In Situ Growth of Surfactant-Free Gold Nanoparticles on Nitrogen-Doped Graphene Quantum Dots for Electrochemical Detection of Hydrogen Peroxide in Biological Environments
In this work, we report a green and simple strategy for the in situ growth of surfactant-free Au nanoparticles (Au NPs) on nitrogen-doped graphene quantum dots (Au NPs–N-GQDs). The formation of hybrid was achieved by just mixing the N-GQDs and HAuCl4·4H2O without addition of any other reductant and...
Saved in:
Published in | Analytical chemistry (Washington) Vol. 87; no. 3; pp. 1903 - 1910 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
03.02.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this work, we report a green and simple strategy for the in situ growth of surfactant-free Au nanoparticles (Au NPs) on nitrogen-doped graphene quantum dots (Au NPs–N-GQDs). The formation of hybrid was achieved by just mixing the N-GQDs and HAuCl4·4H2O without addition of any other reductant and surfactant. High-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) characterizations clearly showed the formation of Au nanoparticles with predominantly exposed (111) facets which can provide more adsorption sites. Such nonsurfactant-capped Au NPs can provide naked catalytic surface with highly electrocatalytic activity. The Au NPs–N-GQDs exhibit high sensitivity and selectivity for electrochemical detection of hydrogen peroxide (H2O2) with a low detection limit of 0.12 μM and sensitivity of 186.22 μA/mM cm2. Importantly, the Au NPs–N-GQDs-based electrochemical biosensor has shown great potential applications for detection of H2O2 levels in human serum samples and that released from human cervical cancer cells with satisfactory results. The present study demonstrates that such novel Au NPs–N-GQDs nanocomposite is promising for fabrication of nonenzymatic H2O2 biosensors. |
---|---|
AbstractList | In this work, we report a green and simple strategy for the in situ growth of surfactant-free Au nanoparticles (Au NPs) on nitrogen-doped graphene quantum dots (Au NPs-N-GQDs). The formation of hybrid was achieved by just mixing the N-GQDs and HAuCl...-4H...O without addition of any other reductant and surfactant. High-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) characterizations clearly showed the formation of Au nanoparticles with predominantly exposed (111) facets which can provide more adsorption sites. Such nonsurfactant-capped Au NPs can provide naked catalytic surface with highly electrocatalytic activity. The Au NPs-N-GQDs exhibit high sensitivity and selectivity for electrochemical detection of hydrogen peroxide (H...O...) with a low detection limit of 0.12 ...M and sensitivity of 186.22 ...A/mM cm... Importantly, the Au NPs-N-GQDs-based electrochemical biosensor has shown great potential applications for detection of H...O... levels in human serum samples and that released from human cervical cancer cells with satisfactory results. The present study demonstrates that such novel Au NPs-N-GQDs nanocomposite is promising for fabrication of nonenzymatic H...O... biosensors. (ProQuest: ... denotes formulae/symbols omitted.) In this work, we report a green and simple strategy for the in situ growth of surfactant-free Au nanoparticles (Au NPs) on nitrogen-doped graphene quantum dots (Au NPs–N-GQDs). The formation of hybrid was achieved by just mixing the N-GQDs and HAuCl₄·4H₂O without addition of any other reductant and surfactant. High-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) characterizations clearly showed the formation of Au nanoparticles with predominantly exposed (111) facets which can provide more adsorption sites. Such nonsurfactant-capped Au NPs can provide naked catalytic surface with highly electrocatalytic activity. The Au NPs–N-GQDs exhibit high sensitivity and selectivity for electrochemical detection of hydrogen peroxide (H₂O₂) with a low detection limit of 0.12 μM and sensitivity of 186.22 μA/mM cm². Importantly, the Au NPs–N-GQDs-based electrochemical biosensor has shown great potential applications for detection of H₂O₂ levels in human serum samples and that released from human cervical cancer cells with satisfactory results. The present study demonstrates that such novel Au NPs–N-GQDs nanocomposite is promising for fabrication of nonenzymatic H₂O₂ biosensors. In this work, we report a green and simple strategy for the in situ growth of surfactant-free Au nanoparticles (Au NPs) on nitrogen-doped graphene quantum dots (Au NPs–N-GQDs). The formation of hybrid was achieved by just mixing the N-GQDs and HAuCl4·4H2O without addition of any other reductant and surfactant. High-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) characterizations clearly showed the formation of Au nanoparticles with predominantly exposed (111) facets which can provide more adsorption sites. Such nonsurfactant-capped Au NPs can provide naked catalytic surface with highly electrocatalytic activity. The Au NPs–N-GQDs exhibit high sensitivity and selectivity for electrochemical detection of hydrogen peroxide (H2O2) with a low detection limit of 0.12 μM and sensitivity of 186.22 μA/mM cm2. Importantly, the Au NPs–N-GQDs-based electrochemical biosensor has shown great potential applications for detection of H2O2 levels in human serum samples and that released from human cervical cancer cells with satisfactory results. The present study demonstrates that such novel Au NPs–N-GQDs nanocomposite is promising for fabrication of nonenzymatic H2O2 biosensors. In this work, we report a green and simple strategy for the in situ growth of surfactant-free Au nanoparticles (Au NPs) on nitrogen-doped graphene quantum dots (Au NPs-N-GQDs). The formation of hybrid was achieved by just mixing the N-GQDs and HAuCl4·4H2O without addition of any other reductant and surfactant. High-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) characterizations clearly showed the formation of Au nanoparticles with predominantly exposed (111) facets which can provide more adsorption sites. Such nonsurfactant-capped Au NPs can provide naked catalytic surface with highly electrocatalytic activity. The Au NPs-N-GQDs exhibit high sensitivity and selectivity for electrochemical detection of hydrogen peroxide (H2O2) with a low detection limit of 0.12 μM and sensitivity of 186.22 μA/mM cm(2). Importantly, the Au NPs-N-GQDs-based electrochemical biosensor has shown great potential applications for detection of H2O2 levels in human serum samples and that released from human cervical cancer cells with satisfactory results. The present study demonstrates that such novel Au NPs-N-GQDs nanocomposite is promising for fabrication of nonenzymatic H2O2 biosensors. In this work, we report a green and simple strategy for the in situ growth of surfactant-free Au nanoparticles (Au NPs) on nitrogen-doped graphene quantum dots (Au NPs-N-GQDs). The formation of hybrid was achieved by just mixing the N-GQDs and HAuCl4·4H2O without addition of any other reductant and surfactant. High-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) characterizations clearly showed the formation of Au nanoparticles with predominantly exposed (111) facets which can provide more adsorption sites. Such nonsurfactant-capped Au NPs can provide naked catalytic surface with highly electrocatalytic activity. The Au NPs-N-GQDs exhibit high sensitivity and selectivity for electrochemical detection of hydrogen peroxide (H2O2) with a low detection limit of 0.12 μM and sensitivity of 186.22 μA/mM cm(2). Importantly, the Au NPs-N-GQDs-based electrochemical biosensor has shown great potential applications for detection of H2O2 levels in human serum samples and that released from human cervical cancer cells with satisfactory results. The present study demonstrates that such novel Au NPs-N-GQDs nanocomposite is promising for fabrication of nonenzymatic H2O2 biosensors.In this work, we report a green and simple strategy for the in situ growth of surfactant-free Au nanoparticles (Au NPs) on nitrogen-doped graphene quantum dots (Au NPs-N-GQDs). The formation of hybrid was achieved by just mixing the N-GQDs and HAuCl4·4H2O without addition of any other reductant and surfactant. High-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) characterizations clearly showed the formation of Au nanoparticles with predominantly exposed (111) facets which can provide more adsorption sites. Such nonsurfactant-capped Au NPs can provide naked catalytic surface with highly electrocatalytic activity. The Au NPs-N-GQDs exhibit high sensitivity and selectivity for electrochemical detection of hydrogen peroxide (H2O2) with a low detection limit of 0.12 μM and sensitivity of 186.22 μA/mM cm(2). Importantly, the Au NPs-N-GQDs-based electrochemical biosensor has shown great potential applications for detection of H2O2 levels in human serum samples and that released from human cervical cancer cells with satisfactory results. The present study demonstrates that such novel Au NPs-N-GQDs nanocomposite is promising for fabrication of nonenzymatic H2O2 biosensors. |
Author | Ju, Jian Chen, Wei |
AuthorAffiliation | State Key Laboratory of Electroanalytical Chemistry Chinese Academy of Sciences |
AuthorAffiliation_xml | – name: Chinese Academy of Sciences – name: State Key Laboratory of Electroanalytical Chemistry |
Author_xml | – sequence: 1 givenname: Jian surname: Ju fullname: Ju, Jian – sequence: 2 givenname: Wei surname: Chen fullname: Chen, Wei email: weichen@ciac.ac.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25533846$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0t1qFDEUB_AgFbutXvgCEhBBL8bmZCaZnUvtbreFUpXq9ZDNnHRTZpJtklH7Sj6l2d1apAp6FQi__8nHOQdkz3mHhDwH9hYYhyOlBatACPGITEBwVsjplO-RCWOsLHjN2D45iPGaMQAG8gnZ50KU5bSSE_LjzNFLm0a6CP5bWlFv6OUYjNJJuVScBES68H1HL5TzaxWS1T1G6h29sCn4K3TFzK-xy3G1XqFD-mnMwXGgM58iNT7QeY86U73CwWrV0xmmvGFziXzW6W23rUI_YvDfbYfUOvre-t5fbfHcfbXBuwFdik_JY6P6iM_u1kPy5WT--fi0OP-wODt-d16oqhapmOquk6aRtQaExigjNW-WgLICkMCMMKhrveyWGspG5h9qTM0ATcdlOdWSl4fk9a7uOvibEWNqBxs19r1y6MfY8s23Miay_xcF2fCyqVj9P1TwSohaVJm-fECv_RhcfvNWQQOVrLN6cafG5YBduw52UOG2_dXbDN7sgA4-xoDmngBrN3PT3s9NtkcPrLZJbbqUgrL9XxOvdgml42_3-8P9BCUg0CI |
CODEN | ANCHAM |
CitedBy_id | crossref_primary_10_1002_smll_201704239 crossref_primary_10_1016_j_jelechem_2016_05_036 crossref_primary_10_1021_acsanm_9b00969 crossref_primary_10_1063_1_4974088 crossref_primary_10_1021_acsanm_1c01924 crossref_primary_10_1016_j_apsusc_2020_145932 crossref_primary_10_1039_C5NJ03252K crossref_primary_10_1021_acsanm_0c00194 crossref_primary_10_1021_acs_analchem_7b05267 crossref_primary_10_1557_s43578_022_00636_9 crossref_primary_10_1002_elan_202200192 crossref_primary_10_1007_s00604_020_04376_7 crossref_primary_10_1016_j_aca_2022_339461 crossref_primary_10_1002_elan_201700175 crossref_primary_10_1039_C5RA04653J crossref_primary_10_1016_j_electacta_2017_03_085 crossref_primary_10_1016_j_fuel_2021_120558 crossref_primary_10_1021_acs_iecr_6b02953 crossref_primary_10_1021_acs_jpcc_0c10809 crossref_primary_10_1016_j_microc_2020_105331 crossref_primary_10_1039_C8AN01876F crossref_primary_10_1002_adfm_202102459 crossref_primary_10_1016_j_bios_2019_03_043 crossref_primary_10_1039_C8NJ02086H crossref_primary_10_1016_j_sna_2017_12_028 crossref_primary_10_1021_acs_analchem_8b05923 crossref_primary_10_1021_acs_jpcc_7b10279 crossref_primary_10_1038_s41467_019_11644_5 crossref_primary_10_3390_mi10040268 crossref_primary_10_1007_s10008_018_4117_6 crossref_primary_10_1021_acs_analchem_0c02769 crossref_primary_10_1016_j_apsusc_2019_04_212 crossref_primary_10_1039_C9AN00722A crossref_primary_10_1002_slct_202000233 crossref_primary_10_1039_C6RA15691F crossref_primary_10_1016_j_cartre_2024_100407 crossref_primary_10_1039_C8TB00614H crossref_primary_10_20964_2019_05_04 crossref_primary_10_1016_j_apsusc_2018_03_246 crossref_primary_10_1039_C8NJ01611A crossref_primary_10_1016_j_foodchem_2021_130964 crossref_primary_10_1155_2020_9627697 crossref_primary_10_1021_acsami_7b16094 crossref_primary_10_1016_j_electacta_2021_138468 crossref_primary_10_1039_C6NJ02473D crossref_primary_10_1016_j_cej_2020_127203 crossref_primary_10_1016_j_microc_2017_03_023 crossref_primary_10_1016_j_bios_2018_01_041 crossref_primary_10_1016_j_snb_2016_10_043 crossref_primary_10_1016_j_snb_2017_12_179 crossref_primary_10_1021_acs_analchem_7b04070 crossref_primary_10_1002_celc_202001229 crossref_primary_10_1016_j_molliq_2019_111817 crossref_primary_10_1039_C6RA22264A crossref_primary_10_1016_j_jallcom_2018_06_272 crossref_primary_10_1088_1361_6528_ab60ce crossref_primary_10_1149_2_0451914jes crossref_primary_10_1016_j_jallcom_2019_02_195 crossref_primary_10_1016_j_cis_2019_101991 crossref_primary_10_1016_j_talanta_2016_11_030 crossref_primary_10_1016_j_envres_2022_113264 crossref_primary_10_1016_j_snb_2016_09_044 crossref_primary_10_1016_j_mtsust_2023_100605 crossref_primary_10_1039_C6RA14233H crossref_primary_10_1039_C7CS00500H crossref_primary_10_1007_s10971_015_3782_5 crossref_primary_10_1007_s12649_024_02525_0 crossref_primary_10_1186_s12951_025_03281_6 crossref_primary_10_1039_D2NJ04135A crossref_primary_10_1016_j_carbon_2017_02_103 crossref_primary_10_1021_acsaelm_8b00131 crossref_primary_10_1016_j_electacta_2017_11_033 crossref_primary_10_1039_C7TB01073G crossref_primary_10_1007_s10008_016_3221_8 crossref_primary_10_1016_j_microc_2018_03_025 crossref_primary_10_1016_j_trac_2020_115959 crossref_primary_10_1039_C7AN01446E crossref_primary_10_1016_j_snb_2016_09_032 crossref_primary_10_1016_j_jelechem_2023_117918 crossref_primary_10_1007_s00604_019_3701_5 crossref_primary_10_1002_cjoc_202000609 crossref_primary_10_1016_j_talanta_2016_12_067 crossref_primary_10_1002_elan_201600366 crossref_primary_10_3390_mi10100662 crossref_primary_10_1039_C6RA04602A crossref_primary_10_1016_j_snb_2016_08_124 crossref_primary_10_1039_C5RA18228J crossref_primary_10_1016_j_snb_2021_131053 crossref_primary_10_1021_acs_analchem_8b03423 crossref_primary_10_1039_C7QI00262A crossref_primary_10_1002_elan_201700142 crossref_primary_10_1016_j_apsusc_2019_06_065 crossref_primary_10_1016_j_matlet_2019_127153 crossref_primary_10_1002_bio_70089 crossref_primary_10_1016_j_matchemphys_2022_125792 crossref_primary_10_1016_j_microc_2020_105522 crossref_primary_10_1002_elan_201600032 crossref_primary_10_1016_j_jelechem_2019_113592 crossref_primary_10_1155_2022_9866111 crossref_primary_10_1002_slct_201800882 crossref_primary_10_1039_C5NR04005A crossref_primary_10_1016_j_snb_2016_11_044 crossref_primary_10_1016_j_talanta_2019_120210 crossref_primary_10_1016_j_electacta_2017_09_160 crossref_primary_10_1002_cphc_202100783 crossref_primary_10_1016_j_ab_2023_115432 crossref_primary_10_1039_C9TB00021F crossref_primary_10_1039_C5RA10157C crossref_primary_10_1155_2016_8174913 crossref_primary_10_1007_s00604_024_06456_4 crossref_primary_10_1016_j_msec_2018_12_141 crossref_primary_10_1039_C5TC00246J crossref_primary_10_1002_aisy_202000117 crossref_primary_10_1016_j_apsusc_2020_146715 crossref_primary_10_1002_smll_201601571 crossref_primary_10_1039_D0RA01740J crossref_primary_10_1021_acsami_0c03415 crossref_primary_10_1002_elan_202100225 crossref_primary_10_1007_s00604_017_2302_4 crossref_primary_10_1007_s00604_019_3397_6 crossref_primary_10_1007_s40242_019_8322_3 crossref_primary_10_1007_s10008_018_3882_6 crossref_primary_10_1016_j_snb_2017_02_132 crossref_primary_10_1039_C9AY01256G crossref_primary_10_1007_s00216_018_1423_x crossref_primary_10_20964_2021_08_04 crossref_primary_10_1016_j_aca_2019_10_052 crossref_primary_10_1149_1945_7111_ab9c83 crossref_primary_10_1016_j_saa_2020_118499 crossref_primary_10_1021_acs_chemrev_1c00759 crossref_primary_10_1016_j_msec_2020_111756 crossref_primary_10_1007_s42247_021_00179_5 crossref_primary_10_1007_s11581_019_03118_x crossref_primary_10_1039_C5CS00811E crossref_primary_10_1016_j_jallcom_2020_158323 crossref_primary_10_1021_acs_chemmater_7b02932 crossref_primary_10_1007_s12274_018_2135_4 crossref_primary_10_1016_j_snb_2017_11_184 crossref_primary_10_3390_catal15040298 crossref_primary_10_1002_smll_202208209 crossref_primary_10_1021_acsami_5b09300 crossref_primary_10_1016_j_mssp_2024_108204 crossref_primary_10_1039_C8NJ03550D crossref_primary_10_1016_j_apsusc_2017_07_014 crossref_primary_10_1021_acssuschemeng_2c03116 crossref_primary_10_1149_1945_7111_ad2d89 crossref_primary_10_1039_D1RA00733E crossref_primary_10_1016_j_ijhydene_2018_04_109 crossref_primary_10_3390_c9020045 crossref_primary_10_1002_elan_201600608 crossref_primary_10_1016_j_electacta_2021_139803 crossref_primary_10_1021_acsami_7b08781 crossref_primary_10_1002_tcr_202400185 crossref_primary_10_1007_s12161_018_1207_0 crossref_primary_10_1021_acsbiomaterials_4c01256 crossref_primary_10_1016_j_jorganchem_2020_121507 crossref_primary_10_1016_j_aca_2015_09_053 crossref_primary_10_3390_s19061304 crossref_primary_10_1016_j_molliq_2017_06_106 crossref_primary_10_1021_acsanm_8b00210 crossref_primary_10_1016_j_bios_2016_05_002 crossref_primary_10_1016_j_bios_2017_08_018 crossref_primary_10_1039_D0MH00798F crossref_primary_10_3390_nano12091475 crossref_primary_10_1016_j_procbio_2022_01_025 crossref_primary_10_2341_20_257_L crossref_primary_10_1080_10408347_2021_1977608 crossref_primary_10_1016_j_bios_2017_12_040 crossref_primary_10_1016_j_snb_2017_06_172 crossref_primary_10_1149_2_0021705jes crossref_primary_10_1021_acs_chemmater_5b04915 crossref_primary_10_1016_j_rechem_2021_100171 crossref_primary_10_1016_j_jelechem_2017_04_017 crossref_primary_10_1149_2_1041813jes crossref_primary_10_1007_s13538_024_01525_8 crossref_primary_10_1007_s10853_019_03750_y crossref_primary_10_1016_j_bios_2016_06_011 crossref_primary_10_1002_elan_201800897 crossref_primary_10_1016_j_jiec_2022_05_010 crossref_primary_10_1039_D1NJ01655E crossref_primary_10_1016_j_saa_2023_122440 crossref_primary_10_1021_acssensors_9b00514 crossref_primary_10_1039_C5NR05326A crossref_primary_10_1016_j_snb_2018_05_036 crossref_primary_10_1039_C6RA12986B crossref_primary_10_1016_j_jallcom_2019_151927 crossref_primary_10_1021_acsomega_1c04903 