Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines
Machine learning algorithms (MLAs) such us artificial neural networks (ANNs), regression trees (RTs), random forest (RF) and support vector machines (SVMs) are powerful data driven methods that are relatively less widely used in the mapping of mineral prospectivity, and thus have not been comparativ...
Saved in:
Published in | Ore geology reviews Vol. 71; pp. 804 - 818 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Machine learning algorithms (MLAs) such us artificial neural networks (ANNs), regression trees (RTs), random forest (RF) and support vector machines (SVMs) are powerful data driven methods that are relatively less widely used in the mapping of mineral prospectivity, and thus have not been comparatively evaluated together thoroughly in this field.
The performances of a series of MLAs, namely, artificial neural networks (ANNs), regression trees (RTs), random forest (RF) and support vector machines (SVMs) in mineral prospectivity modelling are compared based on the following criteria: i) the accuracy in the delineation of prospective areas; ii) the sensitivity to the estimation of hyper-parameters; iii) the sensitivity to the size of training data; and iv) the interpretability of model parameters. The results of applying the above algorithms to epithermal Au prospectivity mapping of the Rodalquilar district, Spain, indicate that the RF outperformed the other MLA algorithms (ANNs, RTs and SVMs). The RF algorithm showed higher stability and robustness with varying training parameters and better success rates and ROC analysis results. On the other hand, all MLA algorithms can be used when ore deposit evidences are scarce. Moreover the model parameters of RF and RT can be interpreted to gain insights into the geological controls of mineralization. |
---|---|
AbstractList | Machine learning algorithms (MLAs) such us artificial neural networks (ANNs), regression trees (RTs), random forest (RF) and support vector machines (SVMs) are powerful data driven methods that are relatively less widely used in the mapping of mineral prospectivity, and thus have not been comparatively evaluated together thoroughly in this field.
The performances of a series of MLAs, namely, artificial neural networks (ANNs), regression trees (RTs), random forest (RF) and support vector machines (SVMs) in mineral prospectivity modelling are compared based on the following criteria: i) the accuracy in the delineation of prospective areas; ii) the sensitivity to the estimation of hyper-parameters; iii) the sensitivity to the size of training data; and iv) the interpretability of model parameters. The results of applying the above algorithms to epithermal Au prospectivity mapping of the Rodalquilar district, Spain, indicate that the RF outperformed the other MLA algorithms (ANNs, RTs and SVMs). The RF algorithm showed higher stability and robustness with varying training parameters and better success rates and ROC analysis results. On the other hand, all MLA algorithms can be used when ore deposit evidences are scarce. Moreover the model parameters of RF and RT can be interpreted to gain insights into the geological controls of mineralization. |
Author | Chica-Olmo, M. Chica-Rivas, M. Sanchez-Castillo, M. Rodriguez-Galiano, V. |
Author_xml | – sequence: 1 givenname: V. orcidid: 0000-0002-5422-8305 surname: Rodriguez-Galiano fullname: Rodriguez-Galiano, V. email: vrgaliano@gmail.com organization: Global Environmental Change and Earth Observation Research Group, Geography and Environment, University of Southampton, Southampton SO17 1BJ, United Kingdom – sequence: 2 givenname: M. surname: Sanchez-Castillo fullname: Sanchez-Castillo, M. email: ms2188@cam.ac.uk organization: Department of Haematology, Wellcome Trust and MRC Cambridge Stem Cell Institute and Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom – sequence: 3 givenname: M. surname: Chica-Olmo fullname: Chica-Olmo, M. email: mchica@ugr.es organization: Departamento de Geodinámica, Universidad de Granada, 18071 Granada, Spain – sequence: 4 givenname: M. surname: Chica-Rivas fullname: Chica-Rivas, M. email: mcrivas@ugr.es organization: Departamento de Análisis Matemático, Universidad de Granada, 18071 Granada, Spain |
BookMark | eNqNkctOJCEUhonRxPbyDPIAUyV0CVUziYuO8ZZo3OiaHOHQQ081VIAu47P4slK2mYUb3XDJ-f__cD4OyK4PHgk54azmjMvTVR0iLrEsYz1nXNSM14zxHTLjXTuv2kayXTIryt8Vb2S3Tw5SWjHGZBHNyNs96L_OI-0Rond-SYeIxunsRqTrYLBP1IZI10UToS_VkAacyi6__qELT3GEfgPZBU-DpR43k8xjfgnxX_pFI3gT1lMGplyuuCyHNKlzREy0lGnaDEOImY4leOq1fVI6InsW-oTHn_shebq6fLy4qe4erm8vFncVnLVnubLGCt5aIeUzAnTPWugGEEzTMmil1tYYa7QAiaLjknd6LjvZABfcChQMm0Nyvs3VZbgU0Srt8sdEOYLrFWdqIq1W6j9pNZFWjKsCsfjbL_4hujXE1x84F1tnwYyjw6iSduh1-YFYWCgT3LcZ7xKzpwg |
CitedBy_id | crossref_primary_10_1007_s40192_020_00195_z crossref_primary_10_3799_dqkx_2022_433 crossref_primary_10_3390_rs11222605 crossref_primary_10_3390_min11020148 crossref_primary_10_1007_s00521_018_3903_5 crossref_primary_10_1016_j_compbiomed_2024_108309 crossref_primary_10_1175_JCLI_D_21_0447_1 crossref_primary_10_1186_s12938_023_01140_9 crossref_primary_10_1007_s00521_020_05425_1 crossref_primary_10_1016_j_mineng_2019_105899 crossref_primary_10_1007_s11004_023_10065_x crossref_primary_10_1016_j_patcog_2019_01_036 crossref_primary_10_3390_axioms11040151 crossref_primary_10_1016_j_cie_2023_109450 crossref_primary_10_1016_j_gexplo_2021_106888 crossref_primary_10_1007_s11063_020_10379_5 crossref_primary_10_1016_j_jsames_2022_103815 crossref_primary_10_1016_j_gexplo_2021_106885 crossref_primary_10_1016_j_oregeorev_2023_105571 crossref_primary_10_1038_s41598_025_87316_w crossref_primary_10_1016_j_gexplo_2024_107557 crossref_primary_10_3390_min14050522 crossref_primary_10_3390_min13101302 crossref_primary_10_1016_j_aei_2022_101671 crossref_primary_10_1016_j_acags_2023_100153 crossref_primary_10_1109_ACCESS_2025_3527205 crossref_primary_10_1007_s11053_024_10387_5 crossref_primary_10_1016_j_gexplo_2024_107555 crossref_primary_10_1016_j_cscee_2023_100324 crossref_primary_10_1007_s11356_023_29769_y crossref_primary_10_1016_j_inffus_2024_102914 crossref_primary_10_1016_j_oregeorev_2023_105567 crossref_primary_10_3390_app10093298 crossref_primary_10_1016_j_measurement_2019_07_017 crossref_primary_10_1016_j_conbuildmat_2018_11_142 crossref_primary_10_1016_j_petrol_2020_107838 crossref_primary_10_1007_s12145_018_00377_6 crossref_primary_10_1007_s40710_024_00719_1 crossref_primary_10_3390_w15061075 crossref_primary_10_1016_j_autcon_2019_102833 crossref_primary_10_1007_s11368_024_03820_y crossref_primary_10_1007_s00477_021_02152_4 crossref_primary_10_1144_geochem2016_024 crossref_primary_10_1016_j_cities_2023_104292 crossref_primary_10_1016_j_engstruct_2022_115574 crossref_primary_10_29130_dubited_1015572 crossref_primary_10_3233_JIFS_189461 crossref_primary_10_1016_j_molliq_2022_119306 crossref_primary_10_3233_JIFS_189463 crossref_primary_10_1016_j_petrol_2020_107833 crossref_primary_10_2166_nh_2016_264 crossref_primary_10_1007_s42452_019_1499_8 crossref_primary_10_1080_17452759_2024_2318774 crossref_primary_10_1109_JSTARS_2022_3195088 crossref_primary_10_1016_j_envres_2023_115751 crossref_primary_10_3233_JIFS_219154 crossref_primary_10_1007_s11044_024_09977_1 crossref_primary_10_1109_LGRS_2024_3450872 crossref_primary_10_1007_s10661_019_7510_4 crossref_primary_10_1007_s11053_019_09598_y crossref_primary_10_1016_j_compositesb_2023_111099 crossref_primary_10_1111_ffe_14459 crossref_primary_10_1016_j_gexplo_2023_107279 crossref_primary_10_32604_cmc_2023_037553 crossref_primary_10_1007_s13201_018_0742_6 crossref_primary_10_1007_s12145_024_01224_7 crossref_primary_10_1061__ASCE_CO_1943_7862_0002411 crossref_primary_10_1016_j_gexplo_2020_106556 crossref_primary_10_1007_s12145_023_01184_4 crossref_primary_10_2139_ssrn_4861836 crossref_primary_10_3390_a18030119 crossref_primary_10_1007_s41096_024_00210_y crossref_primary_10_3390_math11020279 crossref_primary_10_1016_j_watres_2024_122824 crossref_primary_10_1016_j_geothermics_2024_102915 crossref_primary_10_1109_ACCESS_2024_3359055 crossref_primary_10_1155_2022_3879266 crossref_primary_10_1016_j_caeai_2022_100103 crossref_primary_10_1007_s12517_023_11623_7 crossref_primary_10_1007_s12046_023_02193_1 crossref_primary_10_1016_j_apenergy_2021_117413 crossref_primary_10_1021_acsomega_3c01241 crossref_primary_10_1016_j_rsma_2023_102914 crossref_primary_10_1515_jisys_2023_0283 crossref_primary_10_1002_sys_21718 crossref_primary_10_1007_s11053_021_09842_4 crossref_primary_10_1007_s11004_023_10067_9 crossref_primary_10_1155_2021_3053538 crossref_primary_10_1038_s41598_025_91132_7 crossref_primary_10_3390_ijgi10070440 crossref_primary_10_3390_min11020182 crossref_primary_10_1029_2024JD042701 crossref_primary_10_1109_ACCESS_2019_2919343 crossref_primary_10_11648_j_sjams_20241205_11 crossref_primary_10_1007_s11053_022_10075_2 crossref_primary_10_1016_j_foohum_2024_100413 crossref_primary_10_21032_jhis_2022_47_S2_S21 crossref_primary_10_3390_app13053117 crossref_primary_10_1016_j_oregeorev_2018_07_002 crossref_primary_10_1016_j_gexplo_2021_106858 crossref_primary_10_1016_j_clet_2025_100919 crossref_primary_10_3390_w16081133 crossref_primary_10_1016_j_gexplo_2024_107388 crossref_primary_10_1016_j_catena_2021_105178 crossref_primary_10_3390_rs14205169 crossref_primary_10_1038_s41598_024_65693_y crossref_primary_10_3390_app14114880 crossref_primary_10_1016_j_energy_2022_124427 crossref_primary_10_3390_a17110519 crossref_primary_10_1016_j_engstruct_2019_03_105 crossref_primary_10_1016_j_chemer_2022_125898 crossref_primary_10_3390_min11020159 crossref_primary_10_3390_rs16111948 crossref_primary_10_1109_LSENS_2024_3503752 crossref_primary_10_2174_1874836801913010178 crossref_primary_10_1186_s40537_020_00327_4 crossref_primary_10_3390_ijerph18189752 crossref_primary_10_1007_s12145_018_0346_6 crossref_primary_10_3390_rs12244070 crossref_primary_10_1016_j_apgeochem_2022_105273 crossref_primary_10_1016_j_compag_2024_109466 crossref_primary_10_1080_10106049_2022_2158238 crossref_primary_10_3390_s22093566 crossref_primary_10_3390_app13169325 crossref_primary_10_3390_ijgi12030097 crossref_primary_10_1016_j_biosystemseng_2023_11_009 crossref_primary_10_1016_j_mtcomm_2022_103688 crossref_primary_10_3390_min12080941 crossref_primary_10_1007_s40948_021_00243_8 crossref_primary_10_1021_acs_jpcb_4c07651 crossref_primary_10_1016_j_mtcomm_2024_108216 crossref_primary_10_3390_fractalfract8040224 crossref_primary_10_1007_s11053_022_10120_0 crossref_primary_10_1007_s11053_024_10394_6 crossref_primary_10_1007_s11356_020_11413_8 crossref_primary_10_1016_j_tra_2021_10_001 crossref_primary_10_3390_min12070900 crossref_primary_10_1016_j_scs_2020_102146 crossref_primary_10_1080_20964471_2021_1948178 crossref_primary_10_1016_j_heliyon_2023_e21498 crossref_primary_10_1016_S1002_0160_17_60485_5 crossref_primary_10_1016_j_gexplo_2025_107695 crossref_primary_10_3390_su14095194 crossref_primary_10_3390_molecules27185762 crossref_primary_10_1016_j_jcp_2021_110147 crossref_primary_10_1016_j_energy_2024_133947 crossref_primary_10_1016_j_acags_2019_100001 crossref_primary_10_1016_j_ejor_2019_02_005 crossref_primary_10_3390_min12040461 crossref_primary_10_1002_eng2_13031 crossref_primary_10_1016_j_cacint_2020_100044 crossref_primary_10_1061_JPEODX_0000250 crossref_primary_10_3390_su16020931 crossref_primary_10_1155_2022_6794931 crossref_primary_10_1007_s00442_024_05516_z crossref_primary_10_1109_JSEN_2020_2988070 crossref_primary_10_3390_min11101046 crossref_primary_10_1016_j_envpol_2020_114517 crossref_primary_10_1016_j_oregeorev_2020_103394 crossref_primary_10_1016_j_foreco_2018_12_019 crossref_primary_10_1016_j_oregeorev_2021_104300 crossref_primary_10_1016_j_scitotenv_2019_03_496 crossref_primary_10_1080_15325008_2021_1937401 crossref_primary_10_1016_j_atmosres_2025_108012 crossref_primary_10_3390_f11050540 crossref_primary_10_3799_dqkx_2022_006 crossref_primary_10_1007_s00521_022_07766_5 crossref_primary_10_1016_j_scitotenv_2020_138595 crossref_primary_10_1016_j_gexplo_2016_05_003 crossref_primary_10_18654_1000_0569_2021_12_16 crossref_primary_10_3389_fmars_2023_1217851 crossref_primary_10_61186_jsdp_20_4_35 crossref_primary_10_1007_s11053_019_09578_2 crossref_primary_10_1016_j_jafrearsci_2016_09_007 crossref_primary_10_1007_s44163_024_00169_6 crossref_primary_10_1016_j_jclepro_2023_140249 crossref_primary_10_37217_tebd_1438947 crossref_primary_10_1016_j_agrformet_2020_107956 crossref_primary_10_1016_j_jafrearsci_2023_105024 crossref_primary_10_3390_agriculture13030574 crossref_primary_10_1016_j_insmatheco_2021_02_009 crossref_primary_10_3390_rs16224173 crossref_primary_10_1016_j_cageo_2024_105540 crossref_primary_10_1016_j_aiig_2022_03_001 crossref_primary_10_1615_JMachLearnModelComput_2023049518 crossref_primary_10_1016_j_fuel_2024_133953 crossref_primary_10_1016_j_cageo_2019_07_004 crossref_primary_10_17798_bitlisfen_1308493 crossref_primary_10_1007_s11053_023_10272_7 crossref_primary_10_3390_su13052426 crossref_primary_10_1016_j_oregeorev_2024_106082 crossref_primary_10_1007_s11053_019_09510_8 crossref_primary_10_3390_en14227714 crossref_primary_10_1007_s10021_021_00618_8 crossref_primary_10_3390_min13111384 crossref_primary_10_1515_htmp_2022_0273 crossref_primary_10_1007_s11053_020_09788_z crossref_primary_10_3390_rs13030457 crossref_primary_10_1007_s11053_021_09918_1 crossref_primary_10_1007_s11277_017_5239_3 crossref_primary_10_4218_etrij_2023_0155 crossref_primary_10_1016_j_icheatmasstransfer_2025_108813 crossref_primary_10_4000_physio_geo_15783 