJfc28j7HtlZLdfqBUDMVfrSys4fgbl2mg |
link.rule.ids | 315,783,787,27936,27937,50826,50935 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB6kRfQiPrFaNQf1osF0u7tJjsVHq9ZSpNXiZdnsQ0Rpxaqov96dJK0tiOAtkE0IszvzfbOz-QZgF4t_lMbSD4NQ-ZQo48dVaX2tEs0t0zGxuN9x1eKNLr3osV7e5xT_hcn0IcYbbugZabxGB8cN6aMf1VAHXbTeDLjjOC79KTIs6RWgWLvp3nXHwdhF6KxpXkz9iIQ8P_vu3nA0-fwUKhXRwB9TlHOSuKbIc7YICzll9GrZHC_BjOkvw2w9bcn76a7SQ5xquAKHuYb0w5fR3nCA-gD3Xt6U2xtYTz49vb279eZZh0-r0D077Rw3_Lwbgi9pyCu-ToiyVRObSqICZgKaGGIM0jvukkmlmLTKStR_jyKNqjJEJowrh8hVppF4rEGhP-ibdfAYSYx1ibHGbALrkkYFthLoiMuAa8tKsDeyhnjORC9EJm9MxKTVSrCfmmo8SL484kGxkInbVl2ctC9JOzrmol2C8siWIveRoag4csgdOsb899uOyMQsppSW4CA1_5_fIurXTYZ8ZONfo3dgrtG5aormeetyE-ZxDCITicpQeH15M1uOcrwm2_my-gaAH8lz |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwEA7iUHwRf-J0ah_UFy12WZK2j0PdpptjiFPxJaT5IeLYxKmof713bTc3EMG3QtNSLnf3fZek3xGyh5t_jMXKD4NQ-4xq68cV5XyjEyMcNzF1uN5x2RaNLru443f5ghv-C5PpQ4wX3DAy0nyNAf5s3PGPaCggF6u3AgEUB6qfAhANCh5eqN5077vjXAwJOuuZFzM_oqHIj77DG44nn58CpQLa92OKcU7y1hR4aktkMWeMXjWb4mUyY_srZK6eduT9hKv0DKcerpKjXEL68csabzhAeYAHL-_J7Q2cp3q9t3dwN88BPK2Rbu3s-qTh580QfMVCUfZNQrWr2NiWEx1wG7DEUmuR3QmoJbXmymmnUP49igyKylCVcKEBkCvcIO9YJ7P9Qd9uEI_TxDqoiw0WE7gtaXXgyoGJhAqEcbxI9kfWkM-Z5oXM1I2pnLRakRykphoPUi9PeE4s5PK2XZennSbtRCdCdoqkNLKlzENkKMvADQWAYyx-vw08JuYxY6xIDlPz__ktsn7V4khHNv81epfMd05rsnXebm6RBRyCuESjEpl9fXmz20A4XpOd3Ku-AWKtyJw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalized+sorting+profile+of+alluvial+fans&rft.jtitle=Geophysical+research+letters&rft.au=Miller%2C+Kimberly+Litwin&rft.au=Reitz%2C+Meredith+D&rft.au=Jerolmack%2C+Douglas+J&rft.date=2014-10-28&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=41&rft.issue=20&rft.spage=7191&rft_id=info:doi/10.1002%2F2014GL060991&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon |