Three-Dimensional DNA Nanomachine Biosensor by Integrating DNA Walker and Rolling Machine Cascade Amplification for Ultrasensitive Detection of Cancer-Related Gene
Stochastic DNA walkers capable of traversing on three-dimensional (3D) tracks have received great deal of attention. However, DNA walker-based biosensors exhibit limited amplification efficiency because of their slow walking kinetics and low processivity. Herein, by taking advantage of the high proc...
Saved in:
Published in | Analytical chemistry (Washington) Vol. 92; no. 16; pp. 11111 - 11118 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
18.08.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Stochastic DNA walkers capable of traversing on three-dimensional (3D) tracks have received great deal of attention. However, DNA walker-based biosensors exhibit limited amplification efficiency because of their slow walking kinetics and low processivity. Herein, by taking advantage of the high processivity of a DNA rolling machine, a sensitive ratiometric DNA nanomachine biosensor is designed. The biosensor is constructed with hairpin-loaded Au nanoparticles (NPs) (hpDNA@AuNPs) as a DNA walker and AgNCs-decorated magnetic NPs (AgNCs@MNPs) as a DNA rolling machine. In the presence of target DNA, exonuclease III (Exo III)-powered DNA walker is activated to accomplish first-stage amplification via a burnt-bridge mechanism, generating a great deal of toehold-loaded AuNPs (Toehold@AuNPs) to hybridize with magnetic nanoparticles loaded with silver-nanoclusters-labeled DNA (AgNCs@MNPs) with the assistance of Exo III. These trigger rapid rolling of AuNPs on the AgNCs@MNPs surface and release free AgNCs, converting the biological signal into a mass spectrometric signal ratio (107Ag/197Au) with detection by ICP-MS. A linear range of 0.5–500 fmol L–1 is achieved with a detection limit of 119 amol L–1 for the p53 gene. The practical applicability of the biosensor has been demonstrated in the accurate assay of the p53 gene in the human blood. |
---|---|
AbstractList | Stochastic DNA walkers capable of traversing on three-dimensional (3D) tracks have received great deal of attention. However, DNA walker-based biosensors exhibit limited amplification efficiency because of their slow walking kinetics and low processivity. Herein, by taking advantage of the high processivity of a DNA rolling machine, a sensitive ratiometric DNA nanomachine biosensor is designed. The biosensor is constructed with hairpin-loaded Au nanoparticles (NPs) (hpDNA@AuNPs) as a DNA walker and AgNCs-decorated magnetic NPs (AgNCs@MNPs) as a DNA rolling machine. In the presence of target DNA, exonuclease III (Exo III)-powered DNA walker is activated to accomplish first-stage amplification via a burnt-bridge mechanism, generating a great deal of toehold-loaded AuNPs (Toehold@AuNPs) to hybridize with magnetic nanoparticles loaded with silver-nanoclusters-labeled DNA (AgNCs@MNPs) with the assistance of Exo III. These trigger rapid rolling of AuNPs on the AgNCs@MNPs surface and release free AgNCs, converting the biological signal into a mass spectrometric signal ratio (107Ag/197Au) with detection by ICP-MS. A linear range of 0.5-500 fmol L-1 is achieved with a detection limit of 119 amol L-1 for the p53 gene. The practical applicability of the biosensor has been demonstrated in the accurate assay of the p53 gene in the human blood.Stochastic DNA walkers capable of traversing on three-dimensional (3D) tracks have received great deal of attention. However, DNA walker-based biosensors exhibit limited amplification efficiency because of their slow walking kinetics and low processivity. Herein, by taking advantage of the high processivity of a DNA rolling machine, a sensitive ratiometric DNA nanomachine biosensor is designed. The biosensor is constructed with hairpin-loaded Au nanoparticles (NPs) (hpDNA@AuNPs) as a DNA walker and AgNCs-decorated magnetic NPs (AgNCs@MNPs) as a DNA rolling machine. In the presence of target DNA, exonuclease III (Exo III)-powered DNA walker is activated to accomplish first-stage amplification via a burnt-bridge mechanism, generating a great deal of toehold-loaded AuNPs (Toehold@AuNPs) to hybridize with magnetic nanoparticles loaded with silver-nanoclusters-labeled DNA (AgNCs@MNPs) with the assistance of Exo III. These trigger rapid rolling of AuNPs on the AgNCs@MNPs surface and release free AgNCs, converting the biological signal into a mass spectrometric signal ratio (107Ag/197Au) with detection by ICP-MS. A linear range of 0.5-500 fmol L-1 is achieved with a detection limit of 119 amol L-1 for the p53 gene. The practical applicability of the biosensor has been demonstrated in the accurate assay of the p53 gene in the human blood. Stochastic DNA walkers capable of traversing on three-dimensional (3D) tracks have received great deal of attention. However, DNA walker-based biosensors exhibit limited amplification efficiency because of their slow walking kinetics and low processivity. Herein, by taking advantage of the high processivity of a DNA rolling machine, a sensitive ratiometric DNA nanomachine biosensor is designed. The biosensor is constructed with hairpin-loaded Au nanoparticles (NPs) (hpDNA@AuNPs) as a DNA walker and AgNCs-decorated magnetic NPs (AgNCs@MNPs) as a DNA rolling machine. In the presence of target DNA, exonuclease III (Exo III)-powered DNA walker is activated to accomplish first-stage amplification via a burnt-bridge mechanism, generating a great deal of toehold-loaded AuNPs (Toehold@AuNPs) to hybridize with magnetic nanoparticles loaded with silver-nanoclusters-labeled DNA (AgNCs@MNPs) with the assistance of Exo III. These trigger rapid rolling of AuNPs on the AgNCs@MNPs surface and release free AgNCs, converting the biological signal into a mass spectrometric signal ratio (107Ag/197Au) with detection by ICP-MS. A linear range of 0.5–500 fmol L–1 is achieved with a detection limit of 119 amol L–1 for the p53 gene. The practical applicability of the biosensor has been demonstrated in the accurate assay of the p53 gene in the human blood. Stochastic DNA walkers capable of traversing on three-dimensional (3D) tracks have received great deal of attention. However, DNA walker-based biosensors exhibit limited amplification efficiency because of their slow walking kinetics and low processivity. Herein, by taking advantage of the high processivity of a DNA rolling machine, a sensitive ratiometric DNA nanomachine biosensor is designed. The biosensor is constructed with hairpin-loaded Au nanoparticles (NPs) (hpDNA@AuNPs) as a DNA walker and AgNCs-decorated magnetic NPs (AgNCs@MNPs) as a DNA rolling machine. In the presence of target DNA, exonuclease III (Exo III)-powered DNA walker is activated to accomplish first-stage amplification via a burnt-bridge mechanism, generating a great deal of toehold-loaded AuNPs (Toehold@AuNPs) to hybridize with magnetic nanoparticles loaded with silver-nanoclusters-labeled DNA (AgNCs@MNPs) with the assistance of Exo III. These trigger rapid rolling of AuNPs on the AgNCs@MNPs surface and release free AgNCs, converting the biological signal into a mass spectrometric signal ratio ( Ag/ Au) with detection by ICP-MS. A linear range of 0.5-500 fmol L is achieved with a detection limit of 119 amol L for the gene. The practical applicability of the biosensor has been demonstrated in the accurate assay of the gene in the human blood. Stochastic DNA walkers capable of traversing on three-dimensional (3D) tracks have received great deal of attention. However, DNA walker-based biosensors exhibit limited amplification efficiency because of their slow walking kinetics and low processivity. Herein, by taking advantage of the high processivity of a DNA rolling machine, a sensitive ratiometric DNA nanomachine biosensor is designed. The biosensor is constructed with hairpin-loaded Au nanoparticles (NPs) (hpDNA@AuNPs) as a DNA walker and AgNCs-decorated magnetic NPs (AgNCs@MNPs) as a DNA rolling machine. In the presence of target DNA, exonuclease III (Exo III)-powered DNA walker is activated to accomplish first-stage amplification via a burnt-bridge mechanism, generating a great deal of toehold-loaded AuNPs (Toehold@AuNPs) to hybridize with magnetic nanoparticles loaded with silver-nanoclusters-labeled DNA (AgNCs@MNPs) with the assistance of Exo III. These trigger rapid rolling of AuNPs on the AgNCs@MNPs surface and release free AgNCs, converting the biological signal into a mass spectrometric signal ratio (¹⁰⁷Ag/¹⁹⁷Au) with detection by ICP-MS. A linear range of 0.5–500 fmol L–¹ is achieved with a detection limit of 119 amol L–¹ for the p53 gene. The practical applicability of the biosensor has been demonstrated in the accurate assay of the p53 gene in the human blood. |
Author | Wang, Jian-Hua Chen, Ming-Li Chen, Xu-Wei Yang, Ting Wang, Kun Wang, Yi-Ting Wu, Na |
AuthorAffiliation | Research Center for Analytical Sciences, Department of Chemistry, College of Sciences |
AuthorAffiliation_xml | – name: Research Center for Analytical Sciences, Department of Chemistry, College of Sciences |
Author_xml | – sequence: 1 givenname: Na surname: Wu fullname: Wu, Na – sequence: 2 givenname: Kun surname: Wang fullname: Wang, Kun – sequence: 3 givenname: Yi-Ting surname: Wang fullname: Wang, Yi-Ting – sequence: 4 givenname: Ming-Li orcidid: 0000-0001-8536-8864 surname: Chen fullname: Chen, Ming-Li – sequence: 5 givenname: Xu-Wei orcidid: 0000-0001-7189-5022 surname: Chen fullname: Chen, Xu-Wei – sequence: 6 givenname: Ting orcidid: 0000-0001-5517-5658 surname: Yang fullname: Yang, Ting email: yangting@mail.neu.edu.cn – sequence: 7 givenname: Jian-Hua orcidid: 0000-0003-2175-3610 surname: Wang fullname: Wang, Jian-Hua |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32646212$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks9uEzEQhy1URNPCGyBkiQuXDWOvs3G4hQRKpVKkqhVHy-udbVy8dmpvkPo8fdF684dDD_RkyfN9P9kzc0KOfPBIyHsGYwacfdYmjbXXzqywG4MBBlPxiozYhENRScmPyAgAyoJPAY7JSUp3AIwBq96Q45JXouKMj8jj9SoiFkvboU825Dy6vJzTS-1Dp83KeqRfbUi5GCKtH-i57_E26t762y34W7s_GKn2Db0Kzg3XP_feQiejG6Tzbu1sa02WgqdtzrlxfdRDpu3tX6RL7NFsi6HNljcYiyt0useGnqHHt-R1q13Cd_vzlNx8_3a9-FFc_Do7X8wvCi2mk75oG9aaBrAFbWT-aclQ1pK1gjGcVRJlW9flbMrKspk1IKUxrG40iEZqNpWGl6fk0y53HcP9BlOvOpsMOqc9hk1SfMIFL6Xg8mU0g1DlMc0y-vEZehc2MTd6oISspCglZOrDntrUHTZqHW2n44M6TCoDX3aAiSGliK0ytt-2NPfSOsVADWuh8lqow1qo_VpkWTyTD_kvaLDThuq_V_9XeQKgldD3 |
