Tumor-Marker-Mediated “on-Demand” Drug Release and Real-Time Monitoring System Based on Multifunctional Mesoporous Silica Nanoparticles
“On-demand” drug release can maximize therapeutic efficacy for specific states of malignancies and minimize drug toxicity to healthy cells. Meanwhile, there is lack of a real-time monitoring platform to accurately investigate the amount of anticancer drugs released, especially nonfluorescent ones. S...
Saved in:
Published in | Analytical chemistry (Washington) Vol. 86; no. 20; pp. 10239 - 10245 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
21.10.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 0003-2700 1520-6882 1520-6882 |
DOI | 10.1021/ac502553u |
Cover
Loading…
Abstract | “On-demand” drug release can maximize therapeutic efficacy for specific states of malignancies and minimize drug toxicity to healthy cells. Meanwhile, there is lack of a real-time monitoring platform to accurately investigate the amount of anticancer drugs released, especially nonfluorescent ones. So it is significant to integrate both issues in one ideal drug delivery system. To achieve this, here we present a novel stimuli-responsive controlled drug delivery system toward the tumor marker survivin mRNA, using a real-time monitoring approach based on the fluorescence resonance energy transfer (FRET) strategy to quantify the process of drug release. First, 7-amino-4-methlcoumarin (AMCA) dye terminated short oligonucleotide (FlareA) will hybridize with fluorescein isothiocyanate (FITC) labeled long oligonucleotide (S1F), which contains a recognition element to a specific RNA transcript, to form a FRET pair capped on the pores of mesoporous silica nanoparticles (MSNs). Following a target-recognition reaction, the target with a longer strand displaces the FlareA strand to form a longer and more stable duplex with S1F, which leads to the removal of the capped oligonucleotide from the MSNs and triggers the release of the entrapped cargo while FRET between AMCA and FITC is broken. The relevant change in donor and acceptor fluorescence signal can be used to monitor the unlocking and release event in real-time. Further investigations have also demonstrated that this release system possesses the capacity of modulating the extent of drug release according to the cell states, giving the platform an equally broad spectrum of applications in anticancer therapy. |
---|---|
AbstractList | “On-demand” drug release can maximize therapeutic efficacy for specific states of malignancies and minimize drug toxicity to healthy cells. Meanwhile, there is lack of a real-time monitoring platform to accurately investigate the amount of anticancer drugs released, especially nonfluorescent ones. So it is significant to integrate both issues in one ideal drug delivery system. To achieve this, here we present a novel stimuli-responsive controlled drug delivery system toward the tumor marker survivin mRNA, using a real-time monitoring approach based on the fluorescence resonance energy transfer (FRET) strategy to quantify the process of drug release. First, 7-amino-4-methlcoumarin (AMCA) dye terminated short oligonucleotide (FlareA) will hybridize with fluorescein isothiocyanate (FITC) labeled long oligonucleotide (S1F), which contains a recognition element to a specific RNA transcript, to form a FRET pair capped on the pores of mesoporous silica nanoparticles (MSNs). Following a target-recognition reaction, the target with a longer strand displaces the FlareA strand to form a longer and more stable duplex with S1F, which leads to the removal of the capped oligonucleotide from the MSNs and triggers the release of the entrapped cargo while FRET between AMCA and FITC is broken. The relevant change in donor and acceptor fluorescence signal can be used to monitor the unlocking and release event in real-time. Further investigations have also demonstrated that this release system possesses the capacity of modulating the extent of drug release according to the cell states, giving the platform an equally broad spectrum of applications in anticancer therapy. "On-demand" drug release can maximize therapeutic efficacy for specific states of malignancies and minimize drug toxicity to healthy cells. Meanwhile, there is lack of a real-time monitoring platform to accurately investigate the amount of anticancer drugs released, especially nonfluorescent ones. So it is significant to integrate both issues in one ideal drug delivery system. To achieve this, here we present a novel stimuli-responsive controlled drug delivery system toward the tumor marker survivin mRNA, using a real-time monitoring approach based on the fluorescence resonance energy transfer (FRET) strategy to quantify the process of drug release. First, 7-amino-4-methlcoumarin (AMCA) dye terminated short oligonucleotide (FlareA) will hybridize with fluorescein isothiocyanate (FITC) labeled long oligonucleotide (S1F), which contains a recognition element to a specific RNA transcript, to form a FRET pair capped on the pores of mesoporous silica nanoparticles (MSNs). Following a target-recognition reaction, the target with a longer strand displaces the FlareA strand to form a longer and more stable duplex with S1F, which leads to the removal of the capped oligonucleotide from the MSNs and triggers the release of the entrapped cargo while FRET between AMCA and FITC is broken. The relevant change in donor and acceptor fluorescence signal can be used to monitor the unlocking and release event in real-time. Further investigations have also demonstrated that this release system possesses the capacity of modulating the extent of drug release according to the cell states, giving the platform an equally broad spectrum of applications in anticancer therapy."On-demand" drug release can maximize therapeutic efficacy for specific states of malignancies and minimize drug toxicity to healthy cells. Meanwhile, there is lack of a real-time monitoring platform to accurately investigate the amount of anticancer drugs released, especially nonfluorescent ones. So it is significant to integrate both issues in one ideal drug delivery system. To achieve this, here we present a novel stimuli-responsive controlled drug delivery system toward the tumor marker survivin mRNA, using a real-time monitoring approach based on the fluorescence resonance energy transfer (FRET) strategy to quantify the process of drug release. First, 7-amino-4-methlcoumarin (AMCA) dye terminated short oligonucleotide (FlareA) will hybridize with fluorescein isothiocyanate (FITC) labeled long oligonucleotide (S1F), which contains a recognition element to