Three-Dimensional DNA Nanomachine Biosensor by Integrating DNA Walker and Rolling Machine Cascade Amplification for Ultrasensitive Detection of Cancer-Related Gene

Stochastic DNA walkers capable of traversing on three-dimensional (3D) tracks have received great deal of attention. However, DNA walker-based biosensors exhibit limited amplification efficiency because of their slow walking kinetics and low processivity. Herein, by taking advantage of the high proc...

Full description

Saved in:
Bibliographic Details
Published inAnalytical chemistry (Washington) Vol. 92; no. 16; pp. 11111 - 11118
Main Authors Wu, Na, Wang, Kun, Wang, Yi-Ting, Chen, Ming-Li, Chen, Xu-Wei, Yang, Ting, Wang, Jian-Hua
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 18.08.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Stochastic DNA walkers capable of traversing on three-dimensional (3D) tracks have received great deal of attention. However, DNA walker-based biosensors exhibit limited amplification efficiency because of their slow walking kinetics and low processivity. Herein, by taking advantage of the high processivity of a DNA rolling machine, a sensitive ratiometric DNA nanomachine biosensor is designed. The biosensor is constructed with hairpin-loaded Au nanoparticles (NPs) (hpDNA@AuNPs) as a DNA walker and AgNCs-decorated magnetic NPs (AgNCs@MNPs) as a DNA rolling machine. In the presence of target DNA, exonuclease III (Exo III)-powered DNA walker is activated to accomplish first-stage amplification via a burnt-bridge mechanism, generating a great deal of toehold-loaded AuNPs (Toehold@AuNPs) to hybridize with magnetic nanoparticles loaded with silver-nanoclusters-labeled DNA (AgNCs@MNPs) with the assistance of Exo III. These trigger rapid rolling of AuNPs on the AgNCs@MNPs surface and release free AgNCs, converting the biological signal into a mass spectrometric signal ratio (107Ag/197Au) with detection by ICP-MS. A linear range of 0.5–500 fmol L–1 is achieved with a detection limit of 119 amol L–1 for the p53 gene. The practical applicability of the biosensor has been demonstrated in the accurate assay of the p53 gene in the human blood.
AbstractList Stochastic DNA walkers capable of traversing on three-dimensional (3D) tracks have received great deal of attention. However, DNA walker-based biosensors exhibit limited amplification efficiency because of their slow walking kinetics and low processivity. Herein, by taking advantage of the high processivity of a DNA rolling machine, a sensitive ratiometric DNA nanomachine biosensor is designed. The biosensor is constructed with hairpin-loaded Au nanoparticles (NPs) (hpDNA@AuNPs) as a DNA walker and AgNCs-decorated magnetic NPs (AgNCs@MNPs) as a DNA rolling machine. In the presence of target DNA, exonuclease III (Exo III)-powered DNA walker is activated to accomplish first-stage amplification via a burnt-bridge mechanism, generating a great deal of toehold-loaded AuNPs (Toehold@AuNPs) to hybridize with magnetic nanoparticles loaded with silver-nanoclusters-labeled DNA (AgNCs@MNPs) with the assistance of Exo III. These trigger rapid rolling of AuNPs on the AgNCs@MNPs surface and release free AgNCs, converting the biological signal into a mass spectrometric signal ratio (107Ag/197Au) with detection by ICP-MS. A linear range of 0.5-500 fmol L-1 is achieved with a detection limit of 119 amol L-1 for the p53 gene. The practical applicability of the biosensor has been demonstrated in the accurate assay of the p53 gene in the human blood.Stochastic DNA walkers capable of traversing on three-dimensional (3D) tracks have received great deal of attention. However, DNA walker-based biosensors exhibit limited amplification efficiency because of their slow walking kinetics and low processivity. Herein, by taking advantage of the high processivity of a DNA rolling machine, a sensitive ratiometric DNA nanomachine biosensor is designed. The biosensor is constructed with hairpin-loaded Au nanoparticles (NPs) (hpDNA@AuNPs) as a DNA walker and AgNCs-decorated magnetic NPs (AgNCs@MNPs) as a DNA rolling machine. In the presence of target DNA, exonuclease III (Exo III)-powered DNA walker is activated to accomplish first-stage amplification via a burnt-bridge mechanism, generating a great deal of toehold-loaded AuNPs (Toehold@AuNPs) to hybridize with magnetic nanoparticles loaded with silver-nanoclusters-labeled DNA (AgNCs@MNPs) with the assistance of Exo III. These trigger rapid rolling of AuNPs on the AgNCs@MNPs surface and release free AgNCs, converting the biological signal into a mass spectrometric signal ratio (107Ag/197Au) with detection by ICP-MS. A linear range of 0.5-500 fmol L-1 is achieved with a detection limit of 119 amol L-1 for the p53 gene. The practical applicability of the biosensor has been demonstrated in the accurate assay of the p53 gene in the human blood.
Stochastic DNA walkers capable of traversing on three-dimensional (3D) tracks have received great deal of attention. However, DNA walker-based biosensors exhibit limited amplification efficiency because of their slow walking kinetics and low processivity. Herein, by taking advantage of the high processivity of a DNA rolling machine, a sensitive ratiometric DNA nanomachine biosensor is designed. The biosensor is constructed with hairpin-loaded Au nanoparticles (NPs) (hpDNA@AuNPs) as a DNA walker and AgNCs-decorated magnetic NPs (AgNCs@MNPs) as a DNA rolling machine. In the presence of target DNA, exonuclease III (Exo III)-powered DNA walker is activated to accomplish first-stage amplification via a burnt-bridge mechanism, generating a great deal of toehold-loaded AuNPs (Toehold@AuNPs) to hybridize with magnetic nanoparticles loaded with silver-nanoclusters-labeled DNA (AgNCs@MNPs) with the assistance of Exo III. These trigger rapid rolling of AuNPs on the AgNCs@MNPs surface and release free AgNCs, converting the biological signal into a mass spectrometric signal ratio (107Ag/197Au) with detection by ICP-MS. A linear range of 0.5–500 fmol L–1 is achieved with a detection limit of 119 amol L–1 for the p53 gene. The practical applicability of the biosensor has been demonstrated in the accurate assay of the p53 gene in the human blood.
Stochastic DNA walkers capable of traversing on three-dimensional (3D) tracks have received great deal of attention. However, DNA walker-based biosensors exhibit limited amplification efficiency because of their slow walking kinetics and low processivity. Herein, by taking advantage of the high processivity of a DNA rolling machine, a sensitive ratiometric DNA nanomachine biosensor is designed. The biosensor is constructed with hairpin-loaded Au nanoparticles (NPs) (hpDNA@AuNPs) as a DNA walker and AgNCs-decorated magnetic NPs (AgNCs@MNPs) as a DNA rolling machine. In the presence of target DNA, exonuclease III (Exo III)-powered DNA walker is activated to accomplish first-stage amplification via a burnt-bridge mechanism, generating a great deal of toehold-loaded AuNPs (Toehold@AuNPs) to hybridize with magnetic nanoparticles loaded with silver-nanoclusters-labeled DNA (AgNCs@MNPs) with the assistance of Exo III. These trigger rapid rolling of AuNPs on the AgNCs@MNPs surface and release free AgNCs, converting the biological signal into a mass spectrometric signal ratio ( Ag/ Au) with detection by ICP-MS. A linear range of 0.5-500 fmol L is achieved with a detection limit of 119 amol L for the gene. The practical applicability of the biosensor has been demonstrated in the accurate assay of the gene in the human blood.