CitedBy_id | crossref_primary_10_1016_j_aca_2023_341057 crossref_primary_10_1021_acs_analchem_2c03834 crossref_primary_10_1021_acs_analchem_3c01702 crossref_primary_10_1039_D1AN02195H crossref_primary_10_1039_D4CC05639F crossref_primary_10_1021_acs_analchem_4c05563 crossref_primary_10_1021_acssensors_4c02251 crossref_primary_10_1021_acs_analchem_4c04396 crossref_primary_10_1016_j_snr_2021_100030 crossref_primary_10_1039_D2SC05890A crossref_primary_10_1002_adsr_202200062 crossref_primary_10_1007_s00604_022_05604_y crossref_primary_10_1021_acs_analchem_1c05290 crossref_primary_10_1007_s00216_022_04420_w crossref_primary_10_1016_j_snb_2025_137260 crossref_primary_10_1016_j_bios_2021_113169 crossref_primary_10_1007_s00216_023_05106_7 crossref_primary_10_1016_j_talo_2023_100210 crossref_primary_10_1021_acs_analchem_1c03598 crossref_primary_10_1039_D3CP04131J crossref_primary_10_1007_s41664_024_00297_z crossref_primary_10_1016_j_talanta_2023_125066 crossref_primary_10_1039_D1NR06271A crossref_primary_10_1016_j_snb_2022_132530 crossref_primary_10_1039_D0AN02226H crossref_primary_10_1021_acs_analchem_4c06560 crossref_primary_10_1021_acs_analchem_1c02668 crossref_primary_10_2116_bunsekikagaku_71_13 crossref_primary_10_1007_s44211_022_00243_y crossref_primary_10_1021_cbmi_3c00028 crossref_primary_10_1016_j_bioelechem_2022_108152 crossref_primary_10_1021_acssensors_3c01967 crossref_primary_10_1002_slct_202303952 crossref_primary_10_1016_j_isci_2023_106327 crossref_primary_10_1021_acs_analchem_2c00831 crossref_primary_10_1021_acs_analchem_2c04519 crossref_primary_10_1021_acs_analchem_0c04073 crossref_primary_10_1016_j_snb_2021_129813 crossref_primary_10_1039_D3CC02597G crossref_primary_10_1016_j_cej_2023_148161 crossref_primary_10_1038_s41467_024_50064_y crossref_primary_10_1016_j_snb_2022_132802 crossref_primary_10_1016_j_jelechem_2022_116057 crossref_primary_10_1002_adfm_202201069 crossref_primary_10_1016_j_snb_2023_133631 crossref_primary_10_1016_j_snb_2024_136962 crossref_primary_10_1016_j_bios_2024_116149 crossref_primary_10_1016_j_bios_2022_114001 crossref_primary_10_1016_j_aca_2022_340303 crossref_primary_10_1016_j_aca_2023_341112 crossref_primary_10_1016_j_snb_2021_130370 crossref_primary_10_1016_j_snb_2021_130172 crossref_primary_10_1021_acs_langmuir_2c00108 crossref_primary_10_1039_D2AN01676A crossref_primary_10_1016_j_bios_2022_114922 crossref_primary_10_1021_acs_analchem_2c00104 crossref_primary_10_1039_D1AN01642C crossref_primary_10_1039_D2NR00152G crossref_primary_10_1016_j_talanta_2022_123219 crossref_primary_10_1021_acs_analchem_2c00427 crossref_primary_10_1007_s00604_021_04875_1 crossref_primary_10_1039_D1AY01110C crossref_primary_10_1186_s12951_024_02535_z crossref_primary_10_1039_D1EN00645B crossref_primary_10_1016_j_foodchem_2024_141853 crossref_primary_10_1016_j_snb_2022_132876 crossref_primary_10_1016_j_talanta_2022_124191 crossref_primary_10_1002_smll_202302542 crossref_primary_10_1007_s12274_022_4794_4 crossref_primary_10_1016_j_snb_2023_133400 crossref_primary_10_1021_acsnano_1c06429 crossref_primary_10_1007_s41664_024_00337_8 crossref_primary_10_1016_j_aca_2022_340696 