Nanopore-based Strategy for Selective Detection of Single Carcinoembryonic Antigen (CEA) Molecules

Nanopores have become one of the most important tools for single-molecule sensing, but the challenge for selective detection of specific biomolecules still exists. In this contribution, we develop a new technique for sensing carcinoembryonic antigen (CEA), one of the important cancer biomarkers, usi...

Full description

Saved in:
Bibliographic Details
Published inAnalytical chemistry (Washington) Vol. 92; no. 4; pp. 3042 - 3049
Main Authors Tang, Haoran, Wang, Hao, Yang, Cheng, Zhao, Dandan, Qian, Yuanyuan, Li, Yongxin
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 18.02.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nanopores have become one of the most important tools for single-molecule sensing, but the challenge for selective detection of specific biomolecules still exists. In this contribution, we develop a new technique for sensing carcinoembryonic antigen (CEA), one of the important cancer biomarkers, using solid-state nanopores as a tool. The method is based on the specific affinity between aptamer (Apt) modified magnetic Fe3O4–Au nanoparticles (MNPs) and CEA, and the formed CEA–Apt–MNPs and remaining Apt–MNPs can transport the nanopores by applying a positive potential after magnetic separation. Due to the obvious particle size difference between CEA–Apt–MNPs and Apt-MPs, their corresponding blockage signals could be distinguished completely by the degree of the current decline. Moreover, the frequency of the blockage signals for CEA–Apt–MNPs is proportional to the concentration of CEA within certain limits, indicating that our designed nanopore sensing strategy can quantitatively detect CEA in complex samples. This work demonstrates that our designed nanopore-based strategy can be used for CEA sensing with good selectivity and sensitivity and also can be used to analyze other protein biomarkers for early diagnosis and monitoring of cancer, though the detection limit (0.6 ng/mL) is not relatively low. In future works, we plan to improve our detection limit by the improvement of the nanopipette preparation technology and detection method.
AbstractList Nanopores have become one of the most important tools for single-molecule sensing, but the challenge for selective detection of specific biomolecules still exists. In this contribution, we develop a new technique for sensing carcinoembryonic antigen (CEA), one of the important cancer biomarkers, using solid-state nanopores as a tool. The method is based on the specific affinity between aptamer (Apt) modified magnetic Fe3O4-Au nanoparticles (MNPs) and CEA, and the formed CEA-Apt-MNPs and remaining Apt-MNPs can transport the nanopores by applying a positive potential after magnetic separation. Due to the obvious particle size difference between CEA-Apt-MNPs and Apt-MPs, their corresponding blockage signals could be distinguished completely by the degree of the current decline. Moreover, the frequency of the blockage signals for CEA-Apt-MNPs is proportional to the concentration of CEA within certain limits, indicating that our designed nanopore sensing strategy can quantitatively detect CEA in complex samples. This work demonstrates that our designed nanopore-based strategy can be used for CEA sensing with good selectivity and sensitivity and also can be used to analyze other protein biomarkers for early diagnosis and monitoring of cancer, though the detection limit (0.6 ng/mL) is not relatively low. In future works, we plan to improve our detection limit by the improvement of the nanopipette preparation technology and detection method.Nanopores have become one of the most important tools for single-molecule sensing, but the challenge for selective detection of specific biomolecules still exists. In this contribution, we develop a new technique for sensing carcinoembryonic antigen (CEA), one of the important cancer biomarkers, using solid-state nanopores as a tool. The method is based on the specific affinity between aptamer (Apt) modified magnetic Fe3O4-Au nanoparticles (MNPs) and CEA, and the formed CEA-Apt-MNPs and remaining Apt-MNPs can transport the nanopores by applying a positive potential after magnetic separation. Due to the obvious particle size difference between CEA-Apt-MNPs and Apt-MPs, their corresponding blockage signals could be distinguished completely by the degree of the current decline. Moreover, the frequency of the blockage signals for CEA-Apt-MNPs is proportional to the concentration of CEA within certain limits, indicating that our designed nanopore sensing strategy can quantitatively detect CEA in complex samples. This work demonstrates that our designed nanopore-based strategy can be used for CEA sensing with good selectivity and sensitivity and also can be used to analyze other protein biomarkers for early diagnosis and monitoring of cancer, though the detection limit (0.6 ng/mL) is not relatively low. In future works, we plan to improve our detection limit by the improvement of the nanopipette preparation technology and detection method.
