Generalized sorting profile of alluvial fans

Alluvial rivers often exhibit self‐similar gravel size distributions and abrupt gravel‐sand transitions. Experiments suggest that these sorting patterns are established rapidly, but how—and how fast—this convergence occurs in the field is unknown. We examine the establishment of downstream sorting p...

Full description

Saved in:
Bibliographic Details
Published inGeophysical research letters Vol. 41; no. 20; pp. 7191 - 7199
Main Authors Miller, Kimberly Litwin, Reitz, Meredith D., Jerolmack, Douglas J.
Format Journal Article
LanguageEnglish
Published Washington Blackwell Publishing Ltd 28.10.2014
John Wiley & Sons, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Alluvial rivers often exhibit self‐similar gravel size distributions and abrupt gravel‐sand transitions. Experiments suggest that these sorting patterns are established rapidly, but how—and how fast—this convergence occurs in the field is unknown. We examine the establishment of downstream sorting patterns in a kilometer‐scale alluvial fan. The sharp transition from canyon to unconfined, channelized fan provides a well‐defined boundary condition. The channel changes from deep and entrenched at the fan apex to shallow and depositional over a short distance, exhibiting nonequilibrium behavior. The resulting gravel‐fining profile is not self‐similar; the particle size distribution narrows until approximate equal mobility is achieved. Downfan, the gravel‐sand transition appears to exhibit a self‐similar form; field and laboratory data collapse when downstream distance is normalized by the location of the transition. Results suggest a generalized sorting profile for alluvial fans as a consequence of the threshold of motion and nonequilibrium channels. Key Points Gravel sorting is limited by equal mobility of the grain size distributionThe gravel‐sand transition exhibit a self‐similar formTransient dynamics control channel geometry on fan
AbstractList Alluvial rivers often exhibit self‐similar gravel size distributions and abrupt gravel‐sand transitions. Experiments suggest that these sorting patterns are established rapidly, but how—and how fast—this convergence occurs in the field is unknown. We examine the establishment of downstream sorting patterns in a kilometer‐scale alluvial fan. The sharp transition from canyon to unconfined, channelized fan provides a well‐defined boundary condition. The channel changes from deep and entrenched at the fan apex to shallow and depositional over a short distance, exhibiting nonequilibrium behavior. The resulting gravel‐fining profile is not self‐similar; the particle size distribution narrows until approximate equal mobility is achieved. Downfan, the gravel‐sand transition appears to exhibit a self‐similar form; field and laboratory data collapse when downstream distance is normalized by the location of the transition. Results suggest a generalized sorting profile for alluvial fans as a consequence of the threshold of motion and nonequilibrium channels. Key Points Gravel sorting is limited by equal mobility of the grain size distributionThe gravel‐sand transition exhibit a self‐similar formTransient dynamics control channel geometry on fan
Alluvial rivers often exhibit self-similar gravel size distributions and abrupt gravel-sand transitions. Experiments suggest that these sorting patterns are established rapidly, but how--and how fast--this convergence occurs in the field is unknown. We examine the establishment of downstream sorting patterns in a kilometer-scale alluvial fan. The sharp transition from canyon to unconfined, channelized fan provides a well-defined boundary condition. The channel changes from deep and entrenched at the fan apex to shallow and depositional over a short distance, exhibiting nonequilibrium behavior. The resulting gravel-fining profile is not self-similar; the particle size distribution narrows until approximate equal mobility is achieved. Downfan, the gravel-sand transition appears to exhibit a self-similar form; field and laboratory data collapse when downstream distance is normalized by the location of the transition. Results suggest a generalized sorting profile for alluvial fans as a consequence of the threshold of motion and nonequilibrium channels.
Abstract Alluvial rivers often exhibit self‐similar gravel size distributions and abrupt gravel‐sand transitions. Experiments suggest that these sorting patterns are established rapidly, but how—and how fast—this convergence occurs in the field is unknown. We examine the establishment of downstream sorting patterns in a kilometer‐scale alluvial fan. The sharp transition from canyon to unconfined, channelized fan provides a well‐defined boundary condition. The channel changes from deep and entrenched at the fan apex to shallow and depositional over a short distance, exhibiting nonequilibrium behavior. The resulting gravel‐fining profile is not self‐similar; the particle size distribution narrows until approximate equal mobility is achieved. Downfan, the gravel‐sand transition appears to exhibit a self‐similar form; field and laboratory data collapse when downstream distance is normalized by the location of the transition. Results suggest a generalized sorting profile for alluvial fans as a consequence of the threshold of motion and nonequilibrium channels. Key Points Gravel sorting is limited by equal mobility of the grain size distribution The gravel‐sand transition exhibit a self‐similar form Transient dynamics control channel geometry on fan
Author Jerolmack, Douglas J.