crossref_primary_10_1039_C8RA09577A crossref_primary_10_1016_j_colsurfa_2024_134061 crossref_primary_10_1021_acs_iecr_6b04752 crossref_primary_10_1016_j_materresbull_2018_05_032 crossref_primary_10_1016_j_snb_2016_03_127 crossref_primary_10_1002_slct_202200894 crossref_primary_10_1016_j_matchemphys_2019_02_046 crossref_primary_10_1016_j_cclet_2017_04_032 crossref_primary_10_1016_j_snb_2017_02_119 crossref_primary_10_2139_ssrn_3961287 crossref_primary_10_1002_pc_25249 crossref_primary_10_1021_acs_chemrev_6b00290 crossref_primary_10_1016_j_jhazmat_2015_03_046 crossref_primary_10_1016_j_cej_2025_159479 crossref_primary_10_1016_j_snb_2016_01_007 crossref_primary_10_1039_C8TA12099D crossref_primary_10_1039_C6QM00195E crossref_primary_10_1016_j_dyepig_2020_108725 crossref_primary_10_1021_acs_inorgchem_7b01515 crossref_primary_10_3390_mi13101762 crossref_primary_10_1016_j_bios_2016_05_015 crossref_primary_10_1039_D0CC03758C crossref_primary_10_1007_s13738_018_1386_z crossref_primary_10_1016_j_jelechem_2017_05_004 crossref_primary_10_1016_j_snb_2017_05_155 crossref_primary_10_1016_j_snb_2017_10_169 crossref_primary_10_1016_j_colsurfb_2022_113033 crossref_primary_10_1007_s11706_022_0603_y crossref_primary_10_1007_s00604_018_2957_5 crossref_primary_10_1016_j_snb_2018_07_172 crossref_primary_10_1021_acssuschemeng_3c03663 crossref_primary_10_1016_j_bios_2019_111431 crossref_primary_10_1016_j_msec_2016_11_134 crossref_primary_10_3390_ma16031261 crossref_primary_10_1016_j_bbe_2018_03_006 crossref_primary_10_1016_j_snb_2017_10_151 crossref_primary_10_1016_j_microc_2021_106732 crossref_primary_10_1039_C7AY02290E crossref_primary_10_3390_bios14060277 crossref_primary_10_1002_med_21931 crossref_primary_10_1016_S1452_3981_23_15919_0 crossref_primary_10_1007_s10895_023_03517_4 crossref_primary_10_1002_slct_201901779 crossref_primary_10_1016_j_microc_2024_110639 crossref_primary_10_1016_j_carbon_2020_07_081 crossref_primary_10_1007_s10311_020_01123_5 crossref_primary_10_3390_catal14010008 crossref_primary_10_1016_j_apsusc_2019_01_201 crossref_primary_10_1016_j_bios_2016_12_040 crossref_primary_10_1016_j_matlet_2019_01_157 crossref_primary_10_1039_C5TB00511F crossref_primary_10_1039_C7NJ00505A crossref_primary_10_20964_2017_05_75 crossref_primary_10_1016_j_snb_2017_11_163 crossref_primary_10_1002_celc_202000321 crossref_primary_10_1038_s41598_017_07186_9 crossref_primary_10_1016_j_saa_2024_123993 crossref_primary_10_1039_D1RA04248C crossref_primary_10_1149_1945_7111_ab818b crossref_primary_10_1039_C6RA23551D crossref_primary_10_1016_j_bios_2016_11_029 crossref_primary_10_1038_s41598_023_37518_x crossref_primary_10_1002_elan_201600425 crossref_primary_10_2174_1573413715666190206152717 crossref_primary_10_20964_2022_07_06 crossref_primary_10_1007_s11581_022_04777_z crossref_primary_10_1007_s13738_019_01653_y crossref_primary_10_1016_j_inoche_2019_107588 crossref_primary_10_1016_j_colsurfa_2023_131805 crossref_primary_10_1007_s00604_019_3779_9 crossref_primary_10_1039_C5TB00413F crossref_primary_10_3934_matersci_2018_3_422 crossref_primary_10_1016_j_saa_2018_08_021 crossref_primary_10_1002_advs_201600126 crossref_primary_10_1016_j_snb_2018_10_015 crossref_primary_10_1039_C5CP06582H crossref_primary_10_1007_s10008_019_04322_5 crossref_primary_10_1039_D4TA08207A crossref_primary_10_1016_j_bios_2016_07_111 crossref_primary_10_20964_2020_09_82 crossref_primary_10_1016_j_jelechem_2017_03_027 crossref_primary_10_1016_j_jphotochem_2019_112336 crossref_primary_10_1016_j_bios_2015_06_032 crossref_primary_10_3390_molecules29122769 crossref_primary_10_1149_2_0501916jes crossref_primary_10_1080_24701556_2021_2024231 crossref_primary_10_1016_j_bioelechem_2018_05_001 crossref_primary_10_1016_j_bios_2016_10_080 crossref_primary_10_1039_C5AN02321A crossref_primary_10_1016_j_teac_2023_e00208 crossref_primary_10_1071_CH17072 crossref_primary_10_1364_BOE_9_001735 crossref_primary_10_1007_s00216_018_1370_6 crossref_primary_10_1016_j_aca_2015_11_021 crossref_primary_10_1039_C6RA12420H crossref_primary_10_1039_D2TC00406B crossref_primary_10_1016_j_talanta_2020_121951 crossref_primary_10_1016_j_bios_2018_05_045 crossref_primary_10_1016_j_aca_2017_01_067 crossref_primary_10_1149_2_0651813jes crossref_primary_10_1021_acsami_0c09689 crossref_primary_10_1021_acs_analchem_1c01790 crossref_primary_10_1039_C7TB02039B crossref_primary_10_1007_s40843_018_9235_3 crossref_primary_10_1016_j_bios_2019_111446 crossref_primary_10_1016_j_ecoenv_2019_110123 crossref_primary_10_1039_C5NR07579C crossref_primary_10_1016_j_snb_2017_09_075 crossref_primary_10_1016_j_jpba_2018_05_050 crossref_primary_10_1016_j_microc_2021_106389 crossref_primary_10_1016_j_jelechem_2018_05_005 crossref_primary_10_1142_S1793292017500060 crossref_primary_10_1016_j_snb_2018_09_016 crossref_primary_10_1016_j_jiec_2016_09_012 crossref_primary_10_1080_03067319_2021_1980785 crossref_primary_10_1016_j_snb_2017_01_166 crossref_primary_10_1016_j_snb_2018_11_150 crossref_primary_10_1039_C6AN00543H crossref_primary_10_1002_app_48653 crossref_primary_10_1016_j_bioadv_2022_213234 crossref_primary_10_1016_j_jphotochem_2019_112204 crossref_primary_10_1016_j_aca_2015_04_057 crossref_primary_10_1186_s12951_020_00698_z crossref_primary_10_1016_j_trac_2023_117223 crossref_primary_10_1021_acsanm_2c03073 crossref_primary_10_1016_j_jelechem_2021_115603 crossref_primary_10_1016_j_aca_2020_06_003 crossref_primary_10_1016_j_electacta_2016_03_031 crossref_primary_10_1080_03067319_2017_1355969 crossref_primary_10_1016_j_apcatb_2017_06_088 crossref_primary_10_1021_acsami_6b13788 crossref_primary_10_1080_00958972_2018_1521966 crossref_primary_10_1016_j_bios_2022_114303 crossref_primary_10_1016_j_talanta_2019_06_005 crossref_primary_10_1016_j_bios_2017_09_047 crossref_primary_10_1039_C5NR02427G crossref_primary_10_1016_j_jphotochem_2018_12_011 crossref_primary_10_1016_j_apsusc_2020_148699 crossref_primary_10_1039_C5RA18176C crossref_primary_10_1039_C8CS00445E crossref_primary_10_1016_j_trac_2020_116007 crossref_primary_10_1039_D2NH00006G crossref_primary_10_1016_j_foodchem_2022_134509 crossref_primary_10_1016_j_cej_2025_160065 crossref_primary_10_1016_j_jphotochem_2019_112255 crossref_primary_10_1039_C5AY02976G crossref_primary_10_1002_agt2_266 crossref_primary_10_1002_tcr_201700101 crossref_primary_10_1007_s00604_019_3727_8 crossref_primary_10_1007_s00604_017_2179_2 crossref_primary_10_1016_j_inoche_2024_113870 crossref_primary_10_2116_analsci_20P463 crossref_primary_10_2217_nnm_2020_0353 crossref_primary_10_1007_s00604_018_2717_6 crossref_primary_10_1039_C6TC02330D crossref_primary_10_3390_catal7010001 crossref_primary_10_1016_j_electacta_2017_03_206 crossref_primary_10_1016_j_foodchem_2022_132555 crossref_primary_10_1149_2_0031704jes crossref_primary_10_1080_09593330_2016_1235231 crossref_primary_10_1039_C8AY02527D crossref_primary_10_1039_C6RA10836A crossref_primary_10_1007_s42765_023_00351_y crossref_primary_10_1039_D1NJ05763D crossref_primary_10_3390_antiox9090797 crossref_primary_10_1039_D3CC04657E crossref_primary_10_3390_molecules27144571 crossref_primary_10_1016_j_aca_2021_338420 crossref_primary_10_1007_s10854_019_01797_w crossref_primary_10_1021_acs_inorgchem_3c01148 crossref_primary_10_1002_elan_201500187 crossref_primary_10_1016_j_jlumin_2018_10_059 crossref_primary_10_1039_C9NA00756C crossref_primary_10_1016_j_colsurfa_2022_130365 crossref_primary_10_1016_j_snb_2017_07_177 crossref_primary_10_1088_1361_6528_acd34e crossref_primary_10_1021_acs_analchem_7b04435 crossref_primary_10_1039_C6TA04813G crossref_primary_10_1016_j_jece_2023_109988 crossref_primary_10_1016_j_colsurfa_2020_125445 crossref_primary_10_1039_C6RA04695A crossref_primary_10_1155_2018_1710438 crossref_primary_10_1016_j_carbon_2022_04_070 crossref_primary_10_1002_admi_202200995 crossref_primary_10_3390_nano11051120 crossref_primary_10_1016_j_clay_2015_10_030 crossref_primary_10_1007_s11581_017_2356_7 crossref_primary_10_1016_j_snb_2019_127550 crossref_primary_10_1016_j_cej_2020_125743 crossref_primary_10_1021_acs_analchem_6b00630 crossref_primary_10_1016_j_microc_2021_106341 crossref_primary_10_1016_j_bios_2017_09_038 crossref_primary_10_1016_j_electacta_2022_141432 crossref_primary_10_3390_s17102407 crossref_primary_10_1016_j_pmatsci_2022_101034 crossref_primary_10_1039_C5AY01414J crossref_primary_10_1016_j_snb_2018_08_148 crossref_primary_10_1515_psr_2019_0013 crossref_primary_10_1016_j_cej_2021_132687 crossref_primary_10_1142_S1793292021300012 crossref_primary_10_1016_j_ab_2017_01_026 crossref_primary_10_1039_C6AY00289G crossref_primary_10_1149_2162_8777_ab9c7a crossref_primary_10_3390_nano9040634 crossref_primary_10_1021_acsnano_8b07564 crossref_primary_10_1002_admi_201801168 crossref_primary_10_1007_s41664_018_0047_7 crossref_primary_10_3390_coatings13111956 crossref_primary_10_1016_j_snb_2021_129725 crossref_primary_10_1016_j_jlumin_2018_11_033 crossref_primary_10_1021_acsanm_0c01560 crossref_primary_10_1002_slct_201700845 crossref_primary_10_1016_j_bios_2017_04_021 crossref_primary_10_1039_C9NJ03046H crossref_primary_10_1016_j_carbon_2018_05_004 crossref_primary_10_1021_acs_analchem_5b02644 crossref_primary_10_1016_j_carbon_2019_07_014 crossref_primary_10_1186_s12951_022_01415_8 crossref_primary_10_1016_j_jelechem_2020_114680 crossref_primary_10_1557_jmr_2018_324 crossref_primary_10_1021_acsami_0c09254 crossref_primary_10_1039_C6RA20861D crossref_primary_10_1007_s13738_017_1134_9 crossref_primary_10_1021_acssuschemeng_9b02886 crossref_primary_10_3390_bios12100910 crossref_primary_10_1016_j_ccr_2023_215270 crossref_primary_10_1039_C7RA11332C crossref_primary_10_3390_catal9080631 crossref_primary_10_1007_s10854_020_04413_4 crossref_primary_10_1016_j_snb_2019_02_015 crossref_primary_10_1016_j_microc_2020_105601 crossref_primary_10_1039_D0NR07608B crossref_primary_10_1016_j_snb_2018_01_072 crossref_primary_10_1039_C6NR00402D crossref_primary_10_1016_j_jelechem_2018_04_058 crossref_primary_10_1021_acs_analchem_6b01637 crossref_primary_10_1021_acsami_6b15746 crossref_primary_10_1016_j_colsurfa_2023_132266 crossref_primary_10_1016_j_snb_2015_10_033 crossref_primary_10_1021_acsami_9b19067 crossref_primary_10_1016_j_microc_2019_01_065 crossref_primary_10_1039_D0BM01286F crossref_primary_10_1021_acs_analchem_9b01715 crossref_primary_10_1016_j_snb_2021_129987 crossref_primary_10_1002_elan_201700315 crossref_primary_10_1007_s00216_019_01573_z crossref_primary_10_1002_jctb_7644 crossref_primary_10_1016_j_trac_2018_06_009 crossref_primary_10_1016_j_aca_2019_09_062 crossref_primary_10_1016_j_bios_2024_116899 crossref_primary_10_3390_s21217109 crossref_primary_10_1016_j_ica_2019_119031 crossref_primary_10_1080_03067319_2019_1637859 crossref_primary_10_1039_C8AY02743A crossref_primary_10_1007_s00216_018_1242_0 crossref_primary_10_1007_s10853_017_1221_4 crossref_primary_10_1016_j_snb_2018_01_068 crossref_primary_10_1039_C7NJ04510G crossref_primary_10_1016_j_snb_2020_128131 crossref_primary_10_1007_s10854_017_6909_3 crossref_primary_10_1002_chem_201704038 crossref_primary_10_1002_solr_201900577 crossref_primary_10_1016_j_aca_2021_338202 crossref_primary_10_1016_j_electacta_2016_06_024 crossref_primary_10_1039_C5AY00944H crossref_primary_10_1002_cphc_201601249 crossref_primary_10_1007_s00216_019_02275_2 crossref_primary_10_1002_adfm_202210674 crossref_primary_10_1016_j_aca_2020_01_066 crossref_primary_10_1016_j_apsusc_2017_01_300 crossref_primary_10_1021_acsami_5b06523 crossref_primary_10_1021_acsagscitech_1c00273 crossref_primary_10_1002_bkcs_12095 crossref_primary_10_1016_j_bios_2016_01_080 crossref_primary_10_1016_j_snb_2018_02_183 crossref_primary_10_2174_1573411014666180319145506 crossref_primary_10_1039_C5TA05425G crossref_primary_10_1016_j_synthmet_2024_117697 crossref_primary_10_1002_elan_202100282 crossref_primary_10_1080_1536383X_2018_1479695 crossref_primary_10_1016_j_ab_2020_114065 crossref_primary_10_1016_j_snb_2018_01_243 crossref_primary_10_1016_j_jhazmat_2023_132210 crossref_primary_10_3390_polym14030617 crossref_primary_10_1016_j_microc_2019_103981 crossref_primary_10_1016_j_saa_2023_122819 crossref_primary_10_1021_acsanm_2c01397 crossref_primary_10_1002_adsu_201700137 crossref_primary_10_1016_j_dyepig_2021_109407 crossref_primary_10_1016_j_colsurfb_2018_05_032 crossref_primary_10_1021_acs_analchem_1c04299 crossref_primary_10_1021_acsomega_7b00643 crossref_primary_10_1021_acsanm_1c03221 crossref_primary_10_1016_j_ejmech_2017_07_036 crossref_primary_10_1007_s00604_018_2688_7 crossref_primary_10_1007_s00604_018_3110_1 crossref_primary_10_1016_j_trac_2018_08_012 crossref_primary_10_1039_C6RA07300J crossref_primary_10_1021_acs_analchem_9b02967 crossref_primary_10_1016_j_cclet_2018_01_004 crossref_primary_10_1016_S1872_2040_17_61018_1 crossref_primary_10_1021_acsbiomaterials_8b00376 crossref_primary_10_1002_chem_201503191 crossref_primary_10_1016_j_apsusc_2019_07_141 crossref_primary_10_1002_tcr_201500236 crossref_primary_10_1016_j_seppur_2023_123996 crossref_primary_10_1149_1945_7111_ab7e1e crossref_primary_10_1016_j_matt_2023_01_003 crossref_primary_10_3390_s20041072 crossref_primary_10_1016_j_electacta_2016_05_151 crossref_primary_10_1039_C6RA10470C crossref_primary_10_1039_C6RA16516H crossref_primary_10_1016_j_jhazmat_2021_126648 crossref_primary_10_1021_acsami_0c10102 crossref_primary_10_1016_j_aca_2016_10_031 crossref_primary_10_1039_C6NJ03443H crossref_primary_10_1016_j_snb_2016_08_062 crossref_primary_10_1016_j_snb_2017_08_123 crossref_primary_10_1039_C9NR10963C crossref_primary_10_1039_C8RA05861J crossref_primary_10_1016_j_carbon_2024_119085 crossref_primary_10_1016_j_jlumin_2017_03_022 |
Cites_doi | 10.1016/j.bios.2011.10.001 10.1016/j.bios.2013.02.010 10.1021/ja1084578 10.1016/j.talanta.2010.03.063 10.1039/b912552c 10.1016/j.jpowsour.2012.01.032 10.1039/c000254b 10.1016/j.bios.2009.06.041 10.1021/nl302358e 10.1039/C2RA22479H 10.1021/am501799w 10.1021/am503388z 10.1039/b415496g 10.1039/C3TA13878J 10.1016/j.elecom.2005.10.001 10.1039/C4RA10601F 10.1016/j.elecom.2009.02.033 10.1016/j.elecom.2013.07.045 10.1016/j.apcata.2010.03.031 10.1155/2012/157606 10.1039/c002416c 10.1021/ac101206j 10.1021/ac062228w 10.1016/j.aca.2011.10.070 10.1016/j.carbon.2012.06.002 10.1021/es300897u 10.1021/nn204378t 10.1021/jp012707t 10.1021/ac0624142 10.1021/ja206477z 10.1039/C3TA14754A 10.1016/j.bios.2014.02.061 10.1016/j.bios.2013.02.036 10.1021/ja206030c 10.1021/ja036352y 10.1021/ja309270h 10.1016/j.electacta.2012.11.117 10.1021/ac400659u 10.1021/es050001x 10.1002/adma.200902825 10.1021/ja2100577 10.1039/C4AY00549J 10.1016/j.cplett.2014.02.012 10.1016/S0022-0728(98)00362-3 10.1021/cs400114s 10.1021/ac402114c 10.1021/nn304675g 10.1039/c3dt51234g 10.1021/cm2012044 10.1021/am3022366 10.1016/0956-5663(94)90029-9 10.1016/S1388-2481(02)00263-1 10.1016/j.talanta.2009.12.007 |
ContentType | Journal Article |
Copyright | Copyright American Chemical Society Feb 3, 2015 |
Copyright_xml | – notice: Copyright American Chemical Society Feb 3, 2015 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7X8 7S9 L.6 |
DOI | 10.1021/ac5041555 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Toxicology Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts AIDS and Cancer Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Toxicology Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Materials Research Database AGRICOLA Materials Research Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1520-6882 |
EndPage | 1910 |
ExternalDocumentID | 3582780051 25533846 10_1021_ac5041555 c601088299 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | - .K2 02 1AW 23M 4.4 53G 53T 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABOCM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACNCT ACPRK ACS AEESW AENEX AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 D0L DZ EBS ED ED~ EJD F20 F5P GNL IH9 IHE JG JG~ K2 LG6 P2P PQEST PQQKQ ROL RXW TAE TAF TN5 UHB UI2 UKR VF5 VG9 VQA W1F WH7 X X6Y XFK YZZ --- -DZ -~X .DC 6J9 AAHBH AAYXX ABBLG ABHFT ABHMW ABJNI ABLBI ABQRX ACBEA ACGFO ACKOT ADHLV AGXLV AHGAQ CITATION CUPRZ GGK KZ1 LMP XSW ZCA ~02 CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a475t-8cdd6f967c1e19faf6c29b1e6411610f5fec7cbdbc13960039f701efd2638c623 |
IEDL.DBID | ACS |
ISSN | 0003-2700 1520-6882 |
IngestDate | Fri Jul 11 05:09:45 EDT 2025 Fri Jul 11 06:36:21 EDT 2025 Fri Jul 11 10:15:30 EDT 2025 Mon Jun 30 08:40:25 EDT 2025 Thu Apr 03 07:02:19 EDT 2025 Thu Apr 24 23:06:36 EDT 2025 Tue Jul 01 02:49:10 EDT 2025 Thu Aug 27 13:41:57 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a475t-8cdd6f967c1e19faf6c29b1e6411610f5fec7cbdbc13960039f701efd2638c623 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 25533846 |
PQID | 1652191467 |
PQPubID | 45400 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2000300526 proquest_miscellaneous_1692394076 proquest_miscellaneous_1652455754 proquest_journals_1652191467 pubmed_primary_25533846 crossref_primary_10_1021_ac5041555 crossref_citationtrail_10_1021_ac5041555 acs_journals_10_1021_ac5041555 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-02-03 |
PublicationDateYYYYMMDD | 2015-02-03 |
PublicationDate_xml | – month: 02 year: 2015 text: 2015-02-03 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Analytical chemistry (Washington) |
PublicationTitleAlternate | Anal. Chem |