crossref_primary_10_1016_j_csbj_2023_09_005 crossref_primary_10_1016_j_aca_2023_341642 crossref_primary_10_1016_j_ccr_2023_215331 crossref_primary_10_1016_j_cej_2022_134681 crossref_primary_10_1016_j_microc_2024_112506 crossref_primary_10_1021_acs_analchem_2c03727 crossref_primary_10_1149_1945_7111_ac6a7f crossref_primary_10_1007_s00604_024_06208_4 crossref_primary_10_1021_acs_analchem_3c03840 crossref_primary_10_1016_j_snb_2021_129877 crossref_primary_10_1016_j_snb_2021_130426 crossref_primary_10_1016_j_microc_2024_110452 crossref_primary_10_1016_j_trac_2022_116911 crossref_primary_10_1021_acs_analchem_2c02004 crossref_primary_10_1016_j_aca_2021_338843 crossref_primary_10_1016_j_aca_2021_338523 crossref_primary_10_1016_j_cej_2025_161264 crossref_primary_10_1021_acs_langmuir_1c02834 crossref_primary_10_1016_j_aca_2021_339134 crossref_primary_10_1021_acssensors_5c00228 |
Cites_doi | 10.1016/j.bios.2019.03.015 10.1038/ncomms14378 10.1021/acs.analchem.9b00728 10.1039/C8SC02761G 10.1021/acs.analchem.7b00955 10.1038/s41565-018-0130-2 10.1038/nnano.2015.259 10.1038/351453a0 10.1016/j.bios.2019.111826 10.1016/0092-8674(95)90412-3 10.1016/j.bios.2018.01.054 10.1021/acs.analchem.7b00347 10.1002/adfm.201704092 10.1021/ac0613582 10.1007/s00604-019-3689-x 10.1021/ac504206n 10.1021/acs.analchem.8b03038 10.1039/C7CC02306E 10.1016/j.trac.2018.08.015 10.1039/C9NR03588E 10.1039/D0CC01619E 10.1016/j.trac.2019.115626 10.1002/anie.201611777 10.1021/acs.analchem.7b02073 10.1021/acsnano.5b07102 10.1016/j.snb.2018.04.109 10.1021/ac3012285 10.1021/acs.analchem.7b00418 10.1016/j.bios.2018.01.044 10.1021/acs.analchem.7b03529 10.1021/acs.analchem.8b04338 10.1039/C8NR05206A 10.1039/C5AY00679A |
ContentType | Journal Article |
Copyright | Copyright American Chemical Society Aug 18, 2020 |
Copyright_xml | – notice: Copyright American Chemical Society Aug 18, 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7X8 7S9 L.6 |
DOI | 10.1021/acs.analchem.0c01074 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Toxicology Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts AIDS and Cancer Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Toxicology Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1520-6882 |
EndPage | 11118 |
ExternalDocumentID | 32646212 10_1021_acs_analchem_0c01074 e42443188 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 02 1AW 23M 53T 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABOCM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACNCT ACPRK ACS AEESW AENEX AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 D0L DZ EBS ED ED~ F20 F5P GNL IH9 IHE JG JG~ K2 P2P PQEST PQQKQ ROL RXW TAE TN5 UHB UI2 UKR VF5 VG9 VQA W1F WH7 X X6Y XFK YZZ --- -DZ -~X .DC 4.4 53G 6J9 AAHBH AAYXX ABBLG ABHFT ABHMW ABJNI ABLBI ABQRX ACBEA ACGFO ACKOT ADHLV AGXLV AHGAQ CITATION CUPRZ GGK KZ1 LMP XSW ZCA ~02 CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a475t-fd1fcd0ef0ac811031e8b81f411e968e8fbb397133d9d088cc1bda04d8a178c23 |
IEDL.DBID | ACS |
ISSN | 0003-2700 1520-6882 |
IngestDate | Fri Jul 11 09:07:45 EDT 2025 Fri Jul 11 05:18:47 EDT 2025 Mon Jun 30 10:18:57 EDT 2025 Thu Apr 03 07:09:37 EDT 2025 Thu Apr 24 22:56:42 EDT 2025 Tue Jul 01 01:19:09 EDT 2025 Thu Aug 27 13:41:54 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a475t-fd1fcd0ef0ac811031e8b81f411e968e8fbb397133d9d088cc1bda04d8a178c23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8536-8864 0000-0001-5517-5658 0000-0003-2175-3610 0000-0001-7189-5022 |