Reitz, Meredith D.
Miller, Kimberly Litwin
Author_xml – sequence: 1
  givenname: Kimberly Litwin
  surname: Miller
  fullname: Miller, Kimberly Litwin
  email: klitwin@sas.upenn.edu
  organization: Department of Earth and Environmental Science, University of Pennsylvania, Pennsylvania, Philadelphia, USA
– sequence: 2
  givenname: Meredith D.
  surname: Reitz
  fullname: Reitz, Meredith D.
  organization: Lamont Doherty Earth Observatory, Columbia University, New York, Palisades, USA
– sequence: 3
  givenname: Douglas J.
  surname: Jerolmack
  fullname: Jerolmack, Douglas J.
  organization: Department of Earth and Environmental Science, University of Pennsylvania, Pennsylvania, Philadelphia, USA
BookMark eNp9kM1OwzAQhC1UJNrCjQeIxLWB9W_iIyoQEBFUCMTRchIbpYSk2ClQnh5XQYhTT7uHb3ZmZ4JGbdcahI4xnGIAckYAsywHAVLiPTTGkrE4BUhGaAwgw04ScYAm3i8BgALFYzTLTGucbupvU0W-c33dvkQr19m6MVFnI900649aN5HVrT9E-1Y33hz9zil6urp8nF_H-X12Mz_PY80SgeOqIKWlRhpclMANsMIQY0ImITihZcm1La2mTIo0rYAmjOiCi5KmmPIKBKNTdDLcDUHe18b3atmtXRssFZYYJA-P7aYEB0HS4BCo2UCVrvPeGatWrn7TbqMwqG1r6n9rAScD_hkK2OxkVfaQc0LYVhQPotr35utPpN2rEglNuHq-y9TF4pYs0rlQC_oDgep7uA
CitedBy_id crossref_primary_10_1002_esp_3872
crossref_primary_10_1016_j_icarus_2021_114831
crossref_primary_10_5194_se_11_2359_2020
crossref_primary_10_3389_feart_2020_00215
crossref_primary_10_1038_ncomms9366
crossref_primary_10_1016_j_jconhyd_2020_103676
crossref_primary_10_1103_PhysRevE_98_012907
crossref_primary_10_1126_sciadv_aao4946
crossref_primary_10_1016_j_earscirev_2021_103838
crossref_primary_10_1038_s42254_019_0111_x
crossref_primary_10_1111_sed_13173
crossref_primary_10_3389_feart_2023_1112772
crossref_primary_10_1016_j_quascirev_2021_107339
crossref_primary_10_1029_2018JF004622
crossref_primary_10_1007_s10346_021_01700_x
crossref_primary_10_1029_2017JF004501
crossref_primary_10_5194_esurf_5_239_2017
crossref_primary_10_1016_j_catena_2019_01_016
crossref_primary_10_1002_2017GL074231
crossref_primary_10_1016_j_geomorph_2016_03_026
Cites_doi 10.1029/TR035i006p00951
10.1306/D4267DDE‐2B26‐11D7‐8648000102C1865D
10.1306/052203740160
10.1016/S0169‐555X(98)00078‐6
10.1086/620780
10.1061/(ASCE)0733‐9429(1998)124:10(985)
10.1029/2011JF002261
10.1130/B26208.1
10.1002/esp.1877
10.1029/2010JF001821
10.1086/627271
10.1029/WR018i005p01409
10.2110/jsr.2011.2
10.1130/G30922.1
10.2110/jsr.69.32
10.1126/science.258.5089.1757
10.1371/journal.pone.0088657
10.1086/626490
10.1306/D42680E0‐2B26‐11D7‐8648000102C1865D
10.1080/00221689809498379
10.1029/JC090iC04p07341
10.1126/science.203.4376.171
10.1130/0091‐7613(2003)031
10.1017/S0022112078002505
10.1029/2005JF000409
10.1029/2006JF000549
10.1029/94WR02975
10.1029/2001WR000684
10.1029/94WR02532
10.1086/516052
10.1061/(ASCE)0733‐9429(2003)129:2(120)
10.1029/2004WR003692
ContentType Journal Article
Copyright 2014. American Geophysical Union. All Rights Reserved.