Stochastic DNA walkers capable of traversing on three-dimensional (3D) tracks have received great deal of attention. However, DNA walker-based biosensors exhibit limited amplification efficiency because of their slow walking kinetics and low processivity. Herein, by taking advantage of the high processivity of a DNA rolling machine, a sensitive ratiometric DNA nanomachine biosensor is designed. The biosensor is constructed with hairpin-loaded Au nanoparticles (NPs) (hpDNA@AuNPs) as a DNA walker and AgNCs-decorated magnetic NPs (AgNCs@MNPs) as a DNA rolling machine. In the presence of target DNA, exonuclease III (Exo III)-powered DNA walker is activated to accomplish first-stage amplification via a burnt-bridge mechanism, generating a great deal of toehold-loaded AuNPs (Toehold@AuNPs) to hybridize with magnetic nanoparticles loaded with silver-nanoclusters-labeled DNA (AgNCs@MNPs) with the assistance of Exo III. These trigger rapid rolling of AuNPs on the AgNCs@MNPs surface and release free AgNCs, converting the biological signal into a mass spectrometric signal ratio (¹⁰⁷Ag/¹⁹⁷Au) with detection by ICP-MS. A linear range of 0.5–500 fmol L–¹ is achieved with a detection limit of 119 amol L–¹ for the p53 gene. The practical applicability of the biosensor has been demonstrated in the accurate assay of the p53 gene in the human blood.
Author Wang, Jian-Hua
Chen, Ming-Li
Chen, Xu-Wei
Yang, Ting
Wang, Kun
Wang, Yi-Ting
Wu, Na
AuthorAffiliation Research Center for Analytical Sciences, Department of Chemistry, College of Sciences
AuthorAffiliation_xml – name: Research Center for Analytical Sciences, Department of Chemistry, College of Sciences
Author_xml – sequence: 1
  givenname: Na
  surname: Wu
  fullname: Wu, Na
– sequence: 2
  givenname: Kun
  surname: Wang
  fullname: Wang, Kun
– sequence: 3
  givenname: Yi-Ting
  surname: Wang
  fullname: Wang, Yi-Ting
– sequence: 4
  givenname: Ming-Li
  orcidid: 0000-0001-8536-8864
  surname: Chen
  fullname: Chen, Ming-Li
– sequence: 5
  givenname: Xu-Wei
  orcidid: 0000-0001-7189-5022
  surname: Chen
  fullname: Chen, Xu-Wei
– sequence: 6
  givenname: Ting
  orcidid: 0000-0001-5517-5658
  surname: Yang
  fullname: Yang, Ting
  email: yangting@mail.neu.edu.cn
– sequence: 7
  givenname: Jian-Hua
  orcidid: 0000-0003-2175-3610
  surname: Wang
  fullname: Wang, Jian-Hua
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32646212$$D View this record in MEDLINE/PubMed
BookMark eNqFks9uEzEQhy1URNPCGyBkiQuXDWOvs3G4hQRKpVKkqhVHy-udbVy8dmpvkPo8fdF684dDD_RkyfN9P9kzc0KOfPBIyHsGYwacfdYmjbXXzqywG4MBBlPxiozYhENRScmPyAgAyoJPAY7JSUp3AIwBq96Q45JXouKMj8jj9SoiFkvboU825Dy6vJzTS-1Dp83KeqRfbUi5GCKtH-i57_E26t762y34W7s_GKn2Db0Kzg3XP_feQiejG6Tzbu1sa02WgqdtzrlxfdRDpu3tX6RL7NFsi6HNljcYiyt0useGnqHHt-R1q13Cd_vzlNx8_3a9-FFc_Do7X8wvCi2mk75oG9aaBrAFbWT-aclQ1pK1gjGcVRJlW9flbMrKspk1IKUxrG40iEZqNpWGl6fk0y53HcP9BlOvOpsMOqc9hk1SfMIFL6Xg8mU0g1DlMc0y-vEZehc2MTd6oISspCglZOrDntrUHTZqHW2n44M6TCoDX3aAiSGliK0ytt-2NPfSOsVADWuh8lqow1qo_VpkWTyTD_kvaLDThuq_V_9XeQKgldD3