Nanopores have become one of the most important tools for single-molecule sensing, but the challenge for selective detection of specific biomolecules still exists. In this contribution, we develop a new technique for sensing carcinoembryonic antigen (CEA), one of the important cancer biomarkers, using solid-state nanopores as a tool. The method is based on the specific affinity between aptamer (Apt) modified magnetic Fe₃O₄–Au nanoparticles (MNPs) and CEA, and the formed CEA–Apt–MNPs and remaining Apt–MNPs can transport the nanopores by applying a positive potential after magnetic separation. Due to the obvious particle size difference between CEA–Apt–MNPs and Apt-MPs, their corresponding blockage signals could be distinguished completely by the degree of the current decline. Moreover, the frequency of the blockage signals for CEA–Apt–MNPs is proportional to the concentration of CEA within certain limits, indicating that our designed nanopore sensing strategy can quantitatively detect CEA in complex samples. This work demonstrates that our designed nanopore-based strategy can be used for CEA sensing with good selectivity and sensitivity and also can be used to analyze other protein biomarkers for early diagnosis and monitoring of cancer, though the detection limit (0.6 ng/mL) is not relatively low. In future works, we plan to improve our detection limit by the improvement of the nanopipette preparation technology and detection method.
Nanopores have become one of the most important tools for single-molecule sensing, but the challenge for selective detection of specific biomolecules still exists. In this contribution, we develop a new technique for sensing carcinoembryonic antigen (CEA), one of the important cancer biomarkers, using solid-state nanopores as a tool. The method is based on the specific affinity between aptamer (Apt) modified magnetic Fe3O4–Au nanoparticles (MNPs) and CEA, and the formed CEA–Apt–MNPs and remaining Apt–MNPs can transport the nanopores by applying a positive potential after magnetic separation. Due to the obvious particle size difference between CEA–Apt–MNPs and Apt-MPs, their corresponding blockage signals could be distinguished completely by the degree of the current decline. Moreover, the frequency of the blockage signals for CEA–Apt–MNPs is proportional to the concentration of CEA within certain limits, indicating that our designed nanopore sensing strategy can quantitatively detect CEA in complex samples. This work demonstrates that our designed nanopore-based strategy can be used for CEA sensing with good selectivity and sensitivity and also can be used to analyze other protein biomarkers for early diagnosis and monitoring of cancer, though the detection limit (0.6 ng/mL) is not relatively low. In future works, we plan to improve our detection limit by the improvement of the nanopipette preparation technology and detection method.
Nanopores have become one of the most important tools for single-molecule sensing, but the challenge for selective detection of specific biomolecules still exists. In this contribution, we develop a new technique for sensing carcinoembryonic antigen (CEA), one of the important cancer biomarkers, using solid-state nanopores as a tool. The method is based on the specific affinity between aptamer (Apt) modified magnetic Fe O -Au nanoparticles (MNPs) and CEA, and the formed CEA-Apt-MNPs and remaining Apt-MNPs can transport the nanopores by applying a positive potential after magnetic separation. Due to the obvious particle size difference between CEA-Apt-MNPs and Apt-MPs, their corresponding blockage signals could be distinguished completely by the degree of the current decline. Moreover, the frequency of the blockage signals for CEA-Apt-MNPs is proportional to the concentration of CEA within certain limits, indicating that our designed nanopore sensing strategy can quantitatively detect CEA in complex samples. This work demonstrates that our designed nanopore-based strategy can be used for CEA sensing with good selectivity and sensitivity and also can be used to analyze other protein biomarkers for early diagnosis and monitoring of cancer, though the detection limit (0.6 ng/mL) is not relatively low. In future works, we plan to improve our detection limit by the improvement of the nanopipette preparation technology and detection method.
Author Yang, Cheng
Qian, Yuanyuan
Zhao, Dandan
Li, Yongxin
Tang, Haoran
Wang, Hao
AuthorAffiliation Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science
AuthorAffiliation_xml – name: Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science
Author_xml – sequence: 1
  givenname: Haoran
  orcidid: 0000-0002-4016-8479
  surname: Tang
  fullname: Tang, Haoran
– sequence: 2
  givenname: Hao
  surname: Wang
  fullname: Wang, Hao
– sequence: 3
  givenname: Cheng
  surname: Yang
  fullname: Yang, Cheng
– sequence: 4
  givenname: Dandan
  surname: Zhao
  fullname: Zhao, Dandan
– sequence: 5
  givenname: Yuanyuan
  surname: Qian
  fullname: Qian, Yuanyuan
– sequence: 6
  givenname: Yongxin
  orcidid: 0000-0001-5543-4242
  surname: Li
  fullname: Li, Yongxin
  email: yongli@mail.ahnu.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31970978$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFu1DAQhi1URLeFN0DIEpdyyDJ2nMThtloKVCpw2PZs2c5kSZXYi51U2rfH0e5y6KE9eSR_32j0_xfkzHmHhLxnsGTA2Wdt41I73ds_OCxrA4LJ4hVZsIJDVkrJz8gCAPKMVwDn5CLGBwDGgJVvyHnO6grqSi6I-aWd3_mAmdERG7oZgx5xu6etD3SDPdqxe0T6Fcd58o76lm46t-2RrnWwnfM4mLD3rrN05cZui45era9Xn-hPn-Spx_iWvG51H_Hd8b0k99-u79Y_stvf32_Wq9tMi6oYsxILgbkQQreyZhUvm6rKbd2AbSTmuYE8l4IZzoUx0GgmBRasKbWRUpim1vkluTrs3QX_d8I4qqGLFvteO_RTVFwAiILzunwZTXckMAkJ_fgEffBTSLnPVAnASy5Eoj4cqckM2Khd6AYd9uoUdAK-HAAbfIwBW2W7Uc-JpsC7XjFQc6sqtapOrapjq0kWT-TT_hc0OGjz7_-rn1X-AXkYuMk
CitedBy_id crossref_primary_10_1016_j_aca_2021_338283
crossref_primary_10_1016_j_bios_2022_114023
crossref_primary_10_1021_acs_analchem_4c02091
crossref_primary_10_1002_asia_202200261
crossref_primary_10_1016_j_talanta_2020_121376
crossref_primary_10_1002_chem_202300976
crossref_primary_10_1021_acs_analchem_1c01926
crossref_primary_10_1016_j_aca_2022_340162
crossref_primary_10_1039_D0AN01399D
crossref_primary_10_3390_app12031539
crossref_primary_10_1016_j_microc_2024_110463
crossref_primary_10_1021_acs_analchem_4c01354
crossref_primary_10_1016_j_bios_2020_112434
crossref_primary_10_1038_s41598_022_06976_0
crossref_primary_10_1016_j_bios_2024_117065
crossref_primary_10_3389_fchem_2022_899276
crossref_primary_10_1007_s41061_023_00425_w
crossref_primary_10_1002_smtd_202000356
crossref_primary_10_1021_acs_analchem_1c05012
crossref_primary_10_1016_j_jelechem_2022_116106
crossref_primary_10_1016_j_jelechem_2021_115635
crossref_primary_10_3389_fchem_2022_939736
crossref_primary_10_1039_D2AN00567K
crossref_primary_10_1039_D4AN01384K
crossref_primary_10_20964_2022_10_26
crossref_primary_10_1021_acs_analchem_2c02660
crossref_primary_10_7498_aps_73_20240159
crossref_primary_10_1021_acsnano_3c08433
crossref_primary_10_1016_j_cjac_2021_11_005
crossref_primary_10_1021_acs_analchem_2c01770
crossref_primary_10_1021_acs_analchem_4c02674
crossref_primary_10_1016_j_talanta_2023_124384
crossref_primary_10_1002_chem_202400281
crossref_primary_10_1021_acsami_3c10962
crossref_primary_10_1021_acs_analchem_1c05426
crossref_primary_10_1039_D3RA03759B
crossref_primary_10_1021_acssensors_2c02102
crossref_primary_10_1039_D0RA10097H
crossref_primary_10_1002_asia_202200364
crossref_primary_10_1016_j_bios_2025_117318
crossref_primary_10_1016_j_bioelechem_2022_108284
crossref_primary_10_1016_j_snb_2024_135381
crossref_primary_10_2147_IJN_S286317
crossref_primary_10_1021_acs_analchem_2c00785
crossref_primary_10_1149_1945_7111_ac4e58
crossref_primary_10_1088_1361_6528_ac8c9c
crossref_primary_10_1016_j_bios_2022_114448
crossref_primary_10_1021_acs_analchem_4c04054
crossref_primary_10_1016_j_cclet_2021_07_049
crossref_primary_10_1007_s12668_023_01250_7
crossref_primary_10_1021_acsnano_3c04420
crossref_primary_10_1002_elan_202400357
crossref_primary_10_1002_cjoc_202000721
crossref_primary_10_1016_j_microc_2023_109058
crossref_primary_10_1039_D0AY01326A
crossref_primary_10_1021_acs_langmuir_4c00607
crossref_primary_10_1186_s12951_024_02535_z
crossref_primary_10_1039_D0NJ02609C
crossref_primary_10_1016_j_memsci_2022_121062
crossref_primary_10_1021_acs_jpclett_1c01389
crossref_primary_10_1021_acs_analchem_1c01790
crossref_primary_10_1021_acs_nanolett_3c00056
crossref_primary_10_1080_19475411_2024_2305544
crossref_primary_10_1016_j_snb_2022_133075
crossref_primary_10_1021_acsanm_2c05373
crossref_primary_10_1016_j_bioelechem_2021_107943
crossref_primary_10_1002_elan_202200443
crossref_primary_10_1016_j_trac_2023_117060
crossref_primary_10_1039_D2AY01523D
crossref_primary_10_1016_j_bioelechem_2024_108651
crossref_primary_10_3390_s20164495
crossref_primary_10_1021_acssensors_4c00200
crossref_primary_10_1039_D2CS00865C
crossref_primary_10_2116_bunsekikagaku_72_87
crossref_primary_10_1002_elps_202200102
crossref_primary_10_1016_j_snb_2023_134508
crossref_primary_10_3390_bios14120627
crossref_primary_10_1021_acs_analchem_4c03620
crossref_primary_10_1016_j_jelechem_2022_116397
crossref_primary_10_1021_acs_analchem_2c00860
crossref_primary_10_1016_j_bios_2021_113134
crossref_primary_10_1016_j_bios_2021_113056
crossref_primary_10_1039_D2TB02277J
crossref_primary_10_3390_bios14070345
crossref_primary_10_1016_j_cej_2023_145276
Cites_doi 10.1002/anie.201303529
10.1021/acs.analchem.7b01921
10.1016/j.bios.2017.11.064
10.1021/acs.analchem.7b03442
10.1038/s41467-019-10147-7
10.1039/C9CC04864B
10.1038/nbt.2799
10.1021/acsnano.7b02718
10.1039/C2CS35286A
10.1088/0957-4484/26/15/155702
10.1021/ac9009148
10.1038/nphys344
10.1039/C2SC21502K
10.1038/nbt.4316
10.1021/acs.langmuir.5b03024
10.1021/ac401764c
10.1021/nn4004567
10.1038/nature06916
10.1038/nature11876
10.1021/nn3023969
10.1021/acssensors.7b00385
10.1039/C6CC08621G
10.1021/acssensors.6b00182
10.1038/nbt1340
10.1021/am504139d
10.1002/anie.201808537
10.1039/C4CC09185J
10.1021/ac5034165
10.1021/nl0480464
10.1038/nmat965
10.1021/acs.analchem.7b00989
10.1021/ja711298b
10.1021/nl048030d
10.1038/s41467-017-01584-3
10.1021/ja0380852
10.1016/j.lungcan.2011.11.012
10.1021/acs.analchem.9b02025
10.1002/elps.201100201
10.1021/acs.analchem.5b01038
10.1002/anie.201907816
10.1021/acs.nanolett.5b00249
10.1039/C7CC00060J
10.1039/C7SC00415J
10.1038/nnano.2016.267
10.1039/C9CC04077C
10.1002/smll.201002349
10.1038/nnano.2016.9
10.1021/ac404168s
10.1021/ac5029243
10.1021/acs.analchem.9b01570
10.1002/anie.201800335
10.1021/ac902162e
10.1039/C7CC06775E
10.1038/nnano.2016.50
10.1021/acs.analchem.7b03278
10.1021/acsnano.7b01212
10.1039/C6SC02241C
10.1016/j.bios.2014.06.040
10.1039/b910511e
ContentType Journal Article
Copyright Copyright American Chemical Society Feb 18, 2020
Copyright_xml – notice: Copyright American Chemical Society Feb 18, 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7U5
7U7
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
7S9
L.6
DOI 10.1021/acs.analchem.9b04185
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
AIDS and Cancer Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Toxicology Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA
Materials Research Database
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1520-6882
EndPage 3049
ExternalDocumentID 31970978
10_1021_acs_analchem_9b04185
b941191851
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
02
1AW
23M
53T
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABOCM
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACNCT
ACPRK
ACS
AEESW
AENEX
AFEFF
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
D0L
DZ
EBS
ED
ED~
F20
F5P
GNL
IH9
IHE
JG
JG~
K2
P2P
PQEST
PQQKQ
ROL
RXW
TAE
TN5
UHB
UI2
UKR
VF5
VG9
VQA
W1F
WH7
X
X6Y
XFK
YZZ
---
-DZ
-~X
.DC
4.4
53G
6J9
AAHBH
AAYXX
ABBLG
ABHFT
ABHMW
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ACKOT
ADHLV
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
KZ1
LMP
XSW
ZCA
~02
CGR
CUY
CVF
ECM
EIF
NPM
YIN
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7U5
7U7
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
7S9
L.6
ID FETCH-LOGICAL-a475t-6e54e3444af891726d773c9d0cd8e33b033841b224bb0da184e51d6ab884bd9a3
IEDL.DBID ACS
ISSN 0003-2700
1520-6882
IngestDate Fri Jul 11 00:17:26 EDT 2025
Thu Jul 10 21:21:21 EDT 2025
Mon Jun 30 08:32:24 EDT 2025
Wed Feb 19 02:29:56 EST 2025
Tue Jul 01 04:15:24 EDT 2025
Thu Apr 24 23:11:18 EDT 2025
Thu Aug 27 22:10:25 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a475t-6e54e3444af891726d773c9d0cd8e33b033841b224bb0da184e51d6ab884bd9a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4016-8479
0000-0001-5543-4242
PMID 31970978
PQID 2360026244
PQPubID 45400
PageCount 8
ParticipantIDs proquest_miscellaneous_2400452296
proquest_miscellaneous_2344229400
proquest_journals_2360026244
pubmed_primary_31970978
crossref_citationtrail_10_1021_acs_analchem_9b04185
crossref_primary_10_1021_acs_analchem_9b04185
acs_journals_10_1021_acs_analchem_9b04185
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-18
PublicationDateYYYYMMDD 2020-02-18
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-18
  day: 18
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Analytical chemistry (Washington)
PublicationTitleAlternate Anal. Chem
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref29/cit29
  doi: 10.1002/anie.201303529
– ident: ref8/cit8
  doi: 10.1021/acs.analchem.7b01921
– ident: ref22/cit22
  doi: 10.1016/j.bios.2017.11.064
– ident: ref12/cit12
  doi: 10.1021/acs.analchem.7b03442
– ident: ref40/cit40
  doi: 10.1038/s41467-019-10147-7
– ident: ref19/cit19
  doi: 10.1039/C9CC04864B
– ident: ref27/cit27
  doi: 10.1038/nbt.2799
– ident: ref44/cit44
  doi: 10.1021/acsnano.7b02718
– ident: ref24/cit24
  doi: 10.1039/C2CS35286A
– ident: ref55/cit55
  doi: 10.1088/0957-4484/26/15/155702
– ident: ref11/cit11
  doi: 10.1021/ac9009148
– ident: ref30/cit30
  doi: 10.1038/nphys344
– ident: ref49/cit49
  doi: 10.1039/C2SC21502K
– ident: ref41/cit41
  doi: 10.1038/nbt.4316
– ident: ref21/cit21
  doi: 10.1021/acs.langmuir.5b03024
– ident: ref20/cit20
  doi: 10.1021/ac401764c
– ident: ref39/cit39
  doi: 10.1021/nn4004567
– ident: ref3/cit3
  doi: 10.1038/nature06916
– ident: ref37/cit37
  doi: 10.1038/nature11876
– ident: ref4/cit4
  doi: 10.1021/nn3023969
– ident: ref13/cit13
  doi: 10.1021/acssensors.7b00385
– ident: ref25/cit25
  doi: 10.1039/C6CC08621G
– ident: ref51/cit51
  doi: 10.1021/acssensors.6b00182
– ident: ref54/cit54
  doi: 10.1038/nbt1340
– ident: ref52/cit52
  doi: 10.1021/am504139d
– ident: ref33/cit33
  doi: 10.1002/anie.201808537
– ident: ref36/cit36
  doi: 10.1039/C4CC09185J
– ident: ref15/cit15
  doi: 10.1021/ac5034165
– ident: ref48/cit48
  doi: 10.1021/nl0480464
– ident: ref31/cit31
  doi: 10.1038/nmat965
– ident: ref50/cit50
  doi: 10.1021/acs.analchem.7b00989
– ident: ref5/cit5
  doi: 10.1021/ja711298b
– ident: ref32/cit32
  doi: 10.1021/nl048030d
– ident: ref43/cit43
  doi: 10.1038/s41467-017-01584-3
– ident: ref59/cit59
  doi: 10.1021/ja0380852
– ident: ref58/cit58
  doi: 10.1016/j.lungcan.2011.11.012
– ident: ref47/cit47
  doi: 10.1021/acs.analchem.9b02025
– ident: ref38/cit38
  doi: 10.1002/elps.201100201
– ident: ref56/cit56
  doi: 10.1021/acs.analchem.5b01038
– ident: ref26/cit26
  doi: 10.1002/anie.201907816
– ident: ref6/cit6
  doi: 10.1021/acs.nanolett.5b00249
– ident: ref9/cit9
  doi: 10.1039/C7CC00060J
– ident: ref7/cit7
  doi: 10.1039/C7SC00415J
– ident: ref46/cit46
  doi: 10.1038/nnano.2016.267
– ident: ref34/cit34
  doi: 10.1039/C9CC04077C
– ident: ref2/cit2
  doi: 10.1002/smll.201002349
– ident: ref28/cit28
  doi: 10.1038/nnano.2016.9
– ident: ref16/cit16
  doi: 10.1021/ac404168s
– ident: ref35/cit35
  doi: 10.1021/ac5029243
– ident: ref42/cit42
  doi: 10.1021/acs.analchem.9b01570
– ident: ref17/cit17
  doi: 10.1002/anie.201800335
– ident: ref57/cit57
  doi: 10.1021/ac902162e
– ident: ref1/cit1
  doi: 10.1039/C7CC06775E
– ident: ref14/cit14
  doi: 10.1038/nnano.2016.50
– ident: ref10/cit10
  doi: 10.1021/acs.analchem.7b03278
– ident: ref45/cit45
  doi: 10.1021/acsnano.7b01212
– ident: ref18/cit18
  doi: 10.1039/C6SC02241C
– ident: ref23/cit23
  doi: 10.1016/j.bios.2014.06.040
– ident: ref53/cit53
  doi: 10.1039/b910511e
SSID ssj0011016
Score 2.580219
Snippet Nanopores have become one of the most important tools for single-molecule sensing, but the challenge for selective detection of specific biomolecules still...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3042
SubjectTerms Antigens
Aptamers
Biomarkers
Biomolecules
Cancer
Carcinoembryonic antigen
Carcinoembryonic Antigen - blood
Chemistry
Detection
detection limit
early diagnosis
Gold
Gold - chemistry
Humans
Iron oxides
Magnetic separation
magnetism
Magnetite Nanoparticles - chemistry
Metal Nanoparticles - chemistry
monitoring
Nanoparticles
Nanopores
neoplasms
oligonucleotides
particle size
Porosity
Selectivity
