Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines

Machine learning algorithms (MLAs) such us artificial neural networks (ANNs), regression trees (RTs), random forest (RF) and support vector machines (SVMs) are powerful data driven methods that are relatively less widely used in the mapping of mineral prospectivity, and thus have not been comparativ...

Full description

Saved in:
Bibliographic Details
Published inOre geology reviews Vol. 71; pp. 804 - 818
Main Authors Rodriguez-Galiano, V., Sanchez-Castillo, M., Chica-Olmo, M., Chica-Rivas, M.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Machine learning algorithms (MLAs) such us artificial neural networks (ANNs), regression trees (RTs), random forest (RF) and support vector machines (SVMs) are powerful data driven methods that are relatively less widely used in the mapping of mineral prospectivity, and thus have not been comparatively evaluated together thoroughly in this field. The performances of a series of MLAs, namely, artificial neural networks (ANNs), regression trees (RTs), random forest (RF) and support vector machines (SVMs) in mineral prospectivity modelling are compared based on the following criteria: i) the accuracy in the delineation of prospective areas; ii) the sensitivity to the estimation of hyper-parameters; iii) the sensitivity to the size of training data; and iv) the interpretability of model parameters. The results of applying the above algorithms to epithermal Au prospectivity mapping of the Rodalquilar district, Spain, indicate that the RF outperformed the other MLA algorithms (ANNs, RTs and SVMs). The RF algorithm showed higher stability and robustness with varying training parameters and better success rates and ROC analysis results. On the other hand, all MLA algorithms can be used when ore deposit evidences are scarce. Moreover the model parameters of RF and RT can be interpreted to gain insights into the geological controls of mineralization.
AbstractList Machine learning algorithms (MLAs) such us artificial neural networks (ANNs), regression trees (RTs), random forest (RF) and support vector machines (SVMs) are powerful data driven methods that are relatively less widely used in the mapping of mineral prospectivity, and thus have not been comparatively evaluated together thoroughly in this field. The performances of a series of MLAs, namely, artificial neural networks (ANNs), regression trees (RTs), random forest (RF) and support vector machines (SVMs) in mineral prospectivity modelling are compared based on the following criteria: i) the accuracy in the delineation of prospective areas; ii) the sensitivity to the estimation of hyper-parameters; iii) the sensitivity to the size of training data; and iv) the interpretability of model parameters. The results of applying the above algorithms to epithermal Au prospectivity mapping of the Rodalquilar district, Spain, indicate that the RF outperformed the other MLA algorithms (ANNs, RTs and SVMs). The RF algorithm showed higher stability and robustness with varying training parameters and better success rates and ROC analysis results. On the other hand, all MLA algorithms can be used when ore deposit evidences are scarce. Moreover the model parameters of RF and RT can be interpreted to gain insights into the geological controls of mineralization.
Author Chica-Olmo, M.
Chica-Rivas, M.
Sanchez-Castillo, M.
Rodriguez-Galiano, V.
Author_xml – sequence: 1
  givenname: V.
  orcidid: 0000-0002-5422-8305
  surname: Rodriguez-Galiano
  fullname: Rodriguez-Galiano, V.
  email: vrgaliano@gmail.com
  organization: Global Environmental Change and Earth Observation Research Group, Geography and Environment, University of Southampton, Southampton SO17 1BJ, United Kingdom
– sequence: 2
  givenname: M.
  surname: Sanchez-Castillo
  fullname: Sanchez-Castillo, M.
  email: ms2188@cam.ac.uk
  organization: Department of Haematology, Wellcome Trust and MRC Cambridge Stem Cell Institute and Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
– sequence: 3
  givenname: M.
  surname: Chica-Olmo
  fullname: Chica-Olmo, M.
  email: mchica@ugr.es
  organization: Departamento de Geodinámica, Universidad de Granada, 18071 Granada, Spain
– sequence: 4
  givenname: M.
  surname: Chica-Rivas
  fullname: Chica-Rivas, M.
  email: mcrivas@ugr.es
  organization: Departamento de Análisis Matemático, Universidad de Granada, 18071 Granada, Spain
BookMark eNqNkctOJCEUhonRxPbyDPIAUyV0CVUziYuO8ZZo3OiaHOHQQ081VIAu47P4slK2mYUb3XDJ-f__cD4OyK4PHgk54azmjMvTVR0iLrEsYz1nXNSM14zxHTLjXTuv2kayXTIryt8Vb2S3Tw5SWjHGZBHNyNs96L_OI-0Rond-SYeIxunsRqTrYLBP1IZI10UToS_VkAacyi6__qELT3GEfgPZBU-DpR43k8xjfgnxX_pFI3gT1lMGplyuuCyHNKlzREy0lGnaDEOImY4leOq1fVI6InsW-oTHn_shebq6fLy4qe4erm8vFncVnLVnubLGCt5aIeUzAnTPWugGEEzTMmil1tYYa7QAiaLjknd6LjvZABfcChQMm0Nyvs3VZbgU0Srt8sdEOYLrFWdqIq1W6j9pNZFWjKsCsfjbL_4hujXE1x84F1tnwYyjw6iSduh1-YFYWCgT3LcZ7xKzpwg
CitedBy_id crossref_primary_10_1007_s40192_020_00195_z
crossref_primary_10_3799_dqkx_2022_433
crossref_primary_10_3390_rs11222605
crossref_primary_10_3390_min11020148
crossref_primary_10_1007_s00521_018_3903_5
crossref_primary_10_1016_j_compbiomed_2024_108309
crossref_primary_10_1175_JCLI_D_21_0447_1
crossref_primary_10_1186_s12938_023_01140_9
crossref_primary_10_1007_s00521_020_05425_1
crossref_primary_10_1016_j_mineng_2019_105899
crossref_primary_10_1007_s11004_023_10065_x
crossref_primary_10_1016_j_patcog_2019_01_036
crossref_primary_10_3390_axioms11040151
crossref_primary_10_1016_j_cie_2023_109450
crossref_primary_10_1016_j_gexplo_2021_106888
crossref_primary_10_1007_s11063_020_10379_5
crossref_primary_10_1016_j_jsames_2022_103815
crossref_primary_10_1016_j_gexplo_2021_106885
crossref_primary_10_1016_j_oregeorev_2023_105571
crossref_primary_10_1038_s41598_025_87316_w
crossref_primary_10_1016_j_gexplo_2024_107557
crossref_primary_10_3390_min14050522
crossref_primary_10_3390_min13101302
crossref_primary_10_1016_j_aei_2022_101671
crossref_primary_10_1016_j_acags_2023_100153
crossref_primary_10_1109_ACCESS_2025_3527205
crossref_primary_10_1007_s11053_024_10387_5
crossref_primary_10_1016_j_gexplo_2024_107555
crossref_primary_10_1016_j_cscee_2023_100324
crossref_primary_10_1007_s11356_023_29769_y
crossref_primary_10_1016_j_inffus_2024_102914
crossref_primary_10_1016_j_oregeorev_2023_105567
crossref_primary_10_3390_app10093298
crossref_primary_10_1016_j_measurement_2019_07_017
crossref_primary_10_1016_j_conbuildmat_2018_11_142
crossref_primary_10_1016_j_petrol_2020_107838
crossref_primary_10_1007_s12145_018_00377_6
crossref_primary_10_1007_s40710_024_00719_1
crossref_primary_10_3390_w15061075
crossref_primary_10_1016_j_autcon_2019_102833
crossref_primary_10_1007_s11368_024_03820_y
crossref_primary_10_1007_s00477_021_02152_4
crossref_primary_10_1144_geochem2016_024
crossref_primary_10_1016_j_cities_2023_104292
crossref_primary_10_1016_j_engstruct_2022_115574
crossref_primary_10_29130_dubited_1015572
crossref_primary_10_3233_JIFS_189461
crossref_primary_10_1016_j_molliq_2022_119306
crossref_primary_10_3233_JIFS_189463
crossref_primary_10_1016_j_petrol_2020_107833
crossref_primary_10_2166_nh_2016_264
crossref_primary_10_1007_s42452_019_1499_8
crossref_primary_10_1080_17452759_2024_2318774
crossref_primary_10_1109_JSTARS_2022_3195088
crossref_primary_10_1016_j_envres_2023_115751
crossref_primary_10_3233_JIFS_219154
crossref_primary_10_1007_s11044_024_09977_1
crossref_primary_10_1109_LGRS_2024_3450872
crossref_primary_10_1007_s10661_019_7510_4
crossref_primary_10_1007_s11053_019_09598_y
crossref_primary_10_1016_j_compositesb_2023_111099
crossref_primary_10_1111_ffe_14459
crossref_primary_10_1016_j_gexplo_2023_107279
crossref_primary_10_32604_cmc_2023_037553
crossref_primary_10_1007_s13201_018_0742_6
crossref_primary_10_1007_s12145_024_01224_7
crossref_primary_10_1061__ASCE_CO_1943_7862_0002411
crossref_primary_10_1016_j_gexplo_2020_106556
crossref_primary_10_1007_s12145_023_01184_4
crossref_primary_10_2139_ssrn_4861836
crossref_primary_10_3390_a18030119
crossref_primary_10_1007_s41096_024_00210_y
crossref_primary_10_3390_math11020279
crossref_primary_10_1016_j_watres_2024_122824
crossref_primary_10_1016_j_geothermics_2024_102915
crossref_primary_10_1109_ACCESS_2024_3359055
crossref_primary_10_1155_2022_3879266
crossref_primary_10_1016_j_caeai_2022_100103
crossref_primary_10_1007_s12517_023_11623_7
crossref_primary_10_1007_s12046_023_02193_1
crossref_primary_10_1016_j_apenergy_2021_117413
crossref_primary_10_1021_acsomega_3c01241
crossref_primary_10_1016_j_rsma_2023_102914
crossref_primary_10_1515_jisys_2023_0283
crossref_primary_10_1002_sys_21718
crossref_primary_10_1007_s11053_021_09842_4
crossref_primary_10_1007_s11004_023_10067_9
crossref_primary_10_1155_2021_3053538
crossref_primary_10_1038_s41598_025_91132_7
crossref_primary_10_3390_ijgi10070440
crossref_primary_10_3390_min11020182
crossref_primary_10_1029_2024JD042701
crossref_primary_10_1109_ACCESS_2019_2919343
crossref_primary_10_11648_j_sjams_20241205_11
crossref_primary_10_1007_s11053_022_10075_2
crossref_primary_10_1016_j_foohum_2024_100413
crossref_primary_10_21032_jhis_2022_47_S2_S21
crossref_primary_10_3390_app13053117
crossref_primary_10_1016_j_oregeorev_2018_07_002
crossref_primary_10_1016_j_gexplo_2021_106858
crossref_primary_10_1016_j_clet_2025_100919
crossref_primary_10_3390_w16081133
crossref_primary_10_1016_j_gexplo_2024_107388
crossref_primary_10_1016_j_catena_2021_105178
crossref_primary_10_3390_rs14205169
crossref_primary_10_1038_s41598_024_65693_y
crossref_primary_10_3390_app14114880
crossref_primary_10_1016_j_energy_2022_124427
crossref_primary_10_3390_a17110519
crossref_primary_10_1016_j_engstruct_2019_03_105
crossref_primary_10_1016_j_chemer_2022_125898
crossref_primary_10_3390_min11020159
crossref_primary_10_3390_rs16111948
crossref_primary_10_1109_LSENS_2024_3503752
crossref_primary_10_2174_1874836801913010178
crossref_primary_10_1186_s40537_020_00327_4
crossref_primary_10_3390_ijerph18189752
crossref_primary_10_1007_s12145_018_0346_6
crossref_primary_10_3390_rs12244070
crossref_primary_10_1016_j_apgeochem_2022_105273
crossref_primary_10_1016_j_compag_2024_109466
crossref_primary_10_1080_10106049_2022_2158238
crossref_primary_10_3390_s22093566
crossref_primary_10_3390_app13169325
crossref_primary_10_3390_ijgi12030097
crossref_primary_10_1016_j_biosystemseng_2023_11_009
crossref_primary_10_1016_j_mtcomm_2022_103688
crossref_primary_10_3390_min12080941
crossref_primary_10_1007_s40948_021_00243_8
crossref_primary_10_1021_acs_jpcb_4c07651
crossref_primary_10_1016_j_mtcomm_2024_108216
crossref_primary_10_3390_fractalfract8040224
crossref_primary_10_1007_s11053_022_10120_0
crossref_primary_10_1007_s11053_024_10394_6
crossref_primary_10_1007_s11356_020_11413_8
crossref_primary_10_1016_j_tra_2021_10_001
crossref_primary_10_3390_min12070900
crossref_primary_10_1016_j_scs_2020_102146
crossref_primary_10_1080_20964471_2021_1948178
crossref_primary_10_1016_j_heliyon_2023_e21498
crossref_primary_10_1016_S1002_0160_17_60485_5
crossref_primary_10_1016_j_gexplo_2025_107695
crossref_primary_10_3390_su14095194
crossref_primary_10_3390_molecules27185762
crossref_primary_10_1016_j_jcp_2021_110147
crossref_primary_10_1016_j_energy_2024_133947
crossref_primary_10_1016_j_acags_2019_100001
crossref_primary_10_1016_j_ejor_2019_02_005
crossref_primary_10_3390_min12040461
crossref_primary_10_1002_eng2_13031
crossref_primary_10_1016_j_cacint_2020_100044
crossref_primary_10_1061_JPEODX_0000250