CitedBy_id crossref_primary_10_1016_j_aca_2023_341057
crossref_primary_10_1021_acs_analchem_2c03834
crossref_primary_10_1021_acs_analchem_3c01702
crossref_primary_10_1039_D1AN02195H
crossref_primary_10_1039_D4CC05639F
crossref_primary_10_1021_acs_analchem_4c05563
crossref_primary_10_1021_acssensors_4c02251
crossref_primary_10_1021_acs_analchem_4c04396
crossref_primary_10_1016_j_snr_2021_100030
crossref_primary_10_1039_D2SC05890A
crossref_primary_10_1002_adsr_202200062
crossref_primary_10_1007_s00604_022_05604_y
crossref_primary_10_1021_acs_analchem_1c05290
crossref_primary_10_1007_s00216_022_04420_w
crossref_primary_10_1016_j_snb_2025_137260
crossref_primary_10_1016_j_bios_2021_113169
crossref_primary_10_1007_s00216_023_05106_7
crossref_primary_10_1016_j_talo_2023_100210
crossref_primary_10_1021_acs_analchem_1c03598
crossref_primary_10_1039_D3CP04131J
crossref_primary_10_1007_s41664_024_00297_z
crossref_primary_10_1016_j_talanta_2023_125066
crossref_primary_10_1039_D1NR06271A
crossref_primary_10_1016_j_snb_2022_132530
crossref_primary_10_1039_D0AN02226H
crossref_primary_10_1021_acs_analchem_4c06560
crossref_primary_10_1021_acs_analchem_1c02668
crossref_primary_10_2116_bunsekikagaku_71_13
crossref_primary_10_1007_s44211_022_00243_y
crossref_primary_10_1021_cbmi_3c00028
crossref_primary_10_1016_j_bioelechem_2022_108152
crossref_primary_10_1021_acssensors_3c01967
crossref_primary_10_1002_slct_202303952
crossref_primary_10_1016_j_isci_2023_106327
crossref_primary_10_1021_acs_analchem_2c00831
crossref_primary_10_1021_acs_analchem_2c04519
crossref_primary_10_1021_acs_analchem_0c04073
crossref_primary_10_1016_j_snb_2021_129813
crossref_primary_10_1039_D3CC02597G
crossref_primary_10_1016_j_cej_2023_148161
crossref_primary_10_1038_s41467_024_50064_y
crossref_primary_10_1016_j_snb_2022_132802
crossref_primary_10_1016_j_jelechem_2022_116057
crossref_primary_10_1002_adfm_202201069
crossref_primary_10_1016_j_snb_2023_133631
crossref_primary_10_1016_j_snb_2024_136962
crossref_primary_10_1016_j_bios_2024_116149
crossref_primary_10_1016_j_bios_2022_114001
crossref_primary_10_1016_j_aca_2022_340303
crossref_primary_10_1016_j_aca_2023_341112
crossref_primary_10_1016_j_snb_2021_130370
crossref_primary_10_1016_j_snb_2021_130172
crossref_primary_10_1021_acs_langmuir_2c00108
crossref_primary_10_1039_D2AN01676A
crossref_primary_10_1016_j_bios_2022_114922
crossref_primary_10_1021_acs_analchem_2c00104
crossref_primary_10_1039_D1AN01642C
crossref_primary_10_1039_D2NR00152G
