Single-Cell Enzyme-Free Dissociation of Neurospheres Using a Microfluidic Chip
Obtaining single dissociated cells from neurospheres is difficult using nonenzymatic methods. In this paper we report the development of a microfluidic-chip-based approach that utilizes flow and microstructures to dissociate neurospheres. We show that this microfluidic-chip-based neurosphere-dissoci...
Saved in:
Published in | Analytical chemistry (Washington) Vol. 85; no. 24; pp. 11920 - 11928 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
17.12.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Obtaining single dissociated cells from neurospheres is difficult using nonenzymatic methods. In this paper we report the development of a microfluidic-chip-based approach that utilizes flow and microstructures to dissociate neurospheres. We show that this microfluidic-chip-based neurosphere-dissociation method can generate high yields of single cells from dissociated neurospheres of mouse KT98 and DC115 cell models (passage number, 3–8; diameter range, 40–250 μm): 90% and 95%, respectively. The microfluidic-chip-dissociated cells had high viabilities (80–85%) and the ability to regrow into neurospheres, demonstrating the applicability of this device to neurosphere assay applications. In addition, the dissociated cells retained their normal differentiation potentials, as shown by their capabilities to differentiate into three neural lineages (neurons, astroglia, and oligodendrocytes) when cultured in differentiation culture conditions. Since this microfluidic-chip-based method does not require the use of enzymatic reagents, the risk of contamination from exogenous substances could be reduced, making it an attractive tool for a wide range of applications where neurosphere dissociation is needed. |
---|---|
AbstractList | Obtaining single dissociated cells from neurospheres is difficult using nonenzymatic methods. In this paper we report the development of a microfluidic-chip-based approach that utilizes flow and microstructures to dissociate neurospheres. We show that this microfluidic-chip-based neurosphere-dissociation method can generate high yields of single cells from dissociated neurospheres of mouse KT98 and DC115 cell models (passage number, 3-8; diameter range, 40-250 μm): 90% and 95%, respectively. The microfluidic-chip-dissociated cells had high viabilities (80-85%) and the ability to regrow into neurospheres, demonstrating the applicability of this device to neurosphere assay applications. In addition, the dissociated cells retained their normal differentiation potentials, as shown by their capabilities to differentiate into three neural lineages (neurons, astroglia, and oligodendrocytes) when cultured in differentiation culture conditions. Since this microfluidic-chip-based method does not require the use of enzymatic reagents, the risk of contamination from exogenous substances could be reduced, making it an attractive tool for a wide range of applications where neurosphere dissociation is needed.Obtaining single dissociated cells from neurospheres is difficult using nonenzymatic methods. In this paper we report the development of a microfluidic-chip-based approach that utilizes flow and microstructures to dissociate neurospheres. We show that this microfluidic-chip-based neurosphere-dissociation method can generate high yields of single cells from dissociated neurospheres of mouse KT98 and DC115 cell models (passage number, 3-8; diameter range, 40-250 μm): 90% and 95%, respectively. The microfluidic-chip-dissociated cells had high viabilities (80-85%) and the ability to regrow into neurospheres, demonstrating the applicability of this device to neurosphere assay applications. In addition, the dissociated cells retained their normal differentiation potentials, as shown by their capabilities to differentiate into three neural lineages (neurons, astroglia, and oligodendrocytes) when cultured in differentiation culture conditions. Since this microfluidic-chip-based method does not require the use of enzymatic reagents, the risk of contamination from exogenous substances could be reduced, making it an attractive tool for a wide range of applications where neurosphere dissociation is needed. Obtaining single dissociated cells from neurospheres is difficult using nonenzymatic methods. In this paper we report the development of a microfluidic-chip-based approach that utilizes flow and microstructures to dissociate neurospheres. We show that this microfluidic-chip-based neurosphere-dissociation method can generate high yields of single cells from dissociated neurospheres of mouse KT98 and DC115 cell models (passage number, 3–8; diameter range, 40–250 μm): 90% and 95%, respectively. The microfluidic-chip-dissociated cells had high viabilities (80–85%) and the ability to regrow into neurospheres, demonstrating the applicability of this device to neurosphere assay applications. In addition, the dissociated cells retained their normal differentiation potentials, as shown by their capabilities to differentiate into three neural lineages (neurons, astroglia, and oligodendrocytes) when cultured in differentiation culture conditions. Since this microfluidic-chip-based method does not require the use of enzymatic reagents, the risk of contamination from exogenous substances could be reduced, making it an attractive tool for a wide range of applications where neurosphere dissociation is needed. Obtaining single dissociated cells from neurospheres is difficult using nonenzymatic methods. In this paper we report the development of a microfluidic-chip-based approach that utilizes flow and microstructures to dissociate neurospheres. We show that this microfluidic-chip-based neurosphere-dissociation method can generate high yields of single cells from dissociated neurospheres of mouse KT98 and DC115 cell models (passage number, 3-8; diameter range, 40-250 mu m): 90% and 95%, respectively. The microfluidic-chip-dissociated cells had high viabilities (80-85%) and the ability to regrow into neurospheres, demonstrating the applicability of this device to neurosphere assay applications. In addition, the dissociated cells retained their normal differentiation potentials, as shown by their capabilities to differentiate into three neural lineages (neurons, astroglia, and oligodendrocytes) when cultured in differentiation culture conditions. Since this microfluidic-chip-based method does not require the use of enzymatic reagents, the risk of contamination from exogenous substances could be reduced, making it an attractive tool for a wide range of applications where neurosphere dissociation is needed. Obtaining single dissociated cells from neurospheres is difficult using nonenzymatic