A Mathematical View of Weights-of-Evidence, Conditional Independence, and Logistic Regression in Terms of Markov Random Fields

New light is shed on mathematical methods of potential modeling from the point of view of Markov random fields. In particular, weights-of-evidence and logistic regression models are discussed in terms of graphical models possessing Markov properties, where the notion of conditional independence is e...

Full description

Saved in:
Bibliographic Details
Published inMathematical geosciences Vol. 46; no. 6; pp. 691 - 709
Main Author Schaeben, Helmut
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2014
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract New light is shed on mathematical methods of potential modeling from the point of view of Markov random fields. In particular, weights-of-evidence and logistic regression models are discussed in terms of graphical models possessing Markov properties, where the notion of conditional independence is essential, and will be related to log-linear models. While weights-of-evidence with respect to indicator predictor variables and logistic regression with unrestricted predictor variables model conditional probabilities of an indicator random target variable, the subject of log-linear models is the joint probability of random variables. The relationship to log-linear models leads to a likelihood ratio test of conditional independence, rendering an omnibus test of conditional independence restricted by a normality assumption obsolete. Moreover, it reveals a hierarchy of methods comprising weights-of-evidence, logistic regression without interaction terms, and logistic regression including interaction terms, where each former method is a special case of the consecutive latter method. The assumptions of conditional independence of all predictor variables given the target variable lead to logistic regression without interaction terms. Violations of conditional independence are compensated exactly by corresponding interaction terms, no cumbersome approximate corrections are needed. Thus, including interaction terms into logistic regression models is an appropriate means to account for lacking conditional independence. Logistic regression exempts from the burden to worry about lack of conditional independence. Eventually, the relationship to log-linear models renders logistic regression with indicator predictor variables optimum for discrete predictor variables. Weights-of-evidence applies for indicator predictor variables only, logistic regression applies without restrictions of the type of predictor variables and approximates the proper distribution in the general case.
AbstractList New light is shed on mathematical methods of potential modeling from the point of view of Markov random fields. In particular, weights-of-evidence and logistic regression models are discussed in terms of graphical models possessing Markov properties, where the notion of conditional independence is essential, and will be related to log-linear models. While weights-of-evidence with respect to indicator predictor variables and logistic regression with unrestricted predictor variables model conditional probabilities of an indicator random target variable, the subject of log-linear models is the joint probability of random variables. The relationship to log-linear models leads to a likelihood ratio test of conditional independence, rendering an omnibus test of conditional independence restricted by a normality assumption obsolete. Moreover, it reveals a hierarchy of methods comprising weights-of-evidence, logistic regression without interaction terms, and logistic regression including interaction terms, where each former method is a special case of the consecutive latter method. The assumptions of conditional independence of all predictor variables given the target variable lead to logistic regression without interaction terms. Violations of conditional independence are compensated exactly by corresponding interaction terms, no cumbersome approximate corrections are needed. Thus, including interaction terms into logistic regression models is an appropriate means to account for lacking conditional independence. Logistic regression exempts from the burden to worry about lack of conditional independence. Eventually, the relationship to log-linear models renders logistic regression with indicator predictor variables optimum for discrete predictor variables. Weights-of-evidence applies for indicator predictor variables only, logistic regression applies without restrictions of the type of predictor variables and approximates the proper distribution in the general case.
New light is shed on mathematical methods of potential modeling from the point of view of Markov random fields. In particular, weights-of-evidence and logistic regression models are discussed in terms of graphical models possessing Markov properties, where the notion of conditional independence is essential, and will be related to log-linear models. While weights-of-evidence with respect to indicator predictor variables and logistic regression with unrestricted predictor variables model conditional probabilities of an indicator random target variable, the subject of log-linear models is the joint probability of random variables. The relationship to log-linear models leads to a likelihood ratio test of conditional independence, rendering an omnibus test of conditional independence restricted by a normality assumption obsolete. Moreover, it reveals a hierarchy of methods comprising weights-of-evidence, logistic regression without interaction terms, and logistic regression including interaction terms, where each former method is a special case of the consecutive latter method. The assumptions of conditional independence of all predictor variables given the target variable lead to logistic regression without interaction terms. Violations of conditional independence are compensated exactly by corresponding interaction terms, no cumbersome approximate corrections are needed. Thus, including interaction terms into logistic regression models is an appropriate means to account for lacking conditional independence. Logistic regression exempts from the burden to worry about lack of conditional independence. Eventually, the relationship to log-linear models renders logistic regression with indicator predictor variables optimum for discrete predictor variables. Weights-of-evidence applies for indicator predictor variables only, logistic regression applies without restrictions of the type of predictor variables and approximates the proper distribution in the general case.[PUBLICATION ABSTRACT]
Author Schaeben, Helmut
Author_xml – sequence: 1
  givenname: Helmut
  surname: Schaeben
  fullname: Schaeben, Helmut
  email: schaeben@geo.tu-freiberg.de
  organization: Geomathematics and Geoinformatics
BookMark eNqFkdFLHDEQxoNYqNr-AX0L9KUPXd1kk9vNoxzaCieCWH0Mc8nkjO4m12RPuZf-7c1yIkVo-5IJzO_7ZpjvkOyHGJCQT6w-ZnXdnmRWiqhq1lRKlme7Rw5Y14qqU7LZf_3P2HtymPNDXc9YI9kB-XVKL2G8xwFGb6Cntx6faXT0Dv3qfsxVdNXZk7cYDH6l8xisH30MBbwIFtcYXjoQLF3Elc_FhV7jKmHOhaM-0BtMQ54sLyE9xid6Xdg40HOPvc0fyDsHfcaPL_WI_Dg_u5l_rxZX3y7mp4sKRCvHisNSglGdNM5YaIyZtbbBpUMjuJUO2FLJ1jAwSwedAK6wEcaB5UKh6xw2R-TLzned4s8N5lEPPhvsewgYN1mzdsaZEJw3_0elFEq0neIF_fwGfYibVK4zUWXxWnCpCsV2lEkx54ROr5MfIG01q_UUnt6Fp0t4egpPb4umfaMxfoTp9GMC3_9TyXfKXKaEFaY_dvqr6Dfz_7Jt
CitedBy_id crossref_primary_10_1016_j_gexplo_2022_106963
crossref_primary_10_1016_j_chemer_2021_125826
crossref_primary_10_3390_geosciences13100306
crossref_primary_10_1007_s11004_014_9544_z
crossref_primary_10_1007_s11004_019_09808_6
crossref_primary_10_1007_s11053_019_09486_5
crossref_primary_10_3390_risks11030048
crossref_primary_10_1007_s11053_018_9435_y
crossref_primary_10_1007_s11004_014_9565_7
crossref_primary_10_3390_ijgi3041387
crossref_primary_10_1155_2018_7945960
crossref_primary_10_1007_s11004_014_9560_z
crossref_primary_10_1007_s11004_014_9578_2
crossref_primary_10_1007_s13137_014_0059_z
crossref_primary_10_1080_13658816_2015_1133819
crossref_primary_10_1007_s11707_016_0595_y
crossref_primary_10_1016_j_cageo_2015_10_008
crossref_primary_10_3390_geosciences14080197
crossref_primary_10_1155_2020_7135285
crossref_primary_10_3390_min12121591
Cites_doi 10.1016/j.oregeorev.2010.05.008
10.1016/B978-0-08-037245-7.50006-8
10.2307/2344614
10.1021/j150299a014
10.1007/s11004-011-9373-2
10.1007/s11004-007-9117-5
10.1007/978-1-4899-3242-6
10.1111/j.1939-7445.2007.tb00215.x
10.1214/088342306000000493
10.1023/A:1016047012594
10.1093/biomet/80.1.27
10.1007/s11053-009-9101-5
10.1162/089976698300017737
10.1007/978-0-387-21606-5
10.1007/s11004-012-9396-3
10.1007/BFb0064126
10.1016/B978-0-08-040261-1.50012-X
10.7551/mitpress/7432.003.0006
10.1007/978-94-009-4109-0
10.1007/978-1-4614-2299-0
10.1093/oso/9780195399592.001.0001
10.1111/j.2517-6161.1960.tb00378.x
10.1002/0471722146
10.1007/978-1-4020-3610-1_108
10.1007/s11004-008-9172-6
10.1007/978-1-4612-0493-0
10.1080/00949658408810739
10.1093/oso/9780198522195.001.0001
10.1080/00949658908811115
ContentType Journal Article
Copyright International Association for Mathematical Geosciences 2014
Copyright_xml – notice: International Association for Mathematical Geosciences 2014
DBID AAYXX
CITATION
3V.
7SC
7TG
7UA
7XB
88I
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
H8D
H96
HCIFZ
JQ2
K7-
KL.
KR7
L.G
L6V
L7M
L~C
L~D
M0N
M2P
M7S
P5Z
P62
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
Q9U
DOI 10.1007/s11004-013-9513-y
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
ProQuest Engineering Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Computing
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
ProQuest Central (Alumni)
DatabaseTitleList Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic

Computer Science Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
Computer Science
Mathematics
EISSN 1874-8953
EndPage 709
ExternalDocumentID 3380970851
10_1007_s11004_013_9513_y
Genre Feature
GroupedDBID -5A
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
199
1N0
203
29M
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5VS
67M
67Z
6NX
78A
7XC
88I
8FE
8FG
8FH
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARAPS
ARMRJ
ATCPS
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KOV
L6V
L8X
LK5
LLZTM
M0N
M2P
M4Y
M7R
M7S
MA-
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9J
OAM
P2P
P62
PATMY
PCBAR
PF0
PQQKQ
PROAC
PT4
PTHSS
PYCSY
Q2X
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCK
SCLPG
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8R
Z8S
Z8T
Z8W
Z8Z
ZMTXR
~02
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7TG
7UA
7XB
8AL
8FD
8FK
ABRTQ
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-a475t-2ab5ac985cfcda3cc67d3ebfec42d5fa1b957c1acbfa84a29e34cfad249ef8fe3
IEDL.DBID U2A
ISSN 1874-8961
IngestDate Fri Jul 11 07:54:27 EDT 2025
Fri Jul 11 15:34:02 EDT 2025
Fri Jul 25 19:09:20 EDT 2025
Tue Jul 01 01:28:56 EDT 2025
Thu Apr 24 22:55:14 EDT 2025
Fri Feb 21 02:33:09 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Graphical models
Weights-of-evidence
Conditional independence
Logistic regression model
Markov random field
Log-linear models
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a475t-2ab5ac985cfcda3cc67d3ebfec42d5fa1b957c1acbfa84a29e34cfad249ef8fe3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1547504259
PQPubID 54390
PageCount 19
ParticipantIDs proquest_miscellaneous_1762144223
proquest_miscellaneous_1554947892
proquest_journals_1547504259
crossref_primary_10_1007_s11004_013_9513_y
crossref_citationtrail_10_1007_s11004_013_9513_y
springer_journals_10_1007_s11004_013_9513_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-08-01
PublicationDateYYYYMMDD 2014-08-01
PublicationDate_xml – month: 08
  year: 2014
  text: 2014-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Dordrecht
PublicationTitle Mathematical geosciences
PublicationTitleAbbrev Math Geosci
PublicationYear 2014
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Good (CR18) 1984; 19
Krishnan (CR29) 2008; 40
CR39
CR38
CR34
CR31
CR30
Nelder, Wedderburn (CR37) 1972; 135
Allard, Comunian, Renard (CR4) 2012; 44
CR2
CR3
CR6
McCuaig, Beresford, Hronsky (CR32) 2010; 38
CR7
Berkson (CR5) 1944; 39
CR9
CR49
CR48
CR46
CR43
CR40
Polyakova, Journel (CR41) 2007; 39
McCullagh, Nelder (CR33) 1989
Journel (CR28) 2002; 34
Reed, Berkson (CR42) 1929; 33
Cheng (CR8) 2008; 40
CR17
CR15
CR13
Good (CR16) 1960; 22
CR11
CR10
Good (CR19) 1989; 31
CR50
Firth (CR14) 1993; 80
Müller, Rios Insua (CR36) 1998; 10
Skabar (CR47) 2007; 20
CR27
Schaeben (CR44) 2011; 44
CR26
Moguerza, Muñoz (CR35) 2006; 21
CR25
CR24
Hand, Yu (CR22) 2001; 69
CR23
CR21
Deng (CR12) 2009; 18
CR20
Agterberg, Bonham-Carter, Wright, Gaál, Merriam (CR1) 1990
Schaeben, Boogaart (CR45) 2011; 20
9513_CR21
9513_CR20
P Müller (9513_CR36) 1998; 10
P McCullagh (9513_CR33) 1989
S Krishnan (9513_CR29) 2008; 40
TC McCuaig (9513_CR32) 2010; 38
FP Agterberg (9513_CR1) 1990
D Firth (9513_CR14) 1993; 80
9513_CR27
9513_CR26
9513_CR23
9513_CR25
9513_CR24
AG Journel (9513_CR28) 2002; 34
9513_CR30
H Schaeben (9513_CR44) 2011; 44
9513_CR31
J Berkson (9513_CR5) 1944; 39
9513_CR38
J Nelder (9513_CR37) 1972; 135
9513_CR39
9513_CR34
9513_CR4
9513_CR40
EI Polyakova (9513_CR41) 2007; 39
9513_CR7
9513_CR43
9513_CR6
LJ Reed (9513_CR42) 1929; 33
9513_CR3
9513_CR2
IJ Good (9513_CR16) 1960; 22
9513_CR9
9513_CR8
A Skabar (9513_CR47) 2007; 20
9513_CR49
9513_CR48
JM Moguerza (9513_CR35) 2006; 21
9513_CR45
9513_CR46
9513_CR10
9513_CR50
DJ Hand (9513_CR22) 2001; 69
M Deng (9513_CR12) 2009; 18
9513_CR19
9513_CR15
9513_CR18
9513_CR17
9513_CR11
9513_CR13
References_xml – volume: 40
  start-page: 705
  year: 2008
  end-page: 727
  ident: CR29
  article-title: The -model for data redundancy and information combination in Earth sciences: theory and application
  publication-title: Math Geol
– volume: 20
  start-page: 249
  year: 2011
  end-page: 258
  ident: CR45
  article-title: Comment on “A conditional dependence adjusted weights of evidence model” by Minfeng Deng in Natural Resources Research 18
  publication-title: Nat Resour Res
– ident: CR49
– volume: 38
  start-page: 128
  year: 2010
  end-page: 138
  ident: CR32
  article-title: Translating the mineral systems approach into an effective exploration targeting system
  publication-title: Ore Geol Rev
  doi: 10.1016/j.oregeorev.2010.05.008
– ident: CR39
– volume: 39
  start-page: 357
  year: 1944
  end-page: 365
  ident: CR5
  article-title: Application of the logistic function to bio-assay
  publication-title: J Am Stat Assoc
– ident: CR25
– start-page: 1
  year: 1990
  end-page: 21
  ident: CR1
  article-title: Statistical pattern integration for mineral exploration
  publication-title: Computer applications in Resource Estimation Prediction and assessment for metals and petroleum
  doi: 10.1016/B978-0-08-037245-7.50006-8
– ident: CR21
– ident: CR46
– volume: 135
  start-page: 370
  year: 1972
  end-page: 384
  ident: CR37
  article-title: Generalized linear models
  publication-title: J R Stat Soc Ser A
  doi: 10.2307/2344614
– ident: CR15
– volume: 33
  start-page: 760
  year: 1929
  end-page: 779
  ident: CR42
  article-title: The application of the logistic function to experimental data
  publication-title: J Phys Chem
  doi: 10.1021/j150299a014
– ident: CR50
– ident: CR11
– volume: 69
  start-page: 385
  year: 2001
  end-page: 398
  ident: CR22
  article-title: Idiot’s Bayes—not so stupid after all?
  publication-title: Int Stat Rev
– ident: CR9
– volume: 44
  start-page: 101
  year: 2011
  end-page: 129
  ident: CR44
  article-title: Comparison of mathematical methods of potential modeling
  publication-title: Math Geosci
  doi: 10.1007/s11004-011-9373-2
– volume: 40
  start-page: 503
  year: 2008
  end-page: 532
  ident: CR8
  article-title: Non-linear theory and power-law models for information integration and mineral resources quantitative assessments
  publication-title: Math Geosci
– volume: 39
  start-page: 715
  year: 2007
  end-page: 733
  ident: CR41
  article-title: The -expression for probabilistic data integration
  publication-title: Math Geol
  doi: 10.1007/s11004-007-9117-5
– ident: CR26
– year: 1989
  ident: CR33
  publication-title: Generalized linear models
  doi: 10.1007/978-1-4899-3242-6
– ident: CR43
– volume: 20
  start-page: 435
  year: 2007
  end-page: 450
  ident: CR47
  article-title: Modeling the spatial distribution of mineral deposits using neural networks
  publication-title: Nat Resour Model
  doi: 10.1111/j.1939-7445.2007.tb00215.x
– ident: CR2
– ident: CR30
– volume: 21
  start-page: 322
  year: 2006
  end-page: 336
  ident: CR35
  article-title: Support vector machines with applications
  publication-title: Stat Sci
  doi: 10.1214/088342306000000493
– ident: CR10
– volume: 34
  start-page: 573
  year: 2002
  end-page: 596
  ident: CR28
  article-title: Combining knowledge from diverse sources: an alternative to traditional data independence hypotheses
  publication-title: Math Geol
  doi: 10.1023/A:1016047012594
– ident: CR6
– ident: CR40
– volume: 80
  start-page: 27
  year: 1993
  end-page: 38
  ident: CR14
  article-title: Bias reduction of maximum likelihood estimates
  publication-title: Biometrika
  doi: 10.1093/biomet/80.1.27
– ident: CR27
– volume: 22
  start-page: 319
  year: 1960
  end-page: 331
  ident: CR16
  article-title: Weight of evidence, corroboration, explanatory power, information and the utility of experiments
  publication-title: J R Stat Soc B
– ident: CR23
– volume: 31
  start-page: 58
  year: 1989
  end-page: 59
  ident: CR19
  article-title: Yet another argument for the explicatum of weight of evidence
  publication-title: J Stat Comput Simul
– ident: CR48
– ident: CR3
– volume: 44
  start-page: 545
  year: 2012
  end-page: 581
  ident: CR4
  article-title: Probability aggregation methods in geoscience
  publication-title: Math Geosci
– ident: CR38
– volume: 18
  start-page: 249
  year: 2009
  end-page: 258
  ident: CR12
  article-title: A conditional dependence adjusted weights of evidence model
  publication-title: Nat Resour Res
  doi: 10.1007/s11053-009-9101-5
– ident: CR17
– volume: 19
  start-page: 294
  year: 1984
  end-page: 299
  ident: CR18
  article-title: C197. The best explicatum for weight of evidence
  publication-title: J Stat Comput Simul
– ident: CR31
– volume: 10
  start-page: 740
  year: 1998
  end-page: 770
  ident: CR36
  article-title: Issues in Bayesian analysis of neural network models
  publication-title: Neural Comput
  doi: 10.1162/089976698300017737
– ident: CR13
– ident: CR34
– ident: CR7
– ident: CR24
– ident: CR20
– volume: 10
  start-page: 740
  year: 1998
  ident: 9513_CR36
  publication-title: Neural Comput
  doi: 10.1162/089976698300017737
– ident: 9513_CR6
– ident: 9513_CR25
  doi: 10.1007/978-0-387-21606-5
– volume: 39
  start-page: 715
  year: 2007
  ident: 9513_CR41
  publication-title: Math Geol
  doi: 10.1007/s11004-007-9117-5
– volume: 20
  start-page: 435
  year: 2007
  ident: 9513_CR47
  publication-title: Nat Resour Model
  doi: 10.1111/j.1939-7445.2007.tb00215.x
– ident: 9513_CR49
– ident: 9513_CR4
  doi: 10.1007/s11004-012-9396-3
– ident: 9513_CR45
– ident: 9513_CR21
  doi: 10.1007/BFb0064126
– volume: 34
  start-page: 573
  year: 2002
  ident: 9513_CR28
  publication-title: Math Geol
  doi: 10.1023/A:1016047012594
– volume: 135
  start-page: 370
  year: 1972
  ident: 9513_CR37
  publication-title: J R Stat Soc Ser A
  doi: 10.2307/2344614
– volume: 18
  start-page: 249
  year: 2009
  ident: 9513_CR12
  publication-title: Nat Resour Res
  doi: 10.1007/s11053-009-9101-5
– ident: 9513_CR7
  doi: 10.1016/B978-0-08-040261-1.50012-X
– volume: 80
  start-page: 27
  year: 1993
  ident: 9513_CR14
  publication-title: Biometrika
  doi: 10.1093/biomet/80.1.27
– ident: 9513_CR38
– ident: 9513_CR48
  doi: 10.7551/mitpress/7432.003.0006
– ident: 9513_CR3
  doi: 10.1007/978-94-009-4109-0
– start-page: 1
  volume-title: Computer applications in Resource Estimation Prediction and assessment for metals and petroleum
  year: 1990
  ident: 9513_CR1
  doi: 10.1016/B978-0-08-037245-7.50006-8
– ident: 9513_CR9
– ident: 9513_CR34
– ident: 9513_CR40
– volume: 44
  start-page: 101
  year: 2011
  ident: 9513_CR44
  publication-title: Math Geosci
  doi: 10.1007/s11004-011-9373-2
– ident: 9513_CR26
  doi: 10.1007/978-1-4614-2299-0
– ident: 9513_CR46
  doi: 10.1093/oso/9780195399592.001.0001
– ident: 9513_CR50
– ident: 9513_CR23
– volume: 69
  start-page: 385
  year: 2001
  ident: 9513_CR22
  publication-title: Int Stat Rev
– volume: 22
  start-page: 319
  year: 1960
  ident: 9513_CR16
  publication-title: J R Stat Soc B
  doi: 10.1111/j.2517-6161.1960.tb00378.x
– ident: 9513_CR10
– volume-title: Generalized linear models
  year: 1989
  ident: 9513_CR33
  doi: 10.1007/978-1-4899-3242-6
– ident: 9513_CR43
– ident: 9513_CR27
  doi: 10.1002/0471722146
– ident: 9513_CR24
– volume: 40
  start-page: 705
  year: 2008
  ident: 9513_CR29
  publication-title: Math Geol
– ident: 9513_CR30
  doi: 10.1007/978-1-4020-3610-1_108
– ident: 9513_CR20
– ident: 9513_CR17
– ident: 9513_CR8
  doi: 10.1007/s11004-008-9172-6
– volume: 39
  start-page: 357
  year: 1944
  ident: 9513_CR5
  publication-title: J Am Stat Assoc
– volume: 38
  start-page: 128
  year: 2010
  ident: 9513_CR32
  publication-title: Ore Geol Rev
  doi: 10.1016/j.oregeorev.2010.05.008
– ident: 9513_CR11
– ident: 9513_CR13
  doi: 10.1007/978-1-4612-0493-0
– ident: 9513_CR15
– volume: 33
  start-page: 760
  year: 1929
  ident: 9513_CR42
  publication-title: J Phys Chem
  doi: 10.1021/j150299a014
– ident: 9513_CR2
– ident: 9513_CR18
  doi: 10.1080/00949658408810739
– ident: 9513_CR31
  doi: 10.1093/oso/9780198522195.001.0001
– volume: 21
  start-page: 322
  year: 2006
  ident: 9513_CR35
  publication-title: Stat Sci
  doi: 10.1214/088342306000000493
– ident: 9513_CR19
  doi: 10.1080/00949658908811115
– ident: 9513_CR39
SSID ssj0061351
Score 2.1465597
Snippet New light is shed on mathematical methods of potential modeling from the point of view of Markov random fields. In particular, weights-of-evidence and logistic...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 691
SubjectTerms Approximation
Chemistry and Earth Sciences
Computer Science
Earth and Environmental Science
Earth Sciences
Geology
Geotechnical Engineering & Applied Earth Sciences
Hierarchies
Hydrogeology
Indicators
Logistics
Markov analysis
Markov models
Mathematical models
Mathematics
Physics
Regression
Rendering
Statistics for Engineering
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS9xAEB_8QLAPRa3i-VG24FPbxUuySTZPouKpRaUcWn0L-ykHNlFzFu7Fv92ZXHJnC72XQMhsstnZnZ2vnR_AXmK7oY4TxYXUeLFdzzOPxooPY--8EVFkyVC8vErObsSPu_iucbhVTVplKxNrQW1LQz7yfdzqqRI5ausHj0-cUKMoutpAaMzDIopgicbX4tHJ1c9-K4sTwp8jk0umgsssCdq4Zn14LqiTMIKIo5YR8dHfO9NU3fwnQlpvPL0V-NhojOxwzOJVmHPFGiyd1oi8ozX4cDkpvFp9gtdDNr3HVr_wp1jp2W3tAa146XmLI_qdHZcUr659gex8AodLT1Rh2UV9NmhgWN_dj5NlCzYo2DWK8opeSad8yj-sj7Tlb9ajTLhqHW56J9fHZ7yBWOAKh3PIQ6VjZTIZG2-sioxJUhs57Z0RoY29CnQWpyZQRnslhQozFwnjlUWjzXnpXbQBC0VZuE1gLtSBpeCYEJlIdaJ11yVWKrR7rXOp6EC3Hd7cNPXHCQbjIZ9WTiaO5MiRnDiSjzrwddLkcVx8YxbxTsuzvFmHVT6dNR34MnmMK4jCIqpw5QvRxNRjmYUzaHDPQNMTdakOfGvnw7vP_K9TW7M7tQ3LqICJcULhDiwMn1_cLio5Q_25mclvdLT7Mw
  priority: 102
  providerName: ProQuest
Title A Mathematical View of Weights-of-Evidence, Conditional Independence, and Logistic Regression in Terms of Markov Random Fields
URI https://link.springer.com/article/10.1007/s11004-013-9513-y
https://www.proquest.com/docview/1547504259
https://www.proquest.com/docview/1554947892
https://www.proquest.com/docview/1762144223
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-xTUi8DBggykZlJJ4AS01i5-OxnZqOj1WoWmE8Rf5ElbZkIt1QX_jbObtxCwgm8RJH8sWxcjn7fr4vgJepHsSSp4KyXOJFDywtLIIVG3NrrGJJoh1QPJ2mJ3P27pyfd3HcbfB2DyZJv1Jvg90i7zQRJRS1goSudmCPO-iOP_E8HoblN3Ul5xzKyjNG8yKNginzb0P8vhltNcw_jKJ-rykfwH6nJJLhmqsP4Y6pD-B-KMBAOnk8gLsTX5d3hXfek1O1j-DHkJxuUrHiIJ8W5jtpLPnsz0Bb2lgaKom-IceNs1j700DydlMQ1_WIWpMPPjpoocjMfF27y9ZkUZMzXMxbN6SL82luyAxpm0tSOl-49jHMy_HZ8QntiixQwTK-pLGQXKgi58oqLRKl0kwnRlqjWKy5FZEseKYioaQVORNxYRKmrNAI24zNrUmewG7d1OYpEBPLSDvzGGMFy2Qq5cCkOhfII21MxnowCF-7Ul0GclcI46La5k52DKqQQZVjULXqwavNI1fr9Bu3ER8FFladJLYVqogugz2ivB682HSjDDnDiKhNc-1ouJtxXsS30OCugeATtakevA6_xy-v-deknv0X9SHcQ42MrT0Mj2B3-e3aPEetZyn7sJOXkz7sDcvRaOrayZf3Y2xH4-nHWd_LwE8o3QEg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw8DSGEPCAYIAoDDASvAAWTeIkzgNC06BrWbuHqYO9Zf5EkyAZpAP1hZ_Eb-TOaVpAom97iRT57Di-s-_O9wXwNLP9WKeZ4kJqfNi-54VHZcXHqXfeiCSxpChODrLhkXh_nB5vwK8uFobcKrszMRzUtjZ0R_4KWT1lIkdp_c3ZV05Vo8i62pXQaMli381_oMrWvB69Rfw-i-PBu-nukC-qCnCFI8x4rHSqTCFT441ViTFZbhOnvTMitqlXkS7S3ETKaK-kUHHhEmG8sqinOC-9S3DcS3AZ_6KgHSUHe93Jn1G1O1LwZC64LLKos6KGUL0ouHxECUeZJuHzv_ngSrj9xx4b2NzgJtxYyKdspyWoW7Dhqi24shfq_8634Ppkmea1uQ0_d9jqHXt9wCVktWcfw31rw2vPu6qlL9luTdbxcPPIRsviu9SiKsvGIRLp1LBD96l1za3YacWmyDgaGpJiiurv7BBh6y9sQH53zR04upClvwubVV25e8BcrCNLpjghCpHrTOu-y6xUqGVb53LRg363vKVZZDunohufy1WeZsJIiRgpCSPlvAfPl13O2lQf64C3O5yVi13flCsa7cGTZTPuVzLCqMrV5wST0oxlEa-BQQ6Fii5Kbj140dHDH5_536Tur5_UY7g6nE7G5Xh0sP8ArqHoJ1pXxm3YnH07dw9RvJrpR4GmGZxc9Cb6DQxqO2w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT9RAFD5RiMYXRNS4iDomPqkTtu1ML48bdAUFYgirvDVzNZtAS-iC2Rd-O-e0nV01SuJL06Sn00nPXL4z5_IBvEntMNYyVVzkGi926Hnh0VjxsfTOG5EklgzFg8N0dyI-n8iTnue0CdHuwSXZ5TRQlaZqtn1u_fYy8S1qAyiihCNCSPj8LqziahzRsJ7Eo7AUp0Q_RxZXngmeF2kU3Jp_a-L3jWmJNv9wkLb7zngd1nrAyEadhh_BHVdtwMNAxsD6ubkB9z61HL1zvGujOk3zGK5H7GBRlhUb-TZ1P1nt2ff2PLThteeBVfQ926nJe92eDLK9BTkuPVGVZfttptDUsCP3owudrdi0Yse4sDfUJOX81FfsCGXrMzamuLjmCUzGH493dnlPuMCVyOSMx0pLZYpcGm-sSoxJM5s47Z0RsZVeRbqQmYmU0V7lQsWFS4TxyqIJ53zuXfIUVqq6cs-AuVhHllxlQhQi06nWQ5faXKEVbJ3LxACG4W-Xpq9GTqQYp-WyjjIpqEQFlaSgcj6At4tXzrtSHLcJbwUVlv2sbEqEi1TNHi2-AbxePMb5RE4SVbn6kmQk9Tgv4ltkcAdBQxSR1QDeheHxy2f-1anN_5J-Bfe_fhiX-3uHX57DAwRqogs83IKV2cWle4FgaKZftgP-BslxAr8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Mathematical+View+of+Weights-of-Evidence%2C+Conditional+Independence%2C+and+Logistic+Regression+in+Terms+of+Markov+Random+Fields&rft.jtitle=Mathematical+geosciences&rft.au=Schaeben%2C+Helmut&rft.date=2014-08-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1874-8961&rft.eissn=1874-8953&rft.volume=46&rft.issue=6&rft.spage=691&rft.epage=709&rft_id=info:doi/10.1007%2Fs11004-013-9513-y&rft.externalDocID=10_1007_s11004_013_9513_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1874-8961&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1874-8961&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1874-8961&client=summon