crossref_primary_10_1016_j_talanta_2022_123219
crossref_primary_10_1021_acs_analchem_2c00427
crossref_primary_10_1007_s00604_021_04875_1
crossref_primary_10_1039_D1AY01110C
crossref_primary_10_1186_s12951_024_02535_z
crossref_primary_10_1039_D1EN00645B
crossref_primary_10_1016_j_foodchem_2024_141853
crossref_primary_10_1016_j_snb_2022_132876
crossref_primary_10_1016_j_talanta_2022_124191
crossref_primary_10_1002_smll_202302542
crossref_primary_10_1007_s12274_022_4794_4
crossref_primary_10_1016_j_snb_2023_133400
crossref_primary_10_1021_acsnano_1c06429
crossref_primary_10_1007_s41664_024_00337_8
crossref_primary_10_1016_j_aca_2022_340696
crossref_primary_10_1016_j_csbj_2023_09_005
crossref_primary_10_1016_j_aca_2023_341642
crossref_primary_10_1016_j_ccr_2023_215331
crossref_primary_10_1016_j_cej_2022_134681
crossref_primary_10_1016_j_microc_2024_112506
crossref_primary_10_1021_acs_analchem_2c03727
crossref_primary_10_1149_1945_7111_ac6a7f
crossref_primary_10_1007_s00604_024_06208_4
crossref_primary_10_1021_acs_analchem_3c03840
crossref_primary_10_1016_j_snb_2021_129877
crossref_primary_10_1016_j_snb_2021_130426
crossref_primary_10_1016_j_microc_2024_110452
crossref_primary_10_1016_j_trac_2022_116911
crossref_primary_10_1021_acs_analchem_2c02004
crossref_primary_10_1016_j_aca_2021_338843
crossref_primary_10_1016_j_aca_2021_338523
crossref_primary_10_1016_j_cej_2025_161264
crossref_primary_10_1021_acs_langmuir_1c02834
crossref_primary_10_1016_j_aca_2021_339134
crossref_primary_10_1021_acssensors_5c00228
Cites_doi 10.1016/j.bios.2019.03.015
10.1038/ncomms14378
10.1021/acs.analchem.9b00728
10.1039/C8SC02761G
10.1021/acs.analchem.7b00955
10.1038/s41565-018-0130-2
10.1038/nnano.2015.259
10.1038/351453a0
10.1016/j.bios.2019.111826
10.1016/0092-8674(95)90412-3
10.1016/j.bios.2018.01.054
10.1021/acs.analchem.7b00347
10.1002/adfm.201704092
10.1021/ac0613582
10.1007/s00604-019-3689-x
10.1021/ac504206n
10.1021/acs.analchem.8b03038
10.1039/C7CC02306E
10.1016/j.trac.2018.08.015
10.1039/C9NR03588E
10.1039/D0CC01619E
10.1016/j.trac.2019.115626
10.1002/anie.201611777
10.1021/acs.analchem.7b02073
10.1021/acsnano.5b07102
10.1016/j.snb.2018.04.109
10.1021/ac3012285
10.1021/acs.analchem.7b00418
10.1016/j.bios.2018.01.044
10.1021/acs.analchem.7b03529
10.1021/acs.analchem.8b04338
10.1039/C8NR05206A
10.1039/C5AY00679A
ContentType Journal Article
Copyright Copyright American Chemical Society Aug 18, 2020
Copyright_xml – notice: Copyright American Chemical Society Aug 18, 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7U5
7U7
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
7S9
L.6
DOI 10.1021/acs.analchem.0c01074
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
AIDS and Cancer Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Toxicology Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database
