Nanopore-based Strategy for Selective Detection of Single Carcinoembryonic Antigen (CEA) Molecules
Nanopores have become one of the most important tools for single-molecule sensing, but the challenge for selective detection of specific biomolecules still exists. In this contribution, we develop a new technique for sensing carcinoembryonic antigen (CEA), one of the important cancer biomarkers, usi...
Saved in:
Published in | Analytical chemistry (Washington) Vol. 92; no. 4; pp. 3042 - 3049 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
18.02.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nanopores have become one of the most important tools for single-molecule sensing, but the challenge for selective detection of specific biomolecules still exists. In this contribution, we develop a new technique for sensing carcinoembryonic antigen (CEA), one of the important cancer biomarkers, using solid-state nanopores as a tool. The method is based on the specific affinity between aptamer (Apt) modified magnetic Fe3O4–Au nanoparticles (MNPs) and CEA, and the formed CEA–Apt–MNPs and remaining Apt–MNPs can transport the nanopores by applying a positive potential after magnetic separation. Due to the obvious particle size difference between CEA–Apt–MNPs and Apt-MPs, their corresponding blockage signals could be distinguished completely by the degree of the current decline. Moreover, the frequency of the blockage signals for CEA–Apt–MNPs is proportional to the concentration of CEA within certain limits, indicating that our designed nanopore sensing strategy can quantitatively detect CEA in complex samples. This work demonstrates that our designed nanopore-based strategy can be used for CEA sensing with good selectivity and sensitivity and also can be used to analyze other protein biomarkers for early diagnosis and monitoring of cancer, though the detection limit (0.6 ng/mL) is not relatively low. In future works, we plan to improve our detection limit by the improvement of the nanopipette preparation technology and detection method. |
---|---|
AbstractList | Nanopores have become one of the most important tools for single-molecule sensing, but the challenge for selective detection of specific biomolecules still exists. In this contribution, we develop a new technique for sensing carcinoembryonic antigen (CEA), one of the important cancer biomarkers, using solid-state nanopores as a tool. The method is based on the specific affinity between aptamer (Apt) modified magnetic Fe3O4-Au nanoparticles (MNPs) and CEA, and the formed CEA-Apt-MNPs and remaining Apt-MNPs can transport the nanopores by applying a positive potential after magnetic separation. Due to the obvious particle size difference between CEA-Apt-MNPs and Apt-MPs, their corresponding blockage signals could be distinguished completely by the degree of the current decline. Moreover, the frequency of the blockage signals for CEA-Apt-MNPs is proportional to the concentration of CEA within certain limits, indicating that our designed nanopore sensing strategy can quantitatively detect CEA in complex samples. This work demonstrates that our designed nanopore-based strategy can be used for CEA sensing with good selectivity and sensitivity and also can be used to analyze other protein biomarkers for early diagnosis and monitoring of cancer, though the detection limit (0.6 ng/mL) is not relatively low. In future works, we plan to improve our detection limit by the improvement of the nanopipette preparation technology and detection method.Nanopores have become one of the most important tools for single-molecule sensing, but the challenge for selective detection of specific biomolecules still exists. In this contribution, we develop a new technique for sensing carcinoembryonic antigen (CEA), one of the important cancer biomarkers, using solid-state nanopores as a tool. The method is based on the specific affinity between aptamer (Apt) modified magnetic Fe3O4-Au nanoparticles (MNPs) and CEA, and the formed CEA-Apt-MNPs and remaining Apt-MNPs can transport the nanopores by applying a positive potential after magnetic separation. Due to the obvious particle size difference between CEA-Apt-MNPs and Apt-MPs, their corresponding blockage signals could be distinguished completely by the degree of the current decline. Moreover, the frequency of the blockage signals for CEA-Apt-MNPs is proportional to the concentration of CEA within certain limits, indicating that our designed nanopore sensing strategy can quantitatively detect CEA in complex samples. This work demonstrates that our designed nanopore-based strategy can be used for CEA sensing with good selectivity and sensitivity and also can be used to analyze other protein biomarkers for early diagnosis and monitoring of cancer, though the detection limit (0.6 ng/mL) is not relatively low. In future works, we plan to improve our detection limit by the improvement of the nanopipette preparation technology and detection method. Nanopores have become one of the most important tools for single-molecule sensing, but the challenge for selective detection of specific biomolecules still exists. In this contribution, we develop a new technique for sensing carcinoembryonic antigen (CEA), one of the important cancer biomarkers, using solid-state nanopores as a tool. The method is based on the specific affinity between aptamer (Apt) modified magnetic Fe₃O₄–Au nanoparticles (MNPs) and CEA, and the formed CEA–Apt–MNPs and remaining Apt–MNPs can transport the nanopores by applying a positive potential after magnetic separation. Due to the obvious particle size difference between CEA–Apt–MNPs and Apt-MPs, their corresponding blockage signals could be distinguished completely by the degree of the current decline. Moreover, the frequency of the blockage signals for CEA–Apt–MNPs is proportional to the concentration of CEA within certain limits, indicating that our designed nanopore sensing strategy can quantitatively detect CEA in complex samples. This work demonstrates that our designed nanopore-based strategy can be used for CEA sensing with good selectivity and sensitivity and also can be used to analyze other protein biomarkers for early diagnosis and monitoring of cancer, though the detection limit (0.6 ng/mL) is not relatively low. In future works, we plan to improve our detection limit by the improvement of the nanopipette preparation technology and detection method. Nanopores have become one of the most important tools for single-molecule sensing, but the challenge for selective detection of specific biomolecules still exists. In this contribution, we develop a new technique for sensing carcinoembryonic antigen (CEA), one of the important cancer biomarkers, using solid-state nanopores as a tool. The method is based on the specific affinity between aptamer (Apt) modified magnetic Fe3O4–Au nanoparticles (MNPs) and CEA, and the formed CEA–Apt–MNPs and remaining Apt–MNPs can transport the nanopores by applying a positive potential after magnetic separation. Due to the obvious particle size difference between CEA–Apt–MNPs and Apt-MPs, their corresponding blockage signals could be distinguished completely by the degree of the current decline. Moreover, the frequency of the blockage signals for CEA–Apt–MNPs is proportional to the concentration of CEA within certain limits, indicating that our designed nanopore sensing strategy can quantitatively detect CEA in complex samples. This work demonstrates that our designed nanopore-based strategy can be used for CEA sensing with good selectivity and sensitivity and also can be used to analyze other protein biomarkers for early diagnosis and monitoring of cancer, though the detection limit (0.6 ng/mL) is not relatively low. In future works, we plan to improve our detection limit by the improvement of the nanopipette preparation technology and detection method. Nanopores have become one of the most important tools for single-molecule sensing, but the challenge for selective detection of specific biomolecules still exists. In this contribution, we develop a new technique for sensing carcinoembryonic antigen (CEA), one of the important cancer biomarkers, using solid-state nanopores as a tool. The method is based on the specific affinity between aptamer (Apt) modified magnetic Fe O -Au nanoparticles (MNPs) and CEA, and the formed CEA-Apt-MNPs and remaining Apt-MNPs can transport the nanopores by applying a positive potential after magnetic separation. Due to the obvious particle size difference between CEA-Apt-MNPs and Apt-MPs, their corresponding blockage signals could be distinguished completely by the degree of the current decline. Moreover, the frequency of the blockage signals for CEA-Apt-MNPs is proportional to the concentration of CEA within certain limits, indicating that our designed nanopore sensing strategy can quantitatively detect CEA in complex samples. This work demonstrates that our designed nanopore-based strategy can be used for CEA sensing with good selectivity and sensitivity and also can be used to analyze other protein biomarkers for early diagnosis and monitoring of cancer, though the detection limit (0.6 ng/mL) is not relatively low. In future works, we plan to improve our detection limit by the improvement of the nanopipette preparation technology and detection method. |
Author | Yang, Cheng Qian, Yuanyuan Zhao, Dandan Li, Yongxin Tang, Haoran Wang, Hao |
AuthorAffiliation | Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science |
AuthorAffiliation_xml | – name: Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science |
Author_xml | – sequence: 1 givenname: Haoran orcidid: 0000-0002-4016-8479 surname: Tang fullname: Tang, Haoran – sequence: 2 givenname: Hao surname: Wang fullname: Wang, Hao – sequence: 3 givenname: Cheng surname: Yang fullname: Yang, Cheng – sequence: 4 givenname: Dandan surname: Zhao fullname: Zhao, Dandan – sequence: 5 givenname: Yuanyuan surname: Qian fullname: Qian, Yuanyuan – sequence: 6 givenname: Yongxin orcidid: 0000-0001-5543-4242 surname: Li fullname: Li, Yongxin email: yongli@mail.ahnu.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31970978$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcFu1DAQhi1URLeFN0DIEpdyyDJ2nMThtloKVCpw2PZs2c5kSZXYi51U2rfH0e5y6KE9eSR_32j0_xfkzHmHhLxnsGTA2Wdt41I73ds_OCxrA4LJ4hVZsIJDVkrJz8gCAPKMVwDn5CLGBwDGgJVvyHnO6grqSi6I-aWd3_mAmdERG7oZgx5xu6etD3SDPdqxe0T6Fcd58o76lm46t-2RrnWwnfM4mLD3rrN05cZui45era9Xn-hPn-Spx_iWvG51H_Hd8b0k99-u79Y_stvf32_Wq9tMi6oYsxILgbkQQreyZhUvm6rKbd2AbSTmuYE8l4IZzoUx0GgmBRasKbWRUpim1vkluTrs3QX_d8I4qqGLFvteO_RTVFwAiILzunwZTXckMAkJ_fgEffBTSLnPVAnASy5Eoj4cqckM2Khd6AYd9uoUdAK-HAAbfIwBW2W7Uc-JpsC7XjFQc6sqtapOrapjq0kWT-TT_hc0OGjz7_-rn1X-AXkYuMk |