Copyright_xml – notice: 2014. American Geophysical Union. All Rights Reserved.
DBID BSCLL
AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
DOI 10.1002/2014GL060991
DatabaseName Istex
CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList
Aerospace Database
CrossRef
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
EISSN 1944-8007
EndPage 7199
ExternalDocumentID 3577609371
10_1002_2014GL060991
GRL52241
ark_67375_WNG_DPK2P8C6_P
Genre article
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
33P
50Y
5GY
5VS
702
8-1
8R4
8R5
A00
AAESR
AAHHS
AAIHA
AASGY
AAXRX
AAZKR
ABCUV
ABPPZ
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEFZC
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFRAH
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
AVUZU
AZFZN
AZVAB
BDRZF
BENPR
BMXJE
BRXPI
BSCLL
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
EBS
EJD
F5P
G-S
GODZA
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
PYCSY
Q2X
R.K
RNS
ROL
SUPJJ
TN5
TWZ
UPT
WBKPD
WH7
WIH
WIN
WXSBR
WYJ
XSW
ZZTAW
~02
~OA
~~A
ACBEA
AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
ID FETCH-LOGICAL-a4761-db2cf3e9e1bc05e04be2ee99166523cc5afcfa349688d03742ab56c38135d0643
ISSN 0094-8276
IngestDate Thu Oct 10 20:55:01 EDT 2024
Thu Oct 10 20:56:11 EDT 2024
Thu Sep 12 16:27:32 EDT 2024
Sat Aug 24 01:02:40 EDT 2024
Wed Oct 30 09:50:45 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a4761-db2cf3e9e1bc05e04be2ee99166523cc5afcfa349688d03742ab56c38135d0643
Notes istex:3EF59A4ABA977DCA739765359406EF1BEDA16087
ArticleID:GRL52241
ark:/67375/WNG-DPK2P8C6-P
OpenAccessLink https://agupubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/2014GL060991
PQID 1650628496
PQPubID 54723
PageCount 9
ParticipantIDs proquest_journals_1910959444
proquest_journals_1650628496
crossref_primary_10_1002_2014GL060991
wiley_primary_10_1002_2014GL060991_GRL52241
istex_primary_ark_67375_WNG_DPK2P8C6_P
PublicationCentury 2000
PublicationDate 2014-10-28
28 October 2014
20141028
PublicationDateYYYYMMDD 2014-10-28
PublicationDate_xml – month: 10
  year: 2014
  text: 2014-10-28
  day: 28
PublicationDecade 2010
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Geophysical research letters
PublicationTitleAlternate Geophys. Res. Lett
PublicationYear 2014
Publisher Blackwell Publishing Ltd
John Wiley & Sons, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley & Sons, Inc
References Adams, J. (1979), Wear of unsound pebbles in river headwaters, Science, 203(4376), 171-172, doi:10.1126/science.203.4376.171.
Jerolmack, D. J., and T. A. Brzinski (2010), Equivalence of abrupt grain-size transitions in alluvial rivers and eolian sand seas: A hypothesis, Geology, 38(8), 719-722, doi:10.1130/G30922.1.
Hooke, R. L. (1967), Processes on arid-region alluvial fans, J. Geol., 75(4), 438-460.
Wilcock, P. R., and S. T. Kenworthy (2002), A two-fraction model for the transport of sand/gravel mixtures, Water Resour. Res., 38(10), 1194, doi:10.1029/2001WR000684.
Wolman, M. G. (1954), A method of sampling coarse river-bed material, Eos Trans. AGU, 35, 951-956, doi:10.1029/TR035i006p00951.
Stock, J. D., K. M. Schmidt, and D. M. Miller (2008), Controls on alluvial fan long-profiles, Geol. Soc. Am. Bull., 120(5-6), 619-640, doi:10.1130/B26208.1.
Jerolmack, D. J., M. D. Reitz, and R. L. Martin (2011), Sorting out abrasion in a gypsum dune field, J. Geophys. Res., 116(F2), F02003, doi:10.1029/2010JF001821.
Warrick, J. A., D. M. Rubin, P. Ruggiero, J. N. Harney, A. E. Draut, and D. Buscombe (2009), Cobble cam: Grain-size measurements of sand to boulder from digital photographs and autocorrelation analyses, Earth Surf. Processes Landforms, 34(13), 1811-1821, doi:10.1002/esp.1877.