crossref_primary_10_1007_s11269_025_04091_z crossref_primary_10_1080_00393630_2023_2173040 crossref_primary_10_3390_biomedinformatics4030094 crossref_primary_10_4236_ojg_2021_118018 crossref_primary_10_54097_hset_v44i_7162 crossref_primary_10_1016_j_molliq_2022_121195 crossref_primary_10_1016_j_engappai_2023_106828 crossref_primary_10_1680_jgere_24_00029 crossref_primary_10_1007_s11053_018_9428_x crossref_primary_10_1007_s11707_016_0595_y crossref_primary_10_1016_j_oregeorev_2019_02_027 crossref_primary_10_1016_j_cageo_2017_03_015 crossref_primary_10_1016_j_oregeorev_2019_02_026 crossref_primary_10_1016_j_csite_2023_103005 crossref_primary_10_1080_17435390_2023_2186279 crossref_primary_10_3390_min10020102 crossref_primary_10_3389_feart_2022_816751 crossref_primary_10_1080_01431161_2024_2370504 crossref_primary_10_3390_rs14236154 crossref_primary_10_3390_agronomy14102182 crossref_primary_10_5194_bg_15_7347_2018 crossref_primary_10_3390_app14114819 crossref_primary_10_3390_min11080816 crossref_primary_10_1007_s11053_018_9392_5 crossref_primary_10_1016_j_fuel_2022_125991 crossref_primary_10_1016_j_ijleo_2017_03_037 crossref_primary_10_1016_j_jece_2020_103952 crossref_primary_10_1371_journal_pone_0186751 crossref_primary_10_1016_j_apgeog_2024_103503 crossref_primary_10_1007_s11053_017_9345_4 crossref_primary_10_1007_s11053_025_10477_y crossref_primary_10_1109_JSTARS_2019_2924292 crossref_primary_10_1007_s11053_022_10038_7 crossref_primary_10_1007_s12303_018_0035_y crossref_primary_10_1016_j_ijhydene_2025_02_342 crossref_primary_10_1007_s42107_024_01124_7 crossref_primary_10_33003_fjs_2024_0806_3002 crossref_primary_10_1080_13658816_2022_2075879 crossref_primary_10_1016_j_oregeorev_2024_106030 crossref_primary_10_1080_10408398_2021_1956425 crossref_primary_10_1016_j_buildenv_2019_106479 crossref_primary_10_1515_geo_2022_0436 crossref_primary_10_3390_f10090743 crossref_primary_10_35377_saucis___1415583 crossref_primary_10_36899_japs_2024_5_0811 crossref_primary_10_1016_j_jseaes_2025_106551 crossref_primary_10_3390_min12111361 crossref_primary_10_1016_S1002_0160_17_60481_8 crossref_primary_10_3390_w15081571 crossref_primary_10_2355_isijinternational_ISIJINT_2020_639 crossref_primary_10_1016_j_ecoinf_2023_102137 crossref_primary_10_1155_2020_2454875 crossref_primary_10_1007_s40243_023_00239_2 crossref_primary_10_1016_j_tcs_2019_10_038 crossref_primary_10_1007_s12145_023_01016_5 crossref_primary_10_2166_wst_2023_108 crossref_primary_10_1080_10106049_2021_1988726 crossref_primary_10_1007_s11053_020_09779_0 crossref_primary_10_1016_j_fuel_2023_129263 crossref_primary_10_1016_j_cageo_2022_105075 crossref_primary_10_1016_j_oregeorev_2021_104399 crossref_primary_10_1007_s11053_018_9448_6 crossref_primary_10_1007_s11053_020_09668_6 crossref_primary_10_1007_s11053_021_09871_z crossref_primary_10_1007_s11053_021_09893_7 crossref_primary_10_1016_j_scitotenv_2018_07_353 crossref_primary_10_1155_2017_1673864 crossref_primary_10_1002_2016TC004289 crossref_primary_10_1155_2021_9294356 crossref_primary_10_1016_j_enggeo_2024_107584 crossref_primary_10_1016_j_resourpol_2022_103222 crossref_primary_10_3390_min13081073 crossref_primary_10_1016_j_apenergy_2018_09_182 crossref_primary_10_1038_s41598_022_17350_5 crossref_primary_10_3390_info15100590 crossref_primary_10_1177_09544062231213276 crossref_primary_10_1016_j_quascirev_2024_108686 crossref_primary_10_1007_s10853_024_09802_2 crossref_primary_10_1080_03719553_2017_1318570 crossref_primary_10_1144_geochem2020_038 crossref_primary_10_1007_s11771_021_4730_x crossref_primary_10_1016_j_asoc_2023_110586 crossref_primary_10_1016_j_asr_2022_04_048 crossref_primary_10_1115_1_4063938 crossref_primary_10_1016_j_jnca_2022_103560 crossref_primary_10_1016_j_compag_2020_105588 crossref_primary_10_1016_j_apgeochem_2024_106124 crossref_primary_10_1002_pan3_10551 crossref_primary_10_4236_jdaip_2024_123018 crossref_primary_10_1371_journal_pone_0282084 crossref_primary_10_1007_s10999_023_09695_0 crossref_primary_10_1155_2024_7970454 crossref_primary_10_3390_min11060597 crossref_primary_10_1016_j_crfs_2023_100495 crossref_primary_10_1016_j_ecmx_2024_100772 crossref_primary_10_3390_rs15040930 crossref_primary_10_1016_j_ecoenv_2023_115183 crossref_primary_10_1016_j_jenvman_2021_112736 crossref_primary_10_1016_j_oregeorev_2025_106506 crossref_primary_10_1371_journal_pntd_0008056 crossref_primary_10_1016_j_jgsce_2024_205349 crossref_primary_10_1007_s00126_021_01086_9 crossref_primary_10_1016_j_oregeorev_2024_106001 crossref_primary_10_1016_j_asr_2024_08_046 crossref_primary_10_3390_rs12071218 crossref_primary_10_1029_2019EA000881 crossref_primary_10_1016_j_cageo_2020_104455 crossref_primary_10_1142_S0219519424500453 crossref_primary_10_1016_j_cageo_2021_104949 crossref_primary_10_1039_D2YA00312K crossref_primary_10_1088_2058_8585_acb660 crossref_primary_10_1038_s41598_024_84450_9 crossref_primary_10_1007_s00707_024_04007_9 crossref_primary_10_1080_10106049_2019_1629644 crossref_primary_10_1016_j_ijhydene_2021_11_166 crossref_primary_10_1016_j_arabjc_2022_104261 crossref_primary_10_1016_j_oceano_2022_03_008 crossref_primary_10_1007_s11053_021_09891_9 crossref_primary_10_1109_ACCESS_2021_3050149 crossref_primary_10_1007_s10142_024_01289_z crossref_primary_10_3390_cli10060078 crossref_primary_10_1142_S1758825124500558 crossref_primary_10_1007_s10489_018_1341_9 crossref_primary_10_1007_s11004_024_10151_8 crossref_primary_10_1016_j_healthplace_2024_103176 crossref_primary_10_1142_S0217984920503261 crossref_primary_10_3390_w12010016 crossref_primary_10_1007_s11053_018_9422_3 crossref_primary_10_1109_TGRS_2022_3233385 crossref_primary_10_3390_su15065211 crossref_primary_10_1007_s11053_020_09700_9 crossref_primary_10_1016_j_apenergy_2024_124735 crossref_primary_10_3390_en17061316 crossref_primary_10_3390_ma15186385 crossref_primary_10_9728_dcs_2022_23_12_2445 crossref_primary_10_1016_j_conengprac_2019_104167 crossref_primary_10_1007_s12517_024_12119_8 crossref_primary_10_3389_feart_2024_1401026 crossref_primary_10_3390_su141911999 crossref_primary_10_1016_j_molliq_2023_121850 crossref_primary_10_1080_23311975_2023_2242985 crossref_primary_10_1016_j_jafrearsci_2018_02_005 crossref_primary_10_1016_j_rsase_2024_101316 crossref_primary_10_3390_app9214543 crossref_primary_10_1016_j_apgeochem_2020_104679 crossref_primary_10_1016_j_csite_2023_102771 crossref_primary_10_1007_s10479_021_04415_3 crossref_primary_10_1016_j_cscm_2024_e03733 crossref_primary_10_1007_s00704_024_05106_2 crossref_primary_10_3390_f15040681 crossref_primary_10_1016_j_oregeorev_2024_106204 crossref_primary_10_1016_j_energy_2025_135512 crossref_primary_10_1007_s11053_023_10255_8 crossref_primary_10_1016_j_engfracmech_2023_109586 crossref_primary_10_1007_s12524_024_01983_2 crossref_primary_10_1016_j_jafrearsci_2016_11_032 crossref_primary_10_1016_j_powtec_2024_120572 crossref_primary_10_3390_f14102109 crossref_primary_10_1016_j_cageo_2021_104754 crossref_primary_10_1007_s00521_021_06657_5 crossref_primary_10_1088_1742_6596_1684_1_012007 crossref_primary_10_3390_rs15153708 crossref_primary_10_1029_2023EA003493 crossref_primary_10_1007_s41939_024_00552_x crossref_primary_10_3390_s22124398 crossref_primary_10_1007_s11053_023_10268_3 crossref_primary_10_1007_s11053_024_10430_5 crossref_primary_10_1016_j_clscn_2023_100130 crossref_primary_10_1016_j_cie_2024_110574 crossref_primary_10_3390_rs13224704 crossref_primary_10_3390_su17010306 crossref_primary_10_1007_s11709_022_0812_6 crossref_primary_10_2139_ssrn_4164367 crossref_primary_10_3389_feart_2019_00286 crossref_primary_10_1016_j_ijleo_2024_171838 crossref_primary_10_3390_app8081269 crossref_primary_10_1177_03091333251319958 crossref_primary_10_3390_rs11243003 crossref_primary_10_3390_jmmp6050108 crossref_primary_10_3390_su151310434 crossref_primary_10_1007_s11053_019_09483_8 crossref_primary_10_48084_etasr_7052 crossref_primary_10_1007_s00704_024_04914_w crossref_primary_10_1007_s11053_024_10321_9 crossref_primary_10_1016_j_jenvman_2021_112067 crossref_primary_10_1016_j_still_2024_106317 crossref_primary_10_1007_s11053_021_09934_1 crossref_primary_10_1017_S0954102023000032 crossref_primary_10_1088_1741_2552_ab9a98 crossref_primary_10_1016_j_jhazmat_2020_123288 crossref_primary_10_1038_s41598_024_73551_0 crossref_primary_10_1002_srin_202200682 crossref_primary_10_1016_j_jhydrol_2023_129892 crossref_primary_10_3390_min13010049 crossref_primary_10_1016_j_bspc_2024_106774 crossref_primary_10_1016_j_foodcont_2022_108815 crossref_primary_10_3390_ijgi6120387 crossref_primary_10_1007_s11053_022_10093_0 crossref_primary_10_1007_s11053_025_10462_5 crossref_primary_10_1016_j_geoen_2025_213853 crossref_primary_10_3390_app12062907 crossref_primary_10_1190_geo2023_0127_1 crossref_primary_10_3390_pr11072091 crossref_primary_10_1016_j_gexplo_2024_107634 crossref_primary_10_1016_j_scitotenv_2024_177076 crossref_primary_10_1016_j_biortech_2023_129900 crossref_primary_10_3390_su15118666 crossref_primary_10_1007_s10706_017_0420_8 crossref_primary_10_3390_f13122104 crossref_primary_10_1007_s11053_021_09956_9 crossref_primary_10_1002_jnm_3132 crossref_primary_10_1007_s11004_023_10101_w crossref_primary_10_1007_s12652_019_01574_x crossref_primary_10_1155_2022_9086938 crossref_primary_10_3390_su17020379 crossref_primary_10_1139_cgj_2022_0365 crossref_primary_10_3390_app10228092 crossref_primary_10_1016_j_energy_2020_119437 crossref_primary_10_3389_feart_2023_1235468 crossref_primary_10_1080_10643389_2018_1558890 crossref_primary_10_1016_j_jag_2024_103746 crossref_primary_10_1016_j_molliq_2023_121835 crossref_primary_10_1371_journal_pone_0250665 crossref_primary_10_3390_s24248091 crossref_primary_10_1016_j_pedsph_2022_06_009 crossref_primary_10_1007_s10687_024_00485_1 crossref_primary_10_1088_1755_1315_362_1_012079 crossref_primary_10_1016_j_ijleo_2022_170340 crossref_primary_10_1016_j_jhydrol_2025_133015 crossref_primary_10_1016_j_jmrt_2024_04_165 crossref_primary_10_1016_j_oregeorev_2020_103611 crossref_primary_10_1007_s10618_018_00607_x crossref_primary_10_1016_j_enbuild_2017_12_031 crossref_primary_10_1007_s10489_024_06189_0 crossref_primary_10_1109_TGRS_2024_3397315 crossref_primary_10_1016_j_ejrh_2023_101385 crossref_primary_10_1016_j_compeleceng_2022_108119 crossref_primary_10_1016_j_gexplo_2024_107414 crossref_primary_10_3390_su13094607 crossref_primary_10_1007_s00477_021_02036_7 crossref_primary_10_1016_j_cities_2023_104482 crossref_primary_10_1016_j_gexplo_2019_106405 crossref_primary_10_5194_nhess_22_4039_2022 crossref_primary_10_1007_s12598_023_02551_2 crossref_primary_10_1016_j_jafrearsci_2016_12_011 crossref_primary_10_3390_su14031233 crossref_primary_10_1016_j_energy_2020_117871 crossref_primary_10_3390_geosciences14070183 crossref_primary_10_1016_j_procs_2019_01_015 crossref_primary_10_1016_j_procs_2019_01_017 crossref_primary_10_1109_ACCESS_2019_2919406 crossref_primary_10_1016_j_mineng_2022_107971 crossref_primary_10_2166_wst_2021_038 crossref_primary_10_1016_j_oregeorev_2022_105184 crossref_primary_10_3390_land10080777 crossref_primary_10_1016_j_chemer_2024_126155 crossref_primary_10_1111_ejn_16288 crossref_primary_10_1016_j_gexplo_2024_107441 crossref_primary_10_17323_jle_2024_22221 crossref_primary_10_3390_min10100847 crossref_primary_10_1007_s11053_024_10375_9 crossref_primary_10_1007_s11053_019_09509_1 crossref_primary_10_3389_fpls_2022_949598 crossref_primary_10_1016_j_ecoinf_2021_101270 crossref_primary_10_1109_ACCESS_2024_3470869 crossref_primary_10_3233_JIFS_189562 crossref_primary_10_3233_JIFS_189565 crossref_primary_10_1016_j_gsme_2024_09_003 crossref_primary_10_1016_j_swevo_2023_101252 crossref_primary_10_1007_s11053_022_10089_w crossref_primary_10_1039_D3AN00516J crossref_primary_10_1016_j_gexplo_2023_107174 crossref_primary_10_2139_ssrn_4790637 crossref_primary_10_1016_j_tsep_2023_102131 crossref_primary_10_3390_s24113601 crossref_primary_10_1007_s42461_023_00826_x crossref_primary_10_1063_5_0160228 crossref_primary_10_1016_j_mtcomm_2024_109294 crossref_primary_10_3233_JIFS_219047 crossref_primary_10_7759_cureus_52110 crossref_primary_10_3233_JIFS_220274 crossref_primary_10_1016_j_jaerosci_2023_106331 crossref_primary_10_1016_j_measurement_2021_109178 crossref_primary_10_1007_s11053_022_10054_7 crossref_primary_10_1080_15481603_2024_2393489 crossref_primary_10_1080_25765299_2021_1984033 crossref_primary_10_1007_s11053_019_09586_2 crossref_primary_10_4236_jgis_2019_113020 crossref_primary_10_46387_bjesr_1480346 crossref_primary_10_3390_min13111432 crossref_primary_10_1007_s13202_024_01820_9 crossref_primary_10_1016_j_fuel_2024_133018 crossref_primary_10_1016_j_oregeorev_2023_105671 crossref_primary_10_1016_j_gexplo_2025_107755 crossref_primary_10_3390_su14148520 crossref_primary_10_1016_j_cities_2020_103002 crossref_primary_10_1016_j_ssci_2019_104566 crossref_primary_10_1155_2021_6926013 crossref_primary_10_3390_agronomy14122760 crossref_primary_10_1016_j_geoderma_2018_12_020 crossref_primary_10_1016_j_energy_2018_05_146 crossref_primary_10_1007_s11053_023_10227_y crossref_primary_10_1093_jamia_ocae199 crossref_primary_10_1029_2024JH000311 crossref_primary_10_1016_j_scitotenv_2018_02_204 crossref_primary_10_1109_LGRS_2019_2914934 crossref_primary_10_1016_j_molliq_2024_124768 crossref_primary_10_1016_j_petrol_2022_110271 crossref_primary_10_1016_j_oregeorev_2023_105665 crossref_primary_10_15406_mojes_2024_09_00305 crossref_primary_10_1016_j_oregeorev_2017_05_022 crossref_primary_10_3390_rs15123137 crossref_primary_10_1007_s00521_024_10807_w crossref_primary_10_1007_s42461_024_00996_2 