a specific RNA transcript, to form a FRET pair capped on the pores of mesoporous silica nanoparticles (MSNs). Following a target-recognition reaction, the target with a longer strand displaces the FlareA strand to form a longer and more stable duplex with S1F, which leads to the removal of the capped oligonucleotide from the MSNs and triggers the release of the entrapped cargo while FRET between AMCA and FITC is broken. The relevant change in donor and acceptor fluorescence signal can be used to monitor the unlocking and release event in real-time. Further investigations have also demonstrated that this release system possesses the capacity of modulating the extent of drug release according to the cell states, giving the platform an equally broad spectrum of applications in anticancer therapy. |
Author | Chen, Hong-Yuan Xu, Jing-Juan Li, Xiang-Ling Hao, Nan |
AuthorAffiliation | State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering Nanjing University |
AuthorAffiliation_xml | – name: State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering – name: Nanjing University |
Author_xml | – sequence: 1 givenname: Xiang-Ling surname: Li fullname: Li, Xiang-Ling – sequence: 2 givenname: Nan surname: Hao fullname: Hao, Nan – sequence: 3 givenname: Hong-Yuan surname: Chen fullname: Chen, Hong-Yuan – sequence: 4 givenname: Jing-Juan surname: Xu fullname: Xu, Jing-Juan email: xujj@nju.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25264685$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0s1qFTEUB_AgFXtbXfgCEhBBF2OTTJKZWWrrF_Qq2Ot6yCRnSmomuU0yi-667yvUl-uTmMttRaqgq4TwO4fDP2cP7fjgAaGnlLymhNEDpQVhQtTzA7SggpFKti3bQQtCSF2xhpBdtJfSGSGUEiofoV0mmOSyFQt0tZqnEKulit-hHGCsymDwzeV18NURTMqbm8sf-CjOp_grOFAJcHkrd-WqlZ0AL4O3OUTrT_HJRcow4bcFGRw8Xs4u23H2OtvglcNLSGEdYpgTPrHOaoU_Kx_WKmarHaTH6OGoXIInt-c--vb-3erwY3X85cOnwzfHleKNyBUFwztmmgHMIGsxDmbseNN2wDUwTkABGURrmq6FkQ1khKZuqKolJ3oYudT1Pnq57buO4XyGlPvJJg3OKQ9ltp5tcis51vKflMqOle6Siv-gpaWQhJNCn9-jZ2GOJaGNYpRTXlhRz27VPExg-nW0k4oX_d3nFXCwBTqGlCKMvbZZbbLOUVnXU9Jv1qP_tR6l4tW9irumf7Mvtlbp9Nt8f7ifMC_H5Q |
CODEN | ANCHAM |
CitedBy_id | crossref_primary_10_1002_adfm_201600722 crossref_primary_10_1039_C5CC03693C crossref_primary_10_1039_C8SC02446D crossref_primary_10_1039_D1CC05966A crossref_primary_10_1016_j_colsurfa_2023_131015 crossref_primary_10_1016_j_aca_2018_05_048 crossref_primary_10_1039_C7NR06479A crossref_primary_10_1002_smll_201900669 crossref_primary_10_1021_acs_bioconjchem_8b00416 crossref_primary_10_1039_C9CC02801C crossref_primary_10_1007_s10853_022_06907_4 crossref_primary_10_1021_acs_analchem_7b01582 crossref_primary_10_1002_adfm_201906950 crossref_primary_10_1002_bio_3597 crossref_primary_10_1016_j_jconrel_2017_08_013 crossref_primary_10_1016_j_jhazmat_2024_133871 crossref_primary_10_1021_acs_analchem_2c01663 crossref_primary_10_1016_j_jelechem_2016_11_040 crossref_primary_10_1039_C6AN00160B crossref_primary_10_1021_acs_chemrev_5b00456 crossref_primary_10_1021_acsami_5b12576 crossref_primary_10_1039_C7CS00219J crossref_primary_10_3390_molecules22050782 crossref_primary_10_1016_j_materresbull_2016_08_012 crossref_primary_10_1016_j_ijpharm_2017_09_032 crossref_primary_10_2116_analsci_19P458 crossref_primary_10_1002_smll_201700569 crossref_primary_10_1021_acs_analchem_0c05046 crossref_primary_10_1039_C5RA15016G crossref_primary_10_1039_C7CC02834B crossref_primary_10_3390_molecules21121715 crossref_primary_10_1021_acs_analchem_9b01947 crossref_primary_10_1002_aic_15976 crossref_primary_10_1016_j_ccr_2020_213529 crossref_primary_10_1016_j_biomaterials_2019_119617 crossref_primary_10_1039_C8CS00402A |
Cites_doi | 10.1073/pnas.0400062101 10.1016/j.jconrel.2006.09.005 10.1002/anie.200805818 10.1002/anie.200604488 10.1021/ja302482k 10.1021/ja303998y 10.1002/anie.201001847 10.1073/pnas.93.13.6264 10.1021/ja065485r 10.1002/anie.201308920 10.1021/nn901398j 10.1021/ja807798g 10.1039/b900559e 10.1016/j.biomaterials.2011.10.017 10.1021/nn400199t 10.1007/s12030-008-9003-3 10.1021/ja901831u 10.1021/ja103415t 10.1021/tx300166u 10.1039/c0cc02914a 10.1002/smll.200901789 10.1021/ja406532e 10.1021/la010201w 10.1039/c2cs15308d 10.1021/ja907838s 10.1021/ja9061085 10.1039/B919329D 10.1002/anie.201004133 10.1126/science.282.5391.1111 10.1002/anie.201206416 10.1002/anie.200705211 10.1039/c3cc41072b 10.1021/cm402592t 10.1002/anie.200800927 10.1002/anie.201002639 10.1002/anie.200603404 10.1021/ac2024188 10.1016/j.trac.2007.05.007 10.1021/nl071546n 10.1021/ja907560y 10.1021/nl080877c 10.1021/ja301880x 10.1021/ja8060886 10.1038/sj.onc.1207113 10.1002/anie.200501500 10.1039/b902985k 10.1021/ja207463b 10.1002/adfm.201101960 10.1021/ja206998x 10.1039/a809106d 10.1002/chem.201202740 10.1054/bjoc.2000.1174 10.1002/adma.201104763 |
ContentType | Journal Article |
Copyright | Copyright American Chemical Society Oct 21, 2014 |
Copyright_xml | – notice: Copyright American Chemical Society Oct 21, 2014 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7X8 7S9 L.6 |
DOI | 10.1021/ac502553u |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Toxicology Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts AIDS and Cancer Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Toxicology Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Materials Research Database Materials Research Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1520-6882 |
EndPage | 10245 |
ExternalDocumentID | 3485326131 25264685 10_1021_ac502553u b473648537 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | - .K2 02 1AW 23M 4.4 53G 53T 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABOCM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACNCT ACPRK ACS AEESW AENEX AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 D0L DZ EBS ED ED~ EJD F20 F5P GNL IH9 IHE JG JG~ K2 LG6 P2P PQEST PQQKQ ROL RXW TAE TAF TN5 UHB UI2 UKR VF5 VG9 VQA W1F WH7 X X6Y XFK YZZ --- -DZ -~X .DC 6J9 AAHBH AAYXX ABBLG ABHFT ABHMW ABJNI ABLBI ABQRX ACBEA ACGFO ACKOT ADHLV AGXLV AHGAQ CITATION CUPRZ GGK KZ1 LMP XSW ZCA ~02 CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a475t-1ed492d7bedb635fbdf94789e4ce240eae0b58d798ef2b0fe7371a3640cbf46c3 |
IEDL.DBID | ACS |
ISSN | 0003-2700 1520-6882 |
IngestDate | Thu Jul 10 23:45:06 EDT 2025 Fri Jul 11 09:36:35 EDT 2025 Thu Jul 10 17:09:52 EDT 2025 Mon Jun 30 10:15:44 EDT 2025 Thu Apr 03 07:09:56 EDT 2025 Tue Jul 01 02:49:06 EDT 2025 Thu Apr 24 22:55:01 EDT 2025 Thu Aug 27 13:43:09 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a475t-1ed492d7bedb635fbdf94789e4ce240eae0b58d798ef2b0fe7371a3640cbf46c3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 25264685 |
PQID | 1621414604 |
PQPubID | 45400 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2000315236 proquest_miscellaneous_1692371615 proquest_miscellaneous_1615256040 proquest_journals_1621414604 pubmed_primary_25264685 crossref_citationtrail_10_1021_ac502553u crossref_primary_10_1021_ac502553u acs_journals_10_1021_ac502553u |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-10-21 |
PublicationDateYYYYMMDD | 2014-10-21 |
PublicationDate_xml | – month: 10 year: 2014 text: 2014-10-21 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Analytical chemistry (Washington) |
PublicationTitleAlternate | Anal. Chem |
PublicationYear | 2014 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Wang Y. (ref1/cit1) 2008; 8 Zhang P. (ref40/cit40) 2014; 53 Lai J. (ref41/cit41) 2013; 7 Lee M. H. (ref48/cit48) 2012; 134 Reixach N. (ref54/cit54) 2004; 101 Schlossbauer A. (ref10/cit10) 2009; 48 Vivero-Escoto J. L. (ref12/cit12) 2010; 6 Mortera R. (ref25/cit25) 2009 Zhu Y. F. (ref6/cit6) 2005; 44 Liu C. (ref29/cit29) 2009; 19 Wu J. (ref42/cit42) 2007; 26 Qian R. (ref15/cit15) 2013; 135 Lu J. (ref55/cit55) 2007; 3 Lee C.-H. (ref23/cit23) 2010; 49 Nguyen T. D. (ref28/cit28) 2007; 129 Bagalkot V. (ref50/cit50) 2007; 7 Liu R. (ref27/cit27) 2008; 130 Lai J. (ref18/cit18) 2010; 46 Santra S. (ref46/cit46) 2011; 133 Climent E. (ref33/cit33) 2010; 49 Weinstain R. (ref47/cit47) 2010; 46 Popat A. (ref35/cit35) 2012; 51 Ho Y.-P. (ref51/cit51) 2006; 116 Yang P. (ref9/cit9) 2012; 41 Caruso F. (ref7/cit7) 1998; 282 Ock K. (ref45/cit45) 2012; 84 Jana A. (ref44/cit44) 2012; 134 Ferris D. P. (ref17/cit17) 2009; 131 Park C. (ref21/cit21) 2007; 46 Zhu Y. (ref24/cit24) 2010; 132 Ma M. (ref30/cit30) 2012; 33 Fang W. (ref16/cit16) 2012; 22 Olie R. A. (ref52/cit52) 2000; 60 Liu R. (ref22/cit22) 2010; 132 Lin Q. (ref19/cit19) 2010; 132 Coll C. (ref38/cit38) 2011; 50 Vallet-Regi M. (ref8/cit8) 2007; 46 Asefa T. (ref14/cit14) 2012; 25 Tian B.-S. (ref31/cit31) 2011; 11 Li L.-L. (ref39/cit39) 2013; 49 Meier W. (ref2/cit2) 2000; 29 Ha T. (ref49/cit49) 1996; 93 Singh N. (ref34/cit34) 2011; 133 Altieri D. C. (ref53/cit53) 2003; 22 Chen Y. (ref4/cit4) 2010; 4 Qiu X. P. (ref3/cit3) 2001; 17 Zhang T. (ref5/cit5) 2008; 47 Park C. (ref32/cit32) 2009; 131 Croissant J. (ref11/cit11) 2012; 134 Zhao Y. (ref26/cit26) 2009; 131 Argyo C. (ref36/cit36) 2014; 26 Mas N. (ref37/cit37) 2013; 19 Angelos S. (ref20/cit20) 2008; 47 Tang F. (ref13/cit13) 2012; 24 Meyer T. (ref43/cit43) 2000; 82 |
References_xml | – volume: 101 start-page: 2817 year: 2004 ident: ref54/cit54 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0400062101 – volume: 116 start-page: 83 year: 2006 ident: ref51/cit51 publication-title: J. Controlled Release doi: 10.1016/j.jconrel.2006.09.005 – volume: 48 start-page: 3092 year: 2009 ident: ref10/cit10 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200805818 – volume: 46 start-page: 7548 year: 2007 ident: ref8/cit8 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200604488 – volume: 134 start-page: 7656 year: 2012 ident: ref44/cit44 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja302482k – volume: 134 start-page: 12668 year: 2012 ident: ref48/cit48 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja303998y – volume: 49 start-page: 7281 year: 2010 ident: ref33/cit33 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201001847 – volume: 11 