methods. In this paper we report the development of a microfluidic-chip-based approach that utilizes flow and microstructures to dissociate neurospheres. We show that this microfluidic-chip-based neurosphere-dissociation method can generate high yields of single cells from dissociated neurospheres of mouse KT98 and DC115 cell models (passage number, 3-8; diameter range, 40-250 μm): 90% and 95%, respectively. The microfluidic-chip-dissociated cells had high viabilities (80-85%) and the ability to regrow into neurospheres, demonstrating the applicability of this device to neurosphere assay applications. In addition, the dissociated cells retained their normal differentiation potentials, as shown by their capabilities to differentiate into three neural lineages (neurons, astroglia, and oligodendrocytes) when cultured in differentiation culture conditions. Since this microfluidic-chip-based method does not require the use of enzymatic reagents, the risk of contamination from exogenous substances could be reduced, making it an attractive tool for a wide range of applications where neurosphere dissociation is needed. [PUBLICATION ABSTRACT] |
Author | Lin, Ching-Hui Chang, Hao-Chen Hsu, Chia-Hsien Lee, Don-Ching Chiu, Ing-Ming |
AuthorAffiliation | Institute of Biomedical Engineering and Nanomedicine Institute of Cellular and System Medicine National Chung Hsing University National Health Research Institutes Department of Life Sciences Ph.D. Program in Tissue Engineering and Regenerative Medicine |
AuthorAffiliation_xml | – name: Ph.D. Program in Tissue Engineering and Regenerative Medicine – name: Institute of Cellular and System Medicine – name: National Health Research Institutes – name: Institute of Biomedical Engineering and Nanomedicine – name: National Chung Hsing University – name: Department of Life Sciences |
Author_xml | – sequence: 1 givenname: Ching-Hui surname: Lin fullname: Lin, Ching-Hui – sequence: 2 givenname: Don-Ching surname: Lee fullname: Lee, Don-Ching – sequence: 3 givenname: Hao-Chen surname: Chang fullname: Chang, Hao-Chen – sequence: 4 givenname: Ing-Ming surname: Chiu fullname: Chiu, Ing-Ming email: ingming@nhri.org.tw – sequence: 5 givenname: Chia-Hsien surname: Hsu fullname: Hsu, Chia-Hsien email: chsu@nhri.org.tw |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24228937$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0cFOGzEQBmALUUEIPfACaCWERA9bPLNee_eIUmgrUTi0Oa8cZ0yMNutg7x7g6WuapKpCJU6-fP_I888R2-98R4ydAP8MHOFSG8FRoZjtsRGUyHNZVbjPRpzzIkfF-SE7ivGRcwAO8oAdokCs6kKN2N1P1z20lE-obbPr7uV5SflNIMq-uBi9cbp3vsu8ze5oCD6uFhQoZtOYUpnOfjgTvG0HN3cmmyzc6ph9sLqN9HHzjtn05vrX5Ft-e__1--TqNtdClX2uFGhRmHqutTVSAUphNFmgUswJbK1pZqvK8MokB6WGAgsrpCJRilKXVIzZxXruKvingWLfLF00aQfdkR9ig2l1rIWQ-C4FWWMheFUW71ORLJeIMtGzHfroh9ClnZNSUENVo0jqdKOG2ZLmzSq4pQ7Pzbb_BC7XIPUYYyDbGNf_6bwP2rUN8Ob1ws3fC6fEp53Eduj_7PnaahP_-d8b9xt_866M |
CODEN | ANCHAM |
CitedBy_id | crossref_primary_10_1002_btpr_2528 crossref_primary_10_1039_C8LC00507A crossref_primary_10_1038_s41598_021_85786_2 crossref_primary_10_1039_C5LC00541H crossref_primary_10_3389_fbioe_2022_841046 crossref_primary_10_1002_chem_201800305 crossref_primary_10_1002_jsp2_1272 crossref_primary_10_1021_acs_chemrev_1c00616 crossref_primary_10_1039_C5LC00805K crossref_primary_10_1038_s41598_022_13068_6 crossref_primary_10_1039_C4LC01126K crossref_primary_10_1021_acs_analchem_5b04077 crossref_primary_10_1039_C7LC00575J crossref_primary_10_1016_j_advms_2015_09_005 crossref_primary_10_1016_j_mtbio_2022_100222 crossref_primary_10_1039_C9LC00036D crossref_primary_10_1038_s41467_021_23238_1 crossref_primary_10_1038_s41598_018_20931_y crossref_primary_10_1021_acschemneuro_4c00388 crossref_primary_10_1109_TBME_2017_2699291 crossref_primary_10_2217_rme_2017_0123 |