Rubin, D. M. (2004), A simple autocorrelation algorithm for determining grain size from digital images of sediment, J. Sediment. Res., 74(1), 160-165, doi:10.1306/052203740160.
Parker, G., and Y. Cui (1998), The arrested gravel front: Stable gravel-sand transitions in rivers. Part 1: Simplified analytical solution, J. Hydraul. Res., 36(1), 75-100, doi:10.1080/00221689809498379.
Sneed, E. D., and R. L. Folk (1958), Pebbles in the lower Colorado River, Texas a study in particle morphogenesis, J. Geol., 66, 114-150.
Frings, R. M. (2011), Sedimentary characteristics of the gravel-sand transition in the River Rhine, J. Sediment. Res., 81(1), 52-63, doi:10.2110/jsr.2011.2.
Wilcock, P., and J. Crowe (2003), Surface-based transport model for mixed-size sediment, J. Hydraul. Eng., 129(2), 120-128, doi:10.1061/(ASCE)0733-9429(2003)129:2(120).
Parker, G., P. R. Wilcock, C. Paola, W. E. Dietrich, and J. Pitlick (2007), Physical basis for quasi-universal relations describing bankfull hydraulic geometry of single-thread gravel bed rivers, J. Geophys. Res., 112(F4), F04005, doi:10.1029/2006JF000549.
Paola, C., G. Parker, R. Seal, S. K. Sinha, J. B. Southard, and P. R. Wilcock (1992), Downstream fining by selective deposition in a laboratory flume, Science, 258(5089), 1757-1760, doi:10.1126/science.258.5089.1757.
Dade, W. B., and P. F. Friend (1998), Grain-size, sediment-transport regime, and channel slope in alluvial rivers, J. Geol., 106, 661-676, doi:10.1086/516052.
Ferguson, R. I. (2003), Emergence of abrupt gravel to sand transitions along rivers through sorting processes, Geology, 31(2), 159-162, doi:10.1130/0091-7613(2003)031.
Parker, G., and P. C. Klingeman (1982), On why gravel bed streams are paved, Water Resour. Res., 18(5), 1409-1423, doi:10.1029/WR018i005p01409.
Paola, C., and R. Seal (1995), Grain size patchiness as a cause of selective deposition and downstream fining, Water Resour. Res., 31(5), 1395-1407, doi:10.1029/94WR02975.
Sternberg, H. (1875), Untersuchungen über längen-und Querprofil geschiebeführender Flüsse, Z. Bauwesen, 25, 483-506.
Mueller, E. R., J. Pitlick, and J. M. Nelson (2005), Variation in the reference Shields stress for bed load transport in gravel-bed streams and rivers, Water Resour. Res., 41(4), W04006, doi:10.1029/2004WR003692.
Knighton, A. D. (1999), The gravel-sand transition in a disturbed catchment, Geomorphology, 27(3-4), 325-341, doi:10.1016/S0169-555X(98)00078-6.
Blair, T. C., and J. G. McPherson (1994), Alluvial fans and their natural distinction from rivers based on morphology, hydraulic processes, sedimentary processes, and facies assemblages, J. Sediment. Res., 64(3A), 450-489, doi:10.1306/D4267DDE-2B26-11D7-8648000102C1865D.
Reitz, M. D., and D. J. Jerolmack (2012), Experimental alluvial fan evolution: Channel dynamics, slope controls, and shoreline growth, J. Geophys. Res., 117(F2), F02021, doi:10.1029/2011JF002261.
Fedele, J. J., and C. Paola (2007), Similarity solutions for fluvial sediment fining by selective deposition, J. Geophys. Res., 112(F2), F02038, doi:10.1029/2005JF000409.
Parker, G., C. Paola, K. Whipple, and D. Mohrig (1998), Alluvial fans formed by channelized fluvial and sheet flow. I: Theory, J. Hydraul. Eng., 124(10), 985-995, doi:10.1061/(ASCE)0733-9429(1998)124:10(985).
Domokos, G., D. J. Jerolmack, A. Sipos, and À. Török (2014), How river rocks round: Resolving the shape-size paradox, PLoS ONE, 9(2), E88657, doi:10.1371/journal.pone.0088657.
Rice, S. (1999), The nature and controls on downstream fining within sedimentary links, J. Sediment. Res., 69(1), 32-39, doi:10.2110/jsr.69.32.