MEDLINE
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1520-6882
EndPage 11118
ExternalDocumentID 32646212
10_1021_acs_analchem_0c01074
e42443188
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
02
1AW
23M
53T
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABOCM
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACNCT
ACPRK
ACS
AEESW
AENEX
AFEFF
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
D0L
DZ
EBS
ED
ED~
F20
F5P
GNL
IH9
IHE
JG
JG~
K2
P2P
PQEST
PQQKQ
ROL
RXW
TAE
TN5
UHB
UI2
UKR
VF5
VG9
VQA
W1F
WH7
X
X6Y
XFK
YZZ
---
-DZ
-~X
.DC
4.4
53G
6J9
AAHBH
AAYXX
ABBLG
ABHFT
ABHMW
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ACKOT
ADHLV
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
KZ1
LMP
XSW
ZCA
~02
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7U5
7U7
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
7S9
L.6
ID FETCH-LOGICAL-a475t-fd1fcd0ef0ac811031e8b81f411e968e8fbb397133d9d088cc1bda04d8a178c23
IEDL.DBID ACS
ISSN 0003-2700
1520-6882
IngestDate Fri Jul 11 09:07:45 EDT 2025
Fri Jul 11 05:18:47 EDT 2025
Mon Jun 30 10:18:57 EDT 2025
Thu Apr 03 07:09:37 EDT 2025
Thu Apr 24 22:56:42 EDT 2025
Tue Jul 01 01:19:09 EDT 2025
Thu Aug 27 13:41:54 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a475t-fd1fcd0ef0ac811031e8b81f411e968e8fbb397133d9d088cc1bda04d8a178c23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8536-8864
0000-0001-5517-5658
0000-0003-2175-3610
0000-0001-7189-5022
PMID 32646212
PQID 2448684380
PQPubID 45400
PageCount 8
ParticipantIDs proquest_miscellaneous_2524238428
proquest_miscellaneous_2423060219
proquest_journals_2448684380
pubmed_primary_32646212
crossref_citationtrail_10_1021_acs_analchem_0c01074
crossref_primary_10_1021_acs_analchem_0c01074
acs_journals_10_1021_acs_analchem_0c01074
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-08-18
PublicationDateYYYYMMDD 2020-08-18
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-18
  day: 18
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Analytical chemistry (Washington)
PublicationTitleAlternate Anal. Chem
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref28/cit28
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref7/cit7
References_xml – ident: ref7/cit7
  doi: 10.1016/j.bios.2019.03.015
– ident: ref6/cit6
  doi: 10.1038/ncomms14378
– ident: ref13/cit13
  doi: 10.1021/acs.analchem.9b00728
– ident: ref9/cit9
  doi: 10.1039/C8SC02761G
– ident: ref31/cit31
  doi: 10.1021/acs.analchem.7b00955
– ident: ref14/cit14
  doi: 10.1038/s41565-018-0130-2
– ident: ref19/cit19
  doi: 10.1038/nnano.2015.259
– ident: ref33/cit33
  doi: 10.1038/351453a0
– ident: ref12/cit12
  doi: 10.1016/j.bios.2019.111826
– ident: ref32/cit32