crossref_primary_10_1007_s11356_023_26872_y crossref_primary_10_1016_j_eswa_2023_122729 crossref_primary_10_3390_min14101021 crossref_primary_10_1016_j_chemer_2024_126197 crossref_primary_10_1016_j_compbiomed_2021_104493 crossref_primary_10_1051_epjconf_202328004004 crossref_primary_10_1016_j_procs_2024_05_007 crossref_primary_10_1007_s11053_019_09564_8 crossref_primary_10_1007_s11356_021_12643_0 crossref_primary_10_3390_hydrology10040095 crossref_primary_10_1016_j_molliq_2022_118513 crossref_primary_10_21923_jesd_825442 crossref_primary_10_3390_su15129452 crossref_primary_10_1039_D4RA07510B crossref_primary_10_1016_j_oregeorev_2023_105419 crossref_primary_10_1007_s00170_024_14980_z crossref_primary_10_1016_j_cej_2024_149661 crossref_primary_10_1016_j_rineng_2023_101585 crossref_primary_10_1016_j_engstruct_2025_119621 crossref_primary_10_3390_land12091789 crossref_primary_10_1016_j_jclepro_2024_144551 crossref_primary_10_1016_j_geogeo_2022_100038 crossref_primary_10_1016_j_gexplo_2024_107478 crossref_primary_10_1016_j_oregeorev_2017_11_013 crossref_primary_10_1177_09544089241304236 crossref_primary_10_1371_journal_pone_0183742 crossref_primary_10_1109_ACCESS_2020_2967841 crossref_primary_10_1016_j_foodchem_2024_139212 crossref_primary_10_1063_5_0264493 crossref_primary_10_29109_gujsc_1555448 crossref_primary_10_1155_2022_5034976 crossref_primary_10_3390_min10121126 crossref_primary_10_3390_rs14225775 crossref_primary_10_1016_j_eswa_2023_120769 crossref_primary_10_3390_jcs5100271 crossref_primary_10_1016_j_oregeorev_2024_105918 crossref_primary_10_1016_j_arabjc_2022_103843 crossref_primary_10_3390_w15132439 crossref_primary_10_1038_s41598_023_40513_x crossref_primary_10_1007_s11069_018_3246_7 crossref_primary_10_1016_j_watres_2023_120231 crossref_primary_10_1080_22797254_2022_2073916 crossref_primary_10_1016_j_atmosres_2019_104716 crossref_primary_10_1016_j_enbuild_2019_109643 crossref_primary_10_3390_met11111668 crossref_primary_10_1080_17538947_2023_2241432 crossref_primary_10_3390_rs13112160 crossref_primary_10_1016_j_oregeorev_2023_105627 crossref_primary_10_1016_j_rsase_2023_101022 crossref_primary_10_1029_2023JF007351 crossref_primary_10_1142_S0219876221430064 crossref_primary_10_1007_s11769_019_1071_x crossref_primary_10_1016_j_oregeorev_2023_105860 crossref_primary_10_1155_2021_8873993 crossref_primary_10_1007_s11771_021_4707_9 crossref_primary_10_1016_j_molliq_2023_123353 crossref_primary_10_32628_IJSRST52310213 crossref_primary_10_1007_s11053_022_10143_7 crossref_primary_10_1016_j_ecoinf_2022_101951 crossref_primary_10_1080_17480930_2022_2142425 crossref_primary_10_1007_s12145_025_01843_8 crossref_primary_10_1142_S2382624X24400095 crossref_primary_10_1016_j_rineng_2024_102592 crossref_primary_10_1029_2024EF004417 crossref_primary_10_1016_j_apgeog_2023_103114 crossref_primary_10_1063_5_0228503 crossref_primary_10_1109_ACCESS_2021_3129979 crossref_primary_10_1002_cam4_6512 crossref_primary_10_3390_s19163451 crossref_primary_10_1016_j_chemer_2021_125850 crossref_primary_10_1016_j_pce_2024_103766 crossref_primary_10_1007_s12665_021_09525_6 crossref_primary_10_29137_umagd_1476299 crossref_primary_10_1002_aepp_13446 crossref_primary_10_3390_app13137622 crossref_primary_10_1002_eng2_12090 crossref_primary_10_2139_ssrn_3995054 crossref_primary_10_1007_s00367_020_00669_1 crossref_primary_10_1007_s12008_023_01617_w crossref_primary_10_3390_f15111937 crossref_primary_10_1016_j_dche_2024_100154 crossref_primary_10_1016_j_jfoodeng_2022_111339 crossref_primary_10_29121_ijetmr_v9_i2_2022_1088 crossref_primary_10_3390_rs9111163 crossref_primary_10_1016_j_procs_2023_01_370 crossref_primary_10_1007_s00500_018_3064_6 crossref_primary_10_1109_ACCESS_2025_3539181 crossref_primary_10_1016_j_procs_2022_03_065 crossref_primary_10_1016_j_catena_2025_108889 crossref_primary_10_1016_j_jece_2025_115634 crossref_primary_10_1016_j_apgeochem_2023_105807 crossref_primary_10_1038_s41598_024_80288_3 crossref_primary_10_1016_j_earscirev_2024_104814 crossref_primary_10_1016_j_eswa_2023_121668 crossref_primary_10_3390_agronomy14071515 crossref_primary_10_3390_rs14030469 crossref_primary_10_1016_j_oregeorev_2022_104712 crossref_primary_10_1016_j_chemosphere_2024_141462 crossref_primary_10_1016_j_heliyon_2024_e41059 crossref_primary_10_1016_j_procs_2022_03_085 crossref_primary_10_1016_j_comnet_2018_10_022 crossref_primary_10_5194_hess_23_4603_2019 crossref_primary_10_1007_s11269_018_2102_6 crossref_primary_10_1016_j_soildyn_2024_108902 crossref_primary_10_1007_s12517_022_10918_5 crossref_primary_10_1002_hyp_15310 crossref_primary_10_1007_s40571_024_00836_6 crossref_primary_10_3390_app9173553 crossref_primary_10_32604_cmes_2024_052830 crossref_primary_10_1007_s11053_017_9335_6 crossref_primary_10_1016_j_watres_2023_119665 crossref_primary_10_3390_rs9090865 crossref_primary_10_1016_j_fmre_2023_03_014 crossref_primary_10_1016_j_mtcomm_2025_112097 crossref_primary_10_3390_toxics11120996 crossref_primary_10_1016_j_agrformet_2023_109592 crossref_primary_10_3390_rs13061054 crossref_primary_10_1155_2021_4774140 crossref_primary_10_35940_ijrte_B8073_13020724 crossref_primary_10_3390_rs15164074 crossref_primary_10_1016_j_isprsjprs_2020_09_015 crossref_primary_10_1016_j_rineng_2024_102780 crossref_primary_10_1016_j_jrmge_2021_06_012 crossref_primary_10_1002_stc_2955 crossref_primary_10_1007_s11053_017_9348_1 crossref_primary_10_1155_2022_4140774 crossref_primary_10_1038_s41467_021_22249_2 crossref_primary_10_3390_min10030233 crossref_primary_10_1016_j_oregeorev_2025_106498 crossref_primary_10_1186_s43020_023_00101_w crossref_primary_10_1016_j_trgeo_2022_100827 crossref_primary_10_1016_j_oregeorev_2024_106170 crossref_primary_10_1007_s13369_024_09179_z crossref_primary_10_1016_j_petrol_2018_10_048 crossref_primary_10_1007_s11430_015_5178_3 crossref_primary_10_3390_app131810277 crossref_primary_10_1016_j_scitotenv_2022_158618 crossref_primary_10_1080_10106049_2022_2088859 crossref_primary_10_1177_25726838231225055 crossref_primary_10_1016_j_oregeorev_2022_104765 crossref_primary_10_1080_17538947_2024_2358851 crossref_primary_10_1021_acsaelm_3c00344 crossref_primary_10_1007_s11053_023_10273_6 crossref_primary_10_1007_s43926_024_00088_z crossref_primary_10_3390_rs16071268 crossref_primary_10_1016_j_apgeochem_2023_105857 crossref_primary_10_17714_gumusfenbil_1268504 crossref_primary_10_1111_1755_6724_14241 crossref_primary_10_1109_MGRS_2015_2496160 crossref_primary_10_1007_s11356_021_13503_7 crossref_primary_10_1590_01047760201723022308 crossref_primary_10_1007_s40808_024_02144_7 crossref_primary_10_3390_app14041515 crossref_primary_10_2174_18741207_v17_e230510_2022_HT28_4371_8 crossref_primary_10_1016_j_biotechadv_2023_108293 crossref_primary_10_1007_s11053_020_09789_y crossref_primary_10_1371_journal_pone_0240362 crossref_primary_10_1016_j_oregeorev_2021_104010 crossref_primary_10_1016_j_energy_2024_131146 crossref_primary_10_1007_s11482_023_10232_6 crossref_primary_10_1016_j_scs_2020_102430 crossref_primary_10_1021_acs_jpcc_3c06801 crossref_primary_10_1016_j_envres_2023_116290 crossref_primary_10_1016_j_jclepro_2021_129920 crossref_primary_10_1088_1755_1315_1004_1_012010 crossref_primary_10_1007_s11053_021_09872_y crossref_primary_10_1007_s11270_024_07618_z crossref_primary_10_1016_j_gsd_2024_101389 crossref_primary_10_1039_D4CP04214J crossref_primary_10_1016_j_apr_2021_101084 crossref_primary_10_1016_j_gexplo_2018_07_020 crossref_primary_10_1016_j_oregeorev_2018_10_006 crossref_primary_10_1007_s10462_023_10628_8 crossref_primary_10_3390_thermo4010008 crossref_primary_10_1016_j_envpol_2024_124389 crossref_primary_10_1109_JSTARS_2022_3204223 crossref_primary_10_3390_min13050669 crossref_primary_10_1016_j_jag_2019_102006 crossref_primary_10_1007_s40692_021_00201_z crossref_primary_10_1016_j_jcmds_2023_100081 crossref_primary_10_1016_j_gexplo_2019_106344 crossref_primary_10_1016_j_engappai_2024_109599 crossref_primary_10_1016_j_oregeorev_2015_12_005 crossref_primary_10_1155_2024_5653690 crossref_primary_10_3390_app14041411 crossref_primary_10_1016_j_comnet_2021_108413 crossref_primary_10_1007_s11356_020_10168_6 crossref_primary_10_1016_j_geogeo_2025_100361 crossref_primary_10_1016_j_energy_2024_131365 crossref_primary_10_3390_ijgi8100463 crossref_primary_10_32604_cmc_2021_014873 crossref_primary_10_1016_j_oregeorev_2025_106452 crossref_primary_10_1021_acsomega_2c01466 crossref_primary_10_1155_2021_1676197 crossref_primary_10_1016_j_cageo_2021_104817 crossref_primary_10_1038_s41598_018_29418_2 crossref_primary_10_1016_j_advwatres_2020_103819 crossref_primary_10_1016_j_ultras_2024_107481 crossref_primary_10_1016_j_eswa_2022_118929 crossref_primary_10_1016_j_jaap_2023_105948 crossref_primary_10_1016_j_cscm_2022_e01059 crossref_primary_10_1007_s11004_019_09844_2 crossref_primary_10_1016_j_heliyon_2024_e30981 crossref_primary_10_1029_2022EA002596 crossref_primary_10_1016_j_apr_2020_08_029 crossref_primary_10_1016_j_rsase_2021_100689 crossref_primary_10_1016_j_gsf_2020_03_007 crossref_primary_10_1007_s10812_023_01614_7 crossref_primary_10_1016_j_aej_2021_08_084 crossref_primary_10_1016_j_eti_2022_102794 crossref_primary_10_1007_s43538_023_00157_x crossref_primary_10_1016_j_asr_2021_08_003 crossref_primary_10_1016_j_cageo_2024_105842 crossref_primary_10_1016_j_agwat_2024_108779 crossref_primary_10_3390_min12111453 crossref_primary_10_3390_rs11161904 crossref_primary_10_1016_j_heliyon_2024_e29772 crossref_primary_10_1016_j_scitotenv_2025_178597 crossref_primary_10_1016_j_engappai_2024_109376 crossref_primary_10_1155_2021_8783899 crossref_primary_10_1016_j_envc_2021_100421 crossref_primary_10_1016_j_ijfatigue_2022_107483 crossref_primary_10_1007_s11053_019_09471_y crossref_primary_10_1016_j_gexplo_2022_107126 crossref_primary_10_1016_j_oregeorev_2024_106352 crossref_primary_10_1038_s41598_022_25562_y crossref_primary_10_1016_j_ecoinf_2024_102732 crossref_primary_10_1007_s41939_023_00256_8 crossref_primary_10_1016_j_compstruct_2022_115233 crossref_primary_10_1016_j_scienta_2025_114020 crossref_primary_10_21105_joss_06171 crossref_primary_10_1016_j_conbuildmat_2020_120286 crossref_primary_10_1016_j_jafrearsci_2025_105543 crossref_primary_10_1007_s10706_018_0624_6 crossref_primary_10_1016_j_coal_2022_104046 crossref_primary_10_1016_j_wasman_2019_01_015 crossref_primary_10_1007_s00521_021_05953_4 crossref_primary_10_1177_03611981241257512 crossref_primary_10_1016_j_engfracmech_2024_110756 crossref_primary_10_3390_min14121209 crossref_primary_10_1016_j_cad_2021_103013 crossref_primary_10_3390_atmos13111887 crossref_primary_10_1016_j_coal_2021_103903 crossref_primary_10_1016_j_ultras_2022_106776 crossref_primary_10_1007_s42461_020_00262_1 crossref_primary_10_1016_j_scitotenv_2023_162005 crossref_primary_10_1515_arh_2024_0016 crossref_primary_10_3389_fneur_2020_554633 crossref_primary_10_1016_j_scs_2021_102921 crossref_primary_10_1007_s11004_023_10070_0 crossref_primary_10_1111_gean_12351 crossref_primary_10_3233_ICA_240737 crossref_primary_10_3390_rs11080895 crossref_primary_10_1016_j_csite_2023_103086 crossref_primary_10_1016_j_chemer_2023_126017 crossref_primary_10_1016_j_envpol_2023_121881 crossref_primary_10_1016_j_atmosenv_2024_120700 crossref_primary_10_1016_j_jafrearsci_2024_105482 crossref_primary_10_5753_jisa_2024_4509 crossref_primary_10_1016_j_envsoft_2024_105956 crossref_primary_10_1016_j_conbuildmat_2024_139853 crossref_primary_10_1007_s10980_021_01366_9 crossref_primary_10_1016_j_gexplo_2018_01_019 crossref_primary_10_1007_s11053_017_9355_2 crossref_primary_10_3390_math9212696 crossref_primary_10_1016_j_fbp_2024_01_009 crossref_primary_10_1002_ima_22144 crossref_primary_10_3390_healthcare12131272 crossref_primary_10_1016_j_oregeorev_2021_104063 crossref_primary_10_3390_rs13132555 crossref_primary_10_3390_min15020113 crossref_primary_10_1016_j_oregeorev_2019_04_003 crossref_primary_10_1080_10106049_2022_2152494 crossref_primary_10_1080_27669645_2022_2129132 crossref_primary_10_1007_s41939_023_00314_1 crossref_primary_10_1016_j_oregeorev_2022_105224 crossref_primary_10_1007_s11053_024_10431_4 crossref_primary_10_1016_j_ecolind_2023_110476 crossref_primary_10_1080_08120099_2022_2046636 crossref_primary_10_1080_25726838_2019_1675403 crossref_primary_10_1016_j_fuel_2022_127067 crossref_primary_10_1061__ASCE_WR_1943_5452_0001067 crossref_primary_10_1016_j_asoc_2023_111122 crossref_primary_10_1016_j_ecoinf_2024_102936 crossref_primary_10_1038_s41598_023_43366_6 crossref_primary_10_3390_min13091125 crossref_primary_10_1007_s11356_023_28032_8 crossref_primary_10_1061__ASCE_CO_1943_7862_0001495 crossref_primary_10_1007_s41207_024_00721_x crossref_primary_10_1016_j_ijbiomac_2024_131784 crossref_primary_10_1016_j_renene_2024_120772 crossref_primary_10_1007_s00366_020_01280_9 crossref_primary_10_3390_jmse12061015 crossref_primary_10_1177_03611981241287538 crossref_primary_10_1007_s11042_023_16085_3 crossref_primary_10_1016_j_jhydrol_2025_132691 crossref_primary_10_3390_ma16083220 crossref_primary_10_1007_s43503_024_00020_y crossref_primary_10_1016_j_jafrearsci_2022_104662 crossref_primary_10_1016_j_gexplo_2021_106811 crossref_primary_10_3390_rs12142319 crossref_primary_10_1016_j_jhydrol_2023_129951 crossref_primary_10_1016_j_molliq_2023_121517 crossref_primary_10_1080_10934529_2024_2309102 crossref_primary_10_1016_j_apr_2020_05_009 crossref_primary_10_1007_s11004_022_10038_6 crossref_primary_10_1109_ACCESS_2024_3387071 crossref_primary_10_1016_j_oregeorev_2022_105242 crossref_primary_10_1016_j_jenvman_2023_119196 crossref_primary_10_5194_bg_13_3305_2016 