A Mathematical View of Weights-of-Evidence, Conditional Independence, and Logistic Regression in Terms of Markov Random Fields
New light is shed on mathematical methods of potential modeling from the point of view of Markov random fields. In particular, weights-of-evidence and logistic regression models are discussed in terms of graphical models possessing Markov properties, where the notion of conditional independence is e...
Saved in:
Published in | Mathematical geosciences Vol. 46; no. 6; pp. 691 - 709 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.08.2014
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | New light is shed on mathematical methods of potential modeling from the point of view of Markov random fields. In particular, weights-of-evidence and logistic regression models are discussed in terms of graphical models possessing Markov properties, where the notion of conditional independence is essential, and will be related to log-linear models. While weights-of-evidence with respect to indicator predictor variables and logistic regression with unrestricted predictor variables model conditional probabilities of an indicator random target variable, the subject of log-linear models is the joint probability of random variables. The relationship to log-linear models leads to a likelihood ratio test of conditional independence, rendering an omnibus test of conditional independence restricted by a normality assumption obsolete. Moreover, it reveals a hierarchy of methods comprising weights-of-evidence, logistic regression without interaction terms, and logistic regression including interaction terms, where each former method is a special case of the consecutive latter method. The assumptions of conditional independence of all predictor variables given the target variable lead to logistic regression without interaction terms. Violations of conditional independence are compensated exactly by corresponding interaction terms, no cumbersome approximate corrections are needed. Thus, including interaction terms into logistic regression models is an appropriate means to account for lacking conditional independence. Logistic regression exempts from the burden to worry about lack of conditional independence. Eventually, the relationship to log-linear models renders logistic regression with indicator predictor variables optimum for discrete predictor variables. Weights-of-evidence applies for indicator predictor variables only, logistic regression applies without restrictions of the type of predictor variables and approximates the proper distribution in the general case. |
---|---|
AbstractList | New light is shed on mathematical methods of potential modeling from the point of view of Markov random fields. In particular, weights-of-evidence and logistic regression models are discussed in terms of graphical models possessing Markov properties, where the notion of conditional independence is essential, and will be related to log-linear models. While weights-of-evidence with respect to indicator predictor variables and logistic regression with unrestricted predictor variables model conditional probabilities of an indicator random target variable, the subject of log-linear models is the joint probability of random variables. The relationship to log-linear models leads to a likelihood ratio test of conditional independence, rendering an omnibus test of conditional independence restricted by a normality assumption obsolete. Moreover, it reveals a hierarchy of methods comprising weights-of-evidence, logistic regression without interaction terms, and logistic regression including interaction terms, where each former method is a special case of the consecutive latter method. The assumptions of conditional independence of all predictor variables given the target variable lead to logistic regression without interaction terms. Violations of conditional independence are compensated exactly by corresponding interaction terms, no cumbersome approximate corrections are needed. Thus, including interaction terms into logistic regression models is an appropriate means to account for lacking conditional independence. Logistic regression exempts from the burden to worry about lack of conditional independence. Eventually, the relationship to log-linear models renders logistic regression with indicator predictor variables optimum for discrete predictor variables. Weights-of-evidence applies for indicator predictor variables only, logistic regression applies without restrictions of the type of predictor variables and approximates the proper distribution in the general case. New light is shed on mathematical methods of potential modeling from the point of view of Markov random fields. In particular, weights-of-evidence and logistic regression models are discussed in terms of graphical models possessing Markov properties, where the notion of conditional independence is essential, and will be related to log-linear models. While weights-of-evidence with respect to indicator predictor variables and logistic regression with unrestricted predictor variables model conditional probabilities of an indicator random target variable, the subject of log-linear models is the joint probability of random variables. The relationship to log-linear models leads to a likelihood ratio test of conditional independence, rendering an omnibus test of conditional independence restricted by a normality assumption obsolete. Moreover, it reveals a hierarchy of methods comprising weights-of-evidence, logistic regression without interaction terms, and logistic regression including interaction terms, where each former method is a special case of the consecutive latter method. The assumptions of conditional independence of all predictor variables given the target variable lead to logistic regression without interaction terms. Violations of conditional independence are compensated exactly by corresponding interaction terms, no cumbersome approximate corrections are needed. Thus, including interaction terms into logistic regression models is an appropriate means to account for lacking conditional independence. Logistic regression exempts from the burden to worry about lack of conditional independence. Eventually, the relationship to log-linear models renders logistic regression with indicator predictor variables optimum for discrete predictor variables. Weights-of-evidence applies for indicator predictor variables only, logistic regression applies without restrictions of the type of predictor variables and approximates the proper distribution in the general case.[PUBLICATION ABSTRACT] |
Author | Schaeben, Helmut |
Author_xml | – sequence: 1 givenname: Helmut surname: Schaeben fullname: Schaeben, Helmut email: schaeben@geo.tu-freiberg.de organization: Geomathematics and Geoinformatics |
BookMark | eNqFkdFLHDEQxoNYqNr-AX0L9KUPXd1kk9vNoxzaCieCWH0Mc8nkjO4m12RPuZf-7c1yIkVo-5IJzO_7ZpjvkOyHGJCQT6w-ZnXdnmRWiqhq1lRKlme7Rw5Y14qqU7LZf_3P2HtymPNDXc9YI9kB-XVKL2G8xwFGb6Cntx6faXT0Dv3qfsxVdNXZk7cYDH6l8xisH30MBbwIFtcYXjoQLF3Elc_FhV7jKmHOhaM-0BtMQ54sLyE9xid6Xdg40HOPvc0fyDsHfcaPL_WI_Dg_u5l_rxZX3y7mp4sKRCvHisNSglGdNM5YaIyZtbbBpUMjuJUO2FLJ1jAwSwedAK6wEcaB5UKh6xw2R-TLzned4s8N5lEPPhvsewgYN1mzdsaZEJw3_0elFEq0neIF_fwGfYibVK4zUWXxWnCpCsV2lEkx54ROr5MfIG01q_UUnt6Fp0t4egpPb4umfaMxfoTp9GMC3_9TyXfKXKaEFaY_dvqr6Dfz_7Jt |
CitedBy_id | crossref_primary_10_1016_j_gexplo_2022_106963 crossref_primary_10_1016_j_chemer_2021_125826 crossref_primary_10_3390_geosciences13100306 crossref_primary_10_1007_s11004_014_9544_z crossref_primary_10_1007_s11004_019_09808_6 crossref_primary_10_1007_s11053_019_09486_5 crossref_primary_10_3390_risks11030048 crossref_primary_10_1007_s11053_018_9435_y crossref_primary_10_1007_s11004_014_9565_7 crossref_primary_10_3390_ijgi3041387 crossref_primary_10_1155_2018_7945960 crossref_primary_10_1007_s11004_014_9560_z crossref_primary_10_1007_s11004_014_9578_2 crossref_primary_10_1007_s13137_014_0059_z crossref_primary_10_1080_13658816_2015_1133819 crossref_primary_10_1007_s11707_016_0595_y crossref_primary_10_1016_j_cageo_2015_10_008 crossref_primary_10_3390_geosciences14080197 crossref_primary_10_1155_2020_7135285 crossref_primary_10_3390_min12121591 |
Cites_doi | 10.1016/j.oregeorev.2010.05.008 10.1016/B978-0-08-037245-7.50006-8 10.2307/2344614 10.1021/j150299a014 10.1007/s11004-011-9373-2 10.1007/s11004-007-9117-5 10.1007/978-1-4899-3242-6 10.1111/j.1939-7445.2007.tb00215.x 10.1214/088342306000000493 10.1023/A:1016047012594 10.1093/biomet/80.1.27 10.1007/s11053-009-9101-5 10.1162/089976698300017737 10.1007/978-0-387-21606-5 10.1007/s11004-012-9396-3 10.1007/BFb0064126 10.1016/B978-0-08-040261-1.50012-X 10.7551/mitpress/7432.003.0006 10.1007/978-94-009-4109-0 10.1007/978-1-4614-2299-0 10.1093/oso/9780195399592.001.0001 10.1111/j.2517-6161.1960.tb00378.x 10.1002/0471722146 10.1007/978-1-4020-3610-1_108 10.1007/s11004-008-9172-6 10.1007/978-1-4612-0493-0 10.1080/00949658408810739 10.1093/oso/9780198522195.001.0001 10.1080/00949658908811115 |
ContentType | Journal Article |
Copyright | International Association for Mathematical Geosciences 2014 |
Copyright_xml | – notice: International Association for Mathematical Geosciences 2014 |
DBID | AAYXX CITATION 3V. 7SC 7TG 7UA 7XB 88I 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ H8D H96 HCIFZ JQ2 K7- KL. KR7 L.G L6V L7M L~C L~D M0N M2P M7S P5Z P62 PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY Q9U |
DOI | 10.1007/s11004-013-9513-y |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection ProQuest Central Basic |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central Earth, Atmospheric & Aquatic Science Collection Aerospace Database ProQuest Engineering Collection ProQuest Central Korea Agricultural & Environmental Science Collection Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Computing ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest Central (Alumni) |
DatabaseTitleList | Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Computer Science Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Physics Computer Science Mathematics |
EISSN | 1874-8953 |
EndPage | 709 |
ExternalDocumentID | 3380970851 10_1007_s11004_013_9513_y |
Genre | Feature |
GroupedDBID | -5A -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 199 1N0 203 29M 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5VS 67M 67Z 6NX 78A 7XC 88I 8FE 8FG 8FH 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARAPS ARMRJ ATCPS AXYYD AYJHY AZFZN AZQEC B-. BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 H13 HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ I-F IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KOV L6V L8X LK5 LLZTM M0N M2P M4Y M7R M7S MA- N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9G O9J OAM P2P P62 PATMY PCBAR PF0 PQQKQ PROAC PT4 PTHSS PYCSY Q2X QOS R89 R9I RIG ROL RPX RSV S16 S1Z S27 S3B SAP SCK SCLPG SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8R Z8S Z8T Z8W Z8Z ZMTXR ~02 ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7TG 7UA 7XB 8AL 8FD 8FK ABRTQ C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-a475t-2ab5ac985cfcda3cc67d3ebfec42d5fa1b957c1acbfa84a29e34cfad249ef8fe3 |
IEDL.DBID | U2A |
ISSN | 1874-8961 |
IngestDate | Fri Jul 11 07:54:27 EDT 2025 Fri Jul 11 15:34:02 EDT 2025 Fri Jul 25 19:09:20 EDT 2025 Tue Jul 01 01:28:56 EDT 2025 Thu Apr 24 22:55:14 EDT 2025 Fri Feb 21 02:33:09 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Graphical models Weights-of-evidence Conditional independence Logistic regression model Markov random field Log-linear models |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a475t-2ab5ac985cfcda3cc67d3ebfec42d5fa1b957c1acbfa84a29e34cfad249ef8fe3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PQID | 1547504259 |
PQPubID | 54390 |
PageCount | 19 |
ParticipantIDs | proquest_miscellaneous_1762144223 proquest_miscellaneous_1554947892 proquest_journals_1547504259 crossref_primary_10_1007_s11004_013_9513_y crossref_citationtrail_10_1007_s11004_013_9513_y springer_journals_10_1007_s11004_013_9513_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-08-01 |
PublicationDateYYYYMMDD | 2014-08-01 |
PublicationDate_xml | – month: 08 year: 2014 text: 2014-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Dordrecht |
PublicationTitle | Mathematical geosciences |
PublicationTitleAbbrev | Math Geosci |
PublicationYear | 2014 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Good (CR18) 1984; 19 Krishnan (CR29) 2008; 40 CR39 CR38 CR34 CR31 CR30 Nelder, Wedderburn (CR37) 1972; 135 Allard, Comunian, Renard (CR4) 2012; 44 CR2 CR3 CR6 McCuaig, Beresford, Hronsky (CR32) 2010; 38 CR7 Berkson (CR5) 1944; 39 CR9 CR49 CR48 CR46 CR43 CR40 Polyakova, Journel (CR41) 2007; 39 McCullagh, Nelder (CR33) 1989 Journel (CR28) 2002; 34 Reed, Berkson (CR42) 1929; 33 Cheng (CR8) 2008; 40 CR17 CR15 CR13 Good (CR16) 1960; 22 CR11 CR10 Good (CR19) 1989; 31 CR50 Firth (CR14) 1993; 80 Müller, Rios Insua (CR36) 1998; 10 Skabar (CR47) 2007; 20 CR27 Schaeben (CR44) 2011; 44 CR26 Moguerza, Muñoz (CR35) 2006; 21 CR25 CR24 Hand, Yu (CR22) 2001; 69 CR23 CR21 Deng (CR12) 2009; 18 CR20 Agterberg, Bonham-Carter, Wright, Gaál, Merriam (CR1) 1990 Schaeben, Boogaart (CR45) 2011; 20 9513_CR21 9513_CR20 P Müller (9513_CR36) 1998; 10 P McCullagh (9513_CR33) 1989 S Krishnan (9513_CR29) 2008; 40 TC McCuaig (9513_CR32) 2010; 38 FP Agterberg (9513_CR1) 1990 D Firth (9513_CR14) 1993; 80 9513_CR27 9513_CR26 9513_CR23 9513_CR25 9513_CR24 AG Journel (9513_CR28) 2002; 34 9513_CR30 H Schaeben (9513_CR44) 2011; 44 9513_CR31 J Berkson (9513_CR5) 1944; 39 9513_CR38 J Nelder (9513_CR37) 1972; 135 9513_CR39 9513_CR34 9513_CR4 9513_CR40 EI Polyakova (9513_CR41) 2007; 39 9513_CR7 9513_CR43 9513_CR6 LJ Reed (9513_CR42) 1929; 33 9513_CR3 9513_CR2 IJ Good (9513_CR16) 1960; 22 9513_CR9 9513_CR8 A Skabar (9513_CR47) 2007; 20 9513_CR49 9513_CR48 JM Moguerza (9513_CR35) 2006; 21 9513_CR45 9513_CR46 9513_CR10 9513_CR50 DJ Hand (9513_CR22) 2001; 69 M Deng (9513_CR12) 2009; 18 9513_CR19 9513_CR15 9513_CR18 9513_CR17 9513_CR11 9513_CR13 |
References_xml | – volume: 40 start-page: 705 year: 2008 end-page: 727 ident: CR29 article-title: The -model for data redundancy and information combination in Earth sciences: theory and application publication-title: Math Geol – volume: 20 start-page: 249 year: 2011 end-page: 258 ident: CR45 article-title: Comment on “A conditional dependence adjusted weights of evidence model” by Minfeng Deng in Natural Resources Research 18 publication-title: Nat Resour Res – ident: CR49 – volume: 38 start-page: 128 year: 2010 end-page: 138 ident: CR32 article-title: Translating the mineral systems approach into an effective exploration targeting system publication-title: Ore Geol Rev doi: 10.1016/j.oregeorev.2010.05.008 – ident: CR39 – volume: 39 start-page: 357 year: 1944 end-page: 365 ident: CR5 article-title: Application of the logistic function to bio-assay publication-title: J Am Stat Assoc – ident: CR25 – start-page: 1 year: 1990 end-page: 21 ident: CR1 article-title: Statistical pattern integration for mineral exploration publication-title: Computer applications in Resource Estimation Prediction and assessment for metals and petroleum doi: 10.1016/B978-0-08-037245-7.50006-8 – ident: CR21 – ident: CR46 – volume: 135 start-page: 370 year: 1972 end-page: 384 ident: CR37 article-title: Generalized linear models publication-title: J R Stat Soc Ser A doi: 10.2307/2344614 – ident: CR15 – volume: 33 start-page: 760 year: 1929 end-page: 779 ident: CR42 article-title: The application of the logistic function to experimental data publication-title: J Phys Chem doi: 10.1021/j150299a014 – ident: CR50 – ident: CR11 – volume: 69 start-page: 385 year: 2001 end-page: 398 ident: CR22 article-title: Idiot’s Bayes—not so stupid after all? publication-title: Int Stat Rev – ident: CR9 – volume: 44 start-page: 101 year: 2011 end-page: 129 ident: CR44 article-title: Comparison of mathematical methods of potential modeling publication-title: Math Geosci doi: 10.1007/s11004-011-9373-2 – volume: 40 start-page: 503 year: 2008 end-page: 532 ident: CR8 article-title: Non-linear theory and power-law models for information integration and mineral resources quantitative assessments publication-title: Math Geosci – volume: 39 start-page: 715 year: 2007 end-page: 733 ident: CR41 article-title: The -expression for probabilistic data integration publication-title: Math Geol doi: 10.1007/s11004-007-9117-5 – ident: CR26 – year: 1989 ident: CR33 publication-title: Generalized linear models doi: 10.1007/978-1-4899-3242-6 – ident: CR43 – volume: 20 start-page: 435 year: 2007 end-page: 450 ident: CR47 article-title: Modeling the spatial distribution of mineral deposits using neural networks publication-title: Nat Resour Model doi: 10.1111/j.1939-7445.2007.tb00215.x – ident: CR2 – ident: CR30 – volume: 21 start-page: 322 year: 2006 end-page: 336 ident: CR35 article-title: Support vector machines with applications publication-title: Stat Sci doi: 10.1214/088342306000000493 – ident: CR10 – volume: 34 start-page: 573 year: 2002 end-page: 596 ident: CR28 article-title: Combining knowledge from diverse sources: an alternative to traditional data independence hypotheses publication-title: Math Geol doi: 10.1023/A:1016047012594 – ident: CR6 – ident: CR40 – volume: 80 start-page: 27 year: 1993 end-page: 38 ident: CR14 article-title: Bias reduction of maximum likelihood estimates publication-title: Biometrika doi: 10.1093/biomet/80.1.27 – ident: CR27 – volume: 22 start-page: 319 year: 1960 end-page: 331 ident: CR16 article-title: Weight of evidence, corroboration, explanatory power, information and the utility of experiments publication-title: J R Stat Soc B – ident: CR23 – volume: 31 start-page: 58 year: 1989 end-page: 59 ident: CR19 article-title: Yet another argument for the explicatum of weight of evidence publication-title: J Stat Comput Simul – ident: CR48 – ident: CR3 – volume: 44 start-page: 545 year: 2012 end-page: 581 ident: CR4 article-title: Probability aggregation methods in geoscience publication-title: Math Geosci – ident: CR38 – volume: 18 start-page: 249 year: 2009 end-page: 258 ident: CR12 article-title: A conditional dependence adjusted weights of evidence model publication-title: Nat Resour Res doi: 10.1007/s11053-009-9101-5 – ident: CR17 – volume: 19 start-page: 294 year: 1984 end-page: 299 ident: CR18 article-title: C197. The best explicatum for weight of evidence publication-title: J Stat Comput Simul – ident: CR31 – volume: 10 start-page: 740 year: 1998 end-page: 770 ident: CR36 article-title: Issues in Bayesian analysis of neural network models publication-title: Neural Comput doi: 10.1162/089976698300017737 – ident: CR13 – ident: CR34 – ident: CR7 – ident: CR24 – ident: CR20 – volume: 10 start-page: 740 year: 1998 ident: 9513_CR36 publication-title: Neural Comput doi: 10.1162/089976698300017737 – ident: 9513_CR6 – ident: 9513_CR25 doi: 10.1007/978-0-387-21606-5 – volume: 39 start-page: 715 year: 2007 ident: 9513_CR41 publication-title: Math Geol doi: 10.1007/s11004-007-9117-5 – volume: 20 start-page: 435 year: 2007 ident: 9513_CR47 publication-title: Nat Resour Model doi: 10.1111/j.1939-7445.2007.tb00215.x – ident: 9513_CR49 – ident: 9513_CR4 doi: 10.1007/s11004-012-9396-3 – ident: 9513_CR45 – ident: 9513_CR21 doi: 10.1007/BFb0064126 – volume: 34 start-page: 573 year: 2002 ident: 9513_CR28 publication-title: Math Geol doi: 10.1023/A:1016047012594 – volume: 135 start-page: 370 year: 1972 ident: 9513_CR37 publication-title: J R Stat Soc Ser A doi: 10.2307/2344614 – volume: 18 start-page: 249 year: 2009 ident: 9513_CR12 publication-title: Nat Resour Res doi: 10.1007/s11053-009-9101-5 – ident: 9513_CR7 doi: 10.1016/B978-0-08-040261-1.50012-X – volume: 80 start-page: 27 year: 1993 ident: 9513_CR14 publication-title: Biometrika doi: 10.1093/biomet/80.1.27 – ident: 9513_CR38 – ident: 9513_CR48 doi: 10.7551/mitpress/7432.003.0006 – ident: 9513_CR3 doi: 10.1007/978-94-009-4109-0 – start-page: 1 volume-title: Computer applications in Resource Estimation Prediction and assessment for metals and petroleum year: 1990 ident: 9513_CR1 doi: 10.1016/B978-0-08-037245-7.50006-8 – ident: 9513_CR9 – ident: 9513_CR34 – ident: 9513_CR40 – volume: 44 start-page: 101 year: 2011 ident: 9513_CR44 publication-title: Math Geosci doi: 10.1007/s11004-011-9373-2 – ident: 9513_CR26 doi: 10.1007/978-1-4614-2299-0 – ident: 9513_CR46 doi: 10.1093/oso/9780195399592.001.0001 – ident: 9513_CR50 – ident: 9513_CR23 – volume: 69 start-page: 385 year: 2001 ident: 9513_CR22 publication-title: Int Stat Rev – volume: 22 start-page: 319 year: 1960 ident: 9513_CR16 publication-title: J R Stat Soc B doi: 10.1111/j.2517-6161.1960.tb00378.x – ident: 9513_CR10 – volume-title: Generalized linear models year: 1989 ident: 9513_CR33 doi: 10.1007/978-1-4899-3242-6 – ident: 9513_CR43 – ident: 9513_CR27 doi: 10.1002/0471722146 – ident: 9513_CR24 – volume: 40 start-page: 705 year: 2008 ident: 9513_CR29 publication-title: Math Geol – ident: 9513_CR30 doi: 10.1007/978-1-4020-3610-1_108 – ident: 9513_CR20 – ident: 9513_CR17 – ident: 9513_CR8 doi: 10.1007/s11004-008-9172-6 – volume: 39 start-page: 357 year: 1944 ident: 9513_CR5 publication-title: J Am Stat Assoc – volume: 38 start-page: 128 year: 2010 ident: 9513_CR32 publication-title: Ore Geol Rev doi: 10.1016/j.oregeorev.2010.05.008 – ident: 9513_CR11 – ident: 9513_CR13 doi: 10.1007/978-1-4612-0493-0 – ident: 9513_CR15 – volume: 33 start-page: 760 year: 1929 ident: 9513_CR42 publication-title: J Phys Chem doi: 10.1021/j150299a014 – ident: 9513_CR2 – ident: 9513_CR18 doi: 10.1080/00949658408810739 – ident: 9513_CR31 doi: 10.1093/oso/9780198522195.001.0001 – volume: 21 start-page: 322 year: 2006 ident: 9513_CR35 publication-title: Stat Sci doi: 10.1214/088342306000000493 – ident: 9513_CR19 doi: 10.1080/00949658908811115 – ident: 9513_CR39 |
SSID | ssj0061351 |
Score | 2.1465597 |
Snippet | New light is shed on mathematical methods of potential modeling from the point of view of Markov random fields. In particular, weights-of-evidence and logistic... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 691 |
SubjectTerms | Approximation Chemistry and Earth Sciences Computer Science Earth and Environmental Science Earth Sciences Geology Geotechnical Engineering & Applied Earth Sciences Hierarchies Hydrogeology Indicators Logistics Markov analysis Markov models Mathematical models Mathematics Physics Regression Rendering Statistics for Engineering |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS9xAEB_8QLAPRa3i-VG24FPbxUuySTZPouKpRaUcWn0L-ykHNlFzFu7Fv92ZXHJnC72XQMhsstnZnZ2vnR_AXmK7oY4TxYXUeLFdzzOPxooPY--8EVFkyVC8vErObsSPu_iucbhVTVplKxNrQW1LQz7yfdzqqRI5ausHj0-cUKMoutpAaMzDIopgicbX4tHJ1c9-K4sTwp8jk0umgsssCdq4Zn14LqiTMIKIo5YR8dHfO9NU3fwnQlpvPL0V-NhojOxwzOJVmHPFGiyd1oi8ozX4cDkpvFp9gtdDNr3HVr_wp1jp2W3tAa146XmLI_qdHZcUr659gex8AodLT1Rh2UV9NmhgWN_dj5NlCzYo2DWK8opeSad8yj-sj7Tlb9ajTLhqHW56J9fHZ7yBWOAKh3PIQ6VjZTIZG2-sioxJUhs57Z0RoY29CnQWpyZQRnslhQozFwnjlUWjzXnpXbQBC0VZuE1gLtSBpeCYEJlIdaJ11yVWKrR7rXOp6EC3Hd7cNPXHCQbjIZ9WTiaO5MiRnDiSjzrwddLkcVx8YxbxTsuzvFmHVT6dNR34MnmMK4jCIqpw5QvRxNRjmYUzaHDPQNMTdakOfGvnw7vP_K9TW7M7tQ3LqICJcULhDiwMn1_cLio5Q_25mclvdLT7Mw priority: 102 providerName: ProQuest |
Title | A Mathematical View of Weights-of-Evidence, Conditional Independence, and Logistic Regression in Terms of Markov Random Fields |
URI | https://link.springer.com/article/10.1007/s11004-013-9513-y https://www.proquest.com/docview/1547504259 https://www.proquest.com/docview/1554947892 https://www.proquest.com/docview/1762144223 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-xTUi8DBggykZlJJ4AS01i5-OxnZqOj1WoWmE8Rf5ElbZkIt1QX_jbObtxCwgm8RJH8sWxcjn7fr4vgJepHsSSp4KyXOJFDywtLIIVG3NrrGJJoh1QPJ2mJ3P27pyfd3HcbfB2DyZJv1Jvg90i7zQRJRS1goSudmCPO-iOP_E8HoblN3Ul5xzKyjNG8yKNginzb0P8vhltNcw_jKJ-rykfwH6nJJLhmqsP4Y6pD-B-KMBAOnk8gLsTX5d3hXfek1O1j-DHkJxuUrHiIJ8W5jtpLPnsz0Bb2lgaKom-IceNs1j700DydlMQ1_WIWpMPPjpoocjMfF27y9ZkUZMzXMxbN6SL82luyAxpm0tSOl-49jHMy_HZ8QntiixQwTK-pLGQXKgi58oqLRKl0kwnRlqjWKy5FZEseKYioaQVORNxYRKmrNAI24zNrUmewG7d1OYpEBPLSDvzGGMFy2Qq5cCkOhfII21MxnowCF-7Ul0GclcI46La5k52DKqQQZVjULXqwavNI1fr9Bu3ER8FFladJLYVqogugz2ivB682HSjDDnDiKhNc-1ouJtxXsS30OCugeATtakevA6_xy-v-deknv0X9SHcQ42MrT0Mj2B3-e3aPEetZyn7sJOXkz7sDcvRaOrayZf3Y2xH4-nHWd_LwE8o3QEg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw8DSGEPCAYIAoDDASvAAWTeIkzgNC06BrWbuHqYO9Zf5EkyAZpAP1hZ_Eb-TOaVpAom97iRT57Di-s-_O9wXwNLP9WKeZ4kJqfNi-54VHZcXHqXfeiCSxpChODrLhkXh_nB5vwK8uFobcKrszMRzUtjZ0R_4KWT1lIkdp_c3ZV05Vo8i62pXQaMli381_oMrWvB69Rfw-i-PBu-nukC-qCnCFI8x4rHSqTCFT441ViTFZbhOnvTMitqlXkS7S3ETKaK-kUHHhEmG8sqinOC-9S3DcS3AZ_6KgHSUHe93Jn1G1O1LwZC64LLKos6KGUL0ouHxECUeZJuHzv_ngSrj9xx4b2NzgJtxYyKdspyWoW7Dhqi24shfq_8634Ppkmea1uQ0_d9jqHXt9wCVktWcfw31rw2vPu6qlL9luTdbxcPPIRsviu9SiKsvGIRLp1LBD96l1za3YacWmyDgaGpJiiurv7BBh6y9sQH53zR04upClvwubVV25e8BcrCNLpjghCpHrTOu-y6xUqGVb53LRg363vKVZZDunohufy1WeZsJIiRgpCSPlvAfPl13O2lQf64C3O5yVi13flCsa7cGTZTPuVzLCqMrV5wST0oxlEa-BQQ6Fii5Kbj140dHDH5_536Tur5_UY7g6nE7G5Xh0sP8ArqHoJ1pXxm3YnH07dw9RvJrpR4GmGZxc9Cb6DQxqO2w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT9RAFD5RiMYXRNS4iDomPqkTtu1ML48bdAUFYgirvDVzNZtAS-iC2Rd-O-e0nV01SuJL06Sn00nPXL4z5_IBvEntMNYyVVzkGi926Hnh0VjxsfTOG5EklgzFg8N0dyI-n8iTnue0CdHuwSXZ5TRQlaZqtn1u_fYy8S1qAyiihCNCSPj8LqziahzRsJ7Eo7AUp0Q_RxZXngmeF2kU3Jp_a-L3jWmJNv9wkLb7zngd1nrAyEadhh_BHVdtwMNAxsD6ubkB9z61HL1zvGujOk3zGK5H7GBRlhUb-TZ1P1nt2ff2PLThteeBVfQ926nJe92eDLK9BTkuPVGVZfttptDUsCP3owudrdi0Yse4sDfUJOX81FfsCGXrMzamuLjmCUzGH493dnlPuMCVyOSMx0pLZYpcGm-sSoxJM5s47Z0RsZVeRbqQmYmU0V7lQsWFS4TxyqIJ53zuXfIUVqq6cs-AuVhHllxlQhQi06nWQ5faXKEVbJ3LxACG4W-Xpq9GTqQYp-WyjjIpqEQFlaSgcj6At4tXzrtSHLcJbwUVlv2sbEqEi1TNHi2-AbxePMb5RE4SVbn6kmQk9Tgv4ltkcAdBQxSR1QDeheHxy2f-1anN_5J-Bfe_fhiX-3uHX57DAwRqogs83IKV2cWle4FgaKZftgP-BslxAr8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Mathematical+View+of+Weights-of-Evidence%2C+Conditional+Independence%2C+and+Logistic+Regression+in+Terms+of+Markov+Random+Fields&rft.jtitle=Mathematical+geosciences&rft.au=Schaeben%2C+Helmut&rft.date=2014-08-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1874-8961&rft.eissn=1874-8953&rft.volume=46&rft.issue=6&rft.spage=691&rft.epage=709&rft_id=info:doi/10.1007%2Fs11004-013-9513-y&rft.externalDocID=10_1007_s11004_013_9513_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1874-8961&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1874-8961&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1874-8961&client=summon |