Sensitivity analysis
Strategy
Title Nanopore-based Strategy for Selective Detection of Single Carcinoembryonic Antigen (CEA) Molecules
URI http://dx.doi.org/10.1021/acs.analchem.9b04185
https://www.ncbi.nlm.nih.gov/pubmed/31970978
https://www.proquest.com/docview/2360026244
https://www.proquest.com/docview/2344229400
https://www.proquest.com/docview/2400452296
Volume 92
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4VegAOtLzapRQZiQMcvDiO10mOqxSEKgGHBYlbZDvOBUgqNnuAX9-ZPBZKRaHXxBM5M7ZnxmN_H8B-ZF3hA-E4pj8FV-iTOPp5zaPCWHSgOjKO9iHPzvXplfp5Pbp-ShRfVvBlcGTcdGhQqfgPd8PECkJbWYCPUscRJVvjdDKvGlAm2jPkUUG1vyr3ylfIIbnpnw7plSiz8TYnn-Civ7PTHjK5Gc5qO3SPf0M4vvNHPsNqF3iycTtS1uCDL9dhKe353tZh5Rk04QZYXHYrjM09Jz-Xsw7F9oFhkMsmDXkOrpPsh6-bs1wlqwo2Qclbz1KiJyorf2fvHwh4l43LmjA_2UF6PD5kZy0hr59uwtXJ8WV6yjs-Bm7QiDXXfqR8qJQyRYxZntR5FIUuyYXLYx-GVqC9VWAxKLBW5AZzRz8Kcm1sHCubJybcgsWyKv1XYMIEI6eFczLBFM2KpIiEw0gQs5cAhYsBHKK6sm4-TbOmVC6DjB72Osw6HQ4g7A2YuQ7YnPg1bt-Q4nOpXy2wxxvtd_qx8dQtGVJZU2OINIC9-Wu0G1VdTOmrGbVRSkrin_9HG9VC2yd6AF_acTfvFK6REV222f4PlXyDZUn7AkRcE-_AYn0_898xeKrtbjNjfgP1WhRS
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5ReqA99EEfLKWtK_VQDl6cxHGS4yoFbVuWy0LFLbId51JIEMke6K9nJi-gEkVcHdtyxo7nG0_8fQBfI2ML5wnLMfwpuESfxNHPKx4V2qADVZG2dA65OFLzE_nzNDxdg3C4C4ODqLGnuk3i37ALeHtUptG2-Crn08QIIl15Ak8Rj_gUc83S5Zg8oIB0EMqjvOpwY-6eXsgv2fquX7oHbLZO5-Al_B6H2_5r8me6aszU_v2HyfHR7_MKXvQwlM26dfMa1ly5CRvpoP62Cc9vERW-AYObcIVI3XHyejnrOW2vGEJetmyldHDXZN9d0_7ZVbKqYEtseeZYSmJFZeXOzeUV0fCyWdkQAyj7lu7Pdtmik-d19Vs4Odg_Tue8V2fgGqe04cqF0gVSSl3EGPP5Ko-iwCa5sHnsgsAInH3pGYQIxohcYyTpQi9X2sSxNHmig3ewXlal2wImtBdaJaz1EwzYjEiKSFjEhRjLeNi4mMAumivrv646axPnvpdR4WDDrLfhBIJhHjPb05yT2sbZA6342Oqio_l4oP7OsERuhuUHlORUCJgm8GV8jPNGORhdumpFdaT0fVKj_08d2RHdJ2oC77vlNw4Kd8yIrt5sP8Ikn2Fjfrw4zA5_HP36AM98OjEgSZt4B9aby5X7iLCqMZ_aj-gaL3Acsw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RkPo4UEppu4VSV-qhHLw4iddJjqvAikJBlbZIqJfIdpwLkCCSPdBf35m8oEgUtVfHYznjx8x47O8D-BwamztPWI7hT84l2iSOdl7xMNcGDagKtaVzyOMTdXAqD88mZ3eovrATFbZUNUl8WtVXWd4hDHi7VK5Rv_g7l-PYCAJeeQIrlLmjuGuazIcEAgWlPVke5Vb7V3MPtEK2yVZ_2qYHHM7G8Mxews-hy819k_PxojZj--semuN__dMarHbuKJu28-cVLLliHZ4lPQvcOry4A1j4GgxuxiV67I6T9ctYh217w9D1ZfOGUgd3T7bn6uaGV8HKnM1R8sKxhEiLitJdmusbguNl06ImJFD2Jdmf7rDjlqbXVRtwOtv_kRzwjqWBaxzamis3kS6QUuo8wtjPV1kYBjbOhM0iFwRG4CyQnkFXwRiRaYwo3cTLlDZRJE0W6-ANLBdl4d4BE9qbWCWs9WMM3IyI81BY9A8xpvFQOB_BDqor7VZZlTYJdN9LqbDXYdrpcARBP5ap7eDOiXXj4hEpPkhdtXAfj9Tf6qfJbbf8gJKdCh2nEXwaPuO4US5GF65cUB0pfZ9Y6f9SR7aA97Eawdt2Cg6dwp0zpCc47_9BJR_h6fe9Wfrt68nRJjz36eCAmG2iLViurxfuA3pXtdlu1tFvV1QfNg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanopore-based+Strategy+for+Selective+Detection+of+Single+Carcinoembryonic+Antigen+%28CEA%29+Molecules&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Tang%2C+Haoran&rft.au=Wang%2C+Hao&rft.au=Yang%2C+Cheng&rft.au=Zhao%2C+Dandan&rft.date=2020-02-18&rft.issn=1520-6882&rft.eissn=1520-6882&rft.volume=92&rft.issue=4&rft.spage=3042&rft_id=info:doi/10.1021%2Facs.analchem.9b04185&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2700&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2700&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2700&client=summon