crossref_primary_10_3390_su16020931
crossref_primary_10_1155_2022_6794931
crossref_primary_10_1007_s00442_024_05516_z
crossref_primary_10_1109_JSEN_2020_2988070
crossref_primary_10_3390_min11101046
crossref_primary_10_1016_j_envpol_2020_114517
crossref_primary_10_1016_j_oregeorev_2020_103394
crossref_primary_10_1016_j_foreco_2018_12_019
crossref_primary_10_1016_j_oregeorev_2021_104300
crossref_primary_10_1016_j_scitotenv_2019_03_496
crossref_primary_10_1080_15325008_2021_1937401
crossref_primary_10_1016_j_atmosres_2025_108012
crossref_primary_10_3390_f11050540
crossref_primary_10_3799_dqkx_2022_006
crossref_primary_10_1007_s00521_022_07766_5
crossref_primary_10_1016_j_scitotenv_2020_138595
crossref_primary_10_1016_j_gexplo_2016_05_003
crossref_primary_10_18654_1000_0569_2021_12_16
crossref_primary_10_3389_fmars_2023_1217851
crossref_primary_10_61186_jsdp_20_4_35
crossref_primary_10_1007_s11053_019_09578_2
crossref_primary_10_1016_j_jafrearsci_2016_09_007
crossref_primary_10_1007_s44163_024_00169_6
crossref_primary_10_1016_j_jclepro_2023_140249
crossref_primary_10_37217_tebd_1438947
crossref_primary_10_1016_j_agrformet_2020_107956
crossref_primary_10_1016_j_jafrearsci_2023_105024
crossref_primary_10_3390_agriculture13030574
crossref_primary_10_1016_j_insmatheco_2021_02_009
crossref_primary_10_3390_rs16224173
crossref_primary_10_1016_j_cageo_2024_105540
crossref_primary_10_1016_j_aiig_2022_03_001
crossref_primary_10_1615_JMachLearnModelComput_2023049518
crossref_primary_10_1016_j_fuel_2024_133953
crossref_primary_10_1016_j_cageo_2019_07_004
crossref_primary_10_17798_bitlisfen_1308493
crossref_primary_10_1007_s11053_023_10272_7
crossref_primary_10_3390_su13052426
crossref_primary_10_1016_j_oregeorev_2024_106082
crossref_primary_10_1007_s11053_019_09510_8
crossref_primary_10_3390_en14227714
crossref_primary_10_1007_s10021_021_00618_8
crossref_primary_10_3390_min13111384
crossref_primary_10_1515_htmp_2022_0273
crossref_primary_10_1007_s11053_020_09788_z
crossref_primary_10_3390_rs13030457
crossref_primary_10_1007_s11053_021_09918_1
crossref_primary_10_1007_s11277_017_5239_3
crossref_primary_10_4218_etrij_2023_0155
crossref_primary_10_1016_j_icheatmasstransfer_2025_108813
crossref_primary_10_4000_physio_geo_15783
crossref_primary_10_1007_s11269_025_04091_z
crossref_primary_10_1080_00393630_2023_2173040
crossref_primary_10_3390_biomedinformatics4030094
crossref_primary_10_4236_ojg_2021_118018
crossref_primary_10_54097_hset_v44i_7162
crossref_primary_10_1016_j_molliq_2022_121195
crossref_primary_10_1016_j_engappai_2023_106828
crossref_primary_10_1680_jgere_24_00029
crossref_primary_10_1007_s11053_018_9428_x
crossref_primary_10_1007_s11707_016_0595_y
crossref_primary_10_1016_j_oregeorev_2019_02_027
crossref_primary_10_1016_j_cageo_2017_03_015
crossref_primary_10_1016_j_oregeorev_2019_02_026
crossref_primary_10_1016_j_csite_2023_103005
crossref_primary_10_1080_17435390_2023_2186279
crossref_primary_10_3390_min10020102
crossref_primary_10_3389_feart_2022_816751
crossref_primary_10_1080_01431161_2024_2370504
crossref_primary_10_3390_rs14236154
crossref_primary_10_3390_agronomy14102182
crossref_primary_10_5194_bg_15_7347_2018
crossref_primary_10_3390_app14114819
crossref_primary_10_3390_min11080816
crossref_primary_10_1007_s11053_018_9392_5
crossref_primary_10_1016_j_fuel_2022_125991
crossref_primary_10_1016_j_ijleo_2017_03_037
crossref_primary_10_1016_j_jece_2020_103952
crossref_primary_10_1371_journal_pone_0186751
crossref_primary_10_1016_j_apgeog_2024_103503
crossref_primary_10_1007_s11053_017_9345_4
crossref_primary_10_1007_s11053_025_10477_y
crossref_primary_10_1109_JSTARS_2019_2924292
crossref_primary_10_1007_s11053_022_10038_7
crossref_primary_10_1007_s12303_018_0035_y
crossref_primary_10_1016_j_ijhydene_2025_02_342
crossref_primary_10_1007_s42107_024_01124_7
crossref_primary_10_33003_fjs_2024_0806_3002
crossref_primary_10_1080_13658816_2022_2075879
crossref_primary_10_1016_j_oregeorev_2024_106030
crossref_primary_10_1080_10408398_2021_1956425
crossref_primary_10_1016_j_buildenv_2019_106479
crossref_primary_10_1515_geo_2022_0436
crossref_primary_10_3390_f10090743
crossref_primary_10_35377_saucis___1415583
crossref_primary_10_36899_japs_2024_5_0811
crossref_primary_10_1016_j_jseaes_2025_106551
crossref_primary_10_3390_min12111361
crossref_primary_10_1016_S1002_0160_17_60481_8
crossref_primary_10_3390_w15081571
crossref_primary_10_2355_isijinternational_ISIJINT_2020_639
crossref_primary_10_1016_j_ecoinf_2023_102137
crossref_primary_10_1155_2020_2454875
crossref_primary_10_1007_s40243_023_00239_2
crossref_primary_10_1016_j_tcs_2019_10_038
crossref_primary_10_1007_s12145_023_01016_5
crossref_primary_10_2166_wst_2023_108
crossref_primary_10_1080_10106049_2021_1988726
crossref_primary_10_1007_s11053_020_09779_0
crossref_primary_10_1016_j_fuel_2023_129263
crossref_primary_10_1016_j_cageo_2022_105075
crossref_primary_10_1016_j_oregeorev_2021_104399
crossref_primary_10_1007_s11053_018_9448_6
crossref_primary_10_1007_s11053_020_09668_6
crossref_primary_10_1007_s11053_021_09871_z
crossref_primary_10_1007_s11053_021_09893_7
crossref_primary_10_1016_j_scitotenv_2018_07_353
crossref_primary_10_1155_2017_1673864
crossref_primary_10_1002_2016TC004289
crossref_primary_10_1155_2021_9294356
crossref_primary_10_1016_j_enggeo_2024_107584
crossref_primary_10_1016_j_resourpol_2022_103222
crossref_primary_10_3390_min13081073
crossref_primary_10_1016_j_apenergy_2018_09_182
crossref_primary_10_1038_s41598_022_17350_5
crossref_primary_10_3390_info15100590
crossref_primary_10_1177_09544062231213276
crossref_primary_10_1016_j_quascirev_2024_108686
crossref_primary_10_1007_s10853_024_09802_2
crossref_primary_10_1080_03719553_2017_1318570
crossref_primary_10_1144_geochem2020_038
crossref_primary_10_1007_s11771_021_4730_x
crossref_primary_10_1016_j_asoc_2023_110586
crossref_primary_10_1016_j_asr_2022_04_048
crossref_primary_10_1115_1_4063938
crossref_primary_10_1016_j_jnca_2022_103560
crossref_primary_10_1016_j_compag_2020_105588
crossref_primary_10_1016_j_apgeochem_2024_106124
crossref_primary_10_1002_pan3_10551
crossref_primary_10_4236_jdaip_2024_123018
crossref_primary_10_1371_journal_pone_0282084
crossref_primary_10_1007_s10999_023_09695_0
crossref_primary_10_1155_2024_7970454
crossref_primary_10_3390_min11060597
crossref_primary_10_1016_j_crfs_2023_100495
crossref_primary_10_1016_j_ecmx_2024_100772
crossref_primary_10_3390_rs15040930
crossref_primary_10_1016_j_ecoenv_2023_115183
crossref_primary_10_1016_j_jenvman_2021_112736
crossref_primary_10_1016_j_oregeorev_2025_106506
crossref_primary_10_1371_journal_pntd_0008056
crossref_primary_10_1016_j_jgsce_2024_205349
crossref_primary_10_1007_s00126_021_01086_9
crossref_primary_10_1016_j_oregeorev_2024_106001
crossref_primary_10_1016_j_asr_2024_08_046
crossref_primary_10_3390_rs12071218
crossref_primary_10_1029_2019EA000881
crossref_primary_10_1016_j_cageo_2020_104455
crossref_primary_10_1142_S0219519424500453
crossref_primary_10_1016_j_cageo_2021_104949
crossref_primary_10_1039_D2YA00312K
crossref_primary_10_1088_2058_8585_acb660
crossref_primary_10_1038_s41598_024_84450_9
crossref_primary_10_1007_s00707_024_04007_9
crossref_primary_10_1080_10106049_2019_1629644
crossref_primary_10_1016_j_ijhydene_2021_11_166
crossref_primary_10_1016_j_arabjc_2022_104261
crossref_primary_10_1016_j_oceano_2022_03_008
crossref_primary_10_1007_s11053_021_09891_9
crossref_primary_10_1109_ACCESS_2021_3050149
crossref_primary_10_1007_s10142_024_01289_z
crossref_primary_10_3390_cli10060078
crossref_primary_10_1142_S1758825124500558
crossref_primary_10_1007_s10489_018_1341_9
crossref_primary_10_1007_s11004_024_10151_8
crossref_primary_10_1016_j_healthplace_2024_103176
crossref_primary_10_1142_S0217984920503261
crossref_primary_10_3390_w12010016
crossref_primary_10_1007_s11053_018_9422_3
crossref_primary_10_1109_TGRS_2022_3233385
crossref_primary_10_3390_su15065211
crossref_primary_10_1007_s11053_020_09700_9
crossref_primary_10_1016_j_apenergy_2024_124735
crossref_primary_10_3390_en17061316
crossref_primary_10_3390_ma15186385
crossref_primary_10_9728_dcs_2022_23_12_2445
crossref_primary_10_1016_j_conengprac_2019_104167
crossref_primary_10_1007_s12517_024_12119_8
crossref_primary_10_3389_feart_2024_1401026
crossref_primary_10_3390_su141911999
crossref_primary_10_1016_j_molliq_2023_121850
crossref_primary_10_1080_23311975_2023_2242985
crossref_primary_10_1016_j_jafrearsci_2018_02_005
crossref_primary_10_1016_j_rsase_2024_101316
crossref_primary_10_3390_app9214543
crossref_primary_10_1016_j_apgeochem_2020_104679
crossref_primary_10_1016_j_csite_2023_102771
crossref_primary_10_1007_s10479_021_04415_3
crossref_primary_10_1016_j_cscm_2024_e03733
crossref_primary_10_1007_s00704_024_05106_2
crossref_primary_10_3390_f15040681
crossref_primary_10_1016_j_oregeorev_2024_106204
crossref_primary_10_1016_j_energy_2025_135512
crossref_primary_10_1007_s11053_023_10255_8
crossref_primary_10_1016_j_engfracmech_2023_109586
crossref_primary_10_1007_s12524_024_01983_2
crossref_primary_10_1016_j_jafrearsci_2016_11_032
crossref_primary_10_1016_j_powtec_2024_120572
crossref_primary_10_3390_f14102109
crossref_primary_10_1016_j_cageo_2021_104754
crossref_primary_10_1007_s00521_021_06657_5
crossref_primary_10_1088_1742_6596_1684_1_012007
crossref_primary_10_3390_rs15153708
crossref_primary_10_1029_2023EA003493
crossref_primary_10_1007_s41939_024_00552_x
crossref_primary_10_3390_s22124398
crossref_primary_10_1007_s11053_023_10268_3
crossref_primary_10_1007_s11053_024_10430_5
crossref_primary_10_1016_j_clscn_2023_100130
crossref_primary_10_1016_j_cie_2024_110574
crossref_primary_10_3390_rs13224704
crossref_primary_10_3390_su17010306
crossref_primary_10_1007_s11709_022_0812_6
crossref_primary_10_2139_ssrn_4164367
crossref_primary_10_3389_feart_2019_00286
crossref_primary_10_1016_j_ijleo_2024_171838
crossref_primary_10_3390_app8081269
crossref_primary_10_1177_03091333251319958
crossref_primary_10_3390_rs11243003
crossref_primary_10_3390_jmmp6050108
crossref_primary_10_3390_su151310434
crossref_primary_10_1007_s11053_019_09483_8
crossref_primary_10_48084_etasr_7052
crossref_primary_10_1007_s00704_024_04914_w
crossref_primary_10_1007_s11053_024_10321_9
crossref_primary_10_1016_j_jenvman_2021_112067
crossref_primary_10_1016_j_still_2024_106317
crossref_primary_10_1007_s11053_021_09934_1
crossref_primary_10_1017_S0954102023000032
crossref_primary_10_1088_1741_2552_ab9a98
crossref_primary_10_1016_j_jhazmat_2020_123288
crossref_primary_10_1038_s41598_024_73551_0
crossref_primary_10_1002_srin_202200682
crossref_primary_10_1016_j_jhydrol_2023_129892
crossref_primary_10_3390_min13010049
crossref_primary_10_1016_j_bspc_2024_106774
crossref_primary_10_1016_j_foodcont_2022_108815
crossref_primary_10_3390_ijgi6120387
crossref_primary_10_1007_s11053_022_10093_0
crossref_primary_10_1007_s11053_025_10462_5
crossref_primary_10_1016_j_geoen_2025_213853
crossref_primary_10_3390_app12062907
crossref_primary_10_1190_geo2023_0127_1
crossref_primary_10_3390_pr11072091
crossref_primary_10_1016_j_gexplo_2024_107634
crossref_primary_10_1016_j_scitotenv_2024_177076
crossref_primary_10_1016_j_biortech_2023_129900
crossref_primary_10_3390_su15118666
crossref_primary_10_1007_s10706_017_0420_8
crossref_primary_10_3390_f13122104
crossref_primary_10_1007_s11053_021_09956_9
crossref_primary_10_1002_jnm_3132
crossref_primary_10_1007_s11004_023_10101_w
crossref_primary_10_1007_s12652_019_01574_x
crossref_primary_10_1155_2022_9086938
crossref_primary_10_3390_su17020379
crossref_primary_10_1139_cgj_2022_0365
crossref_primary_10_3390_app10228092
crossref_primary_10_1016_j_energy_2020_119437
crossref_primary_10_3389_feart_2023_1235468
crossref_primary_10_1080_10643389_2018_1558890
crossref_primary_10_1016_j_jag_2024_103746
crossref_primary_10_1016_j_molliq_2023_121835
crossref_primary_10_1371_journal_pone_0250665
crossref_primary_10_3390_s24248091
crossref_primary_10_1016_j_pedsph_2022_06_009
crossref_primary_10_1007_s10687_024_00485_1
crossref_primary_10_1088_1755_1315_362_1_012079
crossref_primary_10_1016_j_ijleo_2022_170340
crossref_primary_10_1016_j_jhydrol_2025_133015
crossref_primary_10_1016_j_jmrt_2024_04_165
crossref_primary_10_1016_j_oregeorev_2020_103611
crossref_primary_10_1007_s10618_018_00607_x
crossref_primary_10_1016_j_enbuild_2017_12_031
crossref_primary_10_1007_s10489_024_06189_0
crossref_primary_10_1109_TGRS_2024_3397315
crossref_primary_10_1016_j_ejrh_2023_101385
crossref_primary_10_1016_j_compeleceng_2022_108119
crossref_primary_10_1016_j_gexplo_2024_107414
crossref_primary_10_3390_su13094607
crossref_primary_10_1007_s00477_021_02036_7
crossref_primary_10_1016_j_cities_2023_104482
crossref_primary_10_1016_j_gexplo_2019_106405
crossref_primary_10_5194_nhess_22_4039_2022
crossref_primary_10_1007_s12598_023_02551_2
crossref_primary_10_1016_j_jafrearsci_2016_12_011
crossref_primary_10_3390_su14031233
crossref_primary_10_1016_j_energy_2020_117871
crossref_primary_10_3390_geosciences14070183
crossref_primary_10_1016_j_procs_2019_01_015
crossref_primary_10_1016_j_procs_2019_01_017
crossref_primary_10_1109_ACCESS_2019_2919406
crossref_primary_10_1016_j_mineng_2022_107971
crossref_primary_10_2166_wst_2021_038
crossref_primary_10_1016_j_oregeorev_2022_105184
crossref_primary_10_3390_land10080777
crossref_primary_10_1016_j_chemer_2024_126155
crossref_primary_10_1111_ejn_16288
crossref_primary_10_1016_j_gexplo_2024_107441
crossref_primary_10_17323_jle_2024_22221
crossref_primary_10_3390_min10100847
crossref_primary_10_1007_s11053_024_10375_9
crossref_primary_10_1007_s11053_019_09509_1
crossref_primary_10_3389_fpls_2022_949598
crossref_primary_10_1016_j_ecoinf_2021_101270
crossref_primary_10_1109_ACCESS_2024_3470869
crossref_primary_10_3233_JIFS_189562
crossref_primary_10_3233_JIFS_189565
crossref_primary_10_1016_j_gsme_2024_09_003
crossref_primary_10_1016_j_swevo_2023_101252
crossref_primary_10_1007_s11053_022_10089_w
crossref_primary_10_1039_D3AN00516J
crossref_primary_10_1016_j_gexplo_2023_107174
crossref_primary_10_2139_ssrn_4790637
crossref_primary_10_1016_j_tsep_2023_102131
crossref_primary_10_3390_s24113601
crossref_primary_10_1007_s42461_023_00826_x
crossref_primary_10_1063_5_0160228
crossref_primary_10_1016_j_mtcomm_2024_109294
crossref_primary_10_3233_JIFS_219047
crossref_primary_10_7759_cureus_52110
crossref_primary_10_3233_JIFS_220274
crossref_primary_10_1016_j_jaerosci_2023_106331
crossref_primary_10_1016_j_measurement_2021_109178
crossref_primary_10_1007_s11053_022_10054_7
crossref_primary_10_1080_15481603_2024_2393489
crossref_primary_10_1080_25765299_2021_1984033
crossref_primary_10_1007_s11053_019_09586_2
crossref_primary_10_4236_jgis_2019_113020
crossref_primary_10_46387_bjesr_1480346
crossref_primary_10_3390_min13111432
crossref_primary_10_1007_s13202_024_01820_9
crossref_primary_10_1016_j_fuel_2024_133018
crossref_primary_10_1016_j_oregeorev_2023_105671
crossref_primary_10_1016_j_gexplo_2025_107755
crossref_primary_10_3390_su14148520
crossref_primary_10_1016_j_cities_2020_103002
crossref_primary_10_1016_j_ssci_2019_104566
crossref_primary_10_1155_2021_6926013
crossref_primary_10_3390_agronomy14122760
crossref_primary_10_1016_j_geoderma_2018_12_020
crossref_primary_10_1016_j_energy_2018_05_146
crossref_primary_10_1007_s11053_023_10227_y
crossref_primary_10_1093_jamia_ocae199
crossref_primary_10_1029_2024JH000311
crossref_primary_10_1016_j_scitotenv_2018_02_204
crossref_primary_10_1109_LGRS_2019_2914934
crossref_primary_10_1016_j_molliq_2024_124768
crossref_primary_10_1016_j_petrol_2022_110271
crossref_primary_10_1016_j_oregeorev_2023_105665
crossref_primary_10_15406_mojes_2024_09_00305
crossref_primary_10_1016_j_oregeorev_2017_05_022
crossref_primary_10_3390_rs15123137
crossref_primary_10_1007_s00521_024_10807_w
crossref_primary_10_1007_s42461_024_00996_2
crossref_primary_10_1007_s11356_023_26872_y
crossref_primary_10_1016_j_eswa_2023_122729
crossref_primary_10_3390_min14101021
crossref_primary_10_1016_j_chemer_2024_126197
crossref_primary_10_1016_j_compbiomed_2021_104493
crossref_primary_10_1051_epjconf_202328004004
crossref_primary_10_1016_j_procs_2024_05_007
crossref_primary_10_1007_s11053_019_09564_8
crossref_primary_10_1007_s11356_021_12643_0
crossref_primary_10_3390_hydrology10040095
crossref_primary_10_1016_j_molliq_2022_118513
crossref_primary_10_21923_jesd_825442
crossref_primary_10_3390_su15129452
crossref_primary_10_1039_D4RA07510B
crossref_primary_10_1016_j_oregeorev_2023_105419
crossref_primary_10_1007_s00170_024_14980_z
crossref_primary_10_1016_j_cej_2024_149661
crossref_primary_10_1016_j_rineng_2023_101585
crossref_primary_10_1016_j_engstruct_2025_119621
crossref_primary_10_3390_land12091789
crossref_primary_10_1016_j_jclepro_2024_144551
crossref_primary_10_1016_j_geogeo_2022_100038
crossref_primary_10_1016_j_gexplo_2024_107478
crossref_primary_10_1016_j_oregeorev_2017_11_013
crossref_primary_10_1177_09544089241304236
crossref_primary_10_1371_journal_pone_0183742
crossref_primary_10_1109_ACCESS_2020_2967841
crossref_primary_10_1016_j_foodchem_2024_139212
crossref_primary_10_1063_5_0264493
crossref_primary_10_29109_gujsc_1555448
crossref_primary_10_1155_2022_5034976
crossref_primary_10_3390_min10121126
crossref_primary_10_3390_rs14225775
crossref_primary_10_1016_j_eswa_2023_120769
crossref_primary_10_3390_jcs5100271
crossref_primary_10_1016_j_oregeorev_2024_105918
crossref_primary_10_1016_j_arabjc_2022_103843
crossref_primary_10_3390_w15132439
crossref_primary_10_1038_s41598_023_40513_x
crossref_primary_10_1007_s11069_018_3246_7
crossref_primary_10_1016_j_watres_2023_120231
crossref_primary_10_1080_22797254_2022_2073916
crossref_primary_10_1016_j_atmosres_2019_104716
crossref_primary_10_1016_j_enbuild_2019_109643
crossref_primary_10_3390_met11111668
crossref_primary_10_1080_17538947_2023_2241432
crossref_primary_10_3390_rs13112160
crossref_primary_10_1016_j_oregeorev_2023_105627
crossref_primary_10_1016_j_rsase_2023_101022
crossref_primary_10_1029_2023JF007351
crossref_primary_10_1142_S0219876221430064
crossref_primary_10_1007_s11769_019_1071_x
crossref_primary_10_1016_j_oregeorev_2023_105860
crossref_primary_10_1155_2021_8873993
crossref_primary_10_1007_s11771_021_4707_9
crossref_primary_10_1016_j_molliq_2023_123353
crossref_primary_10_32628_IJSRST52310213
crossref_primary_10_1007_s11053_022_10143_7
crossref_primary_10_1016_j_ecoinf_2022_101951
crossref_primary_10_1080_17480930_2022_2142425
crossref_primary_10_1007_s12145_025_01843_8
crossref_primary_10_1142_S2382624X24400095
crossref_primary_10_1016_j_rineng_2024_102592
crossref_primary_10_1029_2024EF004417
crossref_primary_10_1016_j_apgeog_2023_103114
crossref_primary_10_1063_5_0228503
crossref_primary_10_1109_ACCESS_2021_3129979
crossref_primary_10_1002_cam4_6512
crossref_primary_10_3390_s19163451
crossref_primary_10_1016_j_chemer_2021_125850
crossref_primary_10_1016_j_pce_2024_103766
crossref_primary_10_1007_s12665_021_09525_6
crossref_primary_10_29137_umagd_1476299
crossref_primary_10_1002_aepp_13446
crossref_primary_10_3390_app13137622
crossref_primary_10_1002_eng2_12090
crossref_primary_10_2139_ssrn_3995054
crossref_primary_10_1007_s00367_020_00669_1
crossref_primary_10_1007_s12008_023_01617_w
crossref_primary_10_3390_f15111937
crossref_primary_10_1016_j_dche_2024_100154
crossref_primary_10_1016_j_jfoodeng_2022_111339
crossref_primary_10_29121_ijetmr_v9_i2_2022_1088
crossref_primary_10_3390_rs9111163
crossref_primary_10_1016_j_procs_2023_01_370
crossref_primary_10_1007_s00500_018_3064_6
crossref_primary_10_1109_ACCESS_2025_3539181
crossref_primary_10_1016_j_procs_2022_03_065
crossref_primary_10_1016_j_catena_2025_108889
crossref_primary_10_1016_j_jece_2025_115634
crossref_primary_10_1016_j_apgeochem_2023_105807
crossref_primary_10_1038_s41598_024_80288_3
crossref_primary_10_1016_j_earscirev_2024_104814
crossref_primary_10_1016_j_eswa_2023_121668
crossref_primary_10_3390_agronomy14071515
crossref_primary_10_3390_rs14030469
crossref_primary_10_1016_j_oregeorev_2022_104712
crossref_primary_10_1016_j_chemosphere_2024_141462
crossref_primary_10_1016_j_heliyon_2024_e41059
crossref_primary_10_1016_j_procs_2022_03_085
crossref_primary_10_1016_j_comnet_2018_10_022
crossref_primary_10_5194_hess_23_4603_2019
crossref_primary_10_1007_s11269_018_2102_6
crossref_primary_10_1016_j_soildyn_2024_108902
crossref_primary_10_1007_s12517_022_10918_5
crossref_primary_10_1002_hyp_15310
crossref_primary_10_1007_s40571_024_00836_6
crossref_primary_10_3390_app9173553
crossref_primary_10_32604_cmes_2024_052830
crossref_primary_10_1007_s11053_017_9335_6
crossref_primary_10_1016_j_watres_2023_119665
crossref_primary_10_3390_rs9090865
crossref_primary_10_1016_j_fmre_2023_03_014
crossref_primary_10_1016_j_mtcomm_2025_112097
crossref_primary_10_3390_toxics11120996
crossref_primary_10_1016_j_agrformet_2023_109592
crossref_primary_10_3390_rs13061054
crossref_primary_10_1155_2021_4774140
crossref_primary_10_35940_ijrte_B8073_13020724
crossref_primary_10_3390_rs15164074
crossref_primary_10_1016_j_isprsjprs_2020_09_015
crossref_primary_10_1016_j_rineng_2024_102780
crossref_primary_10_1016_j_jrmge_2021_06_012
crossref_primary_10_1002_stc_2955
crossref_primary_10_1007_s11053_017_9348_1
crossref_primary_10_1155_2022_4140774
crossref_primary_10_1038_s41467_021_22249_2
crossref_primary_10_3390_min10030233
crossref_primary_10_1016_j_oregeorev_2025_106498
crossref_primary_10_1186_s43020_023_00101_w
crossref_primary_10_1016_j_trgeo_2022_100827
crossref_primary_10_1016_j_oregeorev_2024_106170
crossref_primary_10_1007_s13369_024_09179_z
crossref_primary_10_1016_j_petrol_2018_10_048
crossref_primary_10_1007_s11430_015_5178_3
crossref_primary_10_3390_app131810277
crossref_primary_10_1016_j_scitotenv_2022_158618
crossref_primary_10_1080_10106049_2022_2088859
crossref_primary_10_1177_25726838231225055
crossref_primary_10_1016_j_oregeorev_2022_104765
crossref_primary_10_1080_17538947_2024_2358851
crossref_primary_10_1021_acsaelm_3c00344
crossref_primary_10_1007_s11053_023_10273_6
crossref_primary_10_1007_s43926_024_00088_z
crossref_primary_10_3390_rs16071268
crossref_primary_10_1016_j_apgeochem_2023_105857
crossref_primary_10_17714_gumusfenbil_1268504
crossref_primary_10_1111_1755_6724_14241
crossref_primary_10_1109_MGRS_2015_2496160
crossref_primary_10_1007_s11356_021_13503_7
crossref_primary_10_1590_01047760201723022308
crossref_primary_10_1007_s40808_024_02144_7
crossref_primary_10_3390_app14041515
crossref_primary_10_2174_18741207_v17_e230510_2022_HT28_4371_8
crossref_primary_10_1016_j_biotechadv_2023_108293
crossref_primary_10_1007_s11053_020_09789_y
crossref_primary_10_1371_journal_pone_0240362
crossref_primary_10_1016_j_oregeorev_2021_104010
crossref_primary_10_1016_j_energy_2024_131146
crossref_primary_10_1007_s11482_023_10232_6
crossref_primary_10_1016_j_scs_2020_102430
crossref_primary_10_1021_acs_jpcc_3c06801
crossref_primary_10_1016_j_envres_2023_116290
crossref_primary_10_1016_j_jclepro_2021_129920
crossref_primary_10_1088_1755_1315_1004_1_012010
crossref_primary_10_1007_s11053_021_09872_y
crossref_primary_10_1007_s11270_024_07618_z
crossref_primary_10_1016_j_gsd_2024_101389
crossref_primary_10_1039_D4CP04214J
crossref_primary_10_1016_j_apr_2021_101084
crossref_primary_10_1016_j_gexplo_2018_07_020
crossref_primary_10_1016_j_oregeorev_2018_10_006
crossref_primary_10_1007_s10462_023_10628_8
crossref_primary_10_3390_thermo4010008
crossref_primary_10_1016_j_envpol_2024_124389
crossref_primary_10_1109_JSTARS_2022_3204223
crossref_primary_10_3390_min13050669
crossref_primary_10_1016_j_jag_2019_102006
crossref_primary_10_1007_s40692_021_00201_z
crossref_primary_10_1016_j_jcmds_2023_100081
crossref_primary_10_1016_j_gexplo_2019_106344
crossref_primary_10_1016_j_engappai_2024_109599
crossref_primary_10_1016_j_oregeorev_2015_12_005
crossref_primary_10_1155_2024_5653690
crossref_primary_10_3390_app14041411
crossref_primary_10_1016_j_comnet_2021_108413
crossref_primary_10_1007_s11356_020_10168_6
crossref_primary_10_1016_j_geogeo_2025_100361
crossref_primary_10_1016_j_energy_2024_131365
crossref_primary_10_3390_ijgi8100463
crossref_primary_10_32604_cmc_2021_014873
crossref_primary_10_1016_j_oregeorev_2025_106452
crossref_primary_10_1021_acsomega_2c01466
crossref_primary_10_1155_2021_1676197
crossref_primary_10_1016_j_cageo_2021_104817
crossref_primary_10_1038_s41598_018_29418_2
crossref_primary_10_1016_j_advwatres_2020_103819
crossref_primary_10_1016_j_ultras_2024_107481
crossref_primary_10_1016_j_eswa_2022_118929
crossref_primary_10_1016_j_jaap_2023_105948
crossref_primary_10_1016_j_cscm_2022_e01059
crossref_primary_10_1007_s11004_019_09844_2
crossref_primary_10_1016_j_heliyon_2024_e30981
crossref_primary_10_1029_2022EA002596
crossref_primary_10_1016_j_apr_2020_08_029
crossref_primary_10_1016_j_rsase_2021_100689
crossref_primary_10_1016_j_gsf_2020_03_007
crossref_primary_10_1007_s10812_023_01614_7
crossref_primary_10_1016_j_aej_2021_08_084
crossref_primary_10_1016_j_eti_2022_102794
crossref_primary_10_1007_s43538_023_00157_x
crossref_primary_10_1016_j_asr_2021_08_003
crossref_primary_10_1016_j_cageo_2024_105842
crossref_primary_10_1016_j_agwat_2024_108779
crossref_primary_10_3390_min12111453
crossref_primary_10_3390_rs11161904
crossref_primary_10_1016_j_heliyon_2024_e29772
crossref_primary_10_1016_j_scitotenv_2025_178597
crossref_primary_10_1016_j_engappai_2024_109376
crossref_primary_10_1155_2021_8783899
crossref_primary_10_1016_j_envc_2021_100421
crossref_primary_10_1016_j_ijfatigue_2022_107483
crossref_primary_10_1007_s11053_019_09471_y
crossref_primary_10_1016_j_gexplo_2022_107126
crossref_primary_10_1016_j_oregeorev_2024_106352
crossref_primary_10_1038_s41598_022_25562_y
crossref_primary_10_1016_j_ecoinf_2024_102732
crossref_primary_10_1007_s41939_023_00256_8
crossref_primary_10_1016_j_compstruct_2022_115233
crossref_primary_10_1016_j_scienta_2025_114020
crossref_primary_10_21105_joss_06171
crossref_primary_10_1016_j_conbuildmat_2020_120286
crossref_primary_10_1016_j_jafrearsci_2025_105543
crossref_primary_10_1007_s10706_018_0624_6
crossref_primary_10_1016_j_coal_2022_104046
crossref_primary_10_1016_j_wasman_2019_01_015
crossref_primary_10_1007_s00521_021_05953_4
crossref_primary_10_1177_03611981241257512
crossref_primary_10_1016_j_engfracmech_2024_110756
crossref_primary_10_3390_min14121209
crossref_primary_10_1016_j_cad_2021_103013
crossref_primary_10_3390_atmos13111887
crossref_primary_10_1016_j_coal_2021_103903
crossref_primary_10_1016_j_ultras_2022_106776
crossref_primary_10_1007_s42461_020_00262_1
crossref_primary_10_1016_j_scitotenv_2023_162005
crossref_primary_10_1515_arh_2024_0016
crossref_primary_10_3389_fneur_2020_554633
crossref_primary_10_1016_j_scs_2021_102921
crossref_primary_10_1007_s11004_023_10070_0
crossref_primary_10_1111_gean_12351
crossref_primary_10_3233_ICA_240737
crossref_primary_10_3390_rs11080895
crossref_primary_10_1016_j_csite_2023_103086
crossref_primary_10_1016_j_chemer_2023_126017
crossref_primary_10_1016_j_envpol_2023_121881
crossref_primary_10_1016_j_atmosenv_2024_120700
crossref_primary_10_1016_j_jafrearsci_2024_105482
crossref_primary_10_5753_jisa_2024_4509
crossref_primary_10_1016_j_envsoft_2024_105956
crossref_primary_10_1016_j_conbuildmat_2024_139853
crossref_primary_10_1007_s10980_021_01366_9
crossref_primary_10_1016_j_gexplo_2018_01_019
crossref_primary_10_1007_s11053_017_9355_2
crossref_primary_10_3390_math9212696
crossref_primary_10_1016_j_fbp_2024_01_009
crossref_primary_10_1002_ima_22144
crossref_primary_10_3390_healthcare12131272
crossref_primary_10_1016_j_oregeorev_2021_104063
crossref_primary_10_3390_rs13132555
crossref_primary_10_3390_min15020113
crossref_primary_10_1016_j_oregeorev_2019_04_003
crossref_primary_10_1080_10106049_2022_2152494
crossref_primary_10_1080_27669645_2022_2129132
crossref_primary_10_1007_s41939_023_00314_1
crossref_primary_10_1016_j_oregeorev_2022_105224
crossref_primary_10_1007_s11053_024_10431_4
crossref_primary_10_1016_j_ecolind_2023_110476
crossref_primary_10_1080_08120099_2022_2046636
crossref_primary_10_1080_25726838_2019_1675403
crossref_primary_10_1016_j_fuel_2022_127067
crossref_primary_10_1061__ASCE_WR_1943_5452_0001067
crossref_primary_10_1016_j_asoc_2023_111122
crossref_primary_10_1016_j_ecoinf_2024_102936
crossref_primary_10_1038_s41598_023_43366_6
crossref_primary_10_3390_min13091125
crossref_primary_10_1007_s11356_023_28032_8
crossref_primary_10_1061__ASCE_CO_1943_7862_0001495
crossref_primary_10_1007_s41207_024_00721_x
crossref_primary_10_1016_j_ijbiomac_2024_131784
crossref_primary_10_1016_j_renene_2024_120772
crossref_primary_10_1007_s00366_020_01280_9
crossref_primary_10_3390_jmse12061015
crossref_primary_10_1177_03611981241287538
crossref_primary_10_1007_s11042_023_16085_3
crossref_primary_10_1016_j_jhydrol_2025_132691
crossref_primary_10_3390_ma16083220
crossref_primary_10_1007_s43503_024_00020_y
crossref_primary_10_1016_j_jafrearsci_2022_104662
crossref_primary_10_1016_j_gexplo_2021_106811
crossref_primary_10_3390_rs12142319
crossref_primary_10_1016_j_jhydrol_2023_129951
crossref_primary_10_1016_j_molliq_2023_121517
crossref_primary_10_1080_10934529_2024_2309102
crossref_primary_10_1016_j_apr_2020_05_009
crossref_primary_10_1007_s11004_022_10038_6
crossref_primary_10_1109_ACCESS_2024_3387071
crossref_primary_10_1016_j_oregeorev_2022_105242
crossref_primary_10_1016_j_jenvman_2023_119196
crossref_primary_10_5194_bg_13_3305_2016
crossref_primary_10_1007_s10661_022_10530_w
crossref_primary_10_1016_j_saa_2022_121556
crossref_primary_10_1080_17499518_2019_1674340
crossref_primary_10_3390_min13020189
crossref_primary_10_3390_app14104005
crossref_primary_10_1016_j_aeue_2023_155018
crossref_primary_10_1007_s11442_024_2235_x
crossref_primary_10_1016_j_gsf_2020_05_016
crossref_primary_10_1007_s12145_025_01718_y
crossref_primary_10_1016_j_biortech_2022_128454
crossref_primary_10_1080_15481603_2020_1848323
crossref_primary_10_1016_j_ijfatigue_2020_105941
crossref_primary_10_1016_j_asr_2022_12_028
crossref_primary_10_1016_j_undsp_2019_12_002
crossref_primary_10_1016_j_ecoinf_2024_102923
crossref_primary_10_1080_10106049_2021_1920632
crossref_primary_10_1007_s12517_022_10165_8
crossref_primary_10_1029_2018WR023939
crossref_primary_10_1111_exsy_12925
crossref_primary_10_1109_JIOT_2024_3459874
crossref_primary_10_1016_j_jenvman_2022_116663
crossref_primary_10_6339_21_JDS1025
crossref_primary_10_1016_j_birob_2023_100114
crossref_primary_10_1016_j_chemosphere_2025_144178
crossref_primary_10_3390_ma15062128
crossref_primary_10_1016_j_cageo_2021_104688
crossref_primary_10_1016_j_oregeorev_2023_105381
crossref_primary_10_1039_D3EA00159H
crossref_primary_10_1016_j_ecolind_2021_107948
crossref_primary_10_1371_journal_pone_0309242
crossref_primary_10_3390_f11080830
crossref_primary_10_3390_land13121995
crossref_primary_10_3390_app15010113
crossref_primary_10_1016_j_jenvman_2020_110956
crossref_primary_10_3390_en14144079
crossref_primary_10_1007_s12583_020_1365_z
crossref_primary_10_61186_jgst_14_2_1
crossref_primary_10_1007_s13563_019_00206_2
crossref_primary_10_1016_j_energy_2022_125594
crossref_primary_10_1016_j_asoc_2023_111183
crossref_primary_10_1016_j_conbuildmat_2023_132789
crossref_primary_10_1039_D2EA00077F
crossref_primary_10_3233_JIFS_189532
crossref_primary_10_3390_rs14071754
crossref_primary_10_3390_en17051001
crossref_primary_10_1029_2024TC008362
crossref_primary_10_1016_j_fbp_2023_06_010
crossref_primary_10_1016_j_cscee_2024_100668
crossref_primary_10_1007_s00704_024_05327_5
crossref_primary_10_3390_ma17164038
crossref_primary_10_1016_j_eswa_2022_119411
crossref_primary_10_1016_j_ecolind_2018_01_049
crossref_primary_10_1016_j_gexplo_2024_107543
crossref_primary_10_1007_s11801_022_1115_9
crossref_primary_10_3390_w17030312
crossref_primary_10_1080_01431161_2023_2255350
crossref_primary_10_3233_JIFS_189540
crossref_primary_10_1016_j_jclepro_2023_138656
crossref_primary_10_1186_s40490_017_0108_0
crossref_primary_10_1007_s12665_020_08944_1
crossref_primary_10_1109_ACCESS_2024_3370442
crossref_primary_10_1155_2022_4131058
crossref_primary_10_1016_j_csite_2023_102845
crossref_primary_10_1007_s10653_023_01488_w
crossref_primary_10_1007_s11004_021_09989_z
crossref_primary_10_3390_macromol3010007
crossref_primary_10_3233_JIFS_189557
crossref_primary_10_3233_JIFS_189798
Cites_doi 10.1080/014311697218700
10.1080/01431160802282854
10.1080/01431168908903888
10.1023/A:1025171803637
10.1016/j.rse.2004.05.002
10.14358/PERS.69.7.793
10.2113/gsecongeo.90.4.795
10.1016/S0034-4257(03)00132-9
10.14358/PERS.77.1.27
10.1016/j.jhydrol.2013.02.019
10.1016/j.jhydrol.2012.01.039
10.1016/j.cageo.2011.11.009
10.1016/j.rse.2008.03.017
10.1109/TGRS.2006.880628
10.1046/j.1440-0952.2000.00807.x
10.1016/j.oregeorev.2010.03.009
10.1016/j.isprsjprs.2010.08.007
10.1007/s12665-009-0174-6
10.1023/A:1010933404324
10.1080/17538947.2012.748848
10.1016/j.cageo.2008.05.003
10.1007/s00254-008-1550-3
10.1007/s11053-005-4674-0
10.1016/j.rse.2008.05.011
10.1007/s11004-008-9181-5
10.1016/j.isprsjprs.2011.11.002
10.1016/j.jag.2008.02.008
10.1016/j.patrec.2005.08.011
10.1016/j.ecolmodel.2011.02.007
10.1038/323533a0
10.1016/S0031-3203(96)00142-2
10.1016/j.cageo.2010.03.022
10.1023/B:NARR.0000007804.27450.e8
10.1109/36.3001
10.1016/S0034-4257(97)00049-7
10.1016/j.jag.2012.07.012
10.1016/j.cageo.2008.09.001
10.1016/S0012-821X(03)00632-0
10.1007/BF00058655
10.1130/0091-7613(1989)017<0430:NECITW>2.3.CO;2
10.5751/ES-04822-170225
10.1080/01431160110104656
10.1080/01431160701352154
10.1109/TGRS.2011.2161585
10.1007/s11053-010-9112-2
10.1016/j.jaridenv.2010.02.001
10.1080/01431160412331269698
10.1080/0143116021000031791
10.2747/1548-1603.49.5.623
10.1016/j.ecolmodel.2007.05.011
10.1007/BF00994018
10.1016/j.oregeorev.2012.05.004
10.1007/s002540050271
10.1016/j.jhydrol.2010.04.005
10.1016/j.oregeorev.2010.04.002
10.1080/01431169608949069
10.1016/j.jhydrol.2011.12.016
10.1016/j.isprsjprs.2009.01.003
10.1007/BF00116837
10.2113/gsecongeo.82.1.1
10.1007/BF00205247
10.1007/BF02068587
10.1016/j.cageo.2010.09.014
10.1016/j.cageo.2011.12.014
10.1016/j.jhydrol.2012.02.031
10.1016/j.rse.2011.12.003
10.1080/13658816.2014.885527
10.14358/PERS.74.10.1201
10.1016/j.gexplo.2008.03.001
10.1016/j.talanta.2009.06.075
10.1144/jgs.157.1.75
10.1080/014311697218764
10.1016/j.jag.2005.07.001
10.1016/j.rse.2008.02.011
10.1111/j.1365-2478.2008.00779.x
10.1080/01431169608949009
ContentType Journal Article
Copyright 2015 Elsevier B.V.