Cites_doi | 10.1126/science.1553558 10.1038/nmeth758 10.1016/j.brainres.2003.08.061 10.1007/978-1-60327-931-4_7 10.1002/dvdy.21753 10.1038/nmeth.1290 10.1002/bit.1071 10.1016/j.mcn.2009.04.010 10.1089/ten.2005.11.1780 10.1038/nrn2938 10.1073/pnas.1012539107 10.1371/journal.pone.0038562 10.1002/stem.1227 10.1039/b417651k 10.1016/j.expneurol.2009.09.019 10.1039/c1lc20316a 10.1002/jnr.20333 10.1002/glia.10094 10.1073/pnas.212525299 10.1155/2012/761843 10.1039/b813434k 10.1002/jcb.21972 10.1038/nrc1889 10.1038/nn.2644 10.1002/jnr.21451 10.1039/c2lc21285d 10.1007/978-1-60327-106-6_3 10.1038/sj.onc.1204021 10.1634/stemcells.2008-0558 10.1634/stemcells.2007-0299 10.1002/jnr.21082 10.1039/B813495B 10.1152/ajpcell.00052.2002 10.1161/01.ATV.0000175840.90510.a8 10.1038/nature04960 10.1039/B612856B 10.1016/j.brainres.2008.12.013 |
ContentType | Journal Article |
Copyright | Copyright © 2013 American Chemical
Society Copyright American Chemical Society Dec 17, 2013 |
Copyright_xml | – notice: Copyright © 2013 American Chemical Society – notice: Copyright American Chemical Society Dec 17, 2013 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7X8 7S9 L.6 |
DOI | 10.1021/ac402724b |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Toxicology Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts AIDS and Cancer Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Toxicology Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA Materials Research Database MEDLINE Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1520-6882 |
EndPage | 11928 |
ExternalDocumentID | 3169402211 24228937 10_1021_ac402724b i9486953 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | - .K2 02 1AW 23M 4.4 53G 53T 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABOCM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACNCT ACPRK ACS AEESW AENEX AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 D0L DZ EBS ED ED~ EJD F20 F5P GNL IH9 IHE JG JG~ K2 LG6 P2P PQEST PQQKQ ROL RXW TAE TAF TN5 UHB UI2 UKR VF5 VG9 VQA W1F WH7 X X6Y XFK YZZ --- -DZ -~X .DC 6J9 AAHBH AAYXX ABBLG ABHFT ABHMW ABJNI ABLBI ABQRX ACBEA ACGFO ACKOT ADHLV AGXLV AHGAQ CITATION CUPRZ GGK KZ1 LMP XSW ZCA ~02 CGR CUY CVF ECM EIF NPM YIN 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a475t-771a43c9daafc671264caef1e54de1f9aebf88c08c1a415a1323f467e4545a5e3 |
IEDL.DBID | ACS |
ISSN | 0003-2700 1520-6882 |
IngestDate | Thu Jul 10 22:29:03 EDT 2025 Fri Jul 11 10:14:21 EDT 2025 Thu Jul 10 23:02:54 EDT 2025 Mon Jun 30 08:45:06 EDT 2025 Wed Feb 19 01:54:41 EST 2025 Tue Jul 01 02:48:56 EDT 2025 Thu Apr 24 22:57:48 EDT 2025 Thu Aug 27 13:41:56 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a475t-771a43c9daafc671264caef1e54de1f9aebf88c08c1a415a1323f467e4545a5e3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 24228937 |
PQID | 1471918924 |