Wiberg, P. L., and J. D. Smith (1987), A theoretical model for saltating grains in water, J. Geophys. Res., 7341-7354(C4), doi:10.1029/JC090iC04p07341.
Herrick, C. L. (1900), The geology of the white sands of New Mexico, J. Geol., 8(2), 112-128.
Parker, G. (1978), Self-formed straight rivers with equilibrium banks and mobile bed. Part 2. The gravel river, J. Fluid Mech., 89(1), 127-146, doi:10.1017/S0022112078002505.
Pizzuto, J. E. (1995), Downstream fining in a network of gravel-bedded rivers, Water Resour. Res., 31(3), 753-759, doi:10.1029/94WR02532.
Smith, G. H. S., and R. I. Ferguson (1995), The gravel-sand transition along river channels, J. Sediment. Res., 65(2A), 423-430, doi:10.1306/D42680E0-2B26-11D7-8648000102C1865D.
2011; 116
1995; 31
2002; 38
1979; 203
2010; 38
1982; 18
2011; 81
1999; 27
1999; 69
2005; 41
1875; 25
2008; 120
2003; 31
1994; 64
2009; 34
2007; 112
2004; 74
2003; 129
1967; 75
1978; 89
1954; 35
1958; 66
1992; 258
1995; 65
1998; 106
1987; 7341–7354
2014; 9
1998; 124
1900; 8
2012; 117
1998; 36
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_16_1
Sternberg H. (e_1_2_8_28_1) 1875; 25
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 41
  issue: 4
  year: 2005
  article-title: Variation in the reference Shields stress for bed load transport in gravel‐bed streams and rivers
  publication-title: Water Resour. Res.
– volume: 112
  issue: F4
  year: 2007
  article-title: Physical basis for quasi‐universal relations describing bankfull hydraulic geometry of single‐thread gravel bed rivers
  publication-title: J. Geophys. Res.
– volume: 74
  start-page: 160
  issue: 1
  year: 2004
  end-page: 165
  article-title: A simple autocorrelation algorithm for determining grain size from digital images of sediment
  publication-title: J. Sediment. Res.
– volume: 112
  issue: F2
  year: 2007
  article-title: Similarity solutions for fluvial sediment fining by selective deposition
  publication-title: J. Geophys. Res.
– volume: 31
  start-page: 753
  issue: 3
  year: 1995
  end-page: 759
  article-title: Downstream fining in a network of gravel‐bedded rivers
  publication-title: Water Resour. Res.
– volume: 35
  start-page: 951
  year: 1954
  end-page: 956
  article-title: A method of sampling coarse river‐bed material
  publication-title: Eos Trans. AGU
– volume: 106
  start-page: 661
  year: 1998
  end-page: 676
  article-title: Grain‐size, sediment‐transport regime, and channel slope in alluvial rivers
  publication-title: J. Geol.
– volume: 116
  issue: F2
  year: 2011
  article-title: Sorting out abrasion in a gypsum dune field
  publication-title: J. Geophys. Res.
– volume: 117
  issue: F2
  year: 2012
  article-title: Experimental alluvial fan evolution: Channel dynamics, slope controls, and shoreline growth
  publication-title: J. Geophys. Res.
– volume: 65
  start-page: 423
  issue: 2A
  year: 1995
  end-page: 430
  article-title: The gravel‐sand transition along river channels
  publication-title: J. Sediment. Res.
– volume: 124
  start-page: 985
  issue: 10
  year: 1998
  end-page: 995
  article-title: Alluvial fans formed by channelized fluvial and sheet flow. I: Theory
  publication-title: J. Hydraul. Eng.
– volume: 75
  start-page: 438
  issue: 4
  year: 1967
  end-page: 460
  article-title: Processes on arid‐region alluvial fans
  publication-title: J. Geol.
– volume: 27
  start-page: 325
  issue: 3‐4
  year: 1999
  end-page: 341
  article-title: The gravel‐sand transition in a disturbed catchment
  publication-title: Geomorphology
– volume: 129
  start-page: 120
  issue: 2
  year: 2003
  end-page: 128
  article-title: Surface‐based transport model for mixed‐size sediment
  publication-title: J. Hydraul. Eng.
– volume: 31
  start-page: 159
  issue: 2
  year: 2003
  end-page: 162
  article-title: Emergence of abrupt gravel to sand transitions along rivers through sorting processes
  publication-title: Geology
– volume: 18
  start-page: 1409
  issue: 5
  year: 1982
  end-page: 1423
  article-title: On why gravel bed streams are paved
  publication-title: Water Resour. Res.