Copyright_xml – notice: 2015 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.oregeorev.2015.01.001
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Engineering
EISSN 1872-7360
EndPage 818
ExternalDocumentID 10_1016_j_oregeorev_2015_01_001
S0169136815000037
GroupedDBID --K
--M
.~1
0R~
0SF
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
5VS
6OB
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HMA
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SSE
SSZ
T5K
WUQ
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-a474t-fdf517f566beaa8bc5c3aead370a76ccfddfdc5a6e581618c26863a151f5e50e3
IEDL.DBID .~1
ISSN 0169-1368
IngestDate Tue Jul 01 04:05:20 EDT 2025
Thu Apr 24 22:55:16 EDT 2025
Fri Feb 23 02:35:48 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Mineral potential
Mineral prospectivity mapping
Data-driven modelling
Hyperion
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a474t-fdf517f566beaa8bc5c3aead370a76ccfddfdc5a6e581618c26863a151f5e50e3
ORCID 0000-0002-5422-8305
PageCount 15
ParticipantIDs crossref_citationtrail_10_1016_j_oregeorev_2015_01_001
crossref_primary_10_1016_j_oregeorev_2015_01_001
elsevier_sciencedirect_doi_10_1016_j_oregeorev_2015_01_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-12-01
PublicationDateYYYYMMDD 2015-12-01
PublicationDate_xml – month: 12
  year: 2015
  text: 2015-12-01
  day: 01
PublicationDecade 2010
PublicationTitle Ore geology reviews
PublicationYear 2015
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Pal (bb0385) 2005; 26
Lewkowski, Porwal, González-Álvarez (bb0340) 2010
Zeck, Maluski, Kristensen (bb0545) 2000; 157
Moon, Evans (bb0370) 2006
Guo, Chehata, Mallet, Boukir (bb0290) 2011; 66
Bradley (bb0110) 1997; 30
Zimmermann, Francke, Elsenbeer (bb0555) 2012; 428–429
Abedi, Norouzi, Bahroudi (bb0010) 2012; 46
Cox, Singer (bb0195) 1986
Zuo, Carranza (bb0560) 2011; 37
Ferrier, Rumsby, Pope (bb0245) 2007
Mingers (bb0365) 1989; 3
Guyon, Elisseeff (bb0295) 2003; 3
Rumelhart, Hinton, Williams (bb0475) 1986; 323
Bedini, van der Meer, van Ruitenbeek (bb0065) 2009; 30
Wessels, De Fries, Dempewolf, Anderson, Hansen, Powell, Moran (bb0535) 2004; 92
Bedini, van der Meer, van Ruitenbeek (bb0060) 2008; 30
Porwal, Yu, Gessner (bb0425) 2010
Chung (bb0180) 1977
Ferrier, Hudson-Edwards, Pope (bb0240) 2009; 100
Doblas, Oyarzun (bb0220) 1989; 17
Bagur, Morales, López-Chicano (bb0040) 2009; 80
Vincenzi, Zucchetta, Franzoi, Pellizzato, Pranovi, De Leo, Torricelli (bb0520) 2011; 222
Flores, Rubio (bb0255) 2010; 60
Quinlan (bb0430) 1993
Chan, Paelinckx (bb0155) 2008; 112
Bergstra, Bengio (bb0075) 2012; 13
Beck (bb0055) 2003
Boser, Guyon, Vapnik (bb0105) 1992
Rigol, Chica-Olmo (bb0440) 1998; 34
Gislason, Benediktsson, Sveinsson (bb0280) 2006; 27
Debba, Carranza, Stein, Meer (bb0210) 2009; 41
Vapnik (bb0565) 2000
Chica-Olmo, Abarca, Rigol (bb0170) 2002; 23
RSI, 2007. FLAASH Module User's Guide, ITT Visual Information Solutions.
Chen, Jang, Peng (bb0165) 2013; 486
Arribas, Cunningham, Rytuba, Rye, Kelly, Podwysocki, McKee, Tosdal (bb0025) 1995; 90
Singer, Kouda (bb0495) 1996; 28
Abedi, Norouzi, Fathianpour (bb0005) 2013; 21
Duggen, Hoernle, van den Bogaard, Harris (bb0225) 2004; 218
Agterberg, Bonham-Carter (bb0015) 2005; 14
Oh, Lee (bb0375) 2010; 19
Wang, Waske, Benediktsson (bb0525) 2009; vols. 1–5
Herrera, Torgo, Izquierdo, Pérez-García (bb0320) 2010; 387
Vapnik, Lerner (bb0510) 1963; 24
Zhao, Liu, Xia, Zhang, Yu, Eamus (bb0550) 2012; 420–421
Fallon, Porwal, Guj (bb0235) 2010; 38
Sawatzky, Raines, Bonham-Carter, Looney (bb0490) 2010
Lippitt, Rogan, Li, Eastman, Jones (bb0345) 2008; 74
Crosta, Moore (bb0200) 1989; 10
Chung (bb0185) 1978
van der Meer (bb0500) 2006; 8
Pereira Leite, de Souza Filho (bb0395) 2009; 57
Bater, Coops (bb0045) 2009; 35
Yang (bb0540) 2011; 77
Boardman, Kruse, Green (bb0090) 1995
Rodriguez-Galiano, Chica-Olmo, Abarca-Hernandez, Atkinson, Jeganathan (bb0445) 2012; 121
Rodriguez-Galiano, Ghimire, Rogan, Chica-Olmo, Rigol-Sánchez (bb0460) 2012; 67
Avantra Geosystems (bb0035) 2006
Sawatzky, Raines, Bonham-Carter, Looney (bb0485) 2009
Brown, Gedeon, Groves, Barnes (bb0135) 2000; 47
Demoustier, Charlet, Castroviejo (bb0215) 1999; 328
Chen, Dai, Liu, He (bb0160) 2011
Ferrier, Wadge (bb0250) 1996; 17
Choe, van der Meer, van Ruitenbeek, van der Werff, de Smeth, Kim (bb0175) 2008; 112
Breiman, Friedman, Stone, Olshen (bb0130) 1984
Mejía-Herrera, Royer, Caumon, Cheilletz (bb0360) 2014
Rodriguez-Galiano, Chica-Rivas (bb0455) 2012; 7
Bonham-Carter (bb0095) 1994
Pereira Leite, de Souza Filho (bb0400) 2009; 35
Ghimire, Rogan, Galiano, Panday, Neeti (bb0275) 2012; 49
Carranza (bb0145) 2011; 37
Bellman (bb0070) 2003
Porwal, Carranza, Hale (bb0415) 2003; 12
Escribano, Palacios-Orueta, Oyonarte, Chabrillat (bb0230) 2010; 74
Mas, Flores (bb0355) 2008; 29
Berk, Adler-Golden (bb0080) 2002
Rogan, Miller, Stow, Franklin, Levien, Fischer (bb0465) 2003; 69
Carranza, van Ruitenbeek, Hecker, van der Meijde, van der Meer (bb0150) 2008; 10
López Ruiz, Rodríguez-Badiola (bb0350) 1980; 36
Pal, Mather (bb0390) 2003; 86
Joly, Porwal, McCuaig (bb0325) 2012; 48
Harris, Zurcher, Stanley, Marlow, Pan (bb0305) 2003; 12
Foody, Arora (bb0260) 1997; 18
Breiman (bb0115) 1984
Oyarzun, Cubas, Higueras, Lillo, Llanos (bb0380) 2009; 58
Friedl, Brodley (bb0265) 1997; 61
Hansen, Dubayah, Defries (bb0300) 1996; 17
Breiman (bb0125) 2001; 45
Heald, Foley, Hayba (bb0315) 1987; 82
Hastie, Tibshirani, Friedman (bb0310) 2009
Peters, De Baets, Verhoest, Samson, Degroeve, De Becker, Huybrechts (bb0405) 2007; 207
Davis, Robinson (bb0205) 2012; 17
Porwal, González-Álvarez, Markwitz, McCuaig, Mamuse (bb0420) 2010; 38
Atkinson, Tatnall (bb0030) 1997; 18
Carranza (bb0140) 2008
Vapnik, Chervonenkis (bb0505) 1964; 25
Green, Berman, Switzer, Craig (bb0285) 1988; 26
Cortes, Vapnik (bb0190) 1995; 20
Rodriguez-Galiano, Chica-Olmo, Chica-Rivas (bb0450) 2014; 28
Boardman, Kruse (bb0085) 2011; 49
Kemp, Bonham-Carter, Raines (bb0330) 1999
Al-Anazi, Gates (bb0020) 2010; 36
Booker, Snelder (bb0100) 2012; 434–435
Breiman (bb0120) 1996; 24
García, Oyonarte, Villagarcía, Contreras, Domingo, Puigdefábregas (bb0270) 2008; 112
Piccini, Marchetti, Farina, Francaviglia (bb0410) 2012; 6
Bazi, Melgani (bb0050) 2006; 44
Rytuba, Arribas, Cunningham, McKee, Podwysocki, Smith, Kelly, Arribas (bb0480) 1990; 25
Waske, Braun (bb0530) 2009; 64
Rigol-Sanchez, Chica-Olmo, Abarca-Hernandez (bb0435) 2003; 24
Kruse, Boardman, Huntington, Mason, Quigley (bb0335) 2002
Demoustier (10.1016/j.oregeorev.2015.01.001_bb0215) 1999; 328
Zuo (10.1016/j.oregeorev.2015.01.001_bb0560) 2011; 37
Avantra Geosystems (10.1016/j.oregeorev.2015.01.001_bb0035) 2006
Bazi (10.1016/j.oregeorev.2015.01.001_bb0050) 2006; 44
Chica-Olmo (10.1016/j.oregeorev.2015.01.001_bb0170) 2002; 23
Pereira Leite (10.1016/j.oregeorev.2015.01.001_bb0400) 2009; 35
Al-Anazi (10.1016/j.oregeorev.2015.01.001_bb0020) 2010; 36
Mingers (10.1016/j.oregeorev.2015.01.001_bb0365) 1989; 3
Agterberg (10.1016/j.oregeorev.2015.01.001_bb0015) 2005; 14
Lippitt (10.1016/j.oregeorev.2015.01.001_bb0345) 2008; 74
Gislason (10.1016/j.oregeorev.2015.01.001_bb0280) 2006; 27
Rodriguez-Galiano (10.1016/j.oregeorev.2015.01.001_bb0450) 2014; 28
Bonham-Carter (10.1016/j.oregeorev.2015.01.001_bb0095) 1994
Singer (10.1016/j.oregeorev.2015.01.001_bb0495) 1996; 28
Bagur (10.1016/j.oregeorev.2015.01.001_bb0040) 2009; 80
Porwal (10.1016/j.oregeorev.2015.01.001_bb0425) 2010
Boardman (10.1016/j.oregeorev.2015.01.001_bb0085) 2011; 49
Rodriguez-Galiano (10.1016/j.oregeorev.2015.01.001_bb0455) 2012; 7
Bergstra (10.1016/j.oregeorev.2015.01.001_bb0075) 2012; 13
Carranza (10.1016/j.oregeorev.2015.01.001_bb0145) 2011; 37
Zeck (10.1016/j.oregeorev.2015.01.001_bb0545) 2000; 157
Duggen (10.1016/j.oregeorev.2015.01.001_bb0225) 2004; 218
Chung (10.1016/j.oregeorev.2015.01.001_bb0185) 1978
Boardman (10.1016/j.oregeorev.2015.01.001_bb0090) 1995
Ghimire (10.1016/j.oregeorev.2015.01.001_bb0275) 2012; 49
Vincenzi (10.1016/j.oregeorev.2015.01.001_bb0520) 2011; 222
Pal (10.1016/j.oregeorev.2015.01.001_bb0390) 2003; 86
Rigol-Sanchez (10.1016/j.oregeorev.2015.01.001_bb0435) 2003; 24
Guyon (10.1016/j.oregeorev.2015.01.001_bb0295) 2003; 3
García (10.1016/j.oregeorev.2015.01.001_bb0270) 2008; 112
Herrera (10.1016/j.oregeorev.2015.01.001_bb0320) 2010; 387
Harris (10.1016/j.oregeorev.2015.01.001_bb0305) 2003; 12
Carranza (10.1016/j.oregeorev.2015.01.001_bb0140) 2008
Friedl (10.1016/j.oregeorev.2015.01.001_bb0265) 1997; 61
Chan (10.1016/j.oregeorev.2015.01.001_bb0155) 2008; 112
Brown (10.1016/j.oregeorev.2015.01.001_bb0135) 2000; 47
Berk (10.1016/j.oregeorev.2015.01.001_bb0080) 2002
Breiman (10.1016/j.oregeorev.2015.01.001_bb0130) 1984
Pereira Leite (10.1016/j.oregeorev.2015.01.001_bb0395) 2009; 57
Fallon (10.1016/j.oregeorev.2015.01.001_bb0235) 2010; 38
Kemp (10.1016/j.oregeorev.2015.01.001_bb0330) 1999
Mejía-Herrera (10.1016/j.oregeorev.2015.01.001_bb0360) 2014
Carranza (10.1016/j.oregeorev.2015.01.001_bb0150) 2008; 10
Arribas (10.1016/j.oregeorev.2015.01.001_bb0025) 1995; 90
Rytuba (10.1016/j.oregeorev.2015.01.001_bb0480) 1990; 25
Ferrier (10.1016/j.oregeorev.2015.01.001_bb0245) 2007
Zhao (10.1016/j.oregeorev.2015.01.001_bb0550) 2012; 420–421
Zimmermann (10.1016/j.oregeorev.2015.01.001_bb0555) 2012; 428–429
Vapnik (10.1016/j.oregeorev.2015.01.001_bb0510) 1963; 24
Breiman (10.1016/j.oregeorev.2015.01.001_bb0125) 2001; 45
Oh (10.1016/j.oregeorev.2015.01.001_bb0375) 2010; 19
Chen (10.1016/j.oregeorev.2015.01.001_bb0160) 2011
Bellman (10.1016/j.oregeorev.2015.01.001_bb0070) 2003
Breiman (10.1016/j.oregeorev.2015.01.001_bb0120) 1996; 24
Bradley (10.1016/j.oregeorev.2015.01.001_bb0110) 1997; 30
Bedini (10.1016/j.oregeorev.2015.01.001_bb0065) 2009; 30
Heald (10.1016/j.oregeorev.2015.01.001_bb0315) 1987; 82
Rumelhart (10.1016/j.oregeorev.2015.01.001_bb0475) 1986; 323
Wang (10.1016/j.oregeorev.2015.01.001_bb0525) 2009; vols. 1–5
Ferrier (10.1016/j.oregeorev.2015.01.001_bb0250) 1996; 17
Kruse (10.1016/j.oregeorev.2015.01.001_bb0335) 2002
Quinlan (10.1016/j.oregeorev.2015.01.001_bb0430) 1993
Wessels (10.1016/j.oregeorev.2015.01.001_bb0535) 2004; 92
Mas (10.1016/j.oregeorev.2015.01.001_bb0355) 2008; 29
Pal (10.1016/j.oregeorev.2015.01.001_bb0385) 2005; 26
Abedi (10.1016/j.oregeorev.2015.01.001_bb0010) 2012; 46
Flores (10.1016/j.oregeorev.2015.01.001_bb0255) 2010; 60
Vapnik (10.1016/j.oregeorev.2015.01.001_bb0505) 1964; 25
van der Meer (10.1016/j.oregeorev.2015.01.001_bb0500) 2006; 8
Hastie (10.1016/j.oregeorev.2015.01.001_bb0310) 2009
Oyarzun (10.1016/j.oregeorev.2015.01.001_bb0380) 2009; 58
Choe (10.1016/j.oregeorev.2015.01.001_bb0175) 2008; 112
Davis (10.1016/j.oregeorev.2015.01.001_bb0205) 2012; 17
Bedini (10.1016/j.oregeorev.2015.01.001_bb0060) 2008; 30
Escribano (10.1016/j.oregeorev.2015.01.001_bb0230) 2010; 74
Ferrier (10.1016/j.oregeorev.2015.01.001_bb0240) 2009; 100
Breiman (10.1016/j.oregeorev.2015.01.001_bb0115) 1984
Yang (10.1016/j.oregeorev.2015.01.001_bb0540) 2011; 77
Boser (10.1016/j.oregeorev.2015.01.001_bb0105) 1992
Porwal (10.1016/j.oregeorev.2015.01.001_bb0415) 2003; 12
Rodriguez-Galiano (10.1016/j.oregeorev.2015.01.001_bb0460) 2012; 67
Cox (10.1016/j.oregeorev.2015.01.001_bb0195) 1986
Joly (10.1016/j.oregeorev.2015.01.001_bb0325) 2012; 48
Rogan (10.1016/j.oregeorev.2015.01.001_bb0465) 2003; 69
Vapnik (10.1016/j.oregeorev.2015.01.001_bb0565) 2000
Beck (10.1016/j.oregeorev.2015.01.001_bb0055) 2003
López Ruiz (10.1016/j.oregeorev.2015.01.001_bb0350) 1980; 36
Lewkowski (10.1016/j.oregeorev.2015.01.001_bb0340) 2010
Waske (10.1016/j.oregeorev.2015.01.001_bb0530) 2009; 64
Chen (10.1016/j.oregeorev.2015.01.001_bb0165) 2013; 486
Sawatzky (10.1016/j.oregeorev.2015.01.001_bb0485) 2009
Booker (10.1016/j.oregeorev.2015.01.001_bb0100) 2012; 434–435
Guo (10.1016/j.oregeorev.2015.01.001_bb0290) 2011; 66
Crosta (10.1016/j.oregeorev.2015.01.001_bb0200) 1989; 10
Abedi (10.1016/j.oregeorev.2015.01.001_bb0005) 2013; 21
Cortes (10.1016/j.oregeorev.2015.01.001_bb0190) 1995; 20
Bater (10.1016/j.oregeorev.2015.01.001_bb0045) 2009; 35
Green (10.1016/j.oregeorev.2015.01.001_bb0285) 1988; 26
Hansen (10.1016/j.oregeorev.2015.01.001_bb0300) 1996; 17
Rigol (10.1016/j.oregeorev.2015.01.001_bb0440) 1998; 34
Porwal (10.1016/j.oregeorev.2015.01.001_bb0420) 2010; 38
10.1016/j.oregeorev.2015.01.001_bb0470
Sawatzky (10.1016/j.oregeorev.2015.01.001_bb0490) 2010
Foody (10.1016/j.oregeorev.2015.01.001_bb0260) 1997; 18
Piccini (10.1016/j.oregeorev.2015.01.001_bb0410) 2012; 6
Rodriguez-Galiano (10.1016/j.oregeorev.2015.01.001_bb0445) 2012; 121
Debba (10.1016/j.oregeorev.2015.01.001_bb0210) 2009; 41
Doblas (10.1016/j.oregeorev.2015.01.001_bb0220) 1989; 17
Peters (10.1016/j.oregeorev.2015.01.001_bb0405) 2007; 207
Moon (10.1016/j.oregeorev.2015.01.001_bb0370) 2006
Chung (10.1016/j.oregeorev.2015.01.001_bb0180) 1977
Atkinson (10.1016/j.oregeorev.2015.01.001_bb0030) 1997; 18
References_xml – volume: 13
  start-page: 281
  year: 2012
  end-page: 305
  ident: bb0075
  article-title: Random search for hyper-parameter optimization
  publication-title: J. Mach. Learn. Res.