PMID | 32646212 |
PQID | 2448684380 |
PQPubID | 45400 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2524238428 proquest_miscellaneous_2423060219 proquest_journals_2448684380 pubmed_primary_32646212 crossref_citationtrail_10_1021_acs_analchem_0c01074 crossref_primary_10_1021_acs_analchem_0c01074 acs_journals_10_1021_acs_analchem_0c01074 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-08-18 |
PublicationDateYYYYMMDD | 2020-08-18 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Analytical chemistry (Washington) |
PublicationTitleAlternate | Anal. Chem |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref28/cit28 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref7/cit7 |
References_xml | – ident: ref7/cit7 doi: 10.1016/j.bios.2019.03.015 – ident: ref6/cit6 doi: 10.1038/ncomms14378 – ident: ref13/cit13 doi: 10.1021/acs.analchem.9b00728 – ident: ref9/cit9 doi: 10.1039/C8SC02761G – ident: ref31/cit31 doi: 10.1021/acs.analchem.7b00955 – ident: ref14/cit14 doi: 10.1038/s41565-018-0130-2 – ident: ref19/cit19 doi: 10.1038/nnano.2015.259 – ident: ref33/cit33 doi: 10.1038/351453a0 – ident: ref12/cit12 doi: 10.1016/j.bios.2019.111826 – ident: ref32/cit32 doi: 10.1016/0092-8674(95)90412-3 – ident: ref26/cit26 doi: 10.1016/j.bios.2018.01.054 – ident: ref10/cit10 doi: 10.1021/acs.analchem.7b00347 – ident: ref21/cit21 doi: 10.1002/adfm.201704092 – ident: ref22/cit22 doi: 10.1021/ac0613582 – ident: ref11/cit11 doi: 10.1007/s00604-019-3689-x – ident: ref20/cit20 doi: 10.1021/ac504206n – ident: ref29/cit29 doi: 10.1021/acs.analchem.8b03038 – ident: ref5/cit5 doi: 10.1039/C7CC02306E – ident: ref1/cit1 doi: 10.1016/j.trac.2018.08.015 – ident: ref17/cit17 doi: 10.1039/C9NR03588E – ident: ref23/cit23 doi: 10.1039/D0CC01619E – ident: ref2/cit2 doi: 10.1016/j.trac.2019.115626 – ident: ref18/cit18 doi: 10.1002/anie.201611777 – ident: ref16/cit16 doi: 10.1021/acs.analchem.7b02073 – ident: ref8/cit8 doi: 10.1021/acsnano.5b07102 – ident: ref15/cit15 doi: 10.1016/j.snb.2018.04.109 – ident: ref25/cit25 doi: 10.1021/ac3012285 – ident: ref24/cit24 doi: 10.1021/acs.analchem.7b00418 – ident: ref27/cit27 doi: 10.1016/j.bios.2018.01.044 – ident: ref4/cit4 doi: 10.1021/acs.analchem.7b03529 – ident: ref3/cit3 doi: 10.1021/acs.analchem.8b04338 – ident: ref30/cit30 doi: 10.1039/C8NR05206A – ident: ref28/cit28 doi: 10.1039/C5AY00679A |
SSID | ssj0011016 |
Score | 2.601726 |
Snippet | Stochastic DNA walkers capable of traversing on three-dimensional (3D) tracks have received great deal of attention. However, DNA walker-based biosensors... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 11111 |
SubjectTerms | Amplification Analytical chemistry Biosensing Techniques - methods Biosensors blood Chemistry Deoxyribonucleic acid detection limit DNA DNA - blood DNA - chemistry DNA - genetics Exonuclease genes Genes, p53 Gold Gold - chemistry Humans Inverted Repeat Sequences Limit of Detection Magnetic Phenomena magnetism mass spectrometry Metal Nanoparticles - chemistry Nanoclusters nanogold Nanoparticles Nucleic Acid Amplification Techniques - methods Nucleic Acid Hybridization p53 Protein Silver Silver - chemistry Spectrometry Tumor Suppressor Protein p53 - genetics Walking |
Title | Three-Dimensional DNA Nanomachine Biosensor by Integrating DNA Walker and Rolling Machine Cascade Amplification for Ultrasensitive Detection of Cancer-Related Gene |