– volume: 9
  issue: 2
  year: 2014
  article-title: How river rocks round: Resolving the shape‐size paradox
  publication-title: PLoS ONE
– volume: 25
  start-page: 483
  year: 1875
  end-page: 506
  article-title: Untersuchungen über längen‐und Querprofil geschiebeführender Flüsse
  publication-title: Z. Bauwesen
– volume: 31
  start-page: 1395
  issue: 5
  year: 1995
  end-page: 1407
  article-title: Grain size patchiness as a cause of selective deposition and downstream fining
  publication-title: Water Resour. Res.
– volume: 38
  start-page: 719
  issue: 8
  year: 2010
  end-page: 722
  article-title: Equivalence of abrupt grain‐size transitions in alluvial rivers and eolian sand seas: A hypothesis
  publication-title: Geology
– volume: 69
  start-page: 32
  issue: 1
  year: 1999
  end-page: 39
  article-title: The nature and controls on downstream fining within sedimentary links
  publication-title: J. Sediment. Res.
– volume: 258
  start-page: 1757
  issue: 5089
  year: 1992
  end-page: 1760
  article-title: Downstream fining by selective deposition in a laboratory flume
  publication-title: Science
– volume: 89
  start-page: 127
  issue: 1
  year: 1978
  end-page: 146
  article-title: Self‐formed straight rivers with equilibrium banks and mobile bed. Part 2. The gravel river
  publication-title: J. Fluid Mech.
– volume: 120
  start-page: 619
  issue: 5–6
  year: 2008
  end-page: 640
  article-title: Controls on alluvial fan long‐profiles
  publication-title: Geol. Soc. Am. Bull.
– volume: 81
  start-page: 52
  issue: 1
  year: 2011
  end-page: 63
  article-title: Sedimentary characteristics of the gravel‐sand transition in the River Rhine
  publication-title: J. Sediment. Res.
– volume: 8
  start-page: 112
  issue: 2
  year: 1900
  end-page: 128
  article-title: The geology of the white sands of New Mexico
  publication-title: J. Geol.
– volume: 203
  start-page: 171
  issue: 4376
  year: 1979
  end-page: 172
  article-title: Wear of unsound pebbles in river headwaters
  publication-title: Science
– volume: 36
  start-page: 75
  issue: 1
  year: 1998
  end-page: 100
  article-title: The arrested gravel front: Stable gravel‐sand transitions in rivers. Part 1: Simplified analytical solution
  publication-title: J. Hydraul. Res.
– volume: 64
  start-page: 450
  issue: 3A
  year: 1994
  end-page: 489
  article-title: Alluvial fans and their natural distinction from rivers based on morphology, hydraulic processes, sedimentary processes, and facies assemblages
  publication-title: J. Sediment. Res.
– volume: 7341–7354
  issue: C4
  year: 1987
  article-title: A theoretical model for saltating grains in water
  publication-title: J. Geophys. Res.
– volume: 38
  start-page: 1194
  issue: 10
  year: 2002
  article-title: A two‐fraction model for the transport of sand/gravel mixtures
  publication-title: Water Resour. Res.
– volume: 34
  start-page: 1811
  issue: 13
  year: 2009
  end-page: 1821
  article-title: Cobble cam: Grain‐size measurements of sand to boulder from digital photographs and autocorrelation analyses
  publication-title: Earth Surf. Processes Landforms
– volume: 66
  start-page: 114
  year: 1958
  end-page: 150
  article-title: Pebbles in the lower Colorado River, Texas a study in particle morphogenesis
  publication-title: J. Geol.