– volume: 90
  start-page: 795
  year: 1995
  end-page: 822
  ident: bb0025
  article-title: Geology, geochronology, fluid inclusions, and isotope geochemistry of the Rodalquilar gold alunite deposit, Spain
  publication-title: Econ. Geol.
– volume: 420–421
  start-page: 292
  year: 2012
  end-page: 300
  ident: bb0550
  article-title: Recognition of key regions for restoration of phytoplankton communities in the Huai River basin, China
  publication-title: J. Hydrol.
– volume: 18
  start-page: 699
  year: 1997
  end-page: 709
  ident: bb0030
  article-title: Introduction neural networks in remote sensing
  publication-title: Int. J. Remote Sens.
– year: 1993
  ident: bb0430
  article-title: C4.5 Programs for Machine Learning
– volume: 17
  year: 2012
  ident: bb0205
  article-title: A geographic model to assess and limit cumulative ecological degradation from marcellus shale exploitation in New York, USA
  publication-title: Ecol. Soc.
– volume: 8
  start-page: 61
  year: 2006
  end-page: 72
  ident: bb0500
  article-title: Indicator kriging applied to absorption band analysis in hyperspectral imagery: a case study from the Rodalquilar epithermal gold mining area, SE Spain
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 37
  start-page: 1967
  year: 2011
  end-page: 1975
  ident: bb0560
  article-title: Support vector machine: a tool for mapping mineral prospectivity
  publication-title: Comput. Geosci.
– volume: 387
  start-page: 141
  year: 2010
  end-page: 150
  ident: bb0320
  article-title: Predictive models for forecasting hourly urban water demand
  publication-title: J. Hydrol.
– volume: 86
  start-page: 554
  year: 2003
  end-page: 565
  ident: bb0390
  article-title: An assessment of the effectiveness of decision tree methods for land cover classification
  publication-title: Remote Sens. Environ.
– volume: 61
  start-page: 399
  year: 1997
  end-page: 409
  ident: bb0265
  article-title: Decision tree classification of land cover from remotely sensed data
  publication-title: Remote Sens. Environ.
– volume: 434–435
  start-page: 78
  year: 2012
  end-page: 94
  ident: bb0100
  article-title: Comparing methods for estimating flow duration curves at ungauged sites
  publication-title: J. Hydrol.
– volume: 38
  start-page: 184
  year: 2010
  end-page: 196
  ident: bb0420
  article-title: Weights-of-evidence and logistic regression modeling of magmatic nickel sulfide prospectivity in the Yilgarn Craton, Western Australia
  publication-title: Ore Geol. Rev.
– volume: 18
  start-page: 799
  year: 1997
  end-page: 810
  ident: bb0260
  article-title: An evaluation of some factors affecting the accuracy of classification by an artificial neural network
  publication-title: Int. J. Remote Sens.
– start-page: 101
  year: 2009
  end-page: 137
  ident: bb0310
  article-title: Linear methods for classification
  publication-title: The Elements of Statistical Learning
– year: 1999
  ident: bb0330
  article-title: Arc-WofE: Arcview Extension for Weights of Evidence Mapping
– start-page: 3
  year: 2006
  end-page: 18
  ident: bb0370
  article-title: Ore, mineral economics and mineral exploration
  publication-title: Introduction to Mineral Exploration
– volume: 48
  start-page: 349
  year: 2012
  end-page: 383
  ident: bb0325
  article-title: Exploration targeting for orogenic gold deposits in the Granites–Tanami Orogen: mineral system analysis, targeting model and prospectivity analysis
  publication-title: Ore Geol. Rev.
– volume: 24
  start-page: 774
  year: 1963
  end-page: 780
  ident: bb0510
  article-title: Pattern recognition using generalized portrait method
  publication-title: Autom. Remote Control
– volume: 323
  start-page: 533
  year: 1986
  end-page: 536
  ident: bb0475
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
– volume: 74
  start-page: 1201
  year: 2008
  end-page: 1211
  ident: bb0345
  article-title: Mapping selective logging in mixed deciduous forest: a comparison of machine learning algorithms
  publication-title: Photogramm. Eng. Remote Sens.
– volume: 328
  start-page: 521
  year: 1999
  end-page: 528
  ident: bb0215
  article-title: Characterization of epithermal quartz veins from the volcanic area of Cabo de Gata (Almeria Province, southeastern Spain) by low-temperature thermoluminescence; relation with petrographic textures and fluid inclusions
– reference: RSI, 2007. FLAASH Module User's Guide, ITT Visual Information Solutions.
– volume: 100
  start-page: 11
  year: 2009
  end-page: 19
  ident: bb0240
  article-title: Characterisation of the environmental impact of the Rodalquilar mine, Spain by ground-based reflectance spectroscopy
  publication-title: J. Geochem. Explor.
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: bb0190
  article-title: Support-vector networks
  publication-title: Mach. Learn.
– year: 2010
  ident: bb0490
  article-title: Spatial Data Modeller (SDM)
– volume: 112
  start-page: 3222
  year: 2008
  end-page: 3233
  ident: bb0175
  article-title: Mapping of heavy metal pollution in stream sediments using combined geochemistry, field spectroscopy, and hyperspectral remote sensing: a case study of the Rodalquilar mining area, SE Spain
  publication-title: Remote Sens. Environ.
– volume: 49
  start-page: 623
  year: 2012
  end-page: 643
  ident: bb0275
  article-title: An evaluation of bagging, boosting, and random forests for land-cover classification in Cape Cod, Massachusetts, USA
  publication-title: GISci. Remote Sens.
– year: 2000
  ident: bb0565
  article-title: The Nature of Statistical Learning Theory
– volume: 19
  start-page: 103
  year: 2010
  end-page: 124
  ident: bb0375
  article-title: Application of artificial neural network for gold-silver deposits potential mapping: a case study of Korea
  publication-title: Nat. Resour. Res.
– volume: 49
  start-page: 4138
  year: 2011
  end-page: 4152
  ident: bb0085
  article-title: Analysis of imaging spectrometer data using N-dimensional geometry and a mixture-tuned matched filtering approach
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 12
  start-page: 241
  year: 2003
  end-page: 255
  ident: bb0305
  article-title: A comparative analysis of favorability mappings by weights of evidence, probabilistic neural networks, discriminant analysis, and logistic regression
  publication-title: Nat. Resour. Res.
– volume: 17
  start-page: 430
  year: 1989
  end-page: 433
  ident: bb0220
  article-title: Neogene extensional collapse in the western Mediterranean (Betic-rif Alpine orogenic belt) — implications for the genesis of the Gibraltar arc and magmatic activity
  publication-title: Geology
– volume: 30
  start-page: 327
  year: 2008
  end-page: 348
  ident: bb0060
  article-title: Use of HyMap imaging spectrometer data to map mineralogy in the Rodalquilar caldera, southeast Spain
  publication-title: Int. J. Remote Sens.
– volume: 222
  start-page: 1471
  year: 2011
  end-page: 1478
  ident: bb0520
  article-title: Application of a random forest algorithm to predict spatial distribution of the potential yield of
  publication-title: Ecol. Model.
– volume: 66
  start-page: 56
  year: 2011
  end-page: 66
  ident: bb0290
  article-title: Relevance of airborne lidar and multispectral image data for urban scene classification using random forests
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 60
  start-page: 121
  year: 2010
  end-page: 138
  ident: bb0255
  article-title: Arsenic and metal mobility from Au mine tailings in Rodalquilar (Almería, SE Spain)
  publication-title: Environ. Earth Sci.
– volume: 12
  start-page: 155
  year: 2003
  end-page: 171
  ident: bb0415
  article-title: Artificial neural networks for mineral-potential mapping: a case study from Aravalli Province, Western India
  publication-title: Nat. Resour. Res.
– start-page: 107
  year: 2007
  end-page: 116
  ident: bb0245
  article-title: Application of Hyperspectral Remote Sensing Data in the Monitoring of the Environmental Impact of Hazardous Waste Derived From Abandoned Mine Sites
– volume: 6
  start-page: 853
  year: 2012
  end-page: 862
  ident: bb0410
  article-title: Application of indicator kriging to evaluate the probability of exceeding nitrate contamination thresholds
  publication-title: Int. J. Environ. Res.
– volume: 58
  start-page: 761
  year: 2009
  end-page: 777
  ident: bb0380
  article-title: Environmental assessment of the arsenic-rich, Rodalquilar gold–(copper–lead–zinc) mining district, SE Spain: data from soils and vegetation
  publication-title: Environ. Geol.
– volume: 157
  start-page: 75
  year: 2000
  end-page: 81
  ident: bb0545
  article-title: Revised geochronology of the Neogene calc-alkaline volcanic suite in Sierra de Gata, Alboran volcanic province, SE Spain
  publication-title: J. Geol. Soc.
– volume: 23
  start-page: 4801
  year: 2002
  end-page: 4814
  ident: bb0170
  article-title: Development of a decision support system based on remote sensing and GIS techniques for gold-rich area identification in SE Spain
  publication-title: Int. J. Remote Sens.
– volume: 112
  start-page: 3720
  year: 2008
  end-page: 3736
  ident: bb0270
  article-title: Monitoring land degradation risk using ASTER data: the non-evaporative fraction as an indicator of ecosystem function
  publication-title: Remote Sens. Environ.
– start-page: 15171
  year: 2010
  ident: bb0425
  article-title: SVM-based base-metal prospectivity modeling of the Aravalli Orogen, northwestern India
  publication-title: EGU General Assembly, Vienna, Austria
– volume: 3
  start-page: 319
  year: 1989
  end-page: 342
  ident: bb0365
  article-title: An empirical comparison of selection measures for decision-tree induction
  publication-title: Mach. Learn.
– volume: 30
  start-page: 327
  year: 2009
  end-page: 348
  ident: bb0065
  article-title: Use of HyMap imaging spectrometer data to map mineralogy in the Rodalquilar caldera, southeast Spain
  publication-title: Int. J. Remote Sens.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bb0125
  article-title: Random forests
  publication-title: Mach. Learn.
– start-page: 1
  year: 2014
  end-page: 16
  ident: bb0360
  article-title: Curvature attribute from surface-restoration as predictor variable in Kupferschiefer copper potentials
  publication-title: Nat. Resour. Res.