URI | http://dx.doi.org/10.1021/acs.analchem.0c01074 https://www.ncbi.nlm.nih.gov/pubmed/32646212 https://www.proquest.com/docview/2448684380 https://www.proquest.com/docview/2423060219 https://www.proquest.com/docview/2524238428 |
Volume | 92 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BOQAHHuW1UJCRuHDwEidexzkuu1QFqeVAV_QW2Y4jVd0mKMke4O_wR5lJnC0PlcI1mbEce2x_kxl_A_AKzaRUQmU8s5nnUtiE61hIrtKoUKkwaZrSbeTDI3Wwkh9OZicXjuLvEfxYvDGunRocVPyG82nkIsogvA43YoXrmKDQ4tM2akCe6FghjwKq41W5S1qhA8m1vx5Il6DM_rTZvwsfxzs7Q5LJ2XTT2an79ieF4z9-yD24E4Anmw-Wch-u-WoXbi7Gem-7cPsnasIH8P0YJ9nzJZH_D8QdbHk0Z7gZ1-d9_qVnb0_rFl_WDbNf2ftAO4HKveBnsz7zDTNVwQLvNzsMegvTUlI-m1Myexn-GTIEz2y17hpDbfYJTWzpuz5RrGJ1iVpong3vk_d8wYgu-yGs9t8dLw54KOjAjUxnHS8LUboi8mVknBZUYMJrq0UphfCZ0l6X1iI-Qre5yArc_pwTtjCRLLQRqXZx8gh2qrryT4ChV5k4mSZZpJ2UxmqpZ4hk0R90Ueakn8BrHO88LMg272Ptscjp4TgJeZiECSSjBeQuMKNTgY71FVp8q_VlYAa5Qn5vNK6LbiG40koT6_8EXm5f48RT2MZUvt6QDLmJ2Gz2F5kZSWn0JSfweDDcbacQoEuFCOXpfwzJM7gV048F4v7Ve7DTNRv_HNFXZ1_0S-4HCOorRA |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lc9MwEN4p5VA48CiPBgqIGS4clFqxbMvHkNBJocmFBHrzSLI8wzS1O7ZzgL_DH2XXsV1gpnR6tXY1srSWvvWuvgV4h2aShSKMeWxix6UwPlcjIXkYeWkYCR1FEd1Gni_C2Up-OgvOdiDo7sLgICrsqWqC-FfsAuKInmmcW3yVi6FnPUokvAN3EY-MyLDHky998IAc0q5QHsVVuxtz1_RC55Kt_j6XrgGbzaFz_BC-9sNtck3Oh5vaDO3Pf5gcb_0-j-BBC0PZeGs3j2HH5fuwN-mqv-3D_T-ICp_AryUuueNTKgWwpfFg08WY4dZcXDTZmI59-F5U2FiUzPxgJy0JBSo3gt_0-tyVTOcpa1nA2bzVm-iKUvTZmFLbs_YPIkMozVbrutTUZ5PexKaubtLGclZkqIXGWvImlc-ljMizn8Lq-ONyMuNteQeuZRTUPEtFZlPPZZ62SlC5CaeMEpkUwsWhciozBtESOtFpnOJmaK0wqfZkqrSIlB35z2A3L3J3AAx9TN_KyI89ZaXURkkVIK5F79B6sZVuAO9xvpP286ySJvI-Egk97BYhaRdhAH5nCIltedKpXMf6Bi3ea11ueUJukD_sbOxqWAi1VKioBsAA3vbNuPAUxNG5KzYkQ04jdhv_RyYgKYWe5QCeb-23HxTCdRkiXnlxiyl5A3uz5fw0OT1ZfH4J90b0y4FYgdUh7Nblxr1CXFab181X-BuupTOl |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagSDwOPAq0CwWMxIWDt_HGmzjHZZdVC3SFRFdUXCK_IqFukyrJHuDv8EeZ8TqhIJUKrvGM5dhj-5vM5BtCXoGZFAlPMpbpzDHBdczkiAuWpJFNUq7SNMW_kY8WycFSvDsZn1wo9QWDaKCnxgfxcVef2yIwDPB9fK5gfuF1zoaRiTCZ8Dq5gZE7NO7J9FMfQECntCuWh7HV7q-5S3rBu8k0v99NlwBOf_HM75Ev_ZB9vsnpcN3qofn-B5vjf73TfXI3wFE62djPA3LNldvk1rSrArdN7lwgLHxIfhzD0js2w5IAGzoPOltMKBzR1ZnPynT0zdeqgcaqpvobPQxkFKDsBT-r1amrqSotDWzg9CjoTVWDqfp0ginuRfiSSAFS0-WqrRX26dOc6My1Pn2spFUBWmC0NfMpfc5SJNF-RJbzt8fTAxbKPDAl0nHLCssLYyNXRMpIjmUnnNSSF4JzlyXSyUJrQE3gTNvMwqFoDNdWRcJKxVNpRvFjslVWpdslFHzN2Ig0ziJphFBaCjkGfAteookyI9yAvIb5zsM2bXIfgR_xHB92i5CHRRiQuDOG3AS-dCzbsbpCi_Va5xu-kCvk9zo7-zUsgFwykVgLYEBe9s2w8BjMUaWr1iiDziN0m_1FZoxSEjzMAdnZ2HA_KIDtIgHc8uQfpuQFuflxNs8_HC7ePyW3R_jlAcmB5R7Zauu1ewbwrNXP_Ub8CXQvNig |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three-Dimensional+DNA+Nanomachine+Biosensor+by+Integrating+DNA+Walker+and+Rolling+Machine+Cascade+Amplification+for+Ultrasensitive+Detection+of+Cancer-Related+Gene&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Wu%2C+Na&rft.au=Wang%2C+Kun&rft.au=Wang%2C+Yi-Ting&rft.au=Chen%2C+Ming-Li&rft.date=2020-08-18&rft.pub=American+Chemical+Society&rft.issn=0003-2700&rft.eissn=1520-6882&rft.volume=92&rft.issue=16&rft.spage=11111&rft.epage=11118&rft_id=info:doi/10.1021%2Facs.analchem.0c01074&rft.externalDocID=e42443188 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2700&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2700&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2700&client=summon |