crossref_primary_10_1007_s10661_022_10530_w crossref_primary_10_1016_j_saa_2022_121556 crossref_primary_10_1080_17499518_2019_1674340 crossref_primary_10_3390_min13020189 crossref_primary_10_3390_app14104005 crossref_primary_10_1016_j_aeue_2023_155018 crossref_primary_10_1007_s11442_024_2235_x crossref_primary_10_1016_j_gsf_2020_05_016 crossref_primary_10_1007_s12145_025_01718_y crossref_primary_10_1016_j_biortech_2022_128454 crossref_primary_10_1080_15481603_2020_1848323 crossref_primary_10_1016_j_ijfatigue_2020_105941 crossref_primary_10_1016_j_asr_2022_12_028 crossref_primary_10_1016_j_undsp_2019_12_002 crossref_primary_10_1016_j_ecoinf_2024_102923 crossref_primary_10_1080_10106049_2021_1920632 crossref_primary_10_1007_s12517_022_10165_8 crossref_primary_10_1029_2018WR023939 crossref_primary_10_1111_exsy_12925 crossref_primary_10_1109_JIOT_2024_3459874 crossref_primary_10_1016_j_jenvman_2022_116663 crossref_primary_10_6339_21_JDS1025 crossref_primary_10_1016_j_birob_2023_100114 crossref_primary_10_1016_j_chemosphere_2025_144178 crossref_primary_10_3390_ma15062128 crossref_primary_10_1016_j_cageo_2021_104688 crossref_primary_10_1016_j_oregeorev_2023_105381 crossref_primary_10_1039_D3EA00159H crossref_primary_10_1016_j_ecolind_2021_107948 crossref_primary_10_1371_journal_pone_0309242 crossref_primary_10_3390_f11080830 crossref_primary_10_3390_land13121995 crossref_primary_10_3390_app15010113 crossref_primary_10_1016_j_jenvman_2020_110956 crossref_primary_10_3390_en14144079 crossref_primary_10_1007_s12583_020_1365_z crossref_primary_10_61186_jgst_14_2_1 crossref_primary_10_1007_s13563_019_00206_2 crossref_primary_10_1016_j_energy_2022_125594 crossref_primary_10_1016_j_asoc_2023_111183 crossref_primary_10_1016_j_conbuildmat_2023_132789 crossref_primary_10_1039_D2EA00077F crossref_primary_10_3233_JIFS_189532 crossref_primary_10_3390_rs14071754 crossref_primary_10_3390_en17051001 crossref_primary_10_1029_2024TC008362 crossref_primary_10_1016_j_fbp_2023_06_010 crossref_primary_10_1016_j_cscee_2024_100668 crossref_primary_10_1007_s00704_024_05327_5 crossref_primary_10_3390_ma17164038 crossref_primary_10_1016_j_eswa_2022_119411 crossref_primary_10_1016_j_ecolind_2018_01_049 crossref_primary_10_1016_j_gexplo_2024_107543 crossref_primary_10_1007_s11801_022_1115_9 crossref_primary_10_3390_w17030312 crossref_primary_10_1080_01431161_2023_2255350 crossref_primary_10_3233_JIFS_189540 crossref_primary_10_1016_j_jclepro_2023_138656 crossref_primary_10_1186_s40490_017_0108_0 crossref_primary_10_1007_s12665_020_08944_1 crossref_primary_10_1109_ACCESS_2024_3370442 crossref_primary_10_1155_2022_4131058 crossref_primary_10_1016_j_csite_2023_102845 crossref_primary_10_1007_s10653_023_01488_w crossref_primary_10_1007_s11004_021_09989_z crossref_primary_10_3390_macromol3010007 crossref_primary_10_3233_JIFS_189557 crossref_primary_10_3233_JIFS_189798 |
Cites_doi | 10.1080/014311697218700 10.1080/01431160802282854 10.1080/01431168908903888 10.1023/A:1025171803637 10.1016/j.rse.2004.05.002 10.14358/PERS.69.7.793 10.2113/gsecongeo.90.4.795 10.1016/S0034-4257(03)00132-9 10.14358/PERS.77.1.27 10.1016/j.jhydrol.2013.02.019 10.1016/j.jhydrol.2012.01.039 10.1016/j.cageo.2011.11.009 10.1016/j.rse.2008.03.017 10.1109/TGRS.2006.880628 10.1046/j.1440-0952.2000.00807.x 10.1016/j.oregeorev.2010.03.009 10.1016/j.isprsjprs.2010.08.007 10.1007/s12665-009-0174-6 10.1023/A:1010933404324 10.1080/17538947.2012.748848 10.1016/j.cageo.2008.05.003 10.1007/s00254-008-1550-3 10.1007/s11053-005-4674-0 10.1016/j.rse.2008.05.011 10.1007/s11004-008-9181-5 10.1016/j.isprsjprs.2011.11.002 10.1016/j.jag.2008.02.008 10.1016/j.patrec.2005.08.011 10.1016/j.ecolmodel.2011.02.007 10.1038/323533a0 10.1016/S0031-3203(96)00142-2 10.1016/j.cageo.2010.03.022 10.1023/B:NARR.0000007804.27450.e8 10.1109/36.3001 10.1016/S0034-4257(97)00049-7 10.1016/j.jag.2012.07.012 10.1016/j.cageo.2008.09.001 10.1016/S0012-821X(03)00632-0 10.1007/BF00058655 10.1130/0091-7613(1989)017<0430:NECITW>2.3.CO;2 10.5751/ES-04822-170225 10.1080/01431160110104656 10.1080/01431160701352154 10.1109/TGRS.2011.2161585 10.1007/s11053-010-9112-2 10.1016/j.jaridenv.2010.02.001 10.1080/01431160412331269698 10.1080/0143116021000031791 10.2747/1548-1603.49.5.623 10.1016/j.ecolmodel.2007.05.011 10.1007/BF00994018 10.1016/j.oregeorev.2012.05.004 10.1007/s002540050271 10.1016/j.jhydrol.2010.04.005 10.1016/j.oregeorev.2010.04.002 10.1080/01431169608949069 10.1016/j.jhydrol.2011.12.016 10.1016/j.isprsjprs.2009.01.003 10.1007/BF00116837 10.2113/gsecongeo.82.1.1 10.1007/BF00205247 10.1007/BF02068587 10.1016/j.cageo.2010.09.014 10.1016/j.cageo.2011.12.014 10.1016/j.jhydrol.2012.02.031 10.1016/j.rse.2011.12.003 10.1080/13658816.2014.885527 10.14358/PERS.74.10.1201 10.1016/j.gexplo.2008.03.001 10.1016/j.talanta.2009.06.075 10.1144/jgs.157.1.75 10.1080/014311697218764 10.1016/j.jag.2005.07.001 10.1016/j.rse.2008.02.011 10.1111/j.1365-2478.2008.00779.x 10.1080/01431169608949009 |
ContentType | Journal Article |
Copyright | 2015 Elsevier B.V. |
Copyright_xml | – notice: 2015 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.oregeorev.2015.01.001 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Engineering |
EISSN | 1872-7360 |
EndPage | 818 |
ExternalDocumentID | 10_1016_j_oregeorev_2015_01_001 S0169136815000037 |
GroupedDBID | --K --M .~1 0R~ 0SF 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 5VS 6OB 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HMA HVGLF HZ~ IHE IMUCA J1W KOM LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEP SES SEW SPC SPCBC SSE SSZ T5K WUQ XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-a474t-fdf517f566beaa8bc5c3aead370a76ccfddfdc5a6e581618c26863a151f5e50e3 |
IEDL.DBID | .~1 |
ISSN | 0169-1368 |
IngestDate | Tue Jul 01 04:05:20 EDT 2025 Thu Apr 24 22:55:16 EDT 2025 Fri Feb 23 02:35:48 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Mineral potential Mineral prospectivity mapping Data-driven modelling Hyperion Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a474t-fdf517f566beaa8bc5c3aead370a76ccfddfdc5a6e581618c26863a151f5e50e3 |
ORCID | 0000-0002-5422-8305 |
PageCount | 15 |
ParticipantIDs | crossref_citationtrail_10_1016_j_oregeorev_2015_01_001 crossref_primary_10_1016_j_oregeorev_2015_01_001 elsevier_sciencedirect_doi_10_1016_j_oregeorev_2015_01_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-12-01 |
PublicationDateYYYYMMDD | 2015-12-01 |
PublicationDate_xml | – month: 12 year: 2015 text: 2015-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Ore geology reviews |
PublicationYear | 2015 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Pal (bb0385) 2005; 26 Lewkowski, Porwal, González-Álvarez (bb0340) 2010 Zeck, Maluski, Kristensen (bb0545) 2000; 157 Moon, Evans (bb0370) 2006 Guo, Chehata, Mallet, Boukir (bb0290) 2011; 66 Bradley (bb0110) 1997; 30 Zimmermann, Francke, Elsenbeer (bb0555) 2012; 428–429 Abedi, Norouzi, Bahroudi (bb0010) 2012; 46 Cox, Singer (bb0195) 1986 Zuo, Carranza (bb0560) 2011; 37 Ferrier, Rumsby, Pope (bb0245) 2007 Mingers (bb0365) 1989; 3 Guyon, Elisseeff (bb0295) 2003; 3 Rumelhart, Hinton, Williams (bb0475) 1986; 323 Bedini, van der Meer, van Ruitenbeek (bb0065) 2009; 30 Wessels, De Fries, Dempewolf, Anderson, Hansen, Powell, Moran (bb0535) 2004; 92 Bedini, van der Meer, van Ruitenbeek (bb0060) 2008; 30 Porwal, Yu, Gessner (bb0425) 2010 Chung (bb0180) 1977 Ferrier, Hudson-Edwards, Pope (bb0240) 2009; 100 Doblas, Oyarzun (bb0220) 1989; 17 Bagur, Morales, López-Chicano (bb0040) 2009; 80 Vincenzi, Zucchetta, Franzoi, Pellizzato, Pranovi, De Leo, Torricelli (bb0520) 2011; 222 Flores, Rubio (bb0255) 2010; 60 Quinlan (bb0430) 1993 Chan, Paelinckx (bb0155) 2008; 112 Bergstra, Bengio (bb0075) 2012; 13 Beck (bb0055) 2003 Boser, Guyon, Vapnik (bb0105) 1992 Rigol, Chica-Olmo (bb0440) 1998; 34 Gislason, Benediktsson, Sveinsson (bb0280) 2006; 27 Debba, Carranza, Stein, Meer (bb0210) 2009; 41 Vapnik (bb0565) 2000 Chica-Olmo, Abarca, Rigol (bb0170) 2002; 23 RSI, 2007. FLAASH Module User's Guide, ITT Visual Information Solutions. Chen, Jang, Peng (bb0165) 2013; 486 Arribas, Cunningham, Rytuba, Rye, Kelly, Podwysocki, McKee, Tosdal (bb0025) 1995; 90 Singer, Kouda (bb0495) 1996; 28 Abedi, Norouzi, Fathianpour (bb0005) 2013; 21 Duggen, Hoernle, van den Bogaard, Harris (bb0225) 2004; 218 Agterberg, Bonham-Carter (bb0015) 2005; 14 Oh, Lee (bb0375) 2010; 19 Wang, Waske, Benediktsson (bb0525) 2009; vols. 1–5 Herrera, Torgo, Izquierdo, Pérez-García (bb0320) 2010; 387 Vapnik, Lerner (bb0510) 1963; 24 Zhao, Liu, Xia, Zhang, Yu, Eamus (bb0550) 2012; 420–421 Fallon, Porwal, Guj (bb0235) 2010; 38 Sawatzky, Raines, Bonham-Carter, Looney (bb0490) 2010 Lippitt, Rogan, Li, Eastman, Jones (bb0345) 2008; 74 Crosta, Moore (bb0200) 1989; 10 Chung (bb0185) 1978 van der Meer (bb0500) 2006; 8 Pereira Leite, de Souza Filho (bb0395) 2009; 57 Bater, Coops (bb0045) 2009; 35 Yang (bb0540) 2011; 77 Boardman, Kruse, Green (bb0090) 1995 Rodriguez-Galiano, Chica-Olmo, Abarca-Hernandez, Atkinson, Jeganathan (bb0445) 2012; 121 Rodriguez-Galiano, Ghimire, Rogan, Chica-Olmo, Rigol-Sánchez (bb0460) 2012; 67 Avantra Geosystems (bb0035) 2006 Sawatzky, Raines, Bonham-Carter, Looney (bb0485) 2009 Brown, Gedeon, Groves, Barnes (bb0135) 2000; 47 Demoustier, Charlet, Castroviejo (bb0215) 1999; 328 Chen, Dai, Liu, He (bb0160) 2011 Ferrier, Wadge (bb0250) 1996; 17 Choe, van der Meer, van Ruitenbeek, van der Werff, de Smeth, Kim (bb0175) 2008; 112 Breiman, Friedman, Stone, Olshen (bb0130) 1984 Mejía-Herrera, Royer, Caumon, Cheilletz (bb0360) 2014 Rodriguez-Galiano, Chica-Rivas (bb0455) 2012; 7 Bonham-Carter (bb0095) 1994 Pereira Leite, de Souza Filho (bb0400) 2009; 35 Ghimire, Rogan, Galiano, Panday, Neeti (bb0275) 2012; 49 Carranza (bb0145) 2011; 37 Bellman (bb0070) 2003 Porwal, Carranza, Hale (bb0415) 2003; 12 Escribano, Palacios-Orueta, Oyonarte, Chabrillat (bb0230) 2010; 74 Mas, Flores (bb0355) 2008; 29 Berk, Adler-Golden (bb0080) 2002 Rogan, Miller, Stow, Franklin, Levien, Fischer (bb0465) 2003; 69 Carranza, van Ruitenbeek, Hecker, van der Meijde, van der Meer (bb0150) 2008; 10 López Ruiz, Rodríguez-Badiola (bb0350) 1980; 36 Pal, Mather (bb0390) 2003; 86 Joly, Porwal, McCuaig (bb0325) 2012; 48 Harris, Zurcher, Stanley, Marlow, Pan (bb0305) 2003; 12 Foody, Arora (bb0260) 1997; 18 Breiman (bb0115) 1984 Oyarzun, Cubas, Higueras, Lillo, Llanos (bb0380) 2009; 58 Friedl, Brodley (bb0265) 1997; 61 Hansen, Dubayah, Defries (bb0300) 1996; 17 Breiman (bb0125) 2001; 45 Heald, Foley, Hayba (bb0315) 1987; 82 Hastie, Tibshirani, Friedman (bb0310) 2009 Peters, De Baets, Verhoest, Samson, Degroeve, De Becker, Huybrechts (bb0405) 2007; 207 Davis, Robinson (bb0205) 2012; 17 Porwal, González-Álvarez, Markwitz, McCuaig, Mamuse (bb0420) 2010; 38 Atkinson, Tatnall (bb0030) 1997; 18 Carranza (bb0140) 2008 Vapnik, Chervonenkis (bb0505) 1964; 25 Green, Berman, Switzer, Craig (bb0285) 1988; 26 Cortes, Vapnik (bb0190) 1995; 20 Rodriguez-Galiano, Chica-Olmo, Chica-Rivas (bb0450) 2014; 28 Boardman, Kruse (bb0085) 2011; 49 Kemp, Bonham-Carter, Raines (bb0330) 1999 Al-Anazi, Gates (bb0020) 2010; 36 Booker, Snelder (bb0100) 2012; 434–435 Breiman (bb0120) 1996; 24 García, Oyonarte, Villagarcía, Contreras, Domingo, Puigdefábregas (bb0270) 2008; 112 Piccini, Marchetti, Farina, Francaviglia (bb0410) 2012; 6 Bazi, Melgani (bb0050) 2006; 44 Rytuba, Arribas, Cunningham, McKee, Podwysocki, Smith, Kelly, Arribas (bb0480) 1990; 25 Waske, Braun (bb0530) 2009; 64 Rigol-Sanchez, Chica-Olmo, Abarca-Hernandez (bb0435) 2003; 24 Kruse, Boardman, Huntington, Mason, Quigley (bb0335) 2002 Demoustier (10.1016/j.oregeorev.2015.01.001_bb0215) 1999; 328 Zuo (10.1016/j.oregeorev.2015.01.001_bb0560) 2011; 37 Avantra Geosystems (10.1016/j.oregeorev.2015.01.001_bb0035) 2006 Bazi (10.1016/j.oregeorev.2015.01.001_bb0050) 2006; 44 Chica-Olmo (10.1016/j.oregeorev.2015.01.001_bb0170) 2002; 23 Pereira Leite (10.1016/j.oregeorev.2015.01.001_bb0400) 2009; 35 Al-Anazi (10.1016/j.oregeorev.2015.01.001_bb0020) 2010; 36 Mingers (10.1016/j.oregeorev.2015.01.001_bb0365) 1989; 3 Agterberg (10.1016/j.oregeorev.2015.01.001_bb0015) 2005; 14 Lippitt (10.1016/j.oregeorev.2015.01.001_bb0345) 2008; 74 Gislason (10.1016/j.oregeorev.2015.01.001_bb0280) 2006; 27 Rodriguez-Galiano (10.1016/j.oregeorev.2015.01.001_bb0450) 2014; 28 Bonham-Carter (10.1016/j.oregeorev.2015.01.001_bb0095) 1994 Singer (10.1016/j.oregeorev.2015.01.001_bb0495) 1996; 28 Bagur (10.1016/j.oregeorev.2015.01.001_bb0040) 2009; 80 Porwal (10.1016/j.oregeorev.2015.01.001_bb0425) 2010 Boardman (10.1016/j.oregeorev.2015.01.001_bb0085) 2011; 49 Rodriguez-Galiano (10.1016/j.oregeorev.2015.01.001_bb0455) 2012; 7 Bergstra (10.1016/j.oregeorev.2015.01.001_bb0075) 2012; 13 Carranza (10.1016/j.oregeorev.2015.01.001_bb0145) 2011; 37 Zeck (10.1016/j.oregeorev.2015.01.001_bb0545) 2000; 157 Duggen (10.1016/j.oregeorev.2015.01.001_bb0225) 2004; 218 Chung (10.1016/j.oregeorev.2015.01.001_bb0185) 1978 Boardman (10.1016/j.oregeorev.2015.01.001_bb0090) 1995 Ghimire (10.1016/j.oregeorev.2015.01.001_bb0275) 2012; 49 Vincenzi (10.1016/j.oregeorev.2015.01.001_bb0520) 2011; 222 Pal (10.1016/j.oregeorev.2015.01.001_bb0390) 2003; 86 Rigol-Sanchez (10.1016/j.oregeorev.2015.01.001_bb0435) 2003; 24 Guyon (10.1016/j.oregeorev.2015.01.001_bb0295) 2003; 3 García (10.1016/j.oregeorev.2015.01.001_bb0270) 2008; 112 Herrera (10.1016/j.oregeorev.2015.01.001_bb0320) 2010; 387 Harris (10.1016/j.oregeorev.2015.01.001_bb0305) 2003; 12 Carranza (10.1016/j.oregeorev.2015.01.001_bb0140) 2008 Friedl (10.1016/j.oregeorev.2015.01.001_bb0265) 1997; 61 Chan (10.1016/j.oregeorev.2015.01.001_bb0155) 2008; 112 Brown (10.1016/j.oregeorev.2015.01.001_bb0135) 2000; 47 Berk (10.1016/j.oregeorev.2015.01.001_bb0080) 2002 Breiman (10.1016/j.oregeorev.2015.01.001_bb0130) 1984 Pereira Leite (10.1016/j.oregeorev.2015.01.001_bb0395) 2009; 57 Fallon (10.1016/j.oregeorev.2015.01.001_bb0235) 2010; 38 Kemp (10.1016/j.oregeorev.2015.01.001_bb0330) 1999 Mejía-Herrera (10.1016/j.oregeorev.2015.01.001_bb0360) 2014 Carranza (10.1016/j.oregeorev.2015.01.001_bb0150) 2008; 10 Arribas (10.1016/j.oregeorev.2015.01.001_bb0025) 1995; 90 Rytuba (10.1016/j.oregeorev.2015.01.001_bb0480) 1990; 25 Ferrier (10.1016/j.oregeorev.2015.01.001_bb0245) 2007 Zhao (10.1016/j.oregeorev.2015.01.001_bb0550) 2012; 420–421 Zimmermann (10.1016/j.oregeorev.2015.01.001_bb0555) 2012; 428–429 Vapnik (10.1016/j.oregeorev.2015.01.001_bb0510) 1963; 24 Breiman (10.1016/j.oregeorev.2015.01.001_bb0125) 2001; 45 Oh (10.1016/j.oregeorev.2015.01.001_bb0375) 2010; 19 Chen (10.1016/j.oregeorev.2015.01.001_bb0160) 2011 Bellman (10.1016/j.oregeorev.2015.01.001_bb0070) 2003 Breiman (10.1016/j.oregeorev.2015.01.001_bb0120) 1996; 24 Bradley (10.1016/j.oregeorev.2015.01.001_bb0110) 1997; 30 Bedini (10.1016/j.oregeorev.2015.01.001_bb0065) 2009; 30 Heald (10.1016/j.oregeorev.2015.01.001_bb0315) 1987; 82 Rumelhart (10.1016/j.oregeorev.2015.01.001_bb0475) 1986; 323 Wang (10.1016/j.oregeorev.2015.01.001_bb0525) 2009; vols. 1–5 Ferrier (10.1016/j.oregeorev.2015.01.001_bb0250) 1996; 17 Kruse (10.1016/j.oregeorev.2015.01.001_bb0335) 2002 Quinlan (10.1016/j.oregeorev.2015.01.001_bb0430) 1993 Wessels (10.1016/j.oregeorev.2015.01.001_bb0535) 2004; 92 Mas (10.1016/j.oregeorev.2015.01.001_bb0355) 2008; 29 Pal (10.1016/j.oregeorev.2015.01.001_bb0385) 2005; 26 Abedi (10.1016/j.oregeorev.2015.01.001_bb0010) 2012; 46 Flores (10.1016/j.oregeorev.2015.01.001_bb0255) 2010; 60 Vapnik (10.1016/j.oregeorev.2015.01.001_bb0505) 1964; 25 van der Meer (10.1016/j.oregeorev.2015.01.001_bb0500) 2006; 8 Hastie (10.1016/j.oregeorev.2015.01.001_bb0310) 2009 Oyarzun (10.1016/j.oregeorev.2015.01.001_bb0380) 2009; 58 Choe (10.1016/j.oregeorev.2015.01.001_bb0175) 2008; 112 Davis (10.1016/j.oregeorev.2015.01.001_bb0205) 2012; 17 Bedini (10.1016/j.oregeorev.2015.01.001_bb0060) 2008; 30 Escribano (10.1016/j.oregeorev.2015.01.001_bb0230) 2010; 74 Ferrier (10.1016/j.oregeorev.2015.01.001_bb0240) 2009; 100 Breiman (10.1016/j.oregeorev.2015.01.001_bb0115) 1984 Yang (10.1016/j.oregeorev.2015.01.001_bb0540) 2011; 77 Boser (10.1016/j.oregeorev.2015.01.001_bb0105) 1992 Porwal (10.1016/j.oregeorev.2015.01.001_bb0415) 2003; 12 Rodriguez-Galiano (10.1016/j.oregeorev.2015.01.001_bb0460) 2012; 67 Cox (10.1016/j.oregeorev.2015.01.001_bb0195) 1986 Joly (10.1016/j.oregeorev.2015.01.001_bb0325) 2012; 48 Rogan (10.1016/j.oregeorev.2015.01.001_bb0465) 2003; 69 Vapnik (10.1016/j.oregeorev.2015.01.001_bb0565) 2000 Beck (10.1016/j.oregeorev.2015.01.001_bb0055) 2003 López Ruiz (10.1016/j.oregeorev.2015.01.001_bb0350) 1980; 36 Lewkowski (10.1016/j.oregeorev.2015.01.001_bb0340) 2010 Waske (10.1016/j.oregeorev.2015.01.001_bb0530) 2009; 64 Chen (10.1016/j.oregeorev.2015.01.001_bb0165) 2013; 486 Sawatzky (10.1016/j.oregeorev.2015.01.001_bb0485) 2009 Booker (10.1016/j.oregeorev.2015.01.001_bb0100) 2012; 434–435 Guo (10.1016/j.oregeorev.2015.01.001_bb0290) 2011; 66 Crosta (10.1016/j.oregeorev.2015.01.001_bb0200) 1989; 10 Abedi (10.1016/j.oregeorev.2015.01.001_bb0005) 2013; 21 Cortes (10.1016/j.oregeorev.2015.01.001_bb0190) 1995; 20 Bater (10.1016/j.oregeorev.2015.01.001_bb0045) 2009; 35 Green (10.1016/j.oregeorev.2015.01.001_bb0285) 1988; 26 Hansen (10.1016/j.oregeorev.2015.01.001_bb0300) 1996; 17 Rigol (10.1016/j.oregeorev.2015.01.001_bb0440) 1998; 34 Porwal (10.1016/j.oregeorev.2015.01.001_bb0420) 2010; 38 10.1016/j.oregeorev.2015.01.001_bb0470 Sawatzky (10.1016/j.oregeorev.2015.01.001_bb0490) 2010 Foody (10.1016/j.oregeorev.2015.01.001_bb0260) 1997; 18 Piccini (10.1016/j.oregeorev.2015.01.001_bb0410) 2012; 6 Rodriguez-Galiano (10.1016/j.oregeorev.2015.01.001_bb0445) 2012; 121 Debba (10.1016/j.oregeorev.2015.01.001_bb0210) 2009; 41 Doblas (10.1016/j.oregeorev.2015.01.001_bb0220) 1989; 17 Peters (10.1016/j.oregeorev.2015.01.001_bb0405) 2007; 207 Moon (10.1016/j.oregeorev.2015.01.001_bb0370) 2006 Chung (10.1016/j.oregeorev.2015.01.001_bb0180) 1977 Atkinson (10.1016/j.oregeorev.2015.01.001_bb0030) 1997; 18 |
References_xml | – volume: 13 start-page: 281 year: 2012 end-page: 305 ident: bb0075 article-title: Random search for hyper-parameter optimization publication-title: J. Mach. Learn. Res. – volume: 90 start-page: 795 year: 1995 end-page: 822 ident: bb0025 article-title: Geology, geochronology, fluid inclusions, and isotope geochemistry of the Rodalquilar gold alunite deposit, Spain publication-title: Econ. Geol. – volume: 420–421 start-page: 292 year: 2012 end-page: 300 ident: bb0550 article-title: Recognition of key regions for restoration of phytoplankton communities in the Huai River basin, China publication-title: J. Hydrol. – volume: 18 start-page: 699 year: 1997 end-page: 709 ident: bb0030 article-title: Introduction neural networks in remote sensing publication-title: Int. J. Remote Sens. – year: 1993 ident: bb0430 article-title: C4.5 Programs for Machine Learning – volume: 17 year: 2012 ident: bb0205 article-title: A geographic model to assess and limit cumulative ecological degradation from marcellus shale exploitation in New York, USA publication-title: Ecol. Soc. – volume: 8 start-page: 61 year: 2006 end-page: 72 ident: bb0500 article-title: Indicator kriging applied to absorption band analysis in hyperspectral imagery: a case study from the Rodalquilar epithermal gold mining area, SE Spain publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 37 start-page: 1967 year: 2011 end-page: 1975 ident: bb0560 article-title: Support vector machine: a tool for mapping mineral prospectivity publication-title: Comput. Geosci. – volume: 387 start-page: 141 year: 2010 end-page: 150 ident: bb0320 article-title: Predictive models for forecasting hourly urban water demand publication-title: J. Hydrol. – volume: 86 start-page: 554 year: 2003 end-page: 565 ident: bb0390 article-title: An assessment of the effectiveness of decision tree methods for land cover classification publication-title: Remote Sens. Environ. – volume: 61 start-page: 399 year: 1997 end-page: 409 ident: bb0265 article-title: Decision tree classification of land cover from remotely sensed data publication-title: Remote Sens. Environ. – volume: 434–435 start-page: 78 year: 2012 end-page: 94 ident: bb0100 article-title: Comparing methods for estimating flow duration curves at ungauged sites publication-title: J. Hydrol. – volume: 38 start-page: 184 year: 2010 end-page: 196 ident: bb0420 article-title: Weights-of-evidence and logistic regression modeling of magmatic nickel sulfide prospectivity in the Yilgarn Craton, Western Australia publication-title: Ore Geol. Rev. – volume: 18 start-page: 799 year: 1997 end-page: 810 ident: bb0260 article-title: An evaluation of some factors affecting the accuracy of classification by an artificial neural network publication-title: Int. J. Remote Sens. – start-page: 101 year: 2009 end-page: 137 ident: bb0310 article-title: Linear methods for classification publication-title: The Elements of Statistical Learning – year: 1999 ident: bb0330 article-title: Arc-WofE: Arcview Extension for Weights of Evidence Mapping – start-page: 3 year: 2006 end-page: 18 ident: bb0370 article-title: Ore, mineral economics and mineral exploration publication-title: Introduction to Mineral Exploration – volume: 48 start-page: 349 year: 2012 end-page: 383 ident: bb0325 article-title: Exploration targeting for orogenic gold deposits in the Granites–Tanami Orogen: mineral system analysis, targeting model and prospectivity analysis publication-title: Ore Geol. Rev. – volume: 24 start-page: 774 year: 1963 end-page: 780 ident: bb0510 article-title: Pattern recognition using generalized portrait method publication-title: Autom. Remote Control – volume: 323 start-page: 533 year: 1986 end-page: 536 ident: bb0475 article-title: Learning representations by back-propagating errors publication-title: Nature – volume: 74 start-page: 1201 year: 2008 end-page: 1211 ident: bb0345 article-title: Mapping selective logging in mixed deciduous forest: a comparison of machine learning algorithms publication-title: Photogramm. Eng. Remote Sens. – volume: 328 start-page: 521 year: 1999 end-page: 528 ident: bb0215 article-title: Characterization of epithermal quartz veins from the volcanic area of Cabo de Gata (Almeria Province, southeastern Spain) by low-temperature thermoluminescence; relation with petrographic textures and fluid inclusions – reference: RSI, 2007. FLAASH Module User's Guide, ITT Visual Information Solutions. – volume: 100 start-page: 11 year: 2009 end-page: 19 ident: bb0240 article-title: Characterisation of the environmental impact of the Rodalquilar mine, Spain by ground-based reflectance spectroscopy publication-title: J. Geochem. Explor. – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: bb0190 article-title: Support-vector networks publication-title: Mach. Learn. – year: 2010 ident: bb0490 article-title: Spatial Data Modeller (SDM) – volume: 112 start-page: 3222 year: 2008 end-page: 3233 ident: bb0175 article-title: Mapping of heavy metal pollution in stream sediments using combined geochemistry, field spectroscopy, and hyperspectral remote sensing: a case study of the Rodalquilar mining area, SE Spain publication-title: Remote Sens. Environ. – volume: 49 start-page: 623 year: 2012 end-page: 643 ident: bb0275 article-title: An evaluation of bagging, boosting, and random forests for land-cover classification in Cape Cod, Massachusetts, USA publication-title: GISci. Remote Sens. – year: 2000 ident: bb0565 article-title: The Nature of Statistical Learning Theory – volume: 19 start-page: 103 year: 2010 end-page: 124 ident: bb0375 article-title: Application of artificial neural network for gold-silver deposits potential mapping: a case study of Korea publication-title: Nat. Resour. Res. – volume: 49 start-page: 4138 year: 2011 end-page: 4152 ident: bb0085 article-title: Analysis of imaging spectrometer data using N-dimensional geometry and a mixture-tuned matched filtering approach publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 12 start-page: 241 year: 2003 end-page: 255 ident: bb0305 article-title: A comparative analysis of favorability mappings by weights of evidence, probabilistic neural networks, discriminant analysis, and logistic regression publication-title: Nat. Resour. Res. – volume: 17 start-page: 430 year: 1989 end-page: 433 ident: bb0220 article-title: Neogene extensional collapse in the western Mediterranean (Betic-rif Alpine orogenic belt) — implications for the genesis of the Gibraltar arc and magmatic activity publication-title: Geology – volume: 30 start-page: 327 year: 2008 end-page: 348 ident: bb0060 article-title: Use of HyMap imaging spectrometer data to map mineralogy in the Rodalquilar caldera, southeast Spain publication-title: Int. J. Remote Sens. – volume: 222 start-page: 1471 year: 2011 end-page: 1478 ident: bb0520 article-title: Application of a random forest algorithm to predict spatial distribution of the potential yield of publication-title: Ecol. Model. – volume: 66 start-page: 56 year: 2011 end-page: 66 ident: bb0290 article-title: Relevance of airborne lidar and multispectral image data for urban scene classification using random forests publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 60 start-page: 121 year: 2010 end-page: 138 ident: bb0255 article-title: Arsenic and metal mobility from Au mine tailings in Rodalquilar (Almería, SE Spain) publication-title: Environ. Earth Sci. – volume: 12 start-page: 155 year: 2003 end-page: 171 ident: bb0415 article-title: Artificial neural networks for mineral-potential mapping: a case study from Aravalli Province, Western India publication-title: Nat. Resour. Res. – start-page: 107 year: 2007 end-page: 116 ident: bb0245 article-title: Application of Hyperspectral Remote Sensing Data in the Monitoring of the Environmental Impact of Hazardous Waste Derived From Abandoned Mine Sites – volume: 6 start-page: 853 year: 2012 end-page: 862 ident: bb0410 article-title: Application of indicator kriging to evaluate the probability of exceeding nitrate contamination thresholds publication-title: Int. J. Environ. Res. – volume: 58 start-page: 761 year: 2009 end-page: 777 ident: bb0380 article-title: Environmental assessment of the arsenic-rich, Rodalquilar gold–(copper–lead–zinc) mining district, SE Spain: data from soils and vegetation publication-title: Environ. Geol. – volume: 157 start-page: 75 year: 2000 end-page: 81 ident: bb0545 article-title: Revised geochronology of the Neogene calc-alkaline volcanic suite in Sierra de Gata, Alboran volcanic province, SE Spain publication-title: J. Geol. Soc. – volume: 23 start-page: 4801 year: 2002 end-page: 4814 ident: bb0170 article-title: Development of a decision support system based on remote sensing and GIS techniques for gold-rich area identification in SE Spain publication-title: Int. J. Remote Sens. – volume: 112 start-page: 3720 year: 2008 end-page: 3736 ident: bb0270 article-title: Monitoring land degradation risk using ASTER data: the non-evaporative fraction as an indicator of ecosystem function publication-title: Remote Sens. Environ. – start-page: 15171 year: 2010 ident: bb0425 article-title: SVM-based base-metal prospectivity modeling of the Aravalli Orogen, northwestern India publication-title: EGU General Assembly, Vienna, Austria – volume: 3 start-page: 319 year: 1989 end-page: 342 ident: bb0365 article-title: An empirical comparison of selection measures for decision-tree induction publication-title: Mach. Learn. – volume: 30 start-page: 327 year: 2009 end-page: 348 ident: bb0065 article-title: Use of HyMap imaging spectrometer data to map mineralogy in the Rodalquilar caldera, southeast Spain publication-title: Int. J. Remote Sens. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bb0125 article-title: Random forests publication-title: Mach. Learn. – start-page: 1 year: 2014 end-page: 16 ident: bb0360 article-title: Curvature attribute from surface-restoration as predictor variable in Kupferschiefer copper potentials publication-title: Nat. Resour. Res. – volume: 10 start-page: 374 year: 2008 end-page: 387 ident: bb0150 article-title: Knowledge-guided data-driven evidential belief modeling of mineral prospectivity in Cabo de Gata, SE Spain publication-title: Int. J. Appl. Earth Obs. Geoinf. – start-page: 299 year: 1977 end-page: 311 ident: bb0180 article-title: Application of Discriminant Analysis for the Evaluation of Mineral Potential – volume: 64 start-page: 450 year: 2009 end-page: 457 ident: bb0530 article-title: Classifier ensembles for land cover mapping using multitemporal SAR imagery publication-title: ISPRS J. Photogramm. Remote Sens. – year: 2003 ident: bb0070 article-title: Dynamic Programming – volume: 37 start-page: 1907 year: 2011 end-page: 1916 ident: bb0145 article-title: Geocomputation of mineral exploration targets publication-title: Comput. Geosci. – volume: 10 start-page: 505 year: 1989 end-page: 514 ident: bb0200 article-title: Geological mapping using Landsat thematic mapper imagery in Almeria Province, south-east Spain publication-title: Int. J. Remote Sens. – volume: 35 start-page: 675 year: 2009 end-page: 687 ident: bb0400 article-title: Probabilistic neural networks applied to mineral potential mapping for platinum group elements in the Serra Leste region, Carajás Mineral Province, Brazil publication-title: Comput. Geosci. – volume: 26 start-page: 65 year: 1988 end-page: 74 ident: bb0285 article-title: A transformation for ordering multispectral data in terms of image quality with implications for noise removal publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 428–429 start-page: 170 year: 2012 end-page: 181 ident: bb0555 article-title: Forests and erosion: insights from a study of suspended-sediment dynamics in an overland flow-prone rainforest catchment publication-title: J. Hydrol. – volume: 24 start-page: 123 year: 1996 end-page: 140 ident: bb0120 article-title: Bagging predictors publication-title: Mach. Learn. – volume: 24 start-page: 1151 year: 2003 end-page: 1156 ident: bb0435 article-title: Artificial neural networks as a tool for mineral potential mapping with GIS publication-title: Int. J. Remote Sens. – year: 1978 ident: bb0185 article-title: Computer Program for the Logistic Model to Estimate the Probability of Occurrence of Discrete Events – year: 2006 ident: bb0035 article-title: MI-SDM (MapInfo Spatial Data Modeller) v2.51 – volume: 44 start-page: 3374 year: 2006 end-page: 3385 ident: bb0050 article-title: Toward an optimal SVM classification system for hyperspectral remote sensing images publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 17 start-page: 1075 year: 1996 end-page: 1081 ident: bb0300 article-title: Classification trees: an alternative to traditional land cover classifiers publication-title: Int. J. Remote Sens. – volume: 27 start-page: 294 year: 2006 end-page: 300 ident: bb0280 article-title: Random forests for land cover classification publication-title: Pattern Recogn. Lett. – volume: 77 start-page: 27 year: 2011 end-page: 37 ident: bb0540 article-title: Parameterizing support vector machines for land cover classification publication-title: Photogramm. Eng. Remote Sens. – volume: 29 start-page: 617 year: 2008 end-page: 663 ident: bb0355 article-title: The application of artificial neural networks to the analysis of remotely sensed data publication-title: Int. J. Remote Sens. – volume: 74 start-page: 1041 year: 2010 end-page: 1051 ident: bb0230 article-title: Spectral properties and sources of variability of ecosystem components in a Mediterranean semiarid environment publication-title: J. Arid Environ. – volume: 57 start-page: 1049 year: 2009 end-page: 1065 ident: bb0395 article-title: Artificial neural networks applied to mineral potential mapping for copper–gold mineralizations in the Carajás Mineral Province, Brazil publication-title: Geophys. Prospect. – volume: 30 start-page: 1145 year: 1997 end-page: 1159 ident: bb0110 article-title: The use of the area under the ROC curve in the evaluation of machine learning algorithms publication-title: Pattern Recogn. – volume: 47 start-page: 757 year: 2000 end-page: 770 ident: bb0135 article-title: Artificial neural networks: a new method for mineral prospectivity mapping publication-title: Aust. J. Earth Sci. – volume: 46 start-page: 272 year: 2012 end-page: 283 ident: bb0010 article-title: Support vector machine for multi-classification of mineral prospectivity areas publication-title: Comput. Geosci. – volume: 36 start-page: 1494 year: 2010 end-page: 1503 ident: bb0020 article-title: Support vector regression for porosity prediction in a heterogeneous reservoir: a comparative study publication-title: Comput. Geosci. – volume: 28 start-page: 1336 year: 2014 end-page: 1354 ident: bb0450 article-title: Predictive modelling of gold potential with the integration of multisource information based on random forest: a case study on the Rodalquilar area, Southern Spain publication-title: Int. J. Geogr. Inf. Sci. – start-page: 144 year: 1992 end-page: 152 ident: bb0105 article-title: A training algorithm for optimal margin classifier publication-title: Fifth ACM Annual Workshop on Computational Learning, Pittsburgh, PA, USA – volume: 67 start-page: 93 year: 2012 end-page: 104 ident: bb0460 article-title: An assessment of the effectiveness of a random forest classifier for land-cover classification publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 35 start-page: 289 year: 2009 end-page: 300 ident: bb0045 article-title: Evaluating error associated with lidar-derived DEM interpolation publication-title: Comput. Geosci. – start-page: 593 year: 2002 end-page: 595 ident: bb0335 article-title: Evaluation and validation of EO-1 Hyperion for geologic mapping publication-title: IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2002), Toronto, Canada – year: 2009 ident: bb0485 article-title: Spatial Data Modeller (SDM): ArcMAP 9.3 Geoprocessing Tools for Spatial Data Modelling Using Weights of Evidence, Logistic Regression, Fuzzy Logic and Neural Networks – volume: 21 start-page: 556 year: 2013 end-page: 567 ident: bb0005 article-title: Fuzzy outranking approach: a knowledge-driven method for mineral prospectivity mapping publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 26 start-page: 217 year: 2005 end-page: 222 ident: bb0385 article-title: Random forest classifier for remote sensing classification publication-title: Int. J. Remote Sens. – start-page: 379 year: 1986 ident: bb0195 article-title: Mineral Deposit Models – volume: 486 start-page: 494 year: 2013 end-page: 504 ident: bb0165 article-title: Developing a probability-based model of aquifer vulnerability in an agricultural region publication-title: J. Hydrol. – volume: 218 start-page: 91 year: 2004 end-page: 108 ident: bb0225 article-title: Magmatic evolution of the Alboran region: the role of subduction in forming the western Mediterranean and causing the Messinian salinity crisis publication-title: Earth Planet. Sci. Lett. – volume: 17 start-page: 331 year: 1996 end-page: 350 ident: bb0250 article-title: The application of imaging spectrometry data to mapping alteration zones associated with gold mineralization in southern Spain publication-title: Int. J. Remote Sens. – year: 2008 ident: bb0140 article-title: Geochemical Anomaly and Mineral Prospectivity Mapping in GIS – year: 1984 ident: bb0115 article-title: Classification and Regression Trees – volume: 14 start-page: 1 year: 2005 end-page: 17 ident: bb0015 article-title: Measuring the performance of mineral-potential maps publication-title: Nat. Resour. Res. – volume: 3 start-page: 1157 year: 2003 end-page: 1182 ident: bb0295 article-title: An introduction to variable and feature selection publication-title: J. Mach. Learn. Res. – start-page: 798 year: 2002 end-page: 803 ident: bb0080 article-title: Exploiting MODTRAN radiation transport for atmospheric correction: the FLAASH algorithm publication-title: Fifth International Conference on Information Fusion, Annapolis – start-page: 23 year: 1995 end-page: 26 ident: bb0090 article-title: Mapping target signatures via partial unmixing of AVIRIS data publication-title: Summaries, Fifth JPL Airborne Earth Science Workshop – volume: 34 start-page: 194 year: 1998 end-page: 202 ident: bb0440 article-title: Merging remote-sensing images for geological–environmental mapping: application to the Cabo de Gata-Níjar Natural Park, Spain publication-title: Environ. Geol. – volume: 207 start-page: 304 year: 2007 end-page: 318 ident: bb0405 article-title: Random forests as a tool for ecohydrological distribution modelling publication-title: Ecol. Model. – volume: 36 start-page: 5 year: 1980 end-page: 63 ident: bb0350 article-title: La Region Volcánica Neogena del Sureste de España publication-title: Estud. Geol. – volume: 25 year: 1964 ident: bb0505 article-title: A note on one class of perceptrons publication-title: Autom. Remote Control – volume: 38 start-page: 208 year: 2010 end-page: 218 ident: bb0235 article-title: Prospectivity analysis of the Plutonic Marymia Greenstone Belt, Western Australia publication-title: Ore Geol. Rev. – volume: 28 start-page: 1017 year: 1996 end-page: 1023 ident: bb0495 article-title: Application of a feedforward neural network in the search for kuroko deposits in the Hokuroku district, Japan publication-title: Math. Geol. – start-page: 214 year: 2011 end-page: 217 ident: bb0160 article-title: Mineral Prospectivity Mapping Integrating Multi-source Geology Spatial Data Sets and Logistic Regression Modelling – volume: 82 start-page: 1 year: 1987 end-page: 26 ident: bb0315 article-title: Comparative anatomy of volcanic-hosted epithermal deposits — acid-sulfate and adularia-sericite types publication-title: Econ. Geol. – year: 1984 ident: bb0130 article-title: Classification and Regression Trees – year: 2010 ident: bb0340 article-title: Genetic Programming Applied to Base-metal Prospectivity Mapping in the Aravalli Province, India – volume: 69 start-page: 793 year: 2003 end-page: 804 ident: bb0465 article-title: Land-cover change monitoring with classification trees using Landsat TM and ancillary data publication-title: Photogramm. Eng. Remote Sens. – volume: 41 start-page: 421 year: 2009 end-page: 446 ident: bb0210 article-title: Deriving optimal exploration target zones on mineral prospectivity maps publication-title: Math. Geosci. – volume: 92 start-page: 67 year: 2004 end-page: 83 ident: bb0535 article-title: Mapping regional land cover with MODIS data for biological conservation: examples from the Greater Yellowstone Ecosystem, USA and Pará State, Brazil publication-title: Remote Sens. Environ. – volume: 121 start-page: 93 year: 2012 end-page: 107 ident: bb0445 article-title: Random forest classification of Mediterranean land cover using multi-seasonal imagery and multi-seasonal texture publication-title: Remote Sens. Environ. – volume: 80 start-page: 377 year: 2009 end-page: 384 ident: bb0040 article-title: Evaluation of the environmental contamination at an abandoned mining site using multivariate statistical techniques—the Rodalquilar (Southern Spain) mining district publication-title: Talanta – volume: 25 start-page: S29 year: 1990 end-page: S35 ident: bb0480 article-title: Mineralized and unmineralized calderas in Spain; part II, evolution of the Rodalquilar caldera complex and associated gold-alunite deposits publication-title: Mineral. Deposita – year: 2003 ident: bb0055 article-title: EO-1 User Guide, v. 2.3 – volume: vols. 1–5 start-page: 3324 year: 2009 end-page: 3327 ident: bb0525 article-title: Ensemble methods for spectral–spatial classification of urban hyperspectral data publication-title: 2009 Ieee International Geoscience and Remote Sensing Symposium – volume: 112 start-page: 2999 year: 2008 end-page: 3011 ident: bb0155 article-title: Evaluation of random forest and adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery publication-title: Remote Sens. Environ. – year: 1994 ident: bb0095 article-title: Geographic Information Systems for Geoscientists: Modelling With GIS – volume: 7 start-page: 492 year: 2012 end-page: 509 ident: bb0455 article-title: Evaluation of different machine learning methods for land cover mapping of a Mediterranean area using multi-seasonal Landsat images and digital terrain models publication-title: Int. J. Digit. Earth – volume: 18 start-page: 699 year: 1997 ident: 10.1016/j.oregeorev.2015.01.001_bb0030 article-title: Introduction neural networks in remote sensing publication-title: Int. J. Remote Sens. doi: 10.1080/014311697218700 – volume: 30 start-page: 327 year: 2008 ident: 10.1016/j.oregeorev.2015.01.001_bb0060 article-title: Use