  doi: 10.1016/0092-8674(95)90412-3
– ident: ref26/cit26
  doi: 10.1016/j.bios.2018.01.054
– ident: ref10/cit10
  doi: 10.1021/acs.analchem.7b00347
– ident: ref21/cit21
  doi: 10.1002/adfm.201704092
– ident: ref22/cit22
  doi: 10.1021/ac0613582
– ident: ref11/cit11
  doi: 10.1007/s00604-019-3689-x
– ident: ref20/cit20
  doi: 10.1021/ac504206n
– ident: ref29/cit29
  doi: 10.1021/acs.analchem.8b03038
– ident: ref5/cit5
  doi: 10.1039/C7CC02306E
– ident: ref1/cit1
  doi: 10.1016/j.trac.2018.08.015
– ident: ref17/cit17
  doi: 10.1039/C9NR03588E
– ident: ref23/cit23
  doi: 10.1039/D0CC01619E
– ident: ref2/cit2
  doi: 10.1016/j.trac.2019.115626
– ident: ref18/cit18
  doi: 10.1002/anie.201611777
– ident: ref16/cit16
  doi: 10.1021/acs.analchem.7b02073
– ident: ref8/cit8
  doi: 10.1021/acsnano.5b07102
– ident: ref15/cit15
  doi: 10.1016/j.snb.2018.04.109
– ident: ref25/cit25
  doi: 10.1021/ac3012285
– ident: ref24/cit24
  doi: 10.1021/acs.analchem.7b00418
– ident: ref27/cit27
  doi: 10.1016/j.bios.2018.01.044
– ident: ref4/cit4
  doi: 10.1021/acs.analchem.7b03529
– ident: ref3/cit3
  doi: 10.1021/acs.analchem.8b04338
– ident: ref30/cit30
  doi: 10.1039/C8NR05206A
– ident: ref28/cit28
  doi: 10.1039/C5AY00679A
SSID ssj0011016
Score 2.601726
Snippet Stochastic DNA walkers capable of traversing on three-dimensional (3D) tracks have received great deal of attention. However, DNA walker-based biosensors...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 11111
SubjectTerms Amplification
Analytical chemistry
Biosensing Techniques - methods
Biosensors
blood
Chemistry
Deoxyribonucleic acid
detection limit
DNA
DNA - blood
DNA - chemistry
DNA - genetics
Exonuclease
genes
Genes, p53
Gold
Gold - chemistry
Humans
Inverted Repeat Sequences
Limit of Detection
Magnetic Phenomena
magnetism
mass spectrometry
Metal Nanoparticles - chemistry
Nanoclusters
nanogold
Nanoparticles
Nucleic Acid Amplification Techniques - methods
Nucleic Acid Hybridization
p53 Protein
Silver
Silver - chemistry
Spectrometry
Tumor Suppressor Protein p53 - genetics
Walking
Title Three-Dimensional DNA Nanomachine Biosensor by Integrating DNA Walker and Rolling Machine Cascade Amplification for Ultrasensitive Detection of Cancer-Related Gene
URI http://dx.doi.org/10.1021/acs.analchem.0c01074
https://www.ncbi.nlm.nih.gov/pubmed/32646212
https://www.proquest.com/docview/2448684380
https://www.proquest.com/docview/2423060219
https://www.proquest.com/docview/2524238428
Volume 92