PublicationYear | 2015 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | King D. W. (ref9/cit9) 2007; 79 Gopalan A. I. (ref13/cit13) 2013; 46 Pan D. Y. (ref44/cit44) 2010; 22 Rahman M. R. (ref25/cit25) 2010; 82 Mao C. J. (ref17/cit17) 2012; 31 Jirkovsky J. S. (ref24/cit24) 2011; 133 Li Q. Q. (ref52/cit52) 2012; 134 Wei W. T. (ref39/cit39) 2012; 204 Keen O. S. (ref3/cit3) 2012; 46 Wei Y. B. (ref6/cit6) 2010; 46 Lu L. M. (ref15/cit15) 2009; 25 Pramanik D. (ref5/cit5) 2011; 133 Awad M. I. (ref26/cit26) 2012; 730 Kou R. (ref29/cit29) 2009; 11 Arrii S. (ref45/cit45) 2004; 126 Dey D. (ref34/cit34) 2013; 42 Shu X. H. (ref4/cit4) 2007; 79 Chizari K. (ref40/cit40) 2010; 380 Bo X. J. (ref14/cit14) 2010; 81 Huang J. F. (ref20/cit20) 2014; 6 El-Deab M. S. (ref21/cit21) 2002; 4 Ju J. (ref41/cit41) 2014; 4 Sun X. L. (ref10/cit10) 2012; 12 Zhang G. R. (ref43/cit43) 2012; 6 Huang H. J. (ref33/cit33) 2014; 2 Bai J. (ref51/cit51) 2013; 85 Tsiafoulis C. G. (ref2/cit2) 2005; 7 He G. Q. (ref49/cit49) 2013; 3 Lystvet S. M. (ref48/cit48) 2013; 3 Dong Y. Q. (ref46/cit46) 2012; 50 Liu M. M. (ref19/cit19) 2013; 45 Steigerwalt E. S. (ref30/cit30) 2002; 106 Qiu H. J. (ref32/cit32) 2013; 5 Quintino M. S. M. (ref7/cit7) 2005; 130 Vaz-Dominguez C. (ref23/cit23) 2013; 35 Fang H. T. (ref53/cit53) 2014; 6 Li Y. (ref36/cit36) 2012; 134 Jin S. H. (ref38/cit38) 2013; 7 Rajabzade H. (ref28/cit28) 2012; 9 Cai Z. Y. (ref47/cit47) 2014; 2 Dey S. (ref37/cit37) 2014; 595 Maruyama J. (ref50/cit50) 1998; 458 Yuan L. (ref8/cit8) 2012; 134 Ju J. (ref42/cit42) 2014; 58 Wang T. Y. (ref16/cit16) 2013; 85 Bing Y. H. (ref31/cit31) 2010; 39 Han Y. (ref12/cit12) 2013; 90 Ma J. H. (ref1/cit1) 2005; 39 Narasaiah D. (ref11/cit11) 1994; 9 Jirkovsky J. S. (ref22/cit22) 2010; 12 Song Y. (ref35/cit35) 2014; 6 Bo X. J. (ref18/cit18) 2010; 82 Shim J. H. (ref27/cit27) 2011; 23 |
References_xml | – volume: 31 start-page: 544 year: 2012 ident: ref17/cit17 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2011.10.001 – volume: 45 start-page: 206 year: 2013 ident: ref19/cit19 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2013.02.010 – volume: 133 start-page: 81 year: 2011 ident: ref5/cit5 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1084578 – volume: 82 start-page: 85 year: 2010 ident: ref18/cit18 publication-title: Talanta doi: 10.1016/j.talanta.2010.03.063 – volume: 39 start-page: 2184 year: 2010 ident: ref31/cit31 publication-title: Chem. Soc. Rev. doi: 10.1039/b912552c – volume: 204 start-page: 85 year: 2012 ident: ref39/cit39 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.01.032 – volume: 46 start-page: 4472 year: 2010 ident: ref6/cit6 publication-title: Chem. Commun. doi: 10.1039/c000254b – volume: 25 start-page: 218 year: 2009 ident: ref15/cit15 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2009.06.041 – volume: 12 start-page: 4859 year: 2012 ident: ref10/cit10 publication-title: Nano Lett. doi: 10.1021/nl302358e – volume: 3 start-page: 482 year: 2013 ident: ref48/cit48 publication-title: RSC Adv. doi: 10.1039/C2RA22479H – volume: 6 start-page: 7055 year: 2014 ident: ref20/cit20 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am501799w – volume: 6 start-page: 14050 year: 2014 ident: ref35/cit35 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am503388z – volume: 130 start-page: 221 year: 2005 ident: ref7/cit7 publication-title: Analyst doi: 10.1039/b415496g – volume: 2 start-page: 545 year: 2014 ident: ref47/cit47 publication-title: J. Mater. Chem. A doi: 10.1039/C3TA13878J – volume: 7 start-page: 1398 year: 2005 ident: ref2/cit2 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2005.10.001 – volume: 4 start-page: 52583 year: 2014 ident: ref41/cit41 publication-title: RSC Adv. doi: 10.1039/C4RA10601F – volume: 11 start-page: 954 year: 2009 ident: ref29/cit29 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2009.02.033 – volume: 35 start-page: 61 year: 2013 ident: ref23/cit23 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2013.07.045 – volume: 380 start-page: 72 year: 2010 ident: ref40/cit40 publication-title: Appl. Catal., A doi: 10.1016/j.apcata.2010.03.031 – volume: 9 start-page: 2540 year: 2012 ident: ref28/cit28 publication-title: E–J. Chem. doi: 10.1155/2012/157606 – volume: 12 start-page: 8042 year: 2010 ident: ref22/cit22 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c002416c – volume: 82 start-page: 9169 year: 2010 ident: ref25/cit25 publication-title: Anal. Chem. doi: 10.1021/ac101206j – volume: 79 start-page: 4169 year: 2007 ident: ref9/cit9 publication-title: Anal. Chem. doi: 10.1021/ac062228w – volume: 730 start-page: 60 year: 2012 ident: ref26/cit26 publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2011.10.070 – volume: 50 start-page: 4738 year: 2012 ident: ref46/cit46 publication-title: Carbon doi: 10.1016/j.carbon.2012.06.002 – volume: 46 start-page: 6222 year: 2012 ident: ref3/cit3 publication-title: Environ. Sci. Technol. doi: 10.1021/es300897u – volume: 6 start-page: 2226 year: 2012 ident: ref43/cit43 publication-title: ACS Nano doi: 10.1021/nn204378t – volume: 106 start-page: 760 year: 2002 ident: ref30/cit30 publication-title: J. Phys. Chem. B doi: 10.1021/jp012707t – volume: 79 start-page: 3695 year: 2007 ident: ref4/cit4 publication-title: Anal. Chem. doi: 10.1021/ac0624142 – volume: 133 start-page: 19432 year: 2011 ident: ref24/cit24 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja206477z – volume: 2 start-page: 6266 year: 2014 ident: ref33/cit33 publication-title: J. Mater. Chem. A doi: 10.1039/C3TA14754A – volume: 58 start-page: 219 year: 2014 ident: ref42/cit42 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2014.02.061 – volume: 46 start-page: 136 year: 2013 ident: ref13/cit13 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2013.02.036 – volume: 134 start-page: 15 year: 2012 ident: ref36/cit36 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja206030c – volume: 126 start-page: 1199 year: 2004 ident: ref45/cit45 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja036352y – volume: 134 start-page: 18932 year: 2012 ident: ref52/cit52 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja309270h – volume: 90 start-page: 35 year: 2013 ident: ref12/cit12 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2012.11.117 – volume: 85 start-page: 8095 year: 2013 ident: ref51/cit51 publication-title: Anal. Chem. doi: 10.1021/ac400659u – volume: 39 start-page: 5810 year: 2005 ident: ref1/cit1 publication-title: Environ. Sci. Technol. doi: 10.1021/es050001x – volume: 22 start-page: 734 year: 2010 ident: ref44/cit44 publication-title: Adv. Mater. doi: 10.1002/adma.200902825 – volume: 134 start-page: 1305 year: 2012 ident: ref8/cit8 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2100577 – volume: 6 start-page: 6073 year: 2014 ident: ref53/cit53 publication-title: Anal. Methods doi: 10.1039/C4AY00549J – volume: 595 start-page: 203 year: 2014 ident: ref37/cit37 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2014.02.012 – volume: 458 start-page: 175 year: 1998 ident: ref50/cit50 publication-title: J. Electroanal. Chem. doi: 10.1016/S0022-0728(98)00362-3 – volume: 3 start-page: 831 year: 2013 ident: ref49/cit49 publication-title: ACS Catal. doi: 10.1021/cs400114s – volume: 85 start-page: 10289 year: 2013 ident: ref16/cit16 publication-title: Anal. Chem. doi: 10.1021/ac402114c – volume: 7 start-page: 1239 year: 2013 ident: ref38/cit38 publication-title: ACS Nano doi: 10.1021/nn304675g – volume: 42 start-page: 13821 year: 2013 ident: ref34/cit34 publication-title: Dalton Trans. doi: 10.1039/c3dt51234g – volume: 23 start-page: 4694 year: 2011 ident: ref27/cit27 publication-title: Chem. Mater. doi: 10.1021/cm2012044 – volume: 5 start-page: 782 year: 2013 ident: ref32/cit32 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am3022366 – volume: 9 start-page: 415 year: 1994 ident: ref11/cit11 publication-title: Biosens. Bioelectron. doi: 10.1016/0956-5663(94)90029-9 – volume: 4 start-page: 288 year: 2002 ident: ref21/cit21 publication-title: Electrochem. Commun. doi: 10.1016/S1388-2481(02)00263-1 – volume: 81 start-page: 339 year: 2010 ident: ref14/cit14 publication-title: Talanta doi: 10.1016/j.talanta.2009.12.007 |
SSID | ssj0011016 |
Score | 2.6269135 |
Snippet | In this work, we report a green and simple strategy for the in situ growth of surfactant-free Au nanoparticles (Au NPs) on nitrogen-doped graphene quantum dots... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1903 |
SubjectTerms | Adsorption Biosensing Techniques - methods Biosensors blood serum detection limit Electrocatalysis Electrochemical Techniques - methods Electrochemistry Fabrication Gold Gold - chemistry Graphene Graphite - chemistry HeLa Cells Human Humans Hydrogen peroxide Hydrogen Peroxide - analysis Hydrogen Peroxide - blood Metal Nanoparticles - chemistry Metal Nanoparticles - ultrastructure mixing Models, Molecular nanocomposites nanogold Nanoparticles Nanotechnology neoplasm cells Nitrogen Nitrogen - chemistry Quantum dots Quantum Dots - chemistry Quantum Dots - ultrastructure reducing agents Spectrum analysis Surface chemistry Surfactants Transmission electron microscopy uterine cervical neoplasms X-ray diffraction X-ray photoelectron spectroscopy |
Title | In Situ Growth of Surfactant-Free Gold Nanoparticles on Nitrogen-Doped Graphene Quantum Dots for Electrochemical Detection of Hydrogen Peroxide in Biological Environments |
URI | http://dx.doi.org/10.1021/ac5041555 https://www.ncbi.nlm.nih.gov/pubmed/25533846 https://www.proquest.com/docview/1652191467 https://www.proquest.com/docview/1652455754 https://www.proquest.com/docview/1692394076 https://www.proquest.com/docview/2000300526 |
Volume | 87 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JbtswEB2k6aHNoUu6ORvY5dCLEmshZR0DL3ELNGjhBsjNoMghajSRAps6tJ_Ur-yQWuAicXrRRUNR4gw5bzQbwAfEGBXGKtCDyASEwA1tqSwLSLXHicnp6ivwfTkX04vk8yW_3IL3Gzz4UXgiFXdp5Jw_gIeRGKTOwjodzjpXgTM_27Z4zovalg9aH-pUj1r9q3o24EmvVyZPYdRm59ThJD-PK5sfq9-3izXe98rP4EmDK9lpLQjPYQuLXXg0bNu57cLOWuXBF_DnU8FmC1uxMzLD7Q9WGjarli7LgVY6mCwR2Vl5pRkdvmRVN8FzrCzY-cIuSxK6YFTeoKbh0gWJIftW0cDqmo1Ku2IEhNm47q-jmoIEbITWR30Vbq7pL-2fwr4iffdCI1sUrG6L6YnHa-l3L-FiMv4-nAZN24ZAJim3wUBpLUwmUhVimBlphIqyPESRhAQv-4YbVKnKda4IfQqXHGzSfohGR3QWKIJjr2C7KAt8AywWKMmGzmRs3L8qLmVkzCCUXORIdhDvwRHxdd5su9Xce9SjcN4xoAcfW5bPVVP03PXeuLqL9F1HelNX-riL6KCVm7VZBWGgzKmcHrztbhN7ne9FFlhWNU3CCRsn99FkvlF9KjbTRN6IdUV6evC6ltvubck6pMVKxN7_VmUfHhPu85n5_fgAtu2ywkPCVjY_8nvrL1UbHPk |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9NAEB5V5VA48CivQCkLAomLS_xaxwcOVR5NaBuB0kq9ufZ6VkQUb-SHqvJT-An8Bf4cs-vYBNTCqRKXXDK2V7Mznm-8M98AvEJ0UaArrLTnSIsQuCSXCkOLQrvryYR-DQPf4ZSPj733J_7JGnxremFoEQXdqTCH-L_YBey3sfB1N7nfFFDu48U5pWfFu8mA9vK144yGR_2xtZwgYMVe4JdWT6QplyEPhI12KGPJhRMmNnLPJqTTlb5EEYgkTQQBIa77VGXQtVGmDpml4JrUgF7vNwj0ODqx2-3P2hMKnfU20_j04W3DWrS6VB3xRPF7xLsCxppwNroDP1pFmCqWzztVmeyIr39wRP6fmroLt5comu3WZn8P1jDbhI1-M7xuE26t8Czeh--TjM3mZcX2cnVefmJKslmV654OsitrlCOyPXWWMgo1atGUCjKVsem8zBW5mDVQC0zp8liXxCH7WNGF1Rc2UGXBCPazYT1NSCzpF9gAS1PjlulnjS9Scxf2AUnd8xTZPGP1EFAjPFxpNnwAx9eiuIewnqkMHwNzOcYuAcjYlfrLnB_HjpQ9O_Z5gpT1-R3Ypv2Oli-ZIjL1A44dtRvegTeNpUViSfGuJ42cXSb6shVd1LwmlwltNea68lRyBk0KyIMOvGj_pu3VJ01xhqqqZTyfMgHvbzKUW4ReN-BXyzgmZdeURB14VLtLu1rKhUlZHn_yL608h43x0eFBdDCZ7j-Fm4R4DSdB192C9TKv8BmhyjLZNu7N4PS6veQnbcKAdg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9NAEF5VReJx4FFegVIWBBIXl_i1iQ8cqjhpQiEqCpV6M-vdWRFRvJEfqsqP4QfwJ_hrzK4fCqiFUyUuuWRsr2Z3PN94Zr4h5AWADwJ84cihpxxE4ApNKoocdO1-oFL8tQx87-dsehS8PQ6PN8j3thcGF1HgnQqbxDdWvZKqYRhwX3MRmo7ysC2iPICzUwzRijezGPfzpedNxh9HU6eZIuDwYBCWzlBIyVTEBsIFN1JcMeFFqQsscBHt9FWoQAxEKlOBYIiZXlU16LugpIdHUzBDbICv-CsmPWiCu73RostSmMi3nchnErgtc9H6Uo3XE8XvXu8CKGtd2uQW-dkpw1ayfNmtynRXfPuDJ_L_1dZtcrNB03SvPv53yAZkW-TaqB1it0VurPEt3iU_ZhldLMuK7uf6tPxMtaKLKje9HXi-nEkOQPf1iaTocvSqLRmkOqPzZZlrNDUn1iuQeDk3pXFAP1R4YfWVxrosKMJ_Oq6nComGhoHGUNpat8w8a3om7V3oIaDKlxLoMqP1MFArPF5rOrxHji5FcffJZqYzeEioz4D7CCS5r8wXupBzT6mhy0OWAkZ_YY_s4J4nzcumSGwdgecm3Yb3yKv2tCWioXo3E0dOzhN93omuan6T84S22yO79lSGyC8yjrZHnnV_4_aajBPPQFe1TBBiRBD8TQZjjCjoD9jFMp4N3Q01UY88qE2mWy3GxKisgD36l1aekquH8SR5N5sfPCbXEfhaaoK-v002y7yCJwguy3THWjglny7bSH4BAayC-Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+Situ+Growth+of+Surfactant-Free+Gold+Nanoparticles+on+Nitrogen-Doped+Graphene+Quantum+Dots+for+Electrochemical+Detection+of+Hydrogen+Peroxide+in+Biological+Environments&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Ju%2C+Jian&rft.au=Chen%2C+Wei&rft.date=2015-02-03&rft.pub=American+Chemical+Society&rft.issn=0003-2700&rft.eissn=1520-6882&rft.volume=87&rft.issue=3&rft.spage=1903&rft_id=info:doi/10.1021%2Fac5041555&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3582780051 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2700&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2700&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2700&client=summon |