of HyMap imaging spectrometer data to map mineralogy in the Rodalquilar caldera, southeast Spain publication-title: Int. J. Remote Sens. doi: 10.1080/01431160802282854 – start-page: 593 year: 2002 ident: 10.1016/j.oregeorev.2015.01.001_bb0335 article-title: Evaluation and validation of EO-1 Hyperion for geologic mapping – volume: 10 start-page: 505 year: 1989 ident: 10.1016/j.oregeorev.2015.01.001_bb0200 article-title: Geological mapping using Landsat thematic mapper imagery in Almeria Province, south-east Spain publication-title: Int. J. Remote Sens. doi: 10.1080/01431168908903888 – volume: 12 start-page: 155 year: 2003 ident: 10.1016/j.oregeorev.2015.01.001_bb0415 article-title: Artificial neural networks for mineral-potential mapping: a case study from Aravalli Province, Western India publication-title: Nat. Resour. Res. doi: 10.1023/A:1025171803637 – volume: 92 start-page: 67 year: 2004 ident: 10.1016/j.oregeorev.2015.01.001_bb0535 article-title: Mapping regional land cover with MODIS data for biological conservation: examples from the Greater Yellowstone Ecosystem, USA and Pará State, Brazil publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2004.05.002 – volume: 69 start-page: 793 year: 2003 ident: 10.1016/j.oregeorev.2015.01.001_bb0465 article-title: Land-cover change monitoring with classification trees using Landsat TM and ancillary data publication-title: Photogramm. Eng. Remote Sens. doi: 10.14358/PERS.69.7.793 – volume: 90 start-page: 795 year: 1995 ident: 10.1016/j.oregeorev.2015.01.001_bb0025 article-title: Geology, geochronology, fluid inclusions, and isotope geochemistry of the Rodalquilar gold alunite deposit, Spain publication-title: Econ. Geol. doi: 10.2113/gsecongeo.90.4.795 – year: 2010 ident: 10.1016/j.oregeorev.2015.01.001_bb0490 – volume: 86 start-page: 554 year: 2003 ident: 10.1016/j.oregeorev.2015.01.001_bb0390 article-title: An assessment of the effectiveness of decision tree methods for land cover classification publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(03)00132-9 – volume: 25 year: 1964 ident: 10.1016/j.oregeorev.2015.01.001_bb0505 article-title: A note on one class of perceptrons publication-title: Autom. Remote Control – volume: 77 start-page: 27 year: 2011 ident: 10.1016/j.oregeorev.2015.01.001_bb0540 article-title: Parameterizing support vector machines for land cover classification publication-title: Photogramm. Eng. Remote Sens. doi: 10.14358/PERS.77.1.27 – volume: 486 start-page: 494 year: 2013 ident: 10.1016/j.oregeorev.2015.01.001_bb0165 article-title: Developing a probability-based model of aquifer vulnerability in an agricultural region publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2013.02.019 – volume: 428–429 start-page: 170 year: 2012 ident: 10.1016/j.oregeorev.2015.01.001_bb0555 article-title: Forests and erosion: insights from a study of suspended-sediment dynamics in an overland flow-prone rainforest catchment publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2012.01.039 – start-page: 379 year: 1986 ident: 10.1016/j.oregeorev.2015.01.001_bb0195 – volume: 37 start-page: 1907 year: 2011 ident: 10.1016/j.oregeorev.2015.01.001_bb0145 article-title: Geocomputation of mineral exploration targets publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2011.11.009 – start-page: 3 year: 2006 ident: 10.1016/j.oregeorev.2015.01.001_bb0370 article-title: Ore, mineral economics and mineral exploration – volume: 112 start-page: 3222 year: 2008 ident: 10.1016/j.oregeorev.2015.01.001_bb0175 article-title: Mapping of heavy metal pollution in stream sediments using combined geochemistry, field spectroscopy, and hyperspectral remote sensing: a case study of the Rodalquilar mining area, SE Spain publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.03.017 – volume: 44 start-page: 3374 year: 2006 ident: 10.1016/j.oregeorev.2015.01.001_bb0050 article-title: Toward an optimal SVM classification system for hyperspectral remote sensing images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2006.880628 – year: 1978 ident: 10.1016/j.oregeorev.2015.01.001_bb0185 – volume: 328 start-page: 521 year: 1999 ident: 10.1016/j.oregeorev.2015.01.001_bb0215 article-title: Characterization of epithermal quartz veins from the volcanic area of Cabo de Gata (Almeria Province, southeastern Spain) by low-temperature thermoluminescence; relation with petrographic textures and fluid inclusions – volume: 6 start-page: 853 year: 2012 ident: 10.1016/j.oregeorev.2015.01.001_bb0410 article-title: Application of indicator kriging to evaluate the probability of exceeding nitrate contamination thresholds publication-title: Int. J. Environ. Res. – volume: 47 start-page: 757 year: 2000 ident: 10.1016/j.oregeorev.2015.01.001_bb0135 article-title: Artificial neural networks: a new method for mineral prospectivity mapping publication-title: Aust. J. Earth Sci. doi: 10.1046/j.1440-0952.2000.00807.x – volume: 38 start-page: 208 year: 2010 ident: 10.1016/j.oregeorev.2015.01.001_bb0235 article-title: Prospectivity analysis of the Plutonic Marymia Greenstone Belt, Western Australia publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2010.03.009 – volume: 66 start-page: 56 year: 2011 ident: 10.1016/j.oregeorev.2015.01.001_bb0290 article-title: Relevance of airborne lidar and multispectral image data for urban scene classification using random forests publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2010.08.007 – volume: 60 start-page: 121 year: 2010 ident: 10.1016/j.oregeorev.2015.01.001_bb0255 article-title: Arsenic and metal mobility from Au mine tailings in Rodalquilar (Almería, SE Spain) publication-title: Environ. Earth Sci. doi: 10.1007/s12665-009-0174-6 – year: 2006 ident: 10.1016/j.oregeorev.2015.01.001_bb0035 – start-page: 144 year: 1992 ident: 10.1016/j.oregeorev.2015.01.001_bb0105 article-title: A training algorithm for optimal margin classifier – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.oregeorev.2015.01.001_bb0125 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 24 start-page: 774 year: 1963 ident: 10.1016/j.oregeorev.2015.01.001_bb0510 article-title: Pattern recognition using generalized portrait method publication-title: Autom. Remote Control – volume: 7 start-page: 492 year: 2012 ident: 10.1016/j.oregeorev.2015.01.001_bb0455 article-title: Evaluation of different machine learning methods for land cover mapping of a Mediterranean area using multi-seasonal Landsat images and digital terrain models publication-title: Int. J. Digit. Earth doi: 10.1080/17538947.2012.748848 – volume: 35 start-page: 675 year: 2009 ident: 10.1016/j.oregeorev.2015.01.001_bb0400 article-title: Probabilistic neural networks applied to mineral potential mapping for platinum group elements in the Serra Leste region, Carajás Mineral Province, Brazil publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2008.05.003 – volume: 58 start-page: 761 year: 2009 ident: 10.1016/j.oregeorev.2015.01.001_bb0380 article-title: Environmental assessment of the arsenic-rich, Rodalquilar gold–(copper–lead–zinc) mining district, SE Spain: data from soils and vegetation publication-title: Environ. Geol. doi: 10.1007/s00254-008-1550-3 – volume: 14 start-page: 1 year: 2005 ident: 10.1016/j.oregeorev.2015.01.001_bb0015 article-title: Measuring the performance of mineral-potential maps publication-title: Nat. Resour. Res. doi: 10.1007/s11053-005-4674-0 – volume: 112 start-page: 3720 year: 2008 ident: 10.1016/j.oregeorev.2015.01.001_bb0270 article-title: Monitoring land degradation risk using ASTER data: the non-evaporative fraction as an indicator of ecosystem function publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.05.011 – volume: 41 start-page: 421 year: 2009 ident: 10.1016/j.oregeorev.2015.01.001_bb0210 article-title: Deriving optimal exploration target zones on mineral prospectivity maps publication-title: Math. Geosci. doi: 10.1007/s11004-008-9181-5 – volume: 67 start-page: 93 year: 2012 ident: 10.1016/j.oregeorev.2015.01.001_bb0460 article-title: An assessment of the effectiveness of a random forest classifier for land-cover classification publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2011.11.002 – volume: 10 start-page: 374 year: 2008 ident: 10.1016/j.oregeorev.2015.01.001_bb0150 article-title: Knowledge-guided data-driven evidential belief modeling of mineral prospectivity in Cabo de Gata, SE Spain publication-title: Int. J. Appl. Earth Obs. Geoinf. doi: 10.1016/j.jag.2008.02.008 – volume: 27 start-page: 294 year: 2006 ident: 10.1016/j.oregeorev.2015.01.001_bb0280 article-title: Random forests for land cover classification publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2005.08.011 – volume: 3 start-page: 1157 year: 2003 ident: 10.1016/j.oregeorev.2015.01.001_bb0295 article-title: An introduction to variable and feature selection publication-title: J. Mach. Learn. Res. – volume: 36 start-page: 5 year: 1980 ident: 10.1016/j.oregeorev.2015.01.001_bb0350 article-title: La Region Volcánica Neogena del Sureste de España publication-title: Estud. Geol. – volume: 222 start-page: 1471 year: 2011 ident: 10.1016/j.oregeorev.2015.01.001_bb0520 article-title: Application of a random forest algorithm to predict spatial distribution of the potential yield of Ruditapes philippinarum in the Venice lagoon, Italy publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2011.02.007 – volume: 323 start-page: 533 year: 1986 ident: 10.1016/j.oregeorev.2015.01.001_bb0475 article-title: Learning representations by back-propagating errors publication-title: Nature doi: 10.1038/323533a0 – volume: 30 start-page: 1145 year: 1997 ident: 10.1016/j.oregeorev.2015.01.001_bb0110 article-title: The use of the area under the ROC curve in the evaluation of machine learning algorithms publication-title: Pattern Recogn. doi: 10.1016/S0031-3203(96)00142-2 – volume: 36 start-page: 1494 year: 2010 ident: 10.1016/j.oregeorev.2015.01.001_bb0020 article-title: Support vector regression for porosity prediction in a heterogeneous reservoir: a comparative study publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2010.03.022 – year: 1984 ident: 10.1016/j.oregeorev.2015.01.001_bb0130 – volume: 12 start-page: 241 year: 2003 ident: 10.1016/j.oregeorev.2015.01.001_bb0305 article-title: A comparative analysis of favorability mappings by weights of evidence, probabilistic neural networks, discriminant analysis, and logistic regression publication-title: Nat. Resour. Res. doi: 10.1023/B:NARR.0000007804.27450.e8 – volume: 26 start-page: 65 year: 1988 ident: 10.1016/j.oregeorev.2015.01.001_bb0285 article-title: A transformation for ordering multispectral data in terms of image quality with implications for noise removal publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.3001 – year: 1984 ident: 10.1016/j.oregeorev.2015.01.001_bb0115 – year: 1994 ident: 10.1016/j.oregeorev.2015.01.001_bb0095 – year: 2000 ident: 10.1016/j.oregeorev.2015.01.001_bb0565 – volume: 61 start-page: 399 year: 1997 ident: 10.1016/j.oregeorev.2015.01.001_bb0265 article-title: Decision tree classification of land cover from remotely sensed data publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(97)00049-7 – start-page: 23 year: 1995 ident: 10.1016/j.oregeorev.2015.01.001_bb0090 article-title: Mapping target signatures via partial unmixing of AVIRIS data – volume: 21 start-page: 556 year: 2013 ident: 10.1016/j.oregeorev.2015.01.001_bb0005 article-title: Fuzzy outranking approach: a knowledge-driven method for mineral prospectivity mapping publication-title: Int. J. Appl. Earth Obs. Geoinf. doi: 10.1016/j.jag.2012.07.012 – volume: 35 start-page: 289 year: 2009 ident: 10.1016/j.oregeorev.2015.01.001_bb0045 article-title: Evaluating error associated with lidar-derived DEM interpolation publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2008.09.001 – year: 2008 ident: 10.1016/j.oregeorev.2015.01.001_bb0140 – volume: 218 start-page: 91 year: 2004 ident: 10.1016/j.oregeorev.2015.01.001_bb0225 article-title: Magmatic evolution of the Alboran region: the role of subduction in forming the western Mediterranean and causing the Messinian salinity crisis publication-title: Earth Planet. Sci. Lett. doi: 10.1016/S0012-821X(03)00632-0 – ident: 10.1016/j.oregeorev.2015.01.001_bb0470 – start-page: 214 year: 2011 ident: 10.1016/j.oregeorev.2015.01.001_bb0160 – year: 2009 ident: 10.1016/j.oregeorev.2015.01.001_bb0485 – volume: 24 start-page: 123 year: 1996 ident: 10.1016/j.oregeorev.2015.01.001_bb0120 article-title: Bagging predictors publication-title: Mach. Learn. doi: 10.1007/BF00058655 – volume: 17 start-page: 430 year: 1989 ident: 10.1016/j.oregeorev.2015.01.001_bb0220 article-title: Neogene extensional collapse in the western Mediterranean (Betic-rif Alpine orogenic belt) — implications for the genesis of the Gibraltar arc and magmatic activity publication-title: Geology doi: 10.1130/0091-7613(1989)017<0430:NECITW>2.3.CO;2 – start-page: 798 year: 2002 ident: 10.1016/j.oregeorev.2015.01.001_bb0080 article-title: Exploiting MODTRAN radiation transport for atmospheric correction: the FLAASH algorithm – volume: 17 year: 2012 ident: 10.1016/j.oregeorev.2015.01.001_bb0205 article-title: A geographic model to assess and limit cumulative ecological degradation from marcellus shale exploitation in New York, USA publication-title: Ecol. Soc. doi: 10.5751/ES-04822-170225 – volume: 23 start-page: 4801 year: 2002 ident: 10.1016/j.oregeorev.2015.01.001_bb0170 article-title: Development of a decision support system based on remote