PQPubID | 45400 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2000294462 proquest_miscellaneous_1692340853 proquest_miscellaneous_1469206226 proquest_journals_1471918924 pubmed_primary_24228937 crossref_citationtrail_10_1021_ac402724b crossref_primary_10_1021_ac402724b acs_journals_10_1021_ac402724b |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-12-17 |
PublicationDateYYYYMMDD | 2013-12-17 |
PublicationDate_xml | – month: 12 year: 2013 text: 2013-12-17 day: 17 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Analytical chemistry (Washington) |
PublicationTitleAlternate | Anal. Chem |
PublicationYear | 2013 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Ignatova T. N. (ref6/cit6) 2002; 39 Serra M. (ref11/cit11) 2007; 85 Ahmed S. (ref4/cit4) 2009; 106 Fineberg S. K. (ref25/cit25) 2012; 7 Reynolds B. A. (ref22/cit22) 2005; 2 Suslov O. N. (ref2/cit2) 2002; 99 Bez A. (ref3/cit3) 2003; 993 Stott S. L. (ref30/cit30) 2010; 107 Vescovi A. L. (ref7/cit7) 2006; 6 Nelson A. D. (ref15/cit15) 2008; 26 Hoeck J. D. (ref20/cit20) 2010; 13 Lee D. C. (ref21/cit21) 2009; 41 Ziegler L. (ref12/cit12) 2010; 223 Deleyrolle L. P. (ref8/cit8) 2009; 549 Delcroix G. J. R. (ref13/cit13) 2009; 1255 Cusulin C. (ref18/cit18) 2012; 30 Han S. (ref19/cit19) 2012; 12 Jensen P. S. (ref14/cit14) 2012; 2012 Wallman L. (ref16/cit16) 2011; 11 Skelley A. M. (ref29/cit29) 2009; 6 Chung B. G. (ref32/cit32) 2005; 5 Hsu C. H. (ref28/cit28) 2008; 8 Thi M. M. (ref35/cit35) 2003; 284 Yamamoto K. (ref36/cit36) 2005; 288 Wang J. Y. (ref31/cit31) 2009; 9 Wang H. (ref37/cit37) 2005; 25 Wolfe D. B. (ref23/cit23) 2010; 583 Chiu I. M. (ref24/cit24) 2000; 19 Hsu Y. C. (ref27/cit27) 2009; 238 Pearce T. M. (ref33/cit33) 2007; 7 Mori H. (ref9/cit9) 2006; 84 Knippenberg M. (ref38/cit38) 2005; 11 Reynolds B. A. (ref1/cit1) 1992; 255 Conti L. (ref17/cit17) 2010; 11 Campos L. S. (ref10/cit10) 2004; 78 Lindvall O. (ref5/cit5) 2006; 441 Coles-Takabe B. L. K. (ref26/cit26) 2008; 26 Tilles A. W. (ref34/cit34) 2001; 73 |
References_xml | – volume: 255 start-page: 1707 year: 1992 ident: ref1/cit1 publication-title: Science doi: 10.1126/science.1553558 – volume: 2 start-page: 333 year: 2005 ident: ref22/cit22 publication-title: Nat. Methods doi: 10.1038/nmeth758 – volume: 993 start-page: 18 year: 2003 ident: ref3/cit3 publication-title: Brain Res. doi: 10.1016/j.brainres.2003.08.061 – volume: 549 start-page: 91 year: 2009 ident: ref8/cit8 publication-title: Methods Mol. Biol. doi: 10.1007/978-1-60327-931-4_7 – volume: 238 start-page: 302 year: 2009 ident: ref27/cit27 publication-title: Dev. Dyn. doi: 10.1002/dvdy.21753 – volume: 6 start-page: 147 year: 2009 ident: ref29/cit29 publication-title: Nat. Methods doi: 10.1038/nmeth.1290 – volume: 73 start-page: 379 year: 2001 ident: ref34/cit34 publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.1071 – volume: 41 start-page: 348 year: 2009 ident: ref21/cit21 publication-title: Mol. Cell. Neurosci. doi: 10.1016/j.mcn.2009.04.010 – volume: 11 start-page: 1780 year: 2005 ident: ref38/cit38 publication-title: Tissue Eng. doi: 10.1089/ten.2005.11.1780 – volume: 11 start-page: 782 year: 2010 ident: ref17/cit17 publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn2938 – volume: 107 start-page: 18392 year: 2010 ident: ref30/cit30 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1012539107 – volume: 7 start-page: e38562 year: 2012 ident: ref25/cit25 publication-title: PLoS One doi: 10.1371/journal.pone.0038562 – volume: 30 start-page: 2657 year: 2012 ident: ref18/cit18 publication-title: Stem