start-page: 1871 year: 2011 ident: ref31/cit31 publication-title: Nanosci. Nanotechnol. – volume: 93 start-page: 6264 year: 1996 ident: ref49/cit49 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.93.13.6264 – volume: 129 start-page: 626 year: 2007 ident: ref28/cit28 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja065485r – volume: 53 start-page: 2371 year: 2014 ident: ref40/cit40 publication-title: Angew. Chem, Int. Ed. doi: 10.1002/anie.201308920 – volume: 4 start-page: 529 year: 2010 ident: ref4/cit4 publication-title: ACS Nano doi: 10.1021/nn901398j – volume: 131 start-page: 1686 year: 2009 ident: ref17/cit17 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja807798g – start-page: 3219 year: 2009 ident: ref25/cit25 publication-title: Chem. Commun. doi: 10.1039/b900559e – volume: 33 start-page: 989 year: 2012 ident: ref30/cit30 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.10.017 – volume: 7 start-page: 2741 year: 2013 ident: ref41/cit41 publication-title: ACS Nano doi: 10.1021/nn400199t – volume: 3 start-page: 89 year: 2007 ident: ref55/cit55 publication-title: Nanobiotechnology doi: 10.1007/s12030-008-9003-3 – volume: 131 start-page: 8398 year: 2009 ident: ref26/cit26 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja901831u – volume: 132 start-page: 10645 year: 2010 ident: ref19/cit19 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja103415t – volume: 60 start-page: 2805 year: 2000 ident: ref52/cit52 publication-title: Cancer Res. – volume: 25 start-page: 2265 year: 2012 ident: ref14/cit14 publication-title: Chem. Res. Toxicol. doi: 10.1021/tx300166u – volume: 46 start-page: 7370 year: 2010 ident: ref18/cit18 publication-title: Chem. Commun. doi: 10.1039/c0cc02914a – volume: 6 start-page: 1952 year: 2010 ident: ref12/cit12 publication-title: Small doi: 10.1002/smll.200901789 – volume: 135 start-page: 13282 year: 2013 ident: ref15/cit15 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja406532e – volume: 17 start-page: 5375 year: 2001 ident: ref3/cit3 publication-title: Langmuir doi: 10.1021/la010201w – volume: 41 start-page: 3679 year: 2012 ident: ref9/cit9 publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs15308d – volume: 132 start-page: 1500 year: 2010 ident: ref22/cit22 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja907838s – volume: 131 start-page: 16614 year: 2009 ident: ref32/cit32 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9061085 – volume: 46 start-page: 553 year: 2010 ident: ref47/cit47 publication-title: Chem. Commun. doi: 10.1039/B919329D – volume: 50 start-page: 2138 year: 2011 ident: ref38/cit38 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201004133 – volume: 282 start-page: 1111 year: 1998 ident: ref7/cit7 publication-title: Science doi: 10.1126/science.282.5391.1111 – volume: 51 start-page: 12486 year: 2012 ident: ref35/cit35 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201206416 – volume: 47 start-page: 2222 year: 2008 ident: ref20/cit20 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200705211 – volume: 49 start-page: 5823 year: 2013 ident: ref39/cit39 publication-title: Chem. Commun. doi: 10.1039/c3cc41072b – volume: 26 start-page: 435 year: 2014 ident: ref36/cit36 publication-title: Chem. Mater. doi: 10.1021/cm402592t – volume: 47 start-page: 5806 year: 2008 ident: ref5/cit5 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200800927 – volume: 49 start-page: 8214 year: 2010 ident: ref23/cit23 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201002639 – volume: 46 start-page: 1455 year: 2007 ident: ref21/cit21 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200603404 – volume: 84 start-page: 2172 year: 2012 ident: ref45/cit45 publication-title: Anal. Chem. doi: 10.1021/ac2024188 – volume: 26 start-page: 679 year: 2007 ident: ref42/cit42 publication-title: TrAC, Trends Anal. Chem. doi: 10.1016/j.trac.2007.05.007 – volume: 7 start-page: 3065 year: 2007 ident: ref50/cit50 publication-title: Nano Lett. doi: 10.1021/nl071546n – volume: 132 start-page: 1450 year: 2010 ident: ref24/cit24 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja907560y – volume: 8 start-page: 1741 year: 2008 ident: ref1/cit1 publication-title: Nano Lett. doi: 10.1021/nl080877c – volume: 134 start-page: 7628 year: 2012 ident: ref11/cit11 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja301880x – volume: 130 start-page: 14418 year: 2008 ident: ref27/cit27 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8060886 – volume: 22 start-page: 8581 year: 2003 ident: ref53/cit53 publication-title: Oncogene doi: 10.1038/sj.onc.1207113 – volume: 44 start-page: 5083 year: 2005 ident: ref6/cit6 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200501500 – volume: 19 start-page: 4764 year: 2009 ident: ref29/cit29 publication-title: J. Mater. Chem. doi: 10.1039/b902985k – volume: 133 start-page: 16680 year: 2011 ident: ref46/cit46 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja207463b – volume: 22 start-page: 842 year: 2012 ident: ref16/cit16 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201101960 – volume: 133 start-page: 19582 year: 2011 ident: ref34/cit34 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja206998x – volume: 29 start-page: 295 year: 2000 ident: ref2/cit2 publication-title: Chem. Soc. Rev. doi: 10.1039/a809106d – volume: 19 start-page: 1346 year: 2013 ident: ref37/cit37 publication-title: Chem.—Eur. J. doi: 10.1002/chem.201202740 – volume: 82 start-page: 1535 year: 2000 ident: ref43/cit43 publication-title: Br. J. Cancer doi: 10.1054/bjoc.2000.1174 – volume: 24 start-page: 1504 year: 2012 ident: ref13/cit13 publication-title: Adv. Mater. doi: 10.1002/adma.201104763 |
SSID | ssj0011016 |
Score | 2.3242774 |
Snippet | “On-demand” drug release can maximize therapeutic efficacy for specific states of malignancies and minimize drug toxicity to healthy cells. Meanwhile, there is... "On-demand" drug release can maximize therapeutic efficacy for specific states of malignancies and minimize drug toxicity to healthy cells. Meanwhile, there is... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 10239 |
SubjectTerms | antineoplastic agents Biomarkers, Tumor - chemistry Biomarkers, Tumor - metabolism Cell Line, Tumor Cells Delayed-Action Preparations Drug delivery systems drug toxicity Drugs Energy transfer fluorescein Fluorescence Fretting Humans messenger RNA Monitoring Nanoparticles Nanoparticles - chemistry Oligonucleotides Porosity porous media pro-apoptotic proteins Real time Ribonucleic acid RNA Silica Silicon Dioxide - chemistry Strands Toxicity |
Title | Tumor-Marker-Mediated “on-Demand” Drug Release and Real-Time Monitoring System Based on Multifunctional Mesoporous Silica Nanoparticles |
URI | http://dx.doi.org/10.1021/ac502553u https://www.ncbi.nlm.nih.gov/pubmed/25264685 https://www.proquest.com/docview/1621414604 https://www.proquest.com/docview/1615256040 https://www.proquest.com/docview/1692371615 https://www.proquest.com/docview/2000315236 |
Volume | 86 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JbtRAEG2FcAAOLGEbCFGzHLh0sHu1jzBDFCGFA0mk3KxeyhEisdHM-MIpd34Bfi5fQrU3DSITTrbscrvV23vV1VVFyBujfTDaKZY6bxjy_5I5LjMmSsi8z71IeHROPvis94_lpxN1skFer7Hg8_Sd9SryXtHcIDe5xskb-c_0cDQVRPVzSIsXrahD-KDVTyP0-MXf0LOGT7a4snePzAbvnO44ybfdZul2_Y9_gzVeV-X75G7PK-n7biA8IBtQbZFb0yGd2xa5sxJ58CH5edSc13MWPXUAL22-Dgj08uJXXbEZnNsqXF78prN5c0q_IDIh1lF8hvf2jEW3EdotBrE02kU9px9QKNC6oq1TbwTMbp-RHsCiRppfNwt6-DVuElJc01FZ78_kPSLHex-Ppvusz8vArDRqyVIIMufBOAgO-UrpQplLk-UgPSBBAAuJU1kweQYld0kJRpjUCi0T70qpvXhMNqu6gqeEooKclCIFK7ySYGWeZcpzaS0SHUiCmpAd7Liin1eLojWZ87QYW3hC3g59Wvg-qnlMrnF2leirUfR7F8rjKqHtYWCs_FXzVCKkJHJCXo6vsf-iccVWgO1XROYc6aNMrpNBOm2i5HqZ6DolsCihJ-RJNzDH2nKF9FVn6tn_WuU5uY3ETkaM5ek22VzOG3iB5GnpdtrJ8wdIMBXR |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagHAoHHuW1UIpBHLi4JLYTJ8eypVqg2wPdSr1FfkwQok3QZnPpqff-Bfrn-ks6zosFtcApUTJxRuOx57PHM0PIGxVbp2ITsdBYxRD_58xwmTCRQ2JtakXAfXDydC-eHMhPh9FhlybHx8IgExW2VDVO_F_ZBcJ32kYe_or6JrmFIIR7bd4a7w8eA78K7avjeWdqn0Vo-VNvgWz1uwW6BlY25mXnXlunqGGsOVXyfbNemE178kfOxv_j_D6526FMutWqxQNyA4o1sjrui7utkTtLeQgfkrNZfVzOmY_bAbw01TvA0YvTn2XBtuFYF-7i9Jxuz-uv9AvaKbR8FJ_hvT5iPoiEtlODb422OdDpeyRytCxoE-LrzWe760inUJUI-su6ovvf_JYhxRkel-7dCb1H5GDnw2w8YV2VBqalihYsBCdT7pQBZxC95MblqVRJCtICwgXQEJgocSpNIOcmyEEJFWoRy8CaXMZWPCYrRVnAU0JxuRzkIgQtbCRByzRJIsul1gh7IHDRiGyggLNulFVZ40DnYTZIeETe9l2b2S7HuS-1cXQV6euB9Eeb2OMqovVeP5b-GvNQooEJ5Ii8Gl5j_3lXiy4A5Zd5HO3BpAz-RoPgWnnK62l8IJXApkQ8Ik9a_Ry45TgIZJxEz_4llZdkdTKb7ma7H_c-Pye3EfJJb315uE5WFvMaXiCsWpiNZjxdApz7HjI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9RADB5BkXgceJQCC6UMiAOXKUlmkkmOZZdVebQg2kq9RfNwEKJNqs3mwql3_gL8uf4S7CQbLagFTokSZ2J5Hv48HtuMPdeJ8zqxsQit0wLxfyFspFIhC0idy5wMIgpO3tlNtg_U28P4sDcUKRYGmaixpbp14tOsPvFFn2EgfGlcTBBYNpfZFXLX0YjeGu8NXgOyRBcV8sihusgktPwpaSFX_66FLoCWrYqZ3mIfBubakyVfN5u53XTf_sjb-P_c32Y3e7TJt7rhcYddgnKVXRsvirytshtL-Qjvsu_7zXE1ExS_A3hpq3iA52enP6pSTODYlP7s9CefzJrP_BPqK9SAHJ_hvTkSFEzCuyWCWuNdLnT-Cok8r0rehvqSGu12H_kO1BWC_6qp-d4X2jrkuNKjCd-f1FtjB9PX--Nt0VdrEEbpeC5C8CqLvLbgLaKYwvoiUzrNQDlA2AAGAhunXmcpFJENCtBSh0YmKnC2UImT99hKWZXwgHE0m4NChmCkixUYlaVp7CJlDMIfCHw8Yhso5LyfbXXeOtKjMB8kPGIvFt2buz7XOZXcODqP9NlAetIl-DiPaH0xRpb-mkShQkUTqBF7OrzG_iOXiykB5ZcTniZQqYK_0SDI1kR5MQ0FVElsSiYjdr8bowO3UYygNknjh_-SyhN29eNkmr9_s_vuEbuOyE-REo7CdbYynzXwGNHV3G60U-oXxYUgtQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tumor-marker-mediated+%22on-demand%22+drug+release+and+real-time+monitoring+system+based+on+multifunctional+mesoporous+silica+nanoparticles&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Li%2C+Xiang-Ling&rft.au=Hao%2C+Nan&rft.au=Chen%2C+Hong-Yuan&rft.au=Xu%2C+Jing-Juan&rft.date=2014-10-21&rft.eissn=1520-6882&rft.volume=86&rft.issue=20&rft.spage=10239&rft_id=info:doi/10.1021%2Fac502553u&rft_id=info%3Apmid%2F25264685&rft.externalDocID=25264685 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2700&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2700&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2700&client=summon |