sensing and GIS techniques for gold-rich area identification in SE Spain publication-title: Int. J. Remote Sens. doi: 10.1080/01431160110104656 – volume: 29 start-page: 617 year: 2008 ident: 10.1016/j.oregeorev.2015.01.001_bb0355 article-title: The application of artificial neural networks to the analysis of remotely sensed data publication-title: Int. J. Remote Sens. doi: 10.1080/01431160701352154 – volume: 30 start-page: 327 year: 2009 ident: 10.1016/j.oregeorev.2015.01.001_bb0065 article-title: Use of HyMap imaging spectrometer data to map mineralogy in the Rodalquilar caldera, southeast Spain publication-title: Int. J. Remote Sens. doi: 10.1080/01431160802282854 – volume: 49 start-page: 4138 year: 2011 ident: 10.1016/j.oregeorev.2015.01.001_bb0085 article-title: Analysis of imaging spectrometer data using N-dimensional geometry and a mixture-tuned matched filtering approach publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2011.2161585 – start-page: 1 year: 2014 ident: 10.1016/j.oregeorev.2015.01.001_bb0360 article-title: Curvature attribute from surface-restoration as predictor variable in Kupferschiefer copper potentials publication-title: Nat. Resour. Res. – volume: 19 start-page: 103 year: 2010 ident: 10.1016/j.oregeorev.2015.01.001_bb0375 article-title: Application of artificial neural network for gold-silver deposits potential mapping: a case study of Korea publication-title: Nat. Resour. Res. doi: 10.1007/s11053-010-9112-2 – volume: 74 start-page: 1041 year: 2010 ident: 10.1016/j.oregeorev.2015.01.001_bb0230 article-title: Spectral properties and sources of variability of ecosystem components in a Mediterranean semiarid environment publication-title: J. Arid Environ. doi: 10.1016/j.jaridenv.2010.02.001 – volume: 13 start-page: 281 year: 2012 ident: 10.1016/j.oregeorev.2015.01.001_bb0075 article-title: Random search for hyper-parameter optimization publication-title: J. Mach. Learn. Res. – volume: 26 start-page: 217 year: 2005 ident: 10.1016/j.oregeorev.2015.01.001_bb0385 article-title: Random forest classifier for remote sensing classification publication-title: Int. J. Remote Sens. doi: 10.1080/01431160412331269698 – volume: 24 start-page: 1151 year: 2003 ident: 10.1016/j.oregeorev.2015.01.001_bb0435 article-title: Artificial neural networks as a tool for mineral potential mapping with GIS publication-title: Int. J. Remote Sens. doi: 10.1080/0143116021000031791 – volume: 49 start-page: 623 year: 2012 ident: 10.1016/j.oregeorev.2015.01.001_bb0275 article-title: An evaluation of bagging, boosting, and random forests for land-cover classification in Cape Cod, Massachusetts, USA publication-title: GISci. Remote Sens. doi: 10.2747/1548-1603.49.5.623 – year: 2003 ident: 10.1016/j.oregeorev.2015.01.001_bb0055 – volume: 207 start-page: 304 year: 2007 ident: 10.1016/j.oregeorev.2015.01.001_bb0405 article-title: Random forests as a tool for ecohydrological distribution modelling publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2007.05.011 – volume: 20 start-page: 273 year: 1995 ident: 10.1016/j.oregeorev.2015.01.001_bb0190 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 – volume: vols. 1–5 start-page: 3324 year: 2009 ident: 10.1016/j.oregeorev.2015.01.001_bb0525 article-title: Ensemble methods for spectral–spatial classification of urban hyperspectral data – year: 2003 ident: 10.1016/j.oregeorev.2015.01.001_bb0070 – volume: 48 start-page: 349 year: 2012 ident: 10.1016/j.oregeorev.2015.01.001_bb0325 article-title: Exploration targeting for orogenic gold deposits in the Granites–Tanami Orogen: mineral system analysis, targeting model and prospectivity analysis publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2012.05.004 – volume: 34 start-page: 194 year: 1998 ident: 10.1016/j.oregeorev.2015.01.001_bb0440 article-title: Merging remote-sensing images for geological–environmental mapping: application to the Cabo de Gata-Níjar Natural Park, Spain publication-title: Environ. Geol. doi: 10.1007/s002540050271 – volume: 387 start-page: 141 year: 2010 ident: 10.1016/j.oregeorev.2015.01.001_bb0320 article-title: Predictive models for forecasting hourly urban water demand publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2010.04.005 – volume: 38 start-page: 184 year: 2010 ident: 10.1016/j.oregeorev.2015.01.001_bb0420 article-title: Weights-of-evidence and logistic regression modeling of magmatic nickel sulfide prospectivity in the Yilgarn Craton, Western Australia publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2010.04.002 – volume: 17 start-page: 1075 year: 1996 ident: 10.1016/j.oregeorev.2015.01.001_bb0300 article-title: Classification trees: an alternative to traditional land cover classifiers publication-title: Int. J. Remote Sens. doi: 10.1080/01431169608949069 – start-page: 299 year: 1977 ident: 10.1016/j.oregeorev.2015.01.001_bb0180 – volume: 420–421 start-page: 292 year: 2012 ident: 10.1016/j.oregeorev.2015.01.001_bb0550 article-title: Recognition of key regions for restoration of phytoplankton communities in the Huai River basin, China publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2011.12.016 – year: 1999 ident: 10.1016/j.oregeorev.2015.01.001_bb0330 – volume: 64 start-page: 450 year: 2009 ident: 10.1016/j.oregeorev.2015.01.001_bb0530 article-title: Classifier ensembles for land cover mapping using multitemporal SAR imagery publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2009.01.003 – year: 2010 ident: 10.1016/j.oregeorev.2015.01.001_bb0340 – volume: 3 start-page: 319 year: 1989 ident: 10.1016/j.oregeorev.2015.01.001_bb0365 article-title: An empirical comparison of selection measures for decision-tree induction publication-title: Mach. Learn. doi: 10.1007/BF00116837 – year: 1993 ident: 10.1016/j.oregeorev.2015.01.001_bb0430 – volume: 82 start-page: 1 year: 1987 ident: 10.1016/j.oregeorev.2015.01.001_bb0315 article-title: Comparative anatomy of volcanic-hosted epithermal deposits — acid-sulfate and adularia-sericite types publication-title: Econ. Geol. doi: 10.2113/gsecongeo.82.1.1 – volume: 25 start-page: S29 year: 1990 ident: 10.1016/j.oregeorev.2015.01.001_bb0480 article-title: Mineralized and unmineralized calderas in Spain; part II, evolution of the Rodalquilar caldera complex and associated gold-alunite deposits publication-title: Mineral. Deposita doi: 10.1007/BF00205247 – volume: 28 start-page: 1017 year: 1996 ident: 10.1016/j.oregeorev.2015.01.001_bb0495 article-title: Application of a feedforward neural network in the search for kuroko deposits in the Hokuroku district, Japan publication-title: Math. Geol. doi: 10.1007/BF02068587 – volume: 37 start-page: 1967 year: 2011 ident: 10.1016/j.oregeorev.2015.01.001_bb0560 article-title: Support vector machine: a tool for mapping mineral prospectivity publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2010.09.014 – volume: 46 start-page: 272 year: 2012 ident: 10.1016/j.oregeorev.2015.01.001_bb0010 article-title: Support vector machine for multi-classification of mineral prospectivity areas publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2011.12.014 – volume: 434–435 start-page: 78 year: 2012 ident: 10.1016/j.oregeorev.2015.01.001_bb0100 article-title: Comparing methods for estimating flow duration curves at ungauged sites publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2012.02.031 – start-page: 15171 year: 2010 ident: 10.1016/j.oregeorev.2015.01.001_bb0425 article-title: SVM-based base-metal prospectivity modeling of the Aravalli Orogen, northwestern India – volume: 121 start-page: 93 year: 2012 ident: 10.1016/j.oregeorev.2015.01.001_bb0445 article-title: Random forest classification of Mediterranean land cover using multi-seasonal imagery and multi-seasonal texture publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.12.003 – start-page: 101 year: 2009 ident: 10.1016/j.oregeorev.2015.01.001_bb0310 article-title: Linear methods for classification – volume: 28 start-page: 1336 year: 2014 ident: 10.1016/j.oregeorev.2015.01.001_bb0450 article-title: Predictive modelling of gold potential with the integration of multisource information based on random forest: a case study on the Rodalquilar area, Southern Spain publication-title: Int. J. Geogr. Inf. Sci. doi: 10.1080/13658816.2014.885527 – volume: 74 start-page: 1201 year: 2008 ident: 10.1016/j.oregeorev.2015.01.001_bb0345 article-title: Mapping selective logging in mixed deciduous forest: a comparison of machine learning algorithms publication-title: Photogramm. Eng. Remote Sens. doi: 10.14358/PERS.74.10.1201 – volume: 100 start-page: 11 year: 2009 ident: 10.1016/j.oregeorev.2015.01.001_bb0240 article-title: Characterisation of the environmental impact of the Rodalquilar mine, Spain by ground-based reflectance spectroscopy publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2008.03.001 – volume: 80 start-page: 377 year: 2009 ident: 10.1016/j.oregeorev.2015.01.001_bb0040 article-title: Evaluation of the environmental contamination at an abandoned mining site using multivariate statistical techniques—the Rodalquilar (Southern Spain) mining district publication-title: Talanta doi: 10.1016/j.talanta.2009.06.075 – volume: 157 start-page: 75 year: 2000 ident: 10.1016/j.oregeorev.2015.01.001_bb0545 article-title: Revised geochronology of the Neogene calc-alkaline volcanic suite in Sierra de Gata, Alboran volcanic province, SE Spain publication-title: J. Geol. Soc. doi: 10.1144/jgs.157.1.75 – volume: 18 start-page: 799 year: 1997 ident: 10.1016/j.oregeorev.2015.01.001_bb0260 article-title: An evaluation of some factors affecting the accuracy of classification by an artificial neural network publication-title: Int. J. Remote Sens. doi: 10.1080/014311697218764 – volume: 8 start-page: 61 year: 2006 ident: 10.1016/j.oregeorev.2015.01.001_bb0500 article-title: Indicator kriging applied to absorption band analysis in hyperspectral imagery: a case study from the Rodalquilar epithermal gold mining area, SE Spain publication-title: Int. J. Appl. Earth Obs. Geoinf. doi: 10.1016/j.jag.2005.07.001 – start-page: 107 year: 2007 ident: 10.1016/j.oregeorev.2015.01.001_bb0245 – volume: 112 start-page: 2999 year: 2008 ident: 10.1016/j.oregeorev.2015.01.001_bb0155 article-title: Evaluation of random forest and adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.02.011 – volume: 57 start-page: 1049 year: 2009 ident: 10.1016/j.oregeorev.2015.01.001_bb0395 article-title: Artificial neural networks applied to mineral potential mapping for copper–gold mineralizations in the Carajás Mineral Province, Brazil publication-title: Geophys. Prospect. doi: 10.1111/j.1365-2478.2008.00779.x – volume: 17 start-page: 331 year: 1996 ident: 10.1016/j.oregeorev.2015.01.001_bb0250 article-title: The application of imaging spectrometry data to mapping alteration zones associated with gold mineralization in southern Spain publication-title: Int. J. Remote Sens. doi: 10.1080/01431169608949009 |
SSID | ssj0006001 |
Score | 2.6318805 |
Snippet | Machine learning algorithms (MLAs) such us artificial neural networks (ANNs), regression trees (RTs), random forest (RF) and support vector machines (SVMs) are... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 804 |
SubjectTerms | Data-driven modelling Hyperion Machine learning Mineral potential Mineral prospectivity mapping |
Title | Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines |
URI | https://dx.doi.org/10.1016/j.oregeorev.2015.01.001 |
Volume | 71 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6iCHoQn_hc5uDRuq1p0q63RVxXRS8qeCtpmsiK2y7bVfDiH_HPOtNkfeDBg8c0mRKSMN-EfPMNY_upNqlGIA7yVKsAEU8EHdz2ILFxkQuDEQCnROGra9m_iy_uxf0MO5nmwhCt0vt-59Mbb-2_tP1qtkeDQfuGdEQiLtOINP1DThnlcZzQKT98-6J5EKA7fe9OQKN_cLyqMV7NKyr2gjjo9Dt9dZhfCPUNdXrLbMmHi9B1M1phM6ZcZYvfRARX2fxZU5z3dY29XzXMSAO-FMQDjMb0DkMeDZqSNzVgjArDQSM1jb2VT7TEUPwYuiV8aX9DZYG0LnFY6Zji9QEgrhXVkP6BWIJN8-BYtCXQ23YN2A3184hCenhpngNg6KZUr7O73untST_wxRcCFSfxJLCFFVFiMdrLjVJproXmCo8dT0KVSK1tUdhCCyWNSEl0Xx_JVHKFAYQVRoSGb7DZsirNJgOFN15hJLdcdmJ1lOa55R28qER0dzEi2mJyuuCZ9srkVCDjKZtS0B6zz53KaKeyMCIy3hYLPw1HTpzjb5Pj6Y5mP85ZhhDyl_H2f4x32AK1HBVml81Oxs9mDwOaSd5qTmyLzXXPL_vXHzQN-2M |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB3RrarCAbW0FbTQzqHHppvg2MnuDSFg27JcChK3yHFstKibrDYLEpf-Ef5sZ2IvH-qBA8fEnsjyOPPG8vMbgK-5sbkhII7K3OiIEE9GA3J7lLm0KqWlDEDwReHxiRqdpT_P5fkK7C_vwjCtMsR-H9O7aB3e9MNs9meTSf8364gkQuUJa_rHInsBL1P6fbmMwfe_9zwPRnQv8D2IuPsjklczp715w9VeCAi9gGcoD_MfRD2AncM3sB7yRdzzQ3oLK7begLUHKoIb8Oqoq8578w5uxx010mKoBXGBszkfxHBIw67mTYuUpOJ00mlNU2sTblpSLj7EvRrvxb-xcchil9St9lTx9hsSsFXNlL9BYEKP9sLTaGvkw-0WqRnbqxnn9HjdnQfg1A-pfQ9nhwen-6MoVF-IdJqli8hVTiaZo3SvtFrnpZFGaFp3Iot1poxxVeUqI7WyMmfVfbOrciU0ZRBOWhlb8QF6dVPbTUBNW15plXBCDVK9m5elEwPaqSS8ebEy2QK1nPDCBGlyrpDxp1hy0C6LO08V7KkiTpiNtwXxneHMq3M8bTJcerR4tNAKwpCnjD8-x_gLvB6djo-L4x8nvz7BKrd4Xsw29BbzK7tD2c2i_Nyt3n_luPzx |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+predictive+models+for+mineral+prospectivity%3A+An+evaluation+of+neural+networks%2C+random+forest%2C+regression+trees+and+support+vector+machines&rft.jtitle=Ore+geology+reviews&rft.au=Rodriguez-Galiano%2C+V.&rft.au=Sanchez-Castillo%2C+M.&rft.au=Chica-Olmo%2C+M.&rft.au=Chica-Rivas%2C+M.&rft.date=2015-12-01&rft.issn=0169-1368&rft.volume=71&rft.spage=804&rft.epage=818&rft_id=info:doi/10.1016%2Fj.oregeorev.2015.01.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_oregeorev_2015_01_001 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-1368&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-1368&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-1368&client=summon |