Cells doi: 10.1002/stem.1227 – volume: 5 start-page: 401 year: 2005 ident: ref32/cit32 publication-title: Lab Chip doi: 10.1039/b417651k – volume: 223 start-page: 119 year: 2010 ident: ref12/cit12 publication-title: Exp. Neurol. doi: 10.1016/j.expneurol.2009.09.019 – volume: 11 start-page: 3241 year: 2011 ident: ref16/cit16 publication-title: Lab Chip doi: 10.1039/c1lc20316a – volume: 78 start-page: 761 year: 2004 ident: ref10/cit10 publication-title: J. Neurosci. Res. doi: 10.1002/jnr.20333 – volume: 39 start-page: 193 year: 2002 ident: ref6/cit6 publication-title: Glia doi: 10.1002/glia.10094 – volume: 99 start-page: 14506 year: 2002 ident: ref2/cit2 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.212525299 – volume: 2012 start-page: 761843 year: 2012 ident: ref14/cit14 publication-title: Stem Cells Int. doi: 10.1155/2012/761843 – volume: 8 start-page: 2128 year: 2008 ident: ref28/cit28 publication-title: Lab Chip doi: 10.1039/b813434k – volume: 106 start-page: 1 year: 2009 ident: ref4/cit4 publication-title: J. Cell. Biochem. doi: 10.1002/jcb.21972 – volume: 6 start-page: 425 year: 2006 ident: ref7/cit7 publication-title: Nat. Rev. Cancer doi: 10.1038/nrc1889 – volume: 13 start-page: 1365 year: 2010 ident: ref20/cit20 publication-title: Nat. Neurosci. doi: 10.1038/nn.2644 – volume: 288 start-page: H1915 year: 2005 ident: ref36/cit36 publication-title: Am. J. Physiol.: Heart Circ. Physiol. – volume: 85 start-page: 3557 year: 2007 ident: ref11/cit11 publication-title: J. Neurosci. Res. doi: 10.1002/jnr.21451 – volume: 12 start-page: 2305 year: 2012 ident: ref19/cit19 publication-title: Lab Chip doi: 10.1039/c2lc21285d – volume: 583 start-page: 81 year: 2010 ident: ref23/cit23 publication-title: Methods Mol. Biol. doi: 10.1007/978-1-60327-106-6_3 – volume: 19 start-page: 6229 year: 2000 ident: ref24/cit24 publication-title: Oncogene doi: 10.1038/sj.onc.1204021 – volume: 26 start-page: 2938 year: 2008 ident: ref26/cit26 publication-title: Stem Cells doi: 10.1634/stemcells.2008-0558 – volume: 26 start-page: 348 year: 2008 ident: ref15/cit15 publication-title: Stem Cells doi: 10.1634/stemcells.2007-0299 – volume: 84 start-page: 1682 year: 2006 ident: ref9/cit9 publication-title: J. Neurosci. Res. doi: 10.1002/jnr.21082 – volume: 9 start-page: 644 year: 2009 ident: ref31/cit31 publication-title: Lab Chip doi: 10.1039/B813495B – volume: 284 start-page: C389 year: 2003 ident: ref35/cit35 publication-title: Am. J. Physiol.: Cell Physiol. doi: 10.1152/ajpcell.00052.2002 – volume: 25 start-page: 1817 year: 2005 ident: ref37/cit37 publication-title: Arterioscler., Thromb., Vasc. Biol. doi: 10.1161/01.ATV.0000175840.90510.a8 – volume: 441 start-page: 1094 year: 2006 ident: ref5/cit5 publication-title: Nature doi: 10.1038/nature04960 – volume: 7 start-page: 30 year: 2007 ident: ref33/cit33 publication-title: Lab Chip doi: 10.1039/B612856B – volume: 1255 start-page: 18 year: 2009 ident: ref13/cit13 publication-title: Brain Res. doi: 10.1016/j.brainres.2008.12.013 |
SSID | ssj0011016 |
Score | 2.2468944 |
Snippet | Obtaining single dissociated cells from neurospheres is difficult using nonenzymatic methods. In this paper we report the development of a... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 11920 |