– ident: e_1_2_8_34_1
  doi: 10.1029/TR035i006p00951
– ident: e_1_2_8_3_1
  doi: 10.1306/D4267DDE‐2B26‐11D7‐8648000102C1865D
– ident: e_1_2_8_25_1
  doi: 10.1306/052203740160
– ident: e_1_2_8_13_1
  doi: 10.1016/S0169‐555X(98)00078‐6
– ident: e_1_2_8_9_1
  doi: 10.1086/620780
– ident: e_1_2_8_20_1
  doi: 10.1061/(ASCE)0733‐9429(1998)124:10(985)
– ident: e_1_2_8_23_1
  doi: 10.1029/2011JF002261
– ident: e_1_2_8_29_1
  doi: 10.1130/B26208.1
– ident: e_1_2_8_30_1
  doi: 10.1002/esp.1877
– ident: e_1_2_8_12_1
  doi: 10.1029/2010JF001821
– ident: e_1_2_8_10_1
  doi: 10.1086/627271
– ident: e_1_2_8_19_1
  doi: 10.1029/WR018i005p01409
– ident: e_1_2_8_8_1
  doi: 10.2110/jsr.2011.2
– ident: e_1_2_8_11_1
  doi: 10.1130/G30922.1
– ident: e_1_2_8_24_1
  doi: 10.2110/jsr.69.32
– ident: e_1_2_8_16_1
  doi: 10.1126/science.258.5089.1757
– ident: e_1_2_8_5_1
  doi: 10.1371/journal.pone.0088657
– ident: e_1_2_8_27_1
  doi: 10.1086/626490
– ident: e_1_2_8_26_1
  doi: 10.1306/D42680E0‐2B26‐11D7‐8648000102C1865D
– ident: e_1_2_8_18_1
  doi: 10.1080/00221689809498379
– ident: e_1_2_8_31_1
  doi: 10.1029/JC090iC04p07341
– ident: e_1_2_8_2_1
  doi: 10.1126/science.203.4376.171
– ident: e_1_2_8_7_1
  doi: 10.1130/0091‐7613(2003)031
– ident: e_1_2_8_17_1
  doi: 10.1017/S0022112078002505
– ident: e_1_2_8_6_1
  doi: 10.1029/2005JF000409
– ident: e_1_2_8_21_1
  doi: 10.1029/2006JF000549
– ident: e_1_2_8_15_1
  doi: 10.1029/94WR02975
– ident: e_1_2_8_33_1
  doi: 10.1029/2001WR000684
– ident: e_1_2_8_22_1
  doi: 10.1029/94WR02532
– ident: e_1_2_8_4_1
  doi: 10.1086/516052
– ident: e_1_2_8_32_1
  doi: 10.1061/(ASCE)0733‐9429(2003)129:2(120)
– volume: 25
  start-page: 483
  year: 1875
  ident: e_1_2_8_28_1
  article-title: Untersuchungen über längen‐und Querprofil geschiebeführender Flüsse
  publication-title: Z. Bauwesen
  contributor:
    fullname: Sternberg H.
– ident: e_1_2_8_14_1
  doi: 10.1029/2004WR003692
SSID ssj0003031
Score 2.3062065
Snippet Alluvial rivers often exhibit self‐similar gravel size distributions and abrupt gravel‐sand transitions. Experiments suggest that these sorting patterns are...
Abstract Alluvial rivers often exhibit self‐similar gravel size distributions and abrupt gravel‐sand transitions. Experiments suggest that these sorting...
Alluvial rivers often exhibit self-similar gravel size distributions and abrupt gravel-sand transitions. Experiments suggest that these sorting patterns are...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Publisher
StartPage 7191
SubjectTerms Alluvial channels
alluvial fan
Alluvial fans
Alluvial rivers
Boundary conditions
Canyons
Channels
Collapse
Convergence
Deep-sea fans
Distance
Downstream effects
downstream fining
equal mobility
Gravel
gravel-sand transition
Mobility
Movement
Particle size
Particle size distribution
Rivers
Sand
Sedimentation & deposition
selective transport
Self-similarity