– volume: 10
  start-page: 374
  year: 2008
  end-page: 387
  ident: bb0150
  article-title: Knowledge-guided data-driven evidential belief modeling of mineral prospectivity in Cabo de Gata, SE Spain
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– start-page: 299
  year: 1977
  end-page: 311
  ident: bb0180
  article-title: Application of Discriminant Analysis for the Evaluation of Mineral Potential
– volume: 64
  start-page: 450
  year: 2009
  end-page: 457
  ident: bb0530
  article-title: Classifier ensembles for land cover mapping using multitemporal SAR imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
– year: 2003
  ident: bb0070
  article-title: Dynamic Programming
– volume: 37
  start-page: 1907
  year: 2011
  end-page: 1916
  ident: bb0145
  article-title: Geocomputation of mineral exploration targets
  publication-title: Comput. Geosci.
– volume: 10
  start-page: 505
  year: 1989
  end-page: 514
  ident: bb0200
  article-title: Geological mapping using Landsat thematic mapper imagery in Almeria Province, south-east Spain
  publication-title: Int. J. Remote Sens.
– volume: 35
  start-page: 675
  year: 2009
  end-page: 687
  ident: bb0400
  article-title: Probabilistic neural networks applied to mineral potential mapping for platinum group elements in the Serra Leste region, Carajás Mineral Province, Brazil
  publication-title: Comput. Geosci.
– volume: 26
  start-page: 65
  year: 1988
  end-page: 74
  ident: bb0285
  article-title: A transformation for ordering multispectral data in terms of image quality with implications for noise removal
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 428–429
  start-page: 170
  year: 2012
  end-page: 181
  ident: bb0555
  article-title: Forests and erosion: insights from a study of suspended-sediment dynamics in an overland flow-prone rainforest catchment
  publication-title: J. Hydrol.
– volume: 24
  start-page: 123
  year: 1996
  end-page: 140
  ident: bb0120
  article-title: Bagging predictors
  publication-title: Mach. Learn.
– volume: 24
  start-page: 1151
  year: 2003
  end-page: 1156
  ident: bb0435
  article-title: Artificial neural networks as a tool for mineral potential mapping with GIS
  publication-title: Int. J. Remote Sens.
– year: 1978
  ident: bb0185
  article-title: Computer Program for the Logistic Model to Estimate the Probability of Occurrence of Discrete Events
– year: 2006
  ident: bb0035
  article-title: MI-SDM (MapInfo Spatial Data Modeller) v2.51
– volume: 44
  start-page: 3374
  year: 2006
  end-page: 3385
  ident: bb0050
  article-title: Toward an optimal SVM classification system for hyperspectral remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 17
  start-page: 1075
  year: 1996
  end-page: 1081
  ident: bb0300
  article-title: Classification trees: an alternative to traditional land cover classifiers
  publication-title: Int. J. Remote Sens.
– volume: 27
  start-page: 294
  year: 2006
  end-page: 300
  ident: bb0280
  article-title: Random forests for land cover classification
  publication-title: Pattern Recogn. Lett.
– volume: 77
  start-page: 27
  year: 2011
  end-page: 37
  ident: bb0540
  article-title: Parameterizing support vector machines for land cover classification
  publication-title: Photogramm. Eng. Remote Sens.
– volume: 29
  start-page: 617
  year: 2008
  end-page: 663
  ident: bb0355
  article-title: The application of artificial neural networks to the analysis of remotely sensed data
  publication-title: Int. J. Remote Sens.
– volume: 74
  start-page: 1041
  year: 2010
  end-page: 1051
  ident: bb0230
  article-title: Spectral properties and sources of variability of ecosystem components in a Mediterranean semiarid environment
  publication-title: J. Arid Environ.
– volume: 57
  start-page: 1049
  year: 2009
  end-page: 1065
  ident: bb0395
  article-title: Artificial neural networks applied to mineral potential mapping for copper–gold mineralizations in the Carajás Mineral Province, Brazil
  publication-title: Geophys. Prospect.
– volume: 30
  start-page: 1145
  year: 1997
  end-page: 1159
  ident: bb0110
  article-title: The use of the area under the ROC curve in the evaluation of machine learning algorithms
  publication-title: Pattern Recogn.
– volume: 47
  start-page: 757
  year: 2000
  end-page: 770
  ident: bb0135
  article-title: Artificial neural networks: a new method for mineral prospectivity mapping
  publication-title: Aust. J. Earth Sci.
– volume: 46
  start-page: 272
  year: 2012
  end-page: 283
  ident: bb0010
  article-title: Support vector machine for multi-classification of mineral prospectivity areas
  publication-title: Comput. Geosci.
– volume: 36
  start-page: 1494
  year: 2010
  end-page: 1503
  ident: bb0020
  article-title: Support vector regression for porosity prediction in a heterogeneous reservoir: a comparative study
  publication-title: Comput. Geosci.
– volume: 28
  start-page: 1336
  year: 2014
  end-page: 1354
  ident: bb0450
  article-title: Predictive modelling of gold potential with the integration of multisource information based on random forest: a case study on the Rodalquilar area, Southern Spain
  publication-title: Int. J. Geogr. Inf. Sci.
– start-page: 144
  year: 1992
  end-page: 152
  ident: bb0105
  article-title: A training algorithm for optimal margin classifier
  publication-title: Fifth ACM Annual Workshop on Computational Learning, Pittsburgh, PA, USA
– volume: 67
  start-page: 93
  year: 2012
  end-page: 104
  ident: bb0460
  article-title: An assessment of the effectiveness of a random forest classifier for land-cover classification
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 35
  start-page: 289
  year: 2009
  end-page: 300
  ident: bb0045
  article-title: Evaluating error associated with lidar-derived DEM interpolation
  publication-title: Comput. Geosci.
– start-page: 593
  year: 2002
  end-page: 595
  ident: bb0335
  article-title: Evaluation and validation of EO-1 Hyperion for geologic mapping
  publication-title: IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2002), Toronto, Canada
– year: 2009
  ident: bb0485
  article-title: Spatial Data Modeller (SDM): ArcMAP 9.3 Geoprocessing Tools for Spatial Data Modelling Using Weights of Evidence, Logistic Regression, Fuzzy Logic and Neural Networks
– volume: 21
  start-page: 556
  year: 2013
  end-page: 567
  ident: bb0005
  article-title: Fuzzy outranking approach: a knowledge-driven method for mineral prospectivity mapping
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 26
  start-page: 217
  year: 2005
  end-page: 222
  ident: bb0385
  article-title: Random forest classifier for remote sensing classification
  publication-title: Int. J. Remote Sens.
– start-page: 379
  year: 1986
  ident: bb0195
  article-title: Mineral Deposit Models
– volume: 486
  start-page: 494
  year: 2013
  end-page: 504
  ident: bb0165
  article-title: Developing a probability-based model of aquifer vulnerability in an agricultural region
  publication-title: J. Hydrol.
– volume: 218
  start-page: 91
  year: 2004
  end-page: 108
  ident: bb0225
  article-title: Magmatic evolution of the Alboran region: the role of subduction in forming the western Mediterranean and causing the Messinian salinity crisis
  publication-title: Earth Planet. Sci. Lett.
– volume: 17
  start-page: 331
  year: 1996
  end-page: 350
  ident: bb0250
  article-title: The application of imaging spectrometry data to mapping alteration zones associated with gold mineralization in southern Spain
  publication-title: Int. J. Remote Sens.
– year: 2008
  ident: bb0140
  article-title: Geochemical Anomaly and Mineral Prospectivity Mapping in GIS
– year: 1984
  ident: bb0115
  article-title: Classification and Regression Trees
– volume: 14
  start-page: 1
  year: 2005
  end-page: 17
  ident: bb0015
  article-title: Measuring the performance of mineral-potential maps
  publication-title: Nat. Resour. Res.
– volume: 3
  start-page: 1157
  year: 2003
  end-page: 1182
  ident: bb0295
  article-title: An introduction to variable and feature selection
  publication-title: J. Mach. Learn. Res.
– start-page: 798
  year: 2002
  end-page: 803
  ident: bb0080
  article-title: Exploiting MODTRAN radiation transport for atmospheric correction: the FLAASH algorithm
  publication-title: Fifth International Conference on Information Fusion, Annapolis
– start-page: 23
  year: 1995
  end-page: 26
  ident: bb0090
  article-title: Mapping target signatures via partial unmixing of AVIRIS data
  publication-title: Summaries, Fifth JPL Airborne Earth Science Workshop
– volume: 34
  start-page: 194
  year: 1998
  end-page: 202
  ident: bb0440
  article-title: Merging remote-sensing images for geological–environmental mapping: application to the Cabo de Gata-Níjar Natural Park, Spain
  publication-title: Environ. Geol.
– volume: 207
  start-page: 304
  year: 2007
  end-page: 318
  ident: bb0405
  article-title: Random forests as a tool for ecohydrological distribution modelling
  publication-title: Ecol. Model.
– volume: 36
  start-page: 5
  year: 1980
  end-page: 63
  ident: bb0350
  article-title: La Region Volcánica Neogena del Sureste de España
  publication-title: Estud. Geol.
– volume: 25
  year: 1964
  ident: bb0505
  article-title: A note on one class of perceptrons
  publication-title: Autom. Remote Control
– volume: 38
  start-page: 208
  year: 2010
  end-page: 218
  ident: bb0235
  article-title: Prospectivity analysis of the Plutonic Marymia Greenstone Belt, Western Australia
  publication-title: Ore Geol. Rev.
– volume: 28
  start-page: 1017
  year: 1996
  end-page: 1023
  ident: bb0495
  article-title: Application of a feedforward neural network in the search for kuroko deposits in the Hokuroku district, Japan
  publication-title: Math. Geol.
– start-page: 214
  year: 2011
  end-page: 217
  ident: bb0160
  article-title: Mineral Prospectivity Mapping Integrating Multi-source Geology Spatial Data Sets and Logistic Regression Modelling
– volume: 82
  start-page: 1
  year: 1987
  end-page: 26
  ident: bb0315
  article-title: Comparative anatomy of volcanic-hosted epithermal deposits — acid-sulfate and adularia-sericite types
  publication-title: Econ. Geol.
– year: 1984
  ident: bb0130
  article-title: Classification and Regression Trees
– year: 2010
  ident: bb0340
  article-title: Genetic Programming Applied to Base-metal Prospectivity Mapping in the Aravalli Province, India
– volume: 69
  start-page: 793
  year: 2003
  end-page: 804
  ident: bb0465
  article-title: Land-cover change monitoring with classification trees using Landsat TM and ancillary data
  publication-title: Photogramm. Eng. Remote Sens.
– volume: 41
  start-page: 421
  year: 2009
  end-page: 446
  ident: bb0210
  article-title: Deriving optimal exploration target zones on mineral prospectivity maps
  publication-title: Math. Geosci.
– volume: 92
  start-page: 67
  year: 2004
  end-page: 83
  ident: bb0535
  article-title: Mapping regional land cover with MODIS data for biological conservation: examples from the Greater Yellowstone Ecosystem, USA and Pará State, Brazil
  publication-title: Remote Sens. Environ.
– volume: 121
  start-page: 93
  year: 2012
  end-page: 107
  ident: bb0445
  article-title: Random forest classification of Mediterranean land cover using multi-seasonal imagery and multi-seasonal texture
  publication-title: Remote Sens. Environ.
– volume: 80
  start-page: 377
  year: 2009
  end-page: 384
  ident: bb0040
  article-title: Evaluation of the environmental contamination at an abandoned mining site using multivariate statistical techniques—the Rodalquilar (Southern Spain) mining district
  publication-title: Talanta
– volume: 25
  start-page: S29
  year: 1990
  end-page: S35
  ident: bb0480
  article-title: Mineralized and unmineralized calderas in Spain; part II, evolution of the Rodalquilar caldera complex and associated gold-alunite deposits
  publication-title: Mineral. Deposita
– year: 2003
  ident: bb0055
  article-title: EO-1 User Guide, v. 2.3
– volume: vols. 1–5
  start-page: 3324
  year: 2009
  end-page: 3327
  ident: bb0525
  article-title: Ensemble methods for spectral–spatial classification of urban hyperspectral data
  publication-title: 2009 Ieee International Geoscience and Remote Sensing Symposium
– volume: 112
  start-page: 2999
  year: 2008
  end-page: 3011
  ident: bb0155
  article-title: Evaluation of random forest and adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery
  publication-title: Remote Sens. Environ.
– year: 1994
  ident: bb0095
  article-title: Geographic Information Systems for Geoscientists: Modelling With GIS
– volume: 7
  start-page: 492
  year: 2012
  end-page: 509
  ident: bb0455
  article-title: Evaluation of different machine learning methods for land cover mapping of a Mediterranean area using multi-seasonal Landsat images and digital terrain models
  publication-title: Int. J. Digit. Earth
– volume: 18
  start-page: 699
  year: 1997
  ident: 10.1016/j.oregeorev.2015.01.001_bb0030
  article-title: Introduction neural networks in remote sensing
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/014311697218700
– volume: 30
  start-page: 327
  year: 2008
  ident: 10.1016/j.oregeorev.2015.01.001_bb0060
  article-title: Use of HyMap imaging spectrometer data to map mineralogy in the Rodalquilar caldera, southeast Spain
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160802282854
– start-page: 593
  year: 2002
  ident: 10.1016/j.oregeorev.2015.01.001_bb0335
  article-title: Evaluation and validation of EO-1 Hyperion for geologic mapping
– volume: 10
  start-page: 505
  year: 1989
  ident: 10.1016/j.oregeorev.2015.01.001_bb0200
  article-title: Geological mapping using Landsat thematic mapper imagery in Almeria Province, south-east Spain
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431168908903888
– volume: 12
  start-page: 155
  year: 2003
  ident: 10.1016/j.oregeorev.2015.01.001_bb0415
  article-title: Artificial neural networks for mineral-potential mapping: a case study from Aravalli Province, Western India
  publication-title: Nat. Resour. Res.
  doi: 10.1023/A:1025171803637
– volume: 92
  start-page: 67
  year: 2004
  ident: 10.1016/j.oregeorev.2015.01.001_bb0535
  article-title: Mapping regional land cover with MODIS data for biological conservation: examples from the Greater Yellowstone Ecosystem, USA and Pará State, Brazil
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2004.05.002
– volume: 69
  start-page: 793
  year: 2003
  ident: 10.1016/j.oregeorev.2015.01.001_bb0465
  article-title: Land-cover change monitoring with classification trees using Landsat TM and ancillary data
  publication-title: Photogramm. Eng. Remote Sens.