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BOQAHHuW1UJCRuHDwEidexzkuu1QFqeVAV_QW2Y4jVd0mKMke4O_wR5lJnC0PlcI1mbEce2x_kxl_A_AKzaRUQmU8s5nnUtiE61hIrtKoUKkwaZrSbeTDI3Wwkh9OZicXjuLvEfxYvDGunRocVPyG82nkIsogvA43YoXrmKDQ4tM2akCe6FghjwKq41W5S1qhA8m1vx5Il6DM_rTZvwsfxzs7Q5LJ2XTT2an79ieF4z9-yD24E4Anmw-Wch-u-WoXbi7Gem-7cPsnasIH8P0YJ9nzJZH_D8QdbHk0Z7gZ1-d9_qVnb0_rFl_WDbNf2ftAO4HKveBnsz7zDTNVwQLvNzsMegvTUlI-m1Myexn-GTIEz2y17hpDbfYJTWzpuz5RrGJ1iVpong3vk_d8wYgu-yGs9t8dLw54KOjAjUxnHS8LUboi8mVknBZUYMJrq0UphfCZ0l6X1iI-Qre5yArc_pwTtjCRLLQRqXZx8gh2qrryT4ChV5k4mSZZpJ2UxmqpZ4hk0R90Ueakn8BrHO88LMg272Ptscjp4TgJeZiECSSjBeQuMKNTgY71FVp8q_VlYAa5Qn5vNK6LbiG40koT6_8EXm5f48RT2MZUvt6QDLmJ2Gz2F5kZSWn0JSfweDDcbacQoEuFCOXpfwzJM7gV048F4v7Ve7DTNRv_HNFXZ1_0S-4HCOorRA
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lc9MwEN4p5VA48CiPBgqIGS4clFqxbMvHkNBJocmFBHrzSLI8wzS1O7ZzgL_DH2XXsV1gpnR6tXY1srSWvvWuvgV4h2aShSKMeWxix6UwPlcjIXkYeWkYCR1FEd1Gni_C2Up-OgvOdiDo7sLgICrsqWqC-FfsAuKInmmcW3yVi6FnPUokvAN3EY-MyLDHky998IAc0q5QHsVVuxtz1_RC55Kt_j6XrgGbzaFz_BC-9sNtck3Oh5vaDO3Pf5gcb_0-j-BBC0PZeGs3j2HH5fuwN-mqv-3D_T-ICp_AryUuueNTKgWwpfFg08WY4dZcXDTZmI59-F5U2FiUzPxgJy0JBSo3gt_0-tyVTOcpa1nA2bzVm-iKUvTZmFLbs_YPIkMozVbrutTUZ5PexKaubtLGclZkqIXGWvImlc-ljMizn8Lq-ONyMuNteQeuZRTUPEtFZlPPZZ62SlC5CaeMEpkUwsWhciozBtESOtFpnOJmaK0wqfZkqrSIlB35z2A3L3J3AAx9TN_KyI89ZaXURkkVIK5F79B6sZVuAO9xvpP286ySJvI-Egk97BYhaRdhAH5nCIltedKpXMf6Bi3ea11ueUJukD_sbOxqWAi1VKioBsAA3vbNuPAUxNG5KzYkQ04jdhv_RyYgKYWe5QCeb-23HxTCdRkiXnlxiyl5A3uz5fw0OT1ZfH4J90b0y4FYgdUh7Nblxr1CXFab181X-BuupTOl
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagSDwOPAq0CwWMxIWDt_HGmzjHZZdVC3SFRFdUXCK_IqFukyrJHuDv8EeZ8TqhIJUKrvGM5dhj-5vM5BtCXoGZFAlPMpbpzDHBdczkiAuWpJFNUq7SNMW_kY8WycFSvDsZn1wo9QWDaKCnxgfxcVef2yIwDPB9fK5gfuF1zoaRiTCZ8Dq5gZE7NO7J9FMfQECntCuWh7HV7q-5S3rBu8k0v99NlwBOf_HM75Ev_ZB9vsnpcN3qofn-B5vjf73TfXI3wFE62djPA3LNldvk1rSrArdN7lwgLHxIfhzD0js2w5IAGzoPOltMKBzR1ZnPynT0zdeqgcaqpvobPQxkFKDsBT-r1amrqSotDWzg9CjoTVWDqfp0ginuRfiSSAFS0-WqrRX26dOc6My1Pn2spFUBWmC0NfMpfc5SJNF-RJbzt8fTAxbKPDAl0nHLCssLYyNXRMpIjmUnnNSSF4JzlyXSyUJrQE3gTNvMwqFoDNdWRcJKxVNpRvFjslVWpdslFHzN2Ig0ziJphFBaCjkGfAteookyI9yAvIb5zsM2bXIfgR_xHB92i5CHRRiQuDOG3AS-dCzbsbpCi_Va5xu-kCvk9zo7-zUsgFwykVgLYEBe9s2w8BjMUaWr1iiDziN0m_1FZoxSEjzMAdnZ2HA_KIDtIgHc8uQfpuQFuflxNs8_HC7ePyW3R_jlAcmB5R7Zauu1ewbwrNXP_Ub8CXQvNig
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three-Dimensional+DNA+Nanomachine+Biosensor+by+Integrating+DNA+Walker+and+Rolling+Machine+Cascade+Amplification+for+Ultrasensitive+Detection+of+Cancer-Related+Gene&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Wu%2C+Na&rft.au=Wang%2C+Kun&rft.au=Wang%2C+Yi-Ting&rft.au=Chen%2C+Ming-Li&rft.date=2020-08-18&rft.pub=American+Chemical+Society&rft.issn=0003-2700&rft.eissn=1520-6882&rft.volume=92&rft.issue=16&rft.spage=11111&rft.epage=11118&rft_id=info:doi/10.1021%2Facs.analchem.0c01074&rft.externalDocID=e42443188
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2700&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2700&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2700&client=summon