SubjectTerms | Analytical chemistry Animals astrocytes Cell Differentiation Cell Line Cell Survival Contamination Culture Devices Differentiation dissociation Enzymes Equipment Design Mice Microfluidic Analytical Techniques - instrumentation Microfluidic Analytical Techniques - methods Microfluidics Microstructure Neural Stem Cells - cytology Neurons oligodendroglia Reagents risk Single-Cell Analysis - instrumentation Single-Cell Analysis - methods |
Title | Single-Cell Enzyme-Free Dissociation of Neurospheres Using a Microfluidic Chip |
URI | http://dx.doi.org/10.1021/ac402724b https://www.ncbi.nlm.nih.gov/pubmed/24228937 https://www.proquest.com/docview/1471918924 https://www.proquest.com/docview/1469206226 https://www.proquest.com/docview/1692340853 https://www.proquest.com/docview/2000294462 |
Volume | 85 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LTxsxEB5BeigcaEt5hAJyHwcuprH3FR_RQoQqwYUicYu8s2MRddkgkhzg1zPeZJdUJHDaw37WWh575xuN5xuAXy5BMuicdDY2MowClJaSjjQ55pixf86rIrGLy_j8OvxzE92swM8lGXytflvkECfRYbYKH3TMh9fzn_SqSRX48LNui-ezqLV80PxQ73pw9L_rWcInK7_S-wSndXXO9DrJv-PJODvGp9dijW9N-TNszHilOJluhC-wQuUmfEzrdm6bsD6nPPgVLq_4UZBMqSjEWfn0eEey90AkTgcv9hJDJyrxjpHXHqCRqO4XCCsu_C0-V0wG-QBFeju434Lr3tnf9FzOWitIGybRmDm1smGAJrfWYZwopkVoySmKwpyUM5Yy1-1ip4uMU5HlmDVw_E-lkBmXjSjYhlY5LGkXhI6DLDaICnXOni7KQouEXmiww1QCqQ2HvPb92dEY9aust1b9ZpHacFSbpY8zYXLfH6NYBP3RQO-nahyLQPu1bee-ylMzqsvRZhu-N6_ZBD4_YksaTjwmNroTMyF9A8OQwKvCBcsxvvpJG46zdRt2pnurma32kmtMCffeW5VvsKZ95w2lpUr2oTV-mNAB859xdljt_2fApf0n |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BORQOPMproRSDOHBxWTuv9bEKXS3Q3UtbqbfImYzVFSFbNbsH-usZZ5N0QS1wyiFfkpHHznyjsb8B-OASJIPOSWdjI8MoQGkpGUpTYIE5x-eiOSQ2ncWT0_DrWXTWyuT4szBsRM1vqpsi_rW6gPpkkTOdRIf5XbjHJET72XyQHvcVA5-Fdt3xfDG1UxHafNRHIKx_j0C30MomvIwfrfsUNYY1u0q-76-W-T5e_aHZ-H-WP4aHLcsUB-tp8QTuULUD22nX3G0HHmzoED6F2TFfSpIplaU4rK5-_iA5viQSn-fX3hMLJxopj9orEVAtmt0Gwoqp39PnytW8mKNIz-cXz-B0fHiSTmTbaEHaMImWzLCVDQM0hbUO40QxSUJLTlEUFqScsZS70QiHI2SciixnsIHjPyyFzL9sRMFz2KoWFb0EoeMgjw2iQl1w3Ivy0CKhlx0cMrFAGsAej1HWLpQ6a2rgWmX9IA3gY-edDFuZct8to7wJ-r6HXqy1OW4C7XYu3vgqm2bUiHPPAbzrb7MLfLXEVrRYeUxs9DBmevoXDEMCrxEX3I7xZ6G04axbD-DFeor11movwMYE8dW_RuUtbE9OpkfZ0ZfZt9dwX_ueHEpLlezC1vJyRW-YGS3zvWZJ_AKqJwWX |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BkaAceJQWFkoxiAMXl7XzWh-rtKvy6IJUKvUWOZOxWBGyq2b3QH8942wSFtQCpxzyJRl57Mw3GvsbgNcuQTLonHQ2NjKMApSWkqE0BRaYc3wumkNiJ5P4-Cx8fx6dt4miPwvDRtT8prop4vtVPS9cqzCg3lrkbCfRYX4TbvlynZ_RB-lpXzXwmWjXIc8XVDslofVHfRTC-vcodA21bELM-D586o1rdpZ8218u8n28_EO38f-tfwD3WrYpDlbT4yHcoGoL7qRdk7ctuLumR_gIJqd8KUmmVJbiqLr88Z3k-IJIHE5_eVHMnGgkPWqvSEC1aHYdCCtO_N4-Vy6nxRRF-nU634az8dGX9Fi2DRekDZNowUxb2TBAU1jrME4UkyW05BRFYUHKGUu5G41wOELGqchyJhs4_tNSyDzMRhTswEY1q-gJCB0HeWwQFeqC41-UhxYJvfzgkAkG0gD2eJyydsHUWVML1yrrB2kAbzoPZdjKlfuuGeVV0Fc9dL7S6LgKtNu5ee2rbJpRI85BB_Cyv80u8FUTW9Fs6TGx0cOYaepfMAwJvFZccD3Gn4nShrNvPYDHq2nWW6u9EBsTxaf_GpUXcPvz4Tj7-G7y4Rlsat-aQ2mpkl3YWFws6TkTpEW-16yKn0G_CBo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single-Cell+Enzyme-Free+Dissociation+of+Neurospheres+Using+a+Microfluidic+Chip&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Lin%2C+Ching-Hui&rft.au=Lee%2C+Don-Ching&rft.au=Chang%2C+Hao-Chen&rft.au=Chiu%2C+Ing-Ming&rft.date=2013-12-17&rft.issn=0003-2700&rft.volume=85&rft.issue=24&rft.spage=11920&rft.epage=11920&rft_id=info:doi/10.1021%2Fac402724b&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2700&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2700&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2700&client=summon |