Size distribution
sorting
Title Generalized sorting profile of alluvial fans
URI https://api.istex.fr/ark:/67375/WNG-DPK2P8C6-P/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2014GL060991
https://www.proquest.com/docview/1650628496
https://www.proquest.com/docview/1910959444
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKKiReEJ-ibKA8AC8lkLixkzxWG2tpu6qCFSZerMSxtULWTl0LbH89d7GTZuo0AS9R5CSWdXc5_-58H4S8wsO_IIgTN_RC6QZUKjfuJNrNZJpxzbKYavR3HI15fxoMTthJozGoRS2tV-k7eXVjXsn_cBXGgK-YJfsPnK0mhQG4B_7CFTgM17_isa0ZPbtS6PxerkxmedGEuzjfz_P1T_SI68T65L6X3y3OS_7Yaj-n7bxI7Kkg9iZJcDjDpiH5JRbY-DXbZI6pWdELtn2E7T7RnVsFDw_UcpGfJUbTWohuz5-sg8EPUDPbhO1C-W9H8GyFaWJ8ohvR0Ba1Nqo0DmDMMz1tS11rilxZmaJeTXOGvunataXSTYlYXFhv5HEAtP5m6yqP6_vdz2JycChGH8fDO6RJQemAtmt2v0y_Tat9GTZr0z_RrtWmQcD87-uzXwMoTfzXfl-zPuo2TAFCjh-Q-9Z6cLpGFB6Shpo_Ind7RXfmS7gr4nnlxWPytiYajhUNx4qGs9BOKRoOisYTMj38cLzfd21jDDcJQu67WUql7qhY-an0mPKCVFGlEOlzRjtSskRLnWArgCjKsMAQTVLGJYCzDssQgz4lO_PFXD0jDqOp0l7AMzQs8YhaSU_7XhbxxOOZZi3yuqSGODf1T4SpdE1FnWot8qYgVfVSsvyBMYMhE1_HPXEwGdJJtM_FpEX2SloK-ytdCB_sBA5AKeY3PwZMGzOQp6BF2gX5b12L6H0aMYSmz2-fbJfc28j7HtlZLdfqBUDMVfrSys4fgbl2mg
link.rule.ids 315,783,787,27936,27937,50826,50935
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB6kRfQiPrFaNQf1osF0u7tJjsVHq9ZSpNXiZdnsQ0Rpxaqov96dJK0tiOAtkE0IszvzfbOz-QZgF4t_lMbSD4NQ-ZQo48dVaX2tEs0t0zGxuN9x1eKNLr3osV7e5xT_hcn0IcYbbugZabxGB8cN6aMf1VAHXbTeDLjjOC79KTIs6RWgWLvp3nXHwdhF6KxpXkz9iIQ8P_vu3nA0-fwUKhXRwB9TlHOSuKbIc7YICzll9GrZHC_BjOkvw2w9bcn76a7SQ5xquAKHuYb0w5fR3nCA-gD3Xt6U2xtYTz49vb279eZZh0-r0D077Rw3_Lwbgi9pyCu-ToiyVRObSqICZgKaGGIM0jvukkmlmLTKStR_jyKNqjJEJowrh8hVppF4rEGhP-ibdfAYSYx1ibHGbALrkkYFthLoiMuAa8tKsDeyhnjORC9EJm9MxKTVSrCfmmo8SL484kGxkInbVl2ctC9JOzrmol2C8siWIveRoag4csgdOsb899uOyMQsppSW4CA1_5_fIurXTYZ8ZONfo3dgrtG5aormeetyE-ZxDCITicpQeH15M1uOcrwm2_my-gaAH8lz
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwEA7iUHwRf-J0ah_UFy12WZK2j0PdpptjiFPxJaT5IeLYxKmof713bTc3EMG3QtNSLnf3fZek3xGyh5t_jMXKD4NQ-4xq68cV5XyjEyMcNzF1uN5x2RaNLru443f5ghv-C5PpQ4wX3DAy0nyNAf5s3PGPaCggF6u3AgEUB6qfAhANCh5eqN5077vjXAwJOuuZFzM_oqHIj77DG44nn58CpQLa92OKcU7y1hR4aktkMWeMXjWb4mUyY_srZK6eduT9hKv0DKcerpKjXEL68csabzhAeYAHL-_J7Q2cp3q9t3dwN88BPK2Rbu3s-qTh580QfMVCUfZNQrWr2NiWEx1wG7DEUmuR3QmoJbXmymmnUP49igyKylCVcKEBkCvcIO9YJ7P9Qd9uEI_TxDqoiw0WE7gtaXXgyoGJhAqEcbxI9kfWkM-Z5oXM1I2pnLRakRykphoPUi9PeE4s5PK2XZennSbtRCdCdoqkNLKlzENkKMvADQWAYyx-vw08JuYxY6xIDlPz__ktsn7V4khHNv81epfMd05rsnXebm6RBRyCuESjEpl9fXmz20A4XpOd3Ku-AWKtyJw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalized+sorting+profile+of+alluvial+fans&rft.jtitle=Geophysical+research+letters&rft.au=Miller%2C+Kimberly+Litwin&rft.au=Reitz%2C+Meredith+D&rft.au=Jerolmack%2C+Douglas+J&rft.date=2014-10-28&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=41&rft.issue=20&rft.spage=7191&rft_id=info:doi/10.1002%2F2014GL060991&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon