In Situ Growth of Surfactant-Free Gold Nanoparticles on Nitrogen-Doped Graphene Quantum Dots for Electrochemical Detection of Hydrogen Peroxide in Biological Environments

In this work, we report a green and simple strategy for the in situ growth of surfactant-free Au nanoparticles (Au NPs) on nitrogen-doped graphene quantum dots (Au NPs–N-GQDs). The formation of hybrid was achieved by just mixing the N-GQDs and HAuCl4·4H2O without addition of any other reductant and...

Full description

Saved in:
Bibliographic Details
Published inAnalytical chemistry (Washington) Vol. 87; no. 3; pp. 1903 - 1910
Main Authors Ju, Jian, Chen, Wei
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 03.02.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this work, we report a green and simple strategy for the in situ growth of surfactant-free Au nanoparticles (Au NPs) on nitrogen-doped graphene quantum dots (Au NPs–N-GQDs). The formation of hybrid was achieved by just mixing the N-GQDs and HAuCl4·4H2O without addition of any other reductant and surfactant. High-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) characterizations clearly showed the formation of Au nanoparticles with predominantly exposed (111) facets which can provide more adsorption sites. Such nonsurfactant-capped Au NPs can provide naked catalytic surface with highly electrocatalytic activity. The Au NPs–N-GQDs exhibit high sensitivity and selectivity for electrochemical detection of hydrogen peroxide (H2O2) with a low detection limit of 0.12 μM and sensitivity of 186.22 μA/mM cm2. Importantly, the Au NPs–N-GQDs-based electrochemical biosensor has shown great potential applications for detection of H2O2 levels in human serum samples and that released from human cervical cancer cells with satisfactory results. The present study demonstrates that such novel Au NPs–N-GQDs nanocomposite is promising for fabrication of nonenzymatic H2O2 biosensors.
AbstractList In this work, we report a green and simple strategy for the in situ growth of surfactant-free Au nanoparticles (Au NPs) on nitrogen-doped graphene quantum dots (Au NPs-N-GQDs). The formation of hybrid was achieved by just mixing the N-GQDs and HAuCl...-4H...O without addition of any other reductant and surfactant. High-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) characterizations clearly showed the formation of Au nanoparticles with predominantly exposed (111) facets which can provide more adsorption sites. Such nonsurfactant-capped Au NPs can provide naked catalytic surface with highly electrocatalytic activity. The Au NPs-N-GQDs exhibit high sensitivity and selectivity for electrochemical detection of hydrogen peroxide (H...O...) with a low detection limit of 0.12 ...M and sensitivity of 186.22 ...A/mM cm... Importantly, the Au NPs-N-GQDs-based electrochemical biosensor has shown great potential applications for detection of H...O... levels in human serum samples and that released from human cervical cancer cells with satisfactory results. The present study demonstrates that such novel Au NPs-N-GQDs nanocomposite is promising for fabrication of nonenzymatic H...O... biosensors. (ProQuest: ... denotes formulae/symbols omitted.)
In this work, we report a green and simple strategy for the in situ growth of surfactant-free Au nanoparticles (Au NPs) on nitrogen-doped graphene quantum dots (Au NPs–N-GQDs). The formation of hybrid was achieved by just mixing the N-GQDs and HAuCl₄·4H₂O without addition of any other reductant and surfactant. High-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) characterizations clearly showed the formation of Au nanoparticles with predominantly exposed (111) facets which can provide more adsorption sites. Such nonsurfactant-capped Au NPs can provide naked catalytic surface with highly electrocatalytic activity. The Au NPs–N-GQDs exhibit high sensitivity and selectivity for electrochemical detection of hydrogen peroxide (H₂O₂) with a low detection limit of 0.12 μM and sensitivity of 186.22 μA/mM cm². Importantly, the Au NPs–N-GQDs-based electrochemical biosensor has shown great potential applications for detection of H₂O₂ levels in human serum samples and that released from human cervical cancer cells with satisfactory results. The present study demonstrates that such novel Au NPs–N-GQDs nanocomposite is promising for fabrication of nonenzymatic H₂O₂ biosensors.
In this work, we report a green and simple strategy for the in situ growth of surfactant-free Au nanoparticles (Au NPs) on nitrogen-doped graphene quantum dots (Au NPs–N-GQDs). The formation of hybrid was achieved by just mixing the N-GQDs and HAuCl4·4H2O without addition of any other reductant and surfactant. High-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) characterizations clearly showed the formation of Au nanoparticles with predominantly exposed (111) facets which can provide more adsorption sites. Such nonsurfactant-capped Au NPs can provide naked catalytic surface with highly electrocatalytic activity. The Au NPs–N-GQDs exhibit high sensitivity and selectivity for electrochemical detection of hydrogen peroxide (H2O2) with a low detection limit of 0.12 μM and sensitivity of 186.22 μA/mM cm2. Importantly, the Au NPs–N-GQDs-based electrochemical biosensor has shown great potential applications for detection of H2O2 levels in human serum samples and that released from human cervical cancer cells with satisfactory results. The present study demonstrates that such novel Au NPs–N-GQDs nanocomposite is promising for fabrication of nonenzymatic H2O2 biosensors.
In this work, we report a green and simple strategy for the in situ growth of surfactant-free Au nanoparticles (Au NPs) on nitrogen-doped graphene quantum dots (Au NPs-N-GQDs). The formation of hybrid was achieved by just mixing the N-GQDs and HAuCl4·4H2O without addition of any other reductant and surfactant. High-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) characterizations clearly showed the formation of Au nanoparticles with predominantly exposed (111) facets which can provide more adsorption sites. Such nonsurfactant-capped Au NPs can provide naked catalytic surface with highly electrocatalytic activity. The Au NPs-N-GQDs exhibit high sensitivity and selectivity for electrochemical detection of hydrogen peroxide (H2O2) with a low detection limit of 0.12 μM and sensitivity of 186.22 μA/mM cm(2). Importantly, the Au NPs-N-GQDs-based electrochemical biosensor has shown great potential applications for detection of H2O2 levels in human serum samples and that released from human cervical cancer cells with satisfactory results. The present study demonstrates that such novel Au NPs-N-GQDs nanocomposite is promising for fabrication of nonenzymatic H2O2 biosensors.
In this work, we report a green and simple strategy for the in situ growth of surfactant-free Au nanoparticles (Au NPs) on nitrogen-doped graphene quantum dots (Au NPs-N-GQDs). The formation of hybrid was achieved by just mixing the N-GQDs and HAuCl4·4H2O without addition of any other reductant and surfactant. High-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) characterizations clearly showed the formation of Au nanoparticles with predominantly exposed (111) facets which can provide more adsorption sites. Such nonsurfactant-capped Au NPs can provide naked catalytic surface with highly electrocatalytic activity. The Au NPs-N-GQDs exhibit high sensitivity and selectivity for electrochemical detection of hydrogen peroxide (H2O2) with a low detection limit of 0.12 μM and sensitivity of 186.22 μA/mM cm(2). Importantly, the Au NPs-N-GQDs-based electrochemical biosensor has shown great potential applications for detection of H2O2 levels in human serum samples and that released from human cervical cancer cells with satisfactory results. The present study demonstrates that such novel Au NPs-N-GQDs nanocomposite is promising for fabrication of nonenzymatic H2O2 biosensors.In this work, we report a green and simple strategy for the in situ growth of surfactant-free Au nanoparticles (Au NPs) on nitrogen-doped graphene quantum dots (Au NPs-N-GQDs). The formation of hybrid was achieved by just mixing the N-GQDs and HAuCl4·4H2O without addition of any other reductant and surfactant. High-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) characterizations clearly showed the formation of Au nanoparticles with predominantly exposed (111) facets which can provide more adsorption sites. Such nonsurfactant-capped Au NPs can provide naked catalytic surface with highly electrocatalytic activity. The Au NPs-N-GQDs exhibit high sensitivity and selectivity for electrochemical detection of hydrogen peroxide (H2O2) with a low detection limit of 0.12 μM and sensitivity of 186.22 μA/mM cm(2). Importantly, the Au NPs-N-GQDs-based electrochemical biosensor has shown great potential applications for detection of H2O2 levels in human serum samples and that released from human cervical cancer cells with satisfactory results. The present study demonstrates that such novel Au NPs-N-GQDs nanocomposite is promising for fabrication of nonenzymatic H2O2 biosensors.
Author Ju, Jian
Chen, Wei
AuthorAffiliation State Key Laboratory of Electroanalytical Chemistry
Chinese Academy of Sciences
AuthorAffiliation_xml – name: Chinese Academy of Sciences
– name: State Key Laboratory of Electroanalytical Chemistry
Author_xml – sequence: 1
  givenname: Jian
  surname: Ju
  fullname: Ju, Jian
– sequence: 2
  givenname: Wei
  surname: Chen
  fullname: Chen, Wei
  email: weichen@ciac.ac.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25533846$$D View this record in MEDLINE/PubMed
BookMark eNqN0t1qFDEUB_AgFbutXvgCEhBBL8bmZCaZnUvtbreFUpXq9ZDNnHRTZpJtklH7Sj6l2d1apAp6FQi__8nHOQdkz3mHhDwH9hYYhyOlBatACPGITEBwVsjplO-RCWOsLHjN2D45iPGaMQAG8gnZ50KU5bSSE_LjzNFLm0a6CP5bWlFv6OUYjNJJuVScBES68H1HL5TzaxWS1T1G6h29sCn4K3TFzK-xy3G1XqFD-mnMwXGgM58iNT7QeY86U73CwWrV0xmmvGFziXzW6W23rUI_YvDfbYfUOvre-t5fbfHcfbXBuwFdik_JY6P6iM_u1kPy5WT--fi0OP-wODt-d16oqhapmOquk6aRtQaExigjNW-WgLICkMCMMKhrveyWGspG5h9qTM0ATcdlOdWSl4fk9a7uOvibEWNqBxs19r1y6MfY8s23Miay_xcF2fCyqVj9P1TwSohaVJm-fECv_RhcfvNWQQOVrLN6cafG5YBduw52UOG2_dXbDN7sgA4-xoDmngBrN3PT3s9NtkcPrLZJbbqUgrL9XxOvdgml42_3-8P9BCUg0CI
CODEN ANCHAM
CitedBy_id crossref_primary_10_1002_smll_201704239
crossref_primary_10_1016_j_jelechem_2016_05_036
crossref_primary_10_1021_acsanm_9b00969
crossref_primary_10_1063_1_4974088
crossref_primary_10_1021_acsanm_1c01924
crossref_primary_10_1016_j_apsusc_2020_145932
crossref_primary_10_1039_C5NJ03252K
crossref_primary_10_1021_acsanm_0c00194
crossref_primary_10_1021_acs_analchem_7b05267
crossref_primary_10_1557_s43578_022_00636_9
crossref_primary_10_1002_elan_202200192
crossref_primary_10_1007_s00604_020_04376_7
crossref_primary_10_1016_j_aca_2022_339461
crossref_primary_10_1002_elan_201700175
crossref_primary_10_1039_C5RA04653J
crossref_primary_10_1016_j_electacta_2017_03_085
crossref_primary_10_1016_j_fuel_2021_120558
crossref_primary_10_1021_acs_iecr_6b02953
crossref_primary_10_1021_acs_jpcc_0c10809
crossref_primary_10_1016_j_microc_2020_105331
crossref_primary_10_1039_C8AN01876F
crossref_primary_10_1002_adfm_202102459
crossref_primary_10_1016_j_bios_2019_03_043
crossref_primary_10_1039_C8NJ02086H
crossref_primary_10_1016_j_sna_2017_12_028
crossref_primary_10_1021_acs_analchem_8b05923
crossref_primary_10_1021_acs_jpcc_7b10279
crossref_primary_10_1038_s41467_019_11644_5
crossref_primary_10_3390_mi10040268
crossref_primary_10_1007_s10008_018_4117_6
crossref_primary_10_1021_acs_analchem_0c02769
crossref_primary_10_1016_j_apsusc_2019_04_212
crossref_primary_10_1039_C9AN00722A
crossref_primary_10_1002_slct_202000233
crossref_primary_10_1039_C6RA15691F
crossref_primary_10_1016_j_cartre_2024_100407
crossref_primary_10_1039_C8TB00614H
crossref_primary_10_20964_2019_05_04
crossref_primary_10_1016_j_apsusc_2018_03_246
crossref_primary_10_1039_C8NJ01611A
crossref_primary_10_1016_j_foodchem_2021_130964
crossref_primary_10_1155_2020_9627697
crossref_primary_10_1021_acsami_7b16094
crossref_primary_10_1016_j_electacta_2021_138468
crossref_primary_10_1039_C6NJ02473D
crossref_primary_10_1016_j_cej_2020_127203
crossref_primary_10_1016_j_microc_2017_03_023
crossref_primary_10_1016_j_bios_2018_01_041
crossref_primary_10_1016_j_snb_2016_10_043
crossref_primary_10_1016_j_snb_2017_12_179
crossref_primary_10_1021_acs_analchem_7b04070
crossref_primary_10_1002_celc_202001229
crossref_primary_10_1016_j_molliq_2019_111817
crossref_primary_10_1039_C6RA22264A
crossref_primary_10_1016_j_jallcom_2018_06_272
crossref_primary_10_1088_1361_6528_ab60ce
crossref_primary_10_1149_2_0451914jes
crossref_primary_10_1016_j_jallcom_2019_02_195
crossref_primary_10_1016_j_cis_2019_101991
crossref_primary_10_1016_j_talanta_2016_11_030
crossref_primary_10_1016_j_envres_2022_113264
crossref_primary_10_1016_j_snb_2016_09_044
crossref_primary_10_1016_j_mtsust_2023_100605
crossref_primary_10_1039_C6RA14233H
crossref_primary_10_1039_C7CS00500H
crossref_primary_10_1007_s10971_015_3782_5
crossref_primary_10_1007_s12649_024_02525_0
crossref_primary_10_1186_s12951_025_03281_6
crossref_primary_10_1039_D2NJ04135A
crossref_primary_10_1016_j_carbon_2017_02_103
crossref_primary_10_1021_acsaelm_8b00131
crossref_primary_10_1016_j_electacta_2017_11_033
crossref_primary_10_1039_C7TB01073G
crossref_primary_10_1007_s10008_016_3221_8
crossref_primary_10_1016_j_microc_2018_03_025
crossref_primary_10_1016_j_trac_2020_115959
crossref_primary_10_1039_C7AN01446E
crossref_primary_10_1016_j_snb_2016_09_032
crossref_primary_10_1016_j_jelechem_2023_117918
crossref_primary_10_1007_s00604_019_3701_5
crossref_primary_10_1002_cjoc_202000609
crossref_primary_10_1016_j_talanta_2016_12_067
crossref_primary_10_1002_elan_201600366
crossref_primary_10_3390_mi10100662
crossref_primary_10_1039_C6RA04602A
crossref_primary_10_1016_j_snb_2016_08_124
crossref_primary_10_1039_C5RA18228J
crossref_primary_10_1016_j_snb_2021_131053
crossref_primary_10_1021_acs_analchem_8b03423
crossref_primary_10_1039_C7QI00262A
crossref_primary_10_1002_elan_201700142
crossref_primary_10_1016_j_apsusc_2019_06_065
crossref_primary_10_1016_j_matlet_2019_127153
crossref_primary_10_1002_bio_70089
crossref_primary_10_1016_j_matchemphys_2022_125792
crossref_primary_10_1016_j_microc_2020_105522
crossref_primary_10_1002_elan_201600032
crossref_primary_10_1016_j_jelechem_2019_113592
crossref_primary_10_1155_2022_9866111
crossref_primary_10_1002_slct_201800882
crossref_primary_10_1039_C5NR04005A
crossref_primary_10_1016_j_snb_2016_11_044
crossref_primary_10_1016_j_talanta_2019_120210
crossref_primary_10_1016_j_electacta_2017_09_160
crossref_primary_10_1002_cphc_202100783
crossref_primary_10_1016_j_ab_2023_115432
crossref_primary_10_1039_C9TB00021F
crossref_primary_10_1039_C5RA10157C
crossref_primary_10_1155_2016_8174913
crossref_primary_10_1007_s00604_024_06456_4
crossref_primary_10_1016_j_msec_2018_12_141
crossref_primary_10_1039_C5TC00246J
crossref_primary_10_1002_aisy_202000117
crossref_primary_10_1016_j_apsusc_2020_146715
crossref_primary_10_1002_smll_201601571
crossref_primary_10_1039_D0RA01740J
crossref_primary_10_1021_acsami_0c03415
crossref_primary_10_1002_elan_202100225
crossref_primary_10_1007_s00604_017_2302_4
crossref_primary_10_1007_s00604_019_3397_6
crossref_primary_10_1007_s40242_019_8322_3
crossref_primary_10_1007_s10008_018_3882_6
crossref_primary_10_1016_j_snb_2017_02_132
crossref_primary_10_1039_C9AY01256G
crossref_primary_10_1007_s00216_018_1423_x
crossref_primary_10_20964_2021_08_04
crossref_primary_10_1016_j_aca_2019_10_052
crossref_primary_10_1149_1945_7111_ab9c83
crossref_primary_10_1016_j_saa_2020_118499
crossref_primary_10_1021_acs_chemrev_1c00759
crossref_primary_10_1016_j_msec_2020_111756
crossref_primary_10_1007_s42247_021_00179_5
crossref_primary_10_1007_s11581_019_03118_x
crossref_primary_10_1039_C5CS00811E
crossref_primary_10_1016_j_jallcom_2020_158323
crossref_primary_10_1021_acs_chemmater_7b02932
crossref_primary_10_1007_s12274_018_2135_4
crossref_primary_10_1016_j_snb_2017_11_184
crossref_primary_10_3390_catal15040298
crossref_primary_10_1002_smll_202208209
crossref_primary_10_1021_acsami_5b09300
crossref_primary_10_1016_j_mssp_2024_108204
crossref_primary_10_1039_C8NJ03550D
crossref_primary_10_1016_j_apsusc_2017_07_014
crossref_primary_10_1021_acssuschemeng_2c03116
crossref_primary_10_1149_1945_7111_ad2d89
crossref_primary_10_1039_D1RA00733E
crossref_primary_10_1016_j_ijhydene_2018_04_109
crossref_primary_10_3390_c9020045
crossref_primary_10_1002_elan_201600608
crossref_primary_10_1016_j_electacta_2021_139803
crossref_primary_10_1021_acsami_7b08781
crossref_primary_10_1002_tcr_202400185
crossref_primary_10_1007_s12161_018_1207_0
crossref_primary_10_1021_acsbiomaterials_4c01256
crossref_primary_10_1016_j_jorganchem_2020_121507
crossref_primary_10_1016_j_aca_2015_09_053
crossref_primary_10_3390_s19061304
crossref_primary_10_1016_j_molliq_2017_06_106
crossref_primary_10_1021_acsanm_8b00210
crossref_primary_10_1016_j_bios_2016_05_002
crossref_primary_10_1016_j_bios_2017_08_018
crossref_primary_10_1039_D0MH00798F
crossref_primary_10_3390_nano12091475
crossref_primary_10_1016_j_procbio_2022_01_025
crossref_primary_10_2341_20_257_L
crossref_primary_10_1080_10408347_2021_1977608
crossref_primary_10_1016_j_bios_2017_12_040
crossref_primary_10_1016_j_snb_2017_06_172
crossref_primary_10_1149_2_0021705jes
crossref_primary_10_1021_acs_chemmater_5b04915
crossref_primary_10_1016_j_rechem_2021_100171
crossref_primary_10_1016_j_jelechem_2017_04_017
crossref_primary_10_1149_2_1041813jes
crossref_primary_10_1007_s13538_024_01525_8
crossref_primary_10_1007_s10853_019_03750_y
crossref_primary_10_1016_j_bios_2016_06_011
crossref_primary_10_1002_elan_201800897
crossref_primary_10_1016_j_jiec_2022_05_010
crossref_primary_10_1039_D1NJ01655E
crossref_primary_10_1016_j_saa_2023_122440
crossref_primary_10_1021_acssensors_9b00514
crossref_primary_10_1039_C5NR05326A
crossref_primary_10_1016_j_snb_2018_05_036
crossref_primary_10_1039_C6RA12986B
crossref_primary_10_1016_j_jallcom_2019_151927
crossref_primary_10_1021_acsomega_1c04903
crossref_primary_10_1039_C8RA09577A
crossref_primary_10_1016_j_colsurfa_2024_134061
crossref_primary_10_1021_acs_iecr_6b04752
crossref_primary_10_1016_j_materresbull_2018_05_032
crossref_primary_10_1016_j_snb_2016_03_127
crossref_primary_10_1002_slct_202200894
crossref_primary_10_1016_j_matchemphys_2019_02_046
crossref_primary_10_1016_j_cclet_2017_04_032
crossref_primary_10_1016_j_snb_2017_02_119
crossref_primary_10_2139_ssrn_3961287
crossref_primary_10_1002_pc_25249
crossref_primary_10_1021_acs_chemrev_6b00290
crossref_primary_10_1016_j_jhazmat_2015_03_046
crossref_primary_10_1016_j_cej_2025_159479
crossref_primary_10_1016_j_snb_2016_01_007
crossref_primary_10_1039_C8TA12099D
crossref_primary_10_1039_C6QM00195E
crossref_primary_10_1016_j_dyepig_2020_108725
crossref_primary_10_1021_acs_inorgchem_7b01515
crossref_primary_10_3390_mi13101762
crossref_primary_10_1016_j_bios_2016_05_015
crossref_primary_10_1039_D0CC03758C
crossref_primary_10_1007_s13738_018_1386_z
crossref_primary_10_1016_j_jelechem_2017_05_004
crossref_primary_10_1016_j_snb_2017_05_155
crossref_primary_10_1016_j_snb_2017_10_169
crossref_primary_10_1016_j_colsurfb_2022_113033
crossref_primary_10_1007_s11706_022_0603_y
crossref_primary_10_1007_s00604_018_2957_5
crossref_primary_10_1016_j_snb_2018_07_172
crossref_primary_10_1021_acssuschemeng_3c03663
crossref_primary_10_1016_j_bios_2019_111431
crossref_primary_10_1016_j_msec_2016_11_134
crossref_primary_10_3390_ma16031261
crossref_primary_10_1016_j_bbe_2018_03_006
crossref_primary_10_1016_j_snb_2017_10_151
crossref_primary_10_1016_j_microc_2021_106732
crossref_primary_10_1039_C7AY02290E
crossref_primary_10_3390_bios14060277
crossref_primary_10_1002_med_21931
crossref_primary_10_1016_S1452_3981_23_15919_0
crossref_primary_10_1007_s10895_023_03517_4
crossref_primary_10_1002_slct_201901779
crossref_primary_10_1016_j_microc_2024_110639
crossref_primary_10_1016_j_carbon_2020_07_081
crossref_primary_10_1007_s10311_020_01123_5
crossref_primary_10_3390_catal14010008
crossref_primary_10_1016_j_apsusc_2019_01_201
crossref_primary_10_1016_j_bios_2016_12_040
crossref_primary_10_1016_j_matlet_2019_01_157
crossref_primary_10_1039_C5TB00511F
crossref_primary_10_1039_C7NJ00505A
crossref_primary_10_20964_2017_05_75
crossref_primary_10_1016_j_snb_2017_11_163
crossref_primary_10_1002_celc_202000321
crossref_primary_10_1038_s41598_017_07186_9
crossref_primary_10_1016_j_saa_2024_123993
crossref_primary_10_1039_D1RA04248C
crossref_primary_10_1149_1945_7111_ab818b
crossref_primary_10_1039_C6RA23551D
crossref_primary_10_1016_j_bios_2016_11_029
crossref_primary_10_1038_s41598_023_37518_x
crossref_primary_10_1002_elan_201600425
crossref_primary_10_2174_1573413715666190206152717
crossref_primary_10_20964_2022_07_06
crossref_primary_10_1007_s11581_022_04777_z
crossref_primary_10_1007_s13738_019_01653_y
crossref_primary_10_1016_j_inoche_2019_107588
crossref_primary_10_1016_j_colsurfa_2023_131805
crossref_primary_10_1007_s00604_019_3779_9
crossref_primary_10_1039_C5TB00413F
crossref_primary_10_3934_matersci_2018_3_422
crossref_primary_10_1016_j_saa_2018_08_021
crossref_primary_10_1002_advs_201600126
crossref_primary_10_1016_j_snb_2018_10_015
crossref_primary_10_1039_C5CP06582H
crossref_primary_10_1007_s10008_019_04322_5
crossref_primary_10_1039_D4TA08207A
crossref_primary_10_1016_j_bios_2016_07_111
crossref_primary_10_20964_2020_09_82
crossref_primary_10_1016_j_jelechem_2017_03_027
crossref_primary_10_1016_j_jphotochem_2019_112336
crossref_primary_10_1016_j_bios_2015_06_032
crossref_primary_10_3390_molecules29122769
crossref_primary_10_1149_2_0501916jes
crossref_primary_10_1080_24701556_2021_2024231
crossref_primary_10_1016_j_bioelechem_2018_05_001
crossref_primary_10_1016_j_bios_2016_10_080
crossref_primary_10_1039_C5AN02321A
crossref_primary_10_1016_j_teac_2023_e00208
crossref_primary_10_1071_CH17072
crossref_primary_10_1364_BOE_9_001735
crossref_primary_10_1007_s00216_018_1370_6
crossref_primary_10_1016_j_aca_2015_11_021
crossref_primary_10_1039_C6RA12420H
crossref_primary_10_1039_D2TC00406B
crossref_primary_10_1016_j_talanta_2020_121951
crossref_primary_10_1016_j_bios_2018_05_045
crossref_primary_10_1016_j_aca_2017_01_067
crossref_primary_10_1149_2_0651813jes
crossref_primary_10_1021_acsami_0c09689
crossref_primary_10_1021_acs_analchem_1c01790
crossref_primary_10_1039_C7TB02039B
crossref_primary_10_1007_s40843_018_9235_3
crossref_primary_10_1016_j_bios_2019_111446
crossref_primary_10_1016_j_ecoenv_2019_110123
crossref_primary_10_1039_C5NR07579C
crossref_primary_10_1016_j_snb_2017_09_075
crossref_primary_10_1016_j_jpba_2018_05_050
crossref_primary_10_1016_j_microc_2021_106389
crossref_primary_10_1016_j_jelechem_2018_05_005
crossref_primary_10_1142_S1793292017500060
crossref_primary_10_1016_j_snb_2018_09_016
crossref_primary_10_1016_j_jiec_2016_09_012
crossref_primary_10_1080_03067319_2021_1980785
crossref_primary_10_1016_j_snb_2017_01_166
crossref_primary_10_1016_j_snb_2018_11_150
crossref_primary_10_1039_C6AN00543H
crossref_primary_10_1002_app_48653
crossref_primary_10_1016_j_bioadv_2022_213234
crossref_primary_10_1016_j_jphotochem_2019_112204
crossref_primary_10_1016_j_aca_2015_04_057
crossref_primary_10_1186_s12951_020_00698_z
crossref_primary_10_1016_j_trac_2023_117223
crossref_primary_10_1021_acsanm_2c03073
crossref_primary_10_1016_j_jelechem_2021_115603
crossref_primary_10_1016_j_aca_2020_06_003
crossref_primary_10_1016_j_electacta_2016_03_031
crossref_primary_10_1080_03067319_2017_1355969
crossref_primary_10_1016_j_apcatb_2017_06_088
crossref_primary_10_1021_acsami_6b13788
crossref_primary_10_1080_00958972_2018_1521966
crossref_primary_10_1016_j_bios_2022_114303
crossref_primary_10_1016_j_talanta_2019_06_005
crossref_primary_10_1016_j_bios_2017_09_047
crossref_primary_10_1039_C5NR02427G
crossref_primary_10_1016_j_jphotochem_2018_12_011
crossref_primary_10_1016_j_apsusc_2020_148699
crossref_primary_10_1039_C5RA18176C
crossref_primary_10_1039_C8CS00445E
crossref_primary_10_1016_j_trac_2020_116007
crossref_primary_10_1039_D2NH00006G
crossref_primary_10_1016_j_foodchem_2022_134509
crossref_primary_10_1016_j_cej_2025_160065
crossref_primary_10_1016_j_jphotochem_2019_112255
crossref_primary_10_1039_C5AY02976G
crossref_primary_10_1002_agt2_266
crossref_primary_10_1002_tcr_201700101
crossref_primary_10_1007_s00604_019_3727_8
crossref_primary_10_1007_s00604_017_2179_2
crossref_primary_10_1016_j_inoche_2024_113870
crossref_primary_10_2116_analsci_20P463
crossref_primary_10_2217_nnm_2020_0353
crossref_primary_10_1007_s00604_018_2717_6
crossref_primary_10_1039_C6TC02330D
crossref_primary_10_3390_catal7010001
crossref_primary_10_1016_j_electacta_2017_03_206
crossref_primary_10_1016_j_foodchem_2022_132555
crossref_primary_10_1149_2_0031704jes
crossref_primary_10_1080_09593330_2016_1235231
crossref_primary_10_1039_C8AY02527D
crossref_primary_10_1039_C6RA10836A
crossref_primary_10_1007_s42765_023_00351_y
crossref_primary_10_1039_D1NJ05763D
crossref_primary_10_3390_antiox9090797
crossref_primary_10_1039_D3CC04657E
crossref_primary_10_3390_molecules27144571
crossref_primary_10_1016_j_aca_2021_338420
crossref_primary_10_1007_s10854_019_01797_w
crossref_primary_10_1021_acs_inorgchem_3c01148
crossref_primary_10_1002_elan_201500187
crossref_primary_10_1016_j_jlumin_2018_10_059
crossref_primary_10_1039_C9NA00756C
crossref_primary_10_1016_j_colsurfa_2022_130365
crossref_primary_10_1016_j_snb_2017_07_177
crossref_primary_10_1088_1361_6528_acd34e
crossref_primary_10_1021_acs_analchem_7b04435
crossref_primary_10_1039_C6TA04813G
crossref_primary_10_1016_j_jece_2023_109988
crossref_primary_10_1016_j_colsurfa_2020_125445
crossref_primary_10_1039_C6RA04695A
crossref_primary_10_1155_2018_1710438
crossref_primary_10_1016_j_carbon_2022_04_070
crossref_primary_10_1002_admi_202200995
crossref_primary_10_3390_nano11051120
crossref_primary_10_1016_j_clay_2015_10_030
crossref_primary_10_1007_s11581_017_2356_7
crossref_primary_10_1016_j_snb_2019_127550
crossref_primary_10_1016_j_cej_2020_125743
crossref_primary_10_1021_acs_analchem_6b00630
crossref_primary_10_1016_j_microc_2021_106341
crossref_primary_10_1016_j_bios_2017_09_038
crossref_primary_10_1016_j_electacta_2022_141432
crossref_primary_10_3390_s17102407
crossref_primary_10_1016_j_pmatsci_2022_101034
crossref_primary_10_1039_C5AY01414J
crossref_primary_10_1016_j_snb_2018_08_148
crossref_primary_10_1515_psr_2019_0013
crossref_primary_10_1016_j_cej_2021_132687
crossref_primary_10_1142_S1793292021300012
crossref_primary_10_1016_j_ab_2017_01_026
crossref_primary_10_1039_C6AY00289G
crossref_primary_10_1149_2162_8777_ab9c7a
crossref_primary_10_3390_nano9040634
crossref_primary_10_1021_acsnano_8b07564
crossref_primary_10_1002_admi_201801168
crossref_primary_10_1007_s41664_018_0047_7
crossref_primary_10_3390_coatings13111956
crossref_primary_10_1016_j_snb_2021_129725
crossref_primary_10_1016_j_jlumin_2018_11_033
crossref_primary_10_1021_acsanm_0c01560
crossref_primary_10_1002_slct_201700845
crossref_primary_10_1016_j_bios_2017_04_021
crossref_primary_10_1039_C9NJ03046H
crossref_primary_10_1016_j_carbon_2018_05_004
crossref_primary_10_1021_acs_analchem_5b02644
crossref_primary_10_1016_j_carbon_2019_07_014
crossref_primary_10_1186_s12951_022_01415_8
crossref_primary_10_1016_j_jelechem_2020_114680
crossref_primary_10_1557_jmr_2018_324
crossref_primary_10_1021_acsami_0c09254
crossref_primary_10_1039_C6RA20861D
crossref_primary_10_1007_s13738_017_1134_9
crossref_primary_10_1021_acssuschemeng_9b02886
crossref_primary_10_3390_bios12100910
crossref_primary_10_1016_j_ccr_2023_215270
crossref_primary_10_1039_C7RA11332C
crossref_primary_10_3390_catal9080631
crossref_primary_10_1007_s10854_020_04413_4
crossref_primary_10_1016_j_snb_2019_02_015
crossref_primary_10_1016_j_microc_2020_105601
crossref_primary_10_1039_D0NR07608B
crossref_primary_10_1016_j_snb_2018_01_072
crossref_primary_10_1039_C6NR00402D
crossref_primary_10_1016_j_jelechem_2018_04_058
crossref_primary_10_1021_acs_analchem_6b01637
crossref_primary_10_1021_acsami_6b15746
crossref_primary_10_1016_j_colsurfa_2023_132266
crossref_primary_10_1016_j_snb_2015_10_033
crossref_primary_10_1021_acsami_9b19067
crossref_primary_10_1016_j_microc_2019_01_065
crossref_primary_10_1039_D0BM01286F
crossref_primary_10_1021_acs_analchem_9b01715
crossref_primary_10_1016_j_snb_2021_129987
crossref_primary_10_1002_elan_201700315
crossref_primary_10_1007_s00216_019_01573_z
crossref_primary_10_1002_jctb_7644
crossref_primary_10_1016_j_trac_2018_06_009
crossref_primary_10_1016_j_aca_2019_09_062
crossref_primary_10_1016_j_bios_2024_116899
crossref_primary_10_3390_s21217109
crossref_primary_10_1016_j_ica_2019_119031
crossref_primary_10_1080_03067319_2019_1637859
crossref_primary_10_1039_C8AY02743A
crossref_primary_10_1007_s00216_018_1242_0
crossref_primary_10_1007_s10853_017_1221_4
crossref_primary_10_1016_j_snb_2018_01_068
crossref_primary_10_1039_C7NJ04510G
crossref_primary_10_1016_j_snb_2020_128131
crossref_primary_10_1007_s10854_017_6909_3
crossref_primary_10_1002_chem_201704038
crossref_primary_10_1002_solr_201900577
crossref_primary_10_1016_j_aca_2021_338202
crossref_primary_10_1016_j_electacta_2016_06_024
crossref_primary_10_1039_C5AY00944H
crossref_primary_10_1002_cphc_201601249
crossref_primary_10_1007_s00216_019_02275_2
crossref_primary_10_1002_adfm_202210674
crossref_primary_10_1016_j_aca_2020_01_066
crossref_primary_10_1016_j_apsusc_2017_01_300
crossref_primary_10_1021_acsami_5b06523
crossref_primary_10_1021_acsagscitech_1c00273
crossref_primary_10_1002_bkcs_12095
crossref_primary_10_1016_j_bios_2016_01_080
crossref_primary_10_1016_j_snb_2018_02_183
crossref_primary_10_2174_1573411014666180319145506
crossref_primary_10_1039_C5TA05425G
crossref_primary_10_1016_j_synthmet_2024_117697
crossref_primary_10_1002_elan_202100282
crossref_primary_10_1080_1536383X_2018_1479695
crossref_primary_10_1016_j_ab_2020_114065
crossref_primary_10_1016_j_snb_2018_01_243
crossref_primary_10_1016_j_jhazmat_2023_132210
crossref_primary_10_3390_polym14030617
crossref_primary_10_1016_j_microc_2019_103981
crossref_primary_10_1016_j_saa_2023_122819
crossref_primary_10_1021_acsanm_2c01397
crossref_primary_10_1002_adsu_201700137
crossref_primary_10_1016_j_dyepig_2021_109407
crossref_primary_10_1016_j_colsurfb_2018_05_032
crossref_primary_10_1021_acs_analchem_1c04299
crossref_primary_10_1021_acsomega_7b00643
crossref_primary_10_1021_acsanm_1c03221
crossref_primary_10_1016_j_ejmech_2017_07_036
crossref_primary_10_1007_s00604_018_2688_7
crossref_primary_10_1007_s00604_018_3110_1
crossref_primary_10_1016_j_trac_2018_08_012
crossref_primary_10_1039_C6RA07300J
crossref_primary_10_1021_acs_analchem_9b02967
crossref_primary_10_1016_j_cclet_2018_01_004
crossref_primary_10_1016_S1872_2040_17_61018_1
crossref_primary_10_1021_acsbiomaterials_8b00376
crossref_primary_10_1002_chem_201503191
crossref_primary_10_1016_j_apsusc_2019_07_141
crossref_primary_10_1002_tcr_201500236
crossref_primary_10_1016_j_seppur_2023_123996
crossref_primary_10_1149_1945_7111_ab7e1e
crossref_primary_10_1016_j_matt_2023_01_003
crossref_primary_10_3390_s20041072
crossref_primary_10_1016_j_electacta_2016_05_151
crossref_primary_10_1039_C6RA10470C
crossref_primary_10_1039_C6RA16516H
crossref_primary_10_1016_j_jhazmat_2021_126648
crossref_primary_10_1021_acsami_0c10102
crossref_primary_10_1016_j_aca_2016_10_031
crossref_primary_10_1039_C6NJ03443H
crossref_primary_10_1016_j_snb_2016_08_062
crossref_primary_10_1016_j_snb_2017_08_123
crossref_primary_10_1039_C9NR10963C
crossref_primary_10_1039_C8RA05861J
crossref_primary_10_1016_j_carbon_2024_119085
crossref_primary_10_1016_j_jlumin_2017_03_022
Cites_doi 10.1016/j.bios.2011.10.001
10.1016/j.bios.2013.02.010
10.1021/ja1084578
10.1016/j.talanta.2010.03.063
10.1039/b912552c
10.1016/j.jpowsour.2012.01.032
10.1039/c000254b
10.1016/j.bios.2009.06.041
10.1021/nl302358e
10.1039/C2RA22479H
10.1021/am501799w
10.1021/am503388z
10.1039/b415496g
10.1039/C3TA13878J
10.1016/j.elecom.2005.10.001
10.1039/C4RA10601F
10.1016/j.elecom.2009.02.033
10.1016/j.elecom.2013.07.045
10.1016/j.apcata.2010.03.031
10.1155/2012/157606
10.1039/c002416c
10.1021/ac101206j
10.1021/ac062228w
10.1016/j.aca.2011.10.070
10.1016/j.carbon.2012.06.002
10.1021/es300897u
10.1021/nn204378t
10.1021/jp012707t
10.1021/ac0624142
10.1021/ja206477z
10.1039/C3TA14754A
10.1016/j.bios.2014.02.061
10.1016/j.bios.2013.02.036
10.1021/ja206030c
10.1021/ja036352y
10.1021/ja309270h
10.1016/j.electacta.2012.11.117
10.1021/ac400659u
10.1021/es050001x
10.1002/adma.200902825
10.1021/ja2100577
10.1039/C4AY00549J
10.1016/j.cplett.2014.02.012
10.1016/S0022-0728(98)00362-3
10.1021/cs400114s
10.1021/ac402114c
10.1021/nn304675g
10.1039/c3dt51234g
10.1021/cm2012044
10.1021/am3022366
10.1016/0956-5663(94)90029-9
10.1016/S1388-2481(02)00263-1
10.1016/j.talanta.2009.12.007
ContentType Journal Article
Copyright Copyright American Chemical Society Feb 3, 2015
Copyright_xml – notice: Copyright American Chemical Society Feb 3, 2015
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7U5
7U7
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
7S9
L.6
DOI 10.1021/ac5041555
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
AIDS and Cancer Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Toxicology Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Materials Research Database
AGRICOLA

Materials Research Database
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1520-6882
EndPage 1910
ExternalDocumentID 3582780051
25533846
10_1021_ac5041555
c601088299
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID -
.K2
02
1AW
23M
4.4
53G
53T
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABOCM
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACNCT
ACPRK
ACS
AEESW
AENEX
AFEFF
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
D0L
DZ
EBS
ED
ED~
EJD
F20
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
P2P
PQEST
PQQKQ
ROL
RXW
TAE
TAF
TN5
UHB
UI2
UKR
VF5
VG9
VQA
W1F
WH7
X
X6Y
XFK
YZZ
---
-DZ
-~X
.DC
6J9
AAHBH
AAYXX
ABBLG
ABHFT
ABHMW
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ACKOT
ADHLV
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
KZ1
LMP
XSW
ZCA
~02
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7U5
7U7
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
7S9
L.6
ID FETCH-LOGICAL-a475t-8cdd6f967c1e19faf6c29b1e6411610f5fec7cbdbc13960039f701efd2638c623
IEDL.DBID ACS
ISSN 0003-2700
1520-6882
IngestDate Fri Jul 11 05:09:45 EDT 2025
Fri Jul 11 06:36:21 EDT 2025
Fri Jul 11 10:15:30 EDT 2025
Mon Jun 30 08:40:25 EDT 2025
Thu Apr 03 07:02:19 EDT 2025
Thu Apr 24 23:06:36 EDT 2025
Tue Jul 01 02:49:10 EDT 2025
Thu Aug 27 13:41:57 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a475t-8cdd6f967c1e19faf6c29b1e6411610f5fec7cbdbc13960039f701efd2638c623
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 25533846
PQID 1652191467
PQPubID 45400
PageCount 8
ParticipantIDs proquest_miscellaneous_2000300526
proquest_miscellaneous_1692394076
proquest_miscellaneous_1652455754
proquest_journals_1652191467
pubmed_primary_25533846
crossref_primary_10_1021_ac5041555
crossref_citationtrail_10_1021_ac5041555
acs_journals_10_1021_ac5041555
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-02-03
PublicationDateYYYYMMDD 2015-02-03
PublicationDate_xml – month: 02
  year: 2015
  text: 2015-02-03
  day: 03
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Analytical chemistry (Washington)
PublicationTitleAlternate Anal. Chem
PublicationYear 2015
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References King D. W. (ref9/cit9) 2007; 79
Gopalan A. I. (ref13/cit13) 2013; 46
Pan D. Y. (ref44/cit44) 2010; 22
Rahman M. R. (ref25/cit25) 2010; 82
Mao C. J. (ref17/cit17) 2012; 31
Jirkovsky J. S. (ref24/cit24) 2011; 133
Li Q. Q. (ref52/cit52) 2012; 134
Wei W. T. (ref39/cit39) 2012; 204
Keen O. S. (ref3/cit3) 2012; 46
Wei Y. B. (ref6/cit6) 2010; 46
Lu L. M. (ref15/cit15) 2009; 25
Pramanik D. (ref5/cit5) 2011; 133
Awad M. I. (ref26/cit26) 2012; 730
Kou R. (ref29/cit29) 2009; 11
Arrii S. (ref45/cit45) 2004; 126
Dey D. (ref34/cit34) 2013; 42
Shu X. H. (ref4/cit4) 2007; 79
Chizari K. (ref40/cit40) 2010; 380
Bo X. J. (ref14/cit14) 2010; 81
Huang J. F. (ref20/cit20) 2014; 6
El-Deab M. S. (ref21/cit21) 2002; 4
Ju J. (ref41/cit41) 2014; 4
Sun X. L. (ref10/cit10) 2012; 12
Zhang G. R. (ref43/cit43) 2012; 6
Huang H. J. (ref33/cit33) 2014; 2
Bai J. (ref51/cit51) 2013; 85
Tsiafoulis C. G. (ref2/cit2) 2005; 7
He G. Q. (ref49/cit49) 2013; 3
Lystvet S. M. (ref48/cit48) 2013; 3
Dong Y. Q. (ref46/cit46) 2012; 50
Liu M. M. (ref19/cit19) 2013; 45
Steigerwalt E. S. (ref30/cit30) 2002; 106
Qiu H. J. (ref32/cit32) 2013; 5
Quintino M. S. M. (ref7/cit7) 2005; 130
Vaz-Dominguez C. (ref23/cit23) 2013; 35
Fang H. T. (ref53/cit53) 2014; 6
Li Y. (ref36/cit36) 2012; 134
Jin S. H. (ref38/cit38) 2013; 7
Rajabzade H. (ref28/cit28) 2012; 9
Cai Z. Y. (ref47/cit47) 2014; 2
Dey S. (ref37/cit37) 2014; 595
Maruyama J. (ref50/cit50) 1998; 458
Yuan L. (ref8/cit8) 2012; 134
Ju J. (ref42/cit42) 2014; 58
Wang T. Y. (ref16/cit16) 2013; 85
Bing Y. H. (ref31/cit31) 2010; 39
Han Y. (ref12/cit12) 2013; 90
Ma J. H. (ref1/cit1) 2005; 39
Narasaiah D. (ref11/cit11) 1994; 9
Jirkovsky J. S. (ref22/cit22) 2010; 12
Song Y. (ref35/cit35) 2014; 6
Bo X. J. (ref18/cit18) 2010; 82
Shim J. H. (ref27/cit27) 2011; 23
References_xml – volume: 31
  start-page: 544
  year: 2012
  ident: ref17/cit17
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2011.10.001
– volume: 45
  start-page: 206
  year: 2013
  ident: ref19/cit19
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2013.02.010
– volume: 133
  start-page: 81
  year: 2011
  ident: ref5/cit5
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja1084578
– volume: 82
  start-page: 85
  year: 2010
  ident: ref18/cit18
  publication-title: Talanta
  doi: 10.1016/j.talanta.2010.03.063
– volume: 39
  start-page: 2184
  year: 2010
  ident: ref31/cit31
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b912552c
– volume: 204
  start-page: 85
  year: 2012
  ident: ref39/cit39
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.01.032
– volume: 46
  start-page: 4472
  year: 2010
  ident: ref6/cit6
  publication-title: Chem. Commun.