CitedBy_id | crossref_primary_10_1016_j_aca_2021_338283 crossref_primary_10_1016_j_bios_2022_114023 crossref_primary_10_1021_acs_analchem_4c02091 crossref_primary_10_1002_asia_202200261 crossref_primary_10_1016_j_talanta_2020_121376 crossref_primary_10_1002_chem_202300976 crossref_primary_10_1021_acs_analchem_1c01926 crossref_primary_10_1016_j_aca_2022_340162 crossref_primary_10_1039_D0AN01399D crossref_primary_10_3390_app12031539 crossref_primary_10_1016_j_microc_2024_110463 crossref_primary_10_1021_acs_analchem_4c01354 crossref_primary_10_1016_j_bios_2020_112434 crossref_primary_10_1038_s41598_022_06976_0 crossref_primary_10_1016_j_bios_2024_117065 crossref_primary_10_3389_fchem_2022_899276 crossref_primary_10_1007_s41061_023_00425_w crossref_primary_10_1002_smtd_202000356 crossref_primary_10_1021_acs_analchem_1c05012 crossref_primary_10_1016_j_jelechem_2022_116106 crossref_primary_10_1016_j_jelechem_2021_115635 crossref_primary_10_3389_fchem_2022_939736 crossref_primary_10_1039_D2AN00567K crossref_primary_10_1039_D4AN01384K crossref_primary_10_20964_2022_10_26 crossref_primary_10_1021_acs_analchem_2c02660 crossref_primary_10_7498_aps_73_20240159 crossref_primary_10_1021_acsnano_3c08433 crossref_primary_10_1016_j_cjac_2021_11_005 crossref_primary_10_1021_acs_analchem_2c01770 crossref_primary_10_1021_acs_analchem_4c02674 crossref_primary_10_1016_j_talanta_2023_124384 crossref_primary_10_1002_chem_202400281 crossref_primary_10_1021_acsami_3c10962 crossref_primary_10_1021_acs_analchem_1c05426 crossref_primary_10_1039_D3RA03759B crossref_primary_10_1021_acssensors_2c02102 crossref_primary_10_1039_D0RA10097H crossref_primary_10_1002_asia_202200364 crossref_primary_10_1016_j_bios_2025_117318 crossref_primary_10_1016_j_bioelechem_2022_108284 crossref_primary_10_1016_j_snb_2024_135381 crossref_primary_10_2147_IJN_S286317 crossref_primary_10_1021_acs_analchem_2c00785 crossref_primary_10_1149_1945_7111_ac4e58 crossref_primary_10_1088_1361_6528_ac8c9c crossref_primary_10_1016_j_bios_2022_114448 crossref_primary_10_1021_acs_analchem_4c04054 crossref_primary_10_1016_j_cclet_2021_07_049 crossref_primary_10_1007_s12668_023_01250_7 crossref_primary_10_1021_acsnano_3c04420 crossref_primary_10_1002_elan_202400357 crossref_primary_10_1002_cjoc_202000721 crossref_primary_10_1016_j_microc_2023_109058 crossref_primary_10_1039_D0AY01326A crossref_primary_10_1021_acs_langmuir_4c00607 crossref_primary_10_1186_s12951_024_02535_z crossref_primary_10_1039_D0NJ02609C crossref_primary_10_1016_j_memsci_2022_121062 crossref_primary_10_1021_acs_jpclett_1c01389 crossref_primary_10_1021_acs_analchem_1c01790 crossref_primary_10_1021_acs_nanolett_3c00056 crossref_primary_10_1080_19475411_2024_2305544 crossref_primary_10_1016_j_snb_2022_133075 crossref_primary_10_1021_acsanm_2c05373 crossref_primary_10_1016_j_bioelechem_2021_107943 crossref_primary_10_1002_elan_202200443 crossref_primary_10_1016_j_trac_2023_117060 crossref_primary_10_1039_D2AY01523D crossref_primary_10_1016_j_bioelechem_2024_108651 crossref_primary_10_3390_s20164495 crossref_primary_10_1021_acssensors_4c00200 crossref_primary_10_1039_D2CS00865C crossref_primary_10_2116_bunsekikagaku_72_87 crossref_primary_10_1002_elps_202200102 crossref_primary_10_1016_j_snb_2023_134508 crossref_primary_10_3390_bios14120627 crossref_primary_10_1021_acs_analchem_4c03620 crossref_primary_10_1016_j_jelechem_2022_116397 crossref_primary_10_1021_acs_analchem_2c00860 crossref_primary_10_1016_j_bios_2021_113134 crossref_primary_10_1016_j_bios_2021_113056 crossref_primary_10_1039_D2TB02277J crossref_primary_10_3390_bios14070345 crossref_primary_10_1016_j_cej_2023_145276 |
Cites_doi | 10.1002/anie.201303529 10.1021/acs.analchem.7b01921 10.1016/j.bios.2017.11.064 10.1021/acs.analchem.7b03442 10.1038/s41467-019-10147-7 10.1039/C9CC04864B 10.1038/nbt.2799 10.1021/acsnano.7b02718 10.1039/C2CS35286A 10.1088/0957-4484/26/15/155702 10.1021/ac9009148 10.1038/nphys344 10.1039/C2SC21502K 10.1038/nbt.4316 10.1021/acs.langmuir.5b03024 10.1021/ac401764c 10.1021/nn4004567 10.1038/nature06916 10.1038/nature11876 10.1021/nn3023969 10.1021/acssensors.7b00385 10.1039/C6CC08621G 10.1021/acssensors.6b00182 10.1038/nbt1340 10.1021/am504139d 10.1002/anie.201808537 10.1039/C4CC09185J 10.1021/ac5034165 10.1021/nl0480464 10.1038/nmat965 10.1021/acs.analchem.7b00989 10.1021/ja711298b 10.1021/nl048030d 10.1038/s41467-017-01584-3 10.1021/ja0380852 10.1016/j.lungcan.2011.11.012 10.1021/acs.analchem.9b02025 10.1002/elps.201100201 10.1021/acs.analchem.5b01038 10.1002/anie.201907816 10.1021/acs.nanolett.5b00249 10.1039/C7CC00060J 10.1039/C7SC00415J 10.1038/nnano.2016.267 10.1039/C9CC04077C 10.1002/smll.201002349 10.1038/nnano.2016.9 10.1021/ac404168s 10.1021/ac5029243 10.1021/acs.analchem.9b01570 10.1002/anie.201800335 10.1021/ac902162e 10.1039/C7CC06775E 10.1038/nnano.2016.50 10.1021/acs.analchem.7b03278 10.1021/acsnano.7b01212 10.1039/C6SC02241C 10.1016/j.bios.2014.06.040 10.1039/b910511e |
ContentType | Journal Article |
Copyright | Copyright American Chemical Society Feb 18, 2020 |
Copyright_xml | – notice: Copyright American Chemical Society Feb 18, 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7X8 7S9 L.6 |
DOI | 10.1021/acs.analchem.9b04185 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Toxicology Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts AIDS and Cancer Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Toxicology Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA Materials Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1520-6882 |
EndPage | 3049 |
ExternalDocumentID | 31970978 10_1021_acs_analchem_9b04185 b941191851 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 02 1AW 23M 53T 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABOCM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACNCT ACPRK ACS AEESW AENEX AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 D0L DZ EBS ED ED~ F20 F5P GNL IH9 IHE JG JG~ K2 P2P PQEST PQQKQ ROL RXW TAE TN5 UHB UI2 UKR VF5 VG9 VQA W1F WH7 X X6Y XFK YZZ --- -DZ -~X .DC 4.4 53G 6J9 AAHBH AAYXX ABBLG ABHFT ABHMW ABJNI ABLBI ABQRX ACBEA ACGFO ACKOT ADHLV AGXLV AHGAQ CITATION CUPRZ GGK KZ1 LMP XSW ZCA ~02 CGR CUY CVF ECM EIF NPM YIN 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a475t-6e54e3444af891726d773c9d0cd8e33b033841b224bb0da184e51d6ab884bd9a3 |
IEDL.DBID | ACS |
ISSN | 0003-2700 1520-6882 |
IngestDate | Fri Jul 11 00:17:26 EDT 2025 Thu Jul 10 21:21:21 EDT 2025 Mon Jun 30 08:32:24 EDT 2025 Wed Feb 19 02:29:56 EST 2025 Tue Jul 01 04:15:24 EDT 2025 Thu Apr 24 23:11:18 EDT 2025 Thu Aug 27 22:10:25 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a475t-6e54e3444af891726d773c9d0cd8e33b033841b224bb0da184e51d6ab884bd9a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4016-8479 0000-0001-5543-4242 |
PMID | 31970978 |
PQID | 2360026244 |
PQPubID | 45400 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2400452296 proquest_miscellaneous_2344229400 proquest_journals_2360026244 pubmed_primary_31970978 crossref_citationtrail_10_1021_acs_analchem_9b04185 crossref_primary_10_1021_acs_analchem_9b04185 acs_journals_10_1021_acs_analchem_9b04185 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-18 |
PublicationDateYYYYMMDD | 2020-02-18 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Analytical chemistry (Washington) |
PublicationTitleAlternate | Anal. Chem |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref29/cit29 doi: 10.1002/anie.201303529 – ident: ref8/cit8 doi: 10.1021/acs.analchem.7b01921 – ident: ref22/cit22 doi: 10.1016/j.bios.2017.11.064 – ident: ref12/cit12 doi: 10.1021/acs.analchem.7b03442 – ident: ref40/cit40 doi: 10.1038/s41467-019-10147-7 – ident: ref19/cit19 doi: 10.1039/C9CC04864B – ident: ref27/cit27 doi: 10.1038/nbt.2799 – ident: ref44/cit44 doi: 10.1021/acsnano.7b02718 – ident: ref24/cit24 doi: 10.1039/C2CS35286A – ident: ref55/cit55 doi: 10.1088/0957-4484/26/15/155702 – ident: ref11/cit11 doi: 10.1021/ac9009148 – ident: ref30/cit30 doi: 10.1038/nphys344 – ident: ref49/cit49 doi: 10.1039/C2SC21502K – ident: ref41/cit41 doi: 10.1038/nbt.4316 – ident: ref21/cit21 doi: 10.1021/acs.langmuir.5b03024 – ident: ref20/cit20 doi: 10.1021/ac401764c – ident: ref39/cit39 doi: 10.1021/nn4004567 – ident: ref3/cit3 doi: 10.1038/nature06916 – ident: ref37/cit37 doi: 10.1038/nature11876 – ident: ref4/cit4 doi: 10.1021/nn3023969 – ident: ref13/cit13 doi: 10.1021/acssensors.7b00385 – ident: ref25/cit25 doi: 10.1039/C6CC08621G – ident: ref51/cit51 doi: 10.1021/acssensors.6b00182 – ident: ref54/cit54 doi: 10.1038/nbt1340 – ident: ref52/cit52 doi: 10.1021/am504139d – ident: ref33/cit33 doi: 10.1002/anie.201808537 – ident: ref36/cit36 doi: 10.1039/C4CC09185J – ident: ref15/cit15 doi: 10.1021/ac5034165 – ident: ref48/cit48 doi: 10.1021/nl0480464 – ident: ref31/cit31 doi: 10.1038/nmat965 – ident: ref50/cit50 doi: 10.1021/acs.analchem.7b00989 – ident: ref5/cit5 doi: 10.1021/ja711298b – ident: ref32/cit32 doi: 10.1021/nl048030d – ident: ref43/cit43 doi: 10.1038/s41467-017-01584-3 – ident: ref59/cit59 doi: 10.1021/ja0380852 – ident: ref58/cit58 doi: 10.1016/j.lungcan.2011.11.012 – ident: ref47/cit47 doi: 10.1021/acs.analchem.9b02025 – ident: ref38/cit38 doi: 10.1002/elps.201100201 – ident: ref56/cit56 doi: 10.1021/acs.analchem.5b01038 – ident: ref26/cit26 doi: 10.1002/anie.201907816 – ident: ref6/cit6 doi: 10.1021/acs.nanolett.5b00249 – ident: ref9/cit9 doi: 10.1039/C7CC00060J – ident: ref7/cit7 doi: 10.1039/C7SC00415J – ident: ref46/cit46 doi: 10.1038/nnano.2016.267 – ident: ref34/cit34 doi: 10.1039/C9CC04077C – ident: ref2/cit2 doi: 10.1002/smll.201002349 – ident: ref28/cit28 doi: 10.1038/nnano.2016.9 – ident: ref16/cit16 doi: 10.1021/ac404168s – ident: ref35/cit35 doi: 10.1021/ac5029243 – ident: ref42/cit42 doi: 10.1021/acs.analchem.9b01570 – ident: ref17/cit17 doi: 10.1002/anie.201800335 – ident: ref57/cit57 doi: 10.1021/ac902162e – ident: ref1/cit1 doi: 10.1039/C7CC06775E – ident: ref14/cit14 doi: 10.1038/nnano.2016.50 – ident: ref10/cit10 doi: 10.1021/acs.analchem.7b03278 – ident: ref45/cit45 doi: 10.1021/acsnano.7b01212 – ident: ref18/cit18 doi: 10.1039/C6SC02241C – ident: ref23/cit23 doi: 10.1016/j.bios.2014.06.040 – ident: ref53/cit53 doi: 10.1039/b910511e |
SSID | ssj0011016 |
Score | 2.580219 |
Snippet | Nanopores have become one of the most important tools for single-molecule sensing, but the challenge for selective detection of specific biomolecules still... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3042 |
SubjectTerms | Antigens Aptamers Biomarkers Biomolecules Cancer Carcinoembryonic antigen Carcinoembryonic Antigen - blood Chemistry Detection detection limit early diagnosis Gold Gold - chemistry Humans Iron oxides Magnetic separation magnetism Magnetite Nanoparticles - chemistry Metal Nanoparticles - chemistry monitoring Nanoparticles Nanopores neoplasms oligonucleotides particle size Porosity Selectivity Sensitivity analysis Strategy |
Title | Nanopore-based Strategy for Selective Detection of Single Carcinoembryonic Antigen (CEA) Molecules |
URI | http://dx.doi.org/10.1021/acs.analchem.9b04185 https://www.ncbi.nlm.nih.gov/pubmed/31970978 https://www.proquest.com/docview/2360026244 https://www.proquest.com/docview/2344229400 https://www.proquest.com/docview/2400452296 |
Volume | 92 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4VegAOtLzapRQZiQMcvDiO10mOqxSEKgGHBYlbZDvOBUgqNnuAX9-ZPBZKRaHXxBM5M7ZnxmN_H8B-ZF3hA-E4pj8FV-iTOPp5zaPCWHSgOjKO9iHPzvXplfp5Pbp-ShRfVvBlcGTcdGhQqfgPd8PECkJbWYCPUscRJVvjdDKvGlAm2jPkUUG1vyr3ylfIIbnpnw7plSiz8TYnn-Civ7PTHjK5Gc5qO3SPf0M4vvNHPsNqF3iycTtS1uCDL9dhKe353tZh5Rk04QZYXHYrjM09Jz-Xsw7F9oFhkMsmDXkOrpPsh6-bs1wlqwo2Qclbz1KiJyorf2fvHwh4l43LmjA_2UF6PD5kZy0hr59uwtXJ8WV6yjs-Bm7QiDXXfqR8qJQyRYxZntR5FIUuyYXLYx-GVqC9VWAxKLBW5AZzRz8Kcm1sHCubJybcgsWyKv1XYMIEI6eFczLBFM2KpIiEw0gQs5cAhYsBHKK6sm4-TbOmVC6DjB72Osw6HQ4g7A2YuQ7YnPg1bt-Q4nOpXy2wxxvtd_qx8dQtGVJZU2OINIC9-Wu0G1VdTOmrGbVRSkrin_9HG9VC2yd6AF_acTfvFK6REV222f4PlXyDZUn7AkRcE-_AYn0_898xeKrtbjNjfgP1WhRS |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5ReqA99EEfLKWtK_VQDl6cxHGS4yoFbVuWy0LFLbId51JIEMke6K9nJi-gEkVcHdtyxo7nG0_8fQBfI2ML5wnLMfwpuESfxNHPKx4V2qADVZG2dA65OFLzE_nzNDxdg3C4C4ODqLGnuk3i37ALeHtUptG2-Crn08QIIl15Ak8Rj_gUc83S5Zg8oIB0EMqjvOpwY-6eXsgv2fquX7oHbLZO5-Al_B6H2_5r8me6aszU_v2HyfHR7_MKXvQwlM26dfMa1ly5CRvpoP62Cc9vERW-AYObcIVI3XHyejnrOW2vGEJetmyldHDXZN9d0_7ZVbKqYEtseeZYSmJFZeXOzeUV0fCyWdkQAyj7lu7Pdtmik-d19Vs4Odg_Tue8V2fgGqe04cqF0gVSSl3EGPP5Ko-iwCa5sHnsgsAInH3pGYQIxohcYyTpQi9X2sSxNHmig3ewXlal2wImtBdaJaz1EwzYjEiKSFjEhRjLeNi4mMAumivrv646axPnvpdR4WDDrLfhBIJhHjPb05yT2sbZA6342Oqio_l4oP7OsERuhuUHlORUCJgm8GV8jPNGORhdumpFdaT0fVKj_08d2RHdJ2oC77vlNw4Kd8yIrt5sP8Ikn2Fjfrw4zA5_HP36AM98OjEgSZt4B9aby5X7iLCqMZ_aj-gaL3Acsw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RkPo4UEppu4VSV-qhHLw4iddJjqvAikJBlbZIqJfIdpwLkCCSPdBf35m8oEgUtVfHYznjx8x47O8D-BwamztPWI7hT84l2iSOdl7xMNcGDagKtaVzyOMTdXAqD88mZ3eovrATFbZUNUl8WtVXWd4hDHi7VK5Rv_g7l-PYCAJeeQIrlLmjuGuazIcEAgWlPVke5Vb7V3MPtEK2yVZ_2qYHHM7G8Mxews-hy819k_PxojZj--semuN__dMarHbuKJu28-cVLLliHZ4lPQvcOry4A1j4GgxuxiV67I6T9ctYh217w9D1ZfOGUgd3T7bn6uaGV8HKnM1R8sKxhEiLitJdmusbguNl06ImJFD2Jdmf7rDjlqbXVRtwOtv_kRzwjqWBaxzamis3kS6QUuo8wtjPV1kYBjbOhM0iFwRG4CyQnkFXwRiRaYwo3cTLlDZRJE0W6-ANLBdl4d4BE9qbWCWs9WMM3IyI81BY9A8xpvFQOB_BDqor7VZZlTYJdN9LqbDXYdrpcARBP5ap7eDOiXXj4hEpPkhdtXAfj9Tf6qfJbbf8gJKdCh2nEXwaPuO4US5GF65cUB0pfZ9Y6f9SR7aA97Eawdt2Cg6dwp0zpCc47_9BJR_h6fe9Wfrt68nRJjz36eCAmG2iLViurxfuA3pXtdlu1tFvV1QfNg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanopore-based+Strategy+for+Selective+Detection+of+Single+Carcinoembryonic+Antigen+%28CEA%29+Molecules&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Tang%2C+Haoran&rft.au=Wang%2C+Hao&rft.au=Yang%2C+Cheng&rft.au=Zhao%2C+Dandan&rft.date=2020-02-18&rft.issn=1520-6882&rft.eissn=1520-6882&rft.volume=92&rft.issue=4&rft.spage=3042&rft_id=info:doi/10.1021%2Facs.analchem.9b04185&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2700&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2700&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2700&client=summon |