  doi: 10.1039/c000254b
– volume: 25
  start-page: 218
  year: 2009
  ident: ref15/cit15
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2009.06.041
– volume: 12
  start-page: 4859
  year: 2012
  ident: ref10/cit10
  publication-title: Nano Lett.
  doi: 10.1021/nl302358e
– volume: 3
  start-page: 482
  year: 2013
  ident: ref48/cit48
  publication-title: RSC Adv.
  doi: 10.1039/C2RA22479H
– volume: 6
  start-page: 7055
  year: 2014
  ident: ref20/cit20
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am501799w
– volume: 6
  start-page: 14050
  year: 2014
  ident: ref35/cit35
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am503388z
– volume: 130
  start-page: 221
  year: 2005
  ident: ref7/cit7
  publication-title: Analyst
  doi: 10.1039/b415496g
– volume: 2
  start-page: 545
  year: 2014
  ident: ref47/cit47
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C3TA13878J
– volume: 7
  start-page: 1398
  year: 2005
  ident: ref2/cit2
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2005.10.001
– volume: 4
  start-page: 52583
  year: 2014
  ident: ref41/cit41
  publication-title: RSC Adv.
  doi: 10.1039/C4RA10601F
– volume: 11
  start-page: 954
  year: 2009
  ident: ref29/cit29
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2009.02.033
– volume: 35
  start-page: 61
  year: 2013
  ident: ref23/cit23
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2013.07.045
– volume: 380
  start-page: 72
  year: 2010
  ident: ref40/cit40
  publication-title: Appl. Catal., A
  doi: 10.1016/j.apcata.2010.03.031
– volume: 9
  start-page: 2540
  year: 2012
  ident: ref28/cit28
  publication-title: E–J. Chem.
  doi: 10.1155/2012/157606
– volume: 12
  start-page: 8042
  year: 2010
  ident: ref22/cit22
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c002416c
– volume: 82
  start-page: 9169
  year: 2010
  ident: ref25/cit25
  publication-title: Anal. Chem.
  doi: 10.1021/ac101206j
– volume: 79
  start-page: 4169
  year: 2007
  ident: ref9/cit9
  publication-title: Anal. Chem.
  doi: 10.1021/ac062228w
– volume: 730
  start-page: 60
  year: 2012
  ident: ref26/cit26
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2011.10.070
– volume: 50
  start-page: 4738
  year: 2012
  ident: ref46/cit46
  publication-title: Carbon
  doi: 10.1016/j.carbon.2012.06.002
– volume: 46
  start-page: 6222
  year: 2012
  ident: ref3/cit3
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es300897u
– volume: 6
  start-page: 2226
  year: 2012
  ident: ref43/cit43
  publication-title: ACS Nano
  doi: 10.1021/nn204378t
– volume: 106
  start-page: 760
  year: 2002
  ident: ref30/cit30
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp012707t
– volume: 79
  start-page: 3695
  year: 2007
  ident: ref4/cit4
  publication-title: Anal. Chem.
  doi: 10.1021/ac0624142
– volume: 133
  start-page: 19432
  year: 2011
  ident: ref24/cit24
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja206477z
– volume: 2
  start-page: 6266
  year: 2014
  ident: ref33/cit33
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C3TA14754A
– volume: 58
  start-page: 219
  year: 2014
  ident: ref42/cit42
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2014.02.061
– volume: 46
  start-page: 136
  year: 2013
  ident: ref13/cit13
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2013.02.036
– volume: 134
  start-page: 15
  year: 2012
  ident: ref36/cit36
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja206030c
– volume: 126
  start-page: 1199
  year: 2004
  ident: ref45/cit45
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja036352y
– volume: 134
  start-page: 18932
  year: 2012
  ident: ref52/cit52
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja309270h
– volume: 90
  start-page: 35
  year: 2013
  ident: ref12/cit12
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2012.11.117
– volume: 85
  start-page: 8095
  year: 2013
  ident: ref51/cit51
  publication-title: Anal. Chem.
  doi: 10.1021/ac400659u
– volume: 39
  start-page: 5810
  year: 2005
  ident: ref1/cit1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es050001x
– volume: 22
  start-page: 734
  year: 2010
  ident: ref44/cit44
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200902825
– volume: 134
  start-page: 1305
  year: 2012
  ident: ref8/cit8
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja2100577
– volume: 6
  start-page: 6073
  year: 2014
  ident: ref53/cit53
  publication-title: Anal. Methods
  doi: 10.1039/C4AY00549J
– volume: 595
  start-page: 203
  year: 2014
  ident: ref37/cit37
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2014.02.012
– volume: 458
  start-page: 175
  year: 1998
  ident: ref50/cit50
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/S0022-0728(98)00362-3
– volume: 3
  start-page: 831
  year: 2013
  ident: ref49/cit49
  publication-title: ACS Catal.
  doi: 10.1021/cs400114s
– volume: 85
  start-page: 10289
  year: 2013
  ident: ref16/cit16
  publication-title: Anal. Chem.
  doi: 10.1021/ac402114c
– volume: 7
  start-page: 1239
  year: 2013
  ident: ref38/cit38
  publication-title: ACS Nano
  doi: 10.1021/nn304675g
– volume: 42
  start-page: 13821
  year: 2013
  ident: ref34/cit34
  publication-title: Dalton Trans.
  doi: 10.1039/c3dt51234g
– volume: 23
  start-page: 4694
  year: 2011
  ident: ref27/cit27
  publication-title: Chem. Mater.
  doi: 10.1021/cm2012044
– volume: 5
  start-page: 782
  year: 2013
  ident: ref32/cit32
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am3022366
– volume: 9
  start-page: 415
  year: 1994
  ident: ref11/cit11
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/0956-5663(94)90029-9
– volume: 4
  start-page: 288
  year: 2002
  ident: ref21/cit21
  publication-title: Electrochem. Commun.
  doi: 10.1016/S1388-2481(02)00263-1
– volume: 81
  start-page: 339
  year: 2010
  ident: ref14/cit14
  publication-title: Talanta
  doi: 10.1016/j.talanta.2009.12.007
SSID ssj0011016
Score 2.6269135
Snippet In this work, we report a green and simple strategy for the in situ growth of surfactant-free Au nanoparticles (Au NPs) on nitrogen-doped graphene quantum dots...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1903
SubjectTerms Adsorption
Biosensing Techniques - methods
Biosensors
blood serum
detection limit
Electrocatalysis
Electrochemical Techniques - methods
Electrochemistry
Fabrication
Gold
Gold - chemistry
Graphene
Graphite - chemistry
HeLa Cells
Human
Humans
Hydrogen peroxide
Hydrogen Peroxide - analysis
Hydrogen Peroxide - blood
Metal Nanoparticles - chemistry
Metal Nanoparticles - ultrastructure
mixing
Models, Molecular
nanocomposites
nanogold
Nanoparticles
Nanotechnology
neoplasm cells
Nitrogen
Nitrogen - chemistry
Quantum dots
Quantum Dots - chemistry
Quantum Dots - ultrastructure
reducing agents
Spectrum analysis
Surface chemistry
Surfactants
Transmission electron microscopy
uterine cervical neoplasms
X-ray diffraction
X-ray photoelectron spectroscopy
Title In Situ Growth of Surfactant-Free Gold Nanoparticles on Nitrogen-Doped Graphene Quantum Dots for Electrochemical Detection of Hydrogen Peroxide in Biological Environments
URI http://dx.doi.org/10.1021/ac5041555
https://www.ncbi.nlm.nih.gov/pubmed/25533846
https://www.proquest.com/docview/1652191467
https://www.proquest.com/docview/1652455754
https://www.proquest.com/docview/1692394076
https://www.proquest.com/docview/2000300526
Volume 87
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JbtswEB2k6aHNoUu6ORvY5dCLEmshZR0DL3ELNGjhBsjNoMghajSRAps6tJ_Ur-yQWuAicXrRRUNR4gw5bzQbwAfEGBXGKtCDyASEwA1tqSwLSLXHicnp6ivwfTkX04vk8yW_3IL3Gzz4UXgiFXdp5Jw_gIeRGKTOwjodzjpXgTM_27Z4zovalg9aH-pUj1r9q3o24EmvVyZPYdRm59ThJD-PK5sfq9-3izXe98rP4EmDK9lpLQjPYQuLXXg0bNu57cLOWuXBF_DnU8FmC1uxMzLD7Q9WGjarli7LgVY6mCwR2Vl5pRkdvmRVN8FzrCzY-cIuSxK6YFTeoKbh0gWJIftW0cDqmo1Ku2IEhNm47q-jmoIEbITWR30Vbq7pL-2fwr4iffdCI1sUrG6L6YnHa-l3L-FiMv4-nAZN24ZAJim3wUBpLUwmUhVimBlphIqyPESRhAQv-4YbVKnKda4IfQqXHGzSfohGR3QWKIJjr2C7KAt8AywWKMmGzmRs3L8qLmVkzCCUXORIdhDvwRHxdd5su9Xce9SjcN4xoAcfW5bPVVP03PXeuLqL9F1HelNX-riL6KCVm7VZBWGgzKmcHrztbhN7ne9FFlhWNU3CCRsn99FkvlF9KjbTRN6IdUV6evC6ltvubck6pMVKxN7_VmUfHhPu85n5_fgAtu2ywkPCVjY_8nvrL1UbHPk
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9NAEB5V5VA48CivQCkLAomLS_xaxwcOVR5NaBuB0kq9ufZ6VkQUb-SHqvJT-An8Bf4cs-vYBNTCqRKXXDK2V7Mznm-8M98AvEJ0UaArrLTnSIsQuCSXCkOLQrvryYR-DQPf4ZSPj733J_7JGnxremFoEQXdqTCH-L_YBey3sfB1N7nfFFDu48U5pWfFu8mA9vK144yGR_2xtZwgYMVe4JdWT6QplyEPhI12KGPJhRMmNnLPJqTTlb5EEYgkTQQBIa77VGXQtVGmDpml4JrUgF7vNwj0ODqx2-3P2hMKnfU20_j04W3DWrS6VB3xRPF7xLsCxppwNroDP1pFmCqWzztVmeyIr39wRP6fmroLt5comu3WZn8P1jDbhI1-M7xuE26t8Czeh--TjM3mZcX2cnVefmJKslmV654OsitrlCOyPXWWMgo1atGUCjKVsem8zBW5mDVQC0zp8liXxCH7WNGF1Rc2UGXBCPazYT1NSCzpF9gAS1PjlulnjS9Scxf2AUnd8xTZPGP1EFAjPFxpNnwAx9eiuIewnqkMHwNzOcYuAcjYlfrLnB_HjpQ9O_Z5gpT1-R3Ypv2Oli-ZIjL1A44dtRvegTeNpUViSfGuJ42cXSb6shVd1LwmlwltNea68lRyBk0KyIMOvGj_pu3VJ01xhqqqZTyfMgHvbzKUW4ReN-BXyzgmZdeURB14VLtLu1rKhUlZHn_yL608h43x0eFBdDCZ7j-Fm4R4DSdB192C9TKv8BmhyjLZNu7N4PS6veQnbcKAdg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9NAEF5VReJx4FFegVIWBBIXl_i1iQ8cqjhpQiEqCpV6M-vdWRFRvJEfqsqP4QfwJ_hrzK4fCqiFUyUuuWRsr2Z3PN94Zr4h5AWADwJ84cihpxxE4ApNKoocdO1-oFL8tQx87-dsehS8PQ6PN8j3thcGF1HgnQqbxDdWvZKqYRhwX3MRmo7ysC2iPICzUwzRijezGPfzpedNxh9HU6eZIuDwYBCWzlBIyVTEBsIFN1JcMeFFqQsscBHt9FWoQAxEKlOBYIiZXlU16LugpIdHUzBDbICv-CsmPWiCu73RostSmMi3nchnErgtc9H6Uo3XE8XvXu8CKGtd2uQW-dkpw1ayfNmtynRXfPuDJ_L_1dZtcrNB03SvPv53yAZkW-TaqB1it0VurPEt3iU_ZhldLMuK7uf6tPxMtaKLKje9HXi-nEkOQPf1iaTocvSqLRmkOqPzZZlrNDUn1iuQeDk3pXFAP1R4YfWVxrosKMJ_Oq6nComGhoHGUNpat8w8a3om7V3oIaDKlxLoMqP1MFArPF5rOrxHji5FcffJZqYzeEioz4D7CCS5r8wXupBzT6mhy0OWAkZ_YY_s4J4nzcumSGwdgecm3Yb3yKv2tCWioXo3E0dOzhN93omuan6T84S22yO79lSGyC8yjrZHnnV_4_aajBPPQFe1TBBiRBD8TQZjjCjoD9jFMp4N3Q01UY88qE2mWy3GxKisgD36l1aekquH8SR5N5sfPCbXEfhaaoK-v002y7yCJwguy3THWjglny7bSH4BAayC-Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+Situ+Growth+of+Surfactant-Free+Gold+Nanoparticles+on+Nitrogen-Doped+Graphene+Quantum+Dots+for+Electrochemical+Detection+of+Hydrogen+Peroxide+in+Biological+Environments&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Ju%2C+Jian&rft.au=Chen%2C+Wei&rft.date=2015-02-03&rft.pub=American+Chemical+Society&rft.issn=0003-2700&rft.eissn=1520-6882&rft.volume=87&rft.issue=3&rft.spage=1903&rft_id=info:doi/10.1021%2Fac5041555&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3582780051
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2700&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2700&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2700&client=summon