  doi: 10.14358/PERS.69.7.793
– volume: 90
  start-page: 795
  year: 1995
  ident: 10.1016/j.oregeorev.2015.01.001_bb0025
  article-title: Geology, geochronology, fluid inclusions, and isotope geochemistry of the Rodalquilar gold alunite deposit, Spain
  publication-title: Econ. Geol.
  doi: 10.2113/gsecongeo.90.4.795
– year: 2010
  ident: 10.1016/j.oregeorev.2015.01.001_bb0490
– volume: 86
  start-page: 554
  year: 2003
  ident: 10.1016/j.oregeorev.2015.01.001_bb0390
  article-title: An assessment of the effectiveness of decision tree methods for land cover classification
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(03)00132-9
– volume: 25
  year: 1964
  ident: 10.1016/j.oregeorev.2015.01.001_bb0505
  article-title: A note on one class of perceptrons
  publication-title: Autom. Remote Control
– volume: 77
  start-page: 27
  year: 2011
  ident: 10.1016/j.oregeorev.2015.01.001_bb0540
  article-title: Parameterizing support vector machines for land cover classification
  publication-title: Photogramm. Eng. Remote Sens.
  doi: 10.14358/PERS.77.1.27
– volume: 486
  start-page: 494
  year: 2013
  ident: 10.1016/j.oregeorev.2015.01.001_bb0165
  article-title: Developing a probability-based model of aquifer vulnerability in an agricultural region
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2013.02.019
– volume: 428–429
  start-page: 170
  year: 2012
  ident: 10.1016/j.oregeorev.2015.01.001_bb0555
  article-title: Forests and erosion: insights from a study of suspended-sediment dynamics in an overland flow-prone rainforest catchment
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2012.01.039
– start-page: 379
  year: 1986
  ident: 10.1016/j.oregeorev.2015.01.001_bb0195
– volume: 37
  start-page: 1907
  year: 2011
  ident: 10.1016/j.oregeorev.2015.01.001_bb0145
  article-title: Geocomputation of mineral exploration targets
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2011.11.009
– start-page: 3
  year: 2006
  ident: 10.1016/j.oregeorev.2015.01.001_bb0370
  article-title: Ore, mineral economics and mineral exploration
– volume: 112
  start-page: 3222
  year: 2008
  ident: 10.1016/j.oregeorev.2015.01.001_bb0175
  article-title: Mapping of heavy metal pollution in stream sediments using combined geochemistry, field spectroscopy, and hyperspectral remote sensing: a case study of the Rodalquilar mining area, SE Spain
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.03.017
– volume: 44
  start-page: 3374
  year: 2006
  ident: 10.1016/j.oregeorev.2015.01.001_bb0050
  article-title: Toward an optimal SVM classification system for hyperspectral remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2006.880628
– year: 1978
  ident: 10.1016/j.oregeorev.2015.01.001_bb0185
– volume: 328
  start-page: 521
  year: 1999
  ident: 10.1016/j.oregeorev.2015.01.001_bb0215
  article-title: Characterization of epithermal quartz veins from the volcanic area of Cabo de Gata (Almeria Province, southeastern Spain) by low-temperature thermoluminescence; relation with petrographic textures and fluid inclusions
– volume: 6
  start-page: 853
  year: 2012
  ident: 10.1016/j.oregeorev.2015.01.001_bb0410
  article-title: Application of indicator kriging to evaluate the probability of exceeding nitrate contamination thresholds
  publication-title: Int. J. Environ. Res.
– volume: 47
  start-page: 757
  year: 2000
  ident: 10.1016/j.oregeorev.2015.01.001_bb0135
  article-title: Artificial neural networks: a new method for mineral prospectivity mapping
  publication-title: Aust. J. Earth Sci.
  doi: 10.1046/j.1440-0952.2000.00807.x
– volume: 38
  start-page: 208
  year: 2010
  ident: 10.1016/j.oregeorev.2015.01.001_bb0235
  article-title: Prospectivity analysis of the Plutonic Marymia Greenstone Belt, Western Australia
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2010.03.009
– volume: 66
  start-page: 56
  year: 2011
  ident: 10.1016/j.oregeorev.2015.01.001_bb0290
  article-title: Relevance of airborne lidar and multispectral image data for urban scene classification using random forests
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2010.08.007
– volume: 60
  start-page: 121
  year: 2010
  ident: 10.1016/j.oregeorev.2015.01.001_bb0255
  article-title: Arsenic and metal mobility from Au mine tailings in Rodalquilar (Almería, SE Spain)
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-009-0174-6
– year: 2006
  ident: 10.1016/j.oregeorev.2015.01.001_bb0035
– start-page: 144
  year: 1992
  ident: 10.1016/j.oregeorev.2015.01.001_bb0105
  article-title: A training algorithm for optimal margin classifier
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.oregeorev.2015.01.001_bb0125
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 24
  start-page: 774
  year: 1963
  ident: 10.1016/j.oregeorev.2015.01.001_bb0510
  article-title: Pattern recognition using generalized portrait method
  publication-title: Autom. Remote Control
– volume: 7
  start-page: 492
  year: 2012
  ident: 10.1016/j.oregeorev.2015.01.001_bb0455
  article-title: Evaluation of different machine learning methods for land cover mapping of a Mediterranean area using multi-seasonal Landsat images and digital terrain models
  publication-title: Int. J. Digit. Earth
  doi: 10.1080/17538947.2012.748848
– volume: 35
  start-page: 675
  year: 2009
  ident: 10.1016/j.oregeorev.2015.01.001_bb0400
  article-title: Probabilistic neural networks applied to mineral potential mapping for platinum group elements in the Serra Leste region, Carajás Mineral Province, Brazil
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2008.05.003
– volume: 58
  start-page: 761
  year: 2009
  ident: 10.1016/j.oregeorev.2015.01.001_bb0380
  article-title: Environmental assessment of the arsenic-rich, Rodalquilar gold–(copper–lead–zinc) mining district, SE Spain: data from soils and vegetation
  publication-title: Environ. Geol.
  doi: 10.1007/s00254-008-1550-3
– volume: 14
  start-page: 1
  year: 2005
  ident: 10.1016/j.oregeorev.2015.01.001_bb0015
  article-title: Measuring the performance of mineral-potential maps
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-005-4674-0
– volume: 112
  start-page: 3720
  year: 2008
  ident: 10.1016/j.oregeorev.2015.01.001_bb0270
  article-title: Monitoring land degradation risk using ASTER data: the non-evaporative fraction as an indicator of ecosystem function
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.05.011
– volume: 41
  start-page: 421
  year: 2009
  ident: 10.1016/j.oregeorev.2015.01.001_bb0210
  article-title: Deriving optimal exploration target zones on mineral prospectivity maps
  publication-title: Math. Geosci.
  doi: 10.1007/s11004-008-9181-5
– volume: 67
  start-page: 93
  year: 2012
  ident: 10.1016/j.oregeorev.2015.01.001_bb0460
  article-title: An assessment of the effectiveness of a random forest classifier for land-cover classification
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2011.11.002
– volume: 10
  start-page: 374
  year: 2008
  ident: 10.1016/j.oregeorev.2015.01.001_bb0150
  article-title: Knowledge-guided data-driven evidential belief modeling of mineral prospectivity in Cabo de Gata, SE Spain
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  doi: 10.1016/j.jag.2008.02.008
– volume: 27
  start-page: 294
  year: 2006
  ident: 10.1016/j.oregeorev.2015.01.001_bb0280
  article-title: Random forests for land cover classification
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2005.08.011
– volume: 3
  start-page: 1157
  year: 2003
  ident: 10.1016/j.oregeorev.2015.01.001_bb0295
  article-title: An introduction to variable and feature selection
  publication-title: J. Mach. Learn. Res.
– volume: 36
  start-page: 5
  year: 1980
  ident: 10.1016/j.oregeorev.2015.01.001_bb0350
  article-title: La Region Volcánica Neogena del Sureste de España
  publication-title: Estud. Geol.
– volume: 222
  start-page: 1471
  year: 2011
  ident: 10.1016/j.oregeorev.2015.01.001_bb0520
  article-title: Application of a random forest algorithm to predict spatial distribution of the potential yield of Ruditapes philippinarum in the Venice lagoon, Italy
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2011.02.007
– volume: 323
  start-page: 533
  year: 1986
  ident: 10.1016/j.oregeorev.2015.01.001_bb0475
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– volume: 30
  start-page: 1145
  year: 1997
  ident: 10.1016/j.oregeorev.2015.01.001_bb0110
  article-title: The use of the area under the ROC curve in the evaluation of machine learning algorithms
  publication-title: Pattern Recogn.
  doi: 10.1016/S0031-3203(96)00142-2
– volume: 36
  start-page: 1494
  year: 2010
  ident: 10.1016/j.oregeorev.2015.01.001_bb0020
  article-title: Support vector regression for porosity prediction in a heterogeneous reservoir: a comparative study
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2010.03.022
– year: 1984
  ident: 10.1016/j.oregeorev.2015.01.001_bb0130
– volume: 12
  start-page: 241
  year: 2003
  ident: 10.1016/j.oregeorev.2015.01.001_bb0305
  article-title: A comparative analysis of favorability mappings by weights of evidence, probabilistic neural networks, discriminant analysis, and logistic regression
  publication-title: Nat. Resour. Res.
  doi: 10.1023/B:NARR.0000007804.27450.e8
– volume: 26
  start-page: 65
  year: 1988
  ident: 10.1016/j.oregeorev.2015.01.001_bb0285
  article-title: A transformation for ordering multispectral data in terms of image quality with implications for noise removal
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.3001
– year: 1984
  ident: 10.1016/j.oregeorev.2015.01.001_bb0115
– year: 1994
  ident: 10.1016/j.oregeorev.2015.01.001_bb0095
– year: 2000
  ident: 10.1016/j.oregeorev.2015.01.001_bb0565
– volume: 61
  start-page: 399
  year: 1997
  ident: 10.1016/j.oregeorev.2015.01.001_bb0265
  article-title: Decision tree classification of land cover from remotely sensed data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(97)00049-7
– start-page: 23
  year: 1995
  ident: 10.1016/j.oregeorev.2015.01.001_bb0090
  article-title: Mapping target signatures via partial unmixing of AVIRIS data
– volume: 21
  start-page: 556
  year: 2013
  ident: 10.1016/j.oregeorev.2015.01.001_bb0005
  article-title: Fuzzy outranking approach: a knowledge-driven method for mineral prospectivity mapping
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  doi: 10.1016/j.jag.2012.07.012
– volume: 35
  start-page: 289
  year: 2009
  ident: 10.1016/j.oregeorev.2015.01.001_bb0045
  article-title: Evaluating error associated with lidar-derived DEM interpolation
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2008.09.001
– year: 2008
  ident: 10.1016/j.oregeorev.2015.01.001_bb0140
– volume: 218
  start-page: 91
  year: 2004
  ident: 10.1016/j.oregeorev.2015.01.001_bb0225
  article-title: Magmatic evolution of the Alboran region: the role of subduction in forming the western Mediterranean and causing the Messinian salinity crisis
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/S0012-821X(03)00632-0
– ident: 10.1016/j.oregeorev.2015.01.001_bb0470
– start-page: 214
  year: 2011
  ident: 10.1016/j.oregeorev.2015.01.001_bb0160
– year: 2009
  ident: 10.1016/j.oregeorev.2015.01.001_bb0485
– volume: 24
  start-page: 123
  year: 1996
  ident: 10.1016/j.oregeorev.2015.01.001_bb0120
  article-title: Bagging predictors
  publication-title: Mach. Learn.
  doi: 10.1007/BF00058655
– volume: 17
  start-page: 430
  year: 1989
  ident: 10.1016/j.oregeorev.2015.01.001_bb0220
  article-title: Neogene extensional collapse in the western Mediterranean (Betic-rif Alpine orogenic belt) — implications for the genesis of the Gibraltar arc and magmatic activity
  publication-title: Geology
  doi: 10.1130/0091-7613(1989)017<0430:NECITW>2.3.CO;2
– start-page: 798
  year: 2002
  ident: 10.1016/j.oregeorev.2015.01.001_bb0080
  article-title: Exploiting MODTRAN radiation transport for atmospheric correction: the FLAASH algorithm
– volume: 17
  year: 2012
  ident: 10.1016/j.oregeorev.2015.01.001_bb0205
  article-title: A geographic model to assess and limit cumulative ecological degradation from marcellus shale exploitation in New York, USA
  publication-title: Ecol. Soc.
  doi: 10.5751/ES-04822-170225
– volume: 23
  start-page: 4801
  year: 2002
  ident: 10.1016/j.oregeorev.2015.01.001_bb0170
  article-title: Development of a decision support system based on remote sensing and GIS techniques for gold-rich area identification in SE Spain
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160110104656
– volume: 29
  start-page: 617
  year: 2008
  ident: 10.1016/j.oregeorev.2015.01.001_bb0355
  article-title: The application of artificial neural networks to the analysis of remotely sensed data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160701352154
– volume: 30
  start-page: 327
  year: 2009
  ident: 10.1016/j.oregeorev.2015.01.001_bb0065
  article-title: Use of HyMap imaging spectrometer data to map mineralogy in the Rodalquilar caldera, southeast Spain
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160802282854
– volume: 49
  start-page: 4138
  year: 2011
  ident: 10.1016/j.oregeorev.2015.01.001_bb0085
  article-title: Analysis of imaging spectrometer data using N-dimensional geometry and a mixture-tuned matched filtering approach
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2011.2161585
– start-page: 1
  year: 2014
  ident: 10.1016/j.oregeorev.2015.01.001_bb0360
  article-title: Curvature attribute from surface-restoration as predictor variable in Kupferschiefer copper potentials
  publication-title: Nat. Resour. Res.
– volume: 19
  start-page: 103
  year: 2010
  ident: 10.1016/j.oregeorev.2015.01.001_bb0375
  article-title: Application of artificial neural network for gold-silver deposits potential mapping: a case study of Korea
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-010-9112-2
– volume: 74
  start-page: 1041
  year: 2010
  ident: 10.1016/j.oregeorev.2015.01.001_bb0230
  article-title: Spectral properties and sources of variability of ecosystem components in a Mediterranean semiarid environment
  publication-title: J. Arid Environ.
  doi: 10.1016/j.jaridenv.2010.02.001
– volume: 13
  start-page: 281
  year: 2012
  ident: 10.1016/j.oregeorev.2015.01.001_bb0075
  article-title: Random search for hyper-parameter optimization
  publication-title: J. Mach. Learn. Res.
– volume: 26
  start-page: 217
  year: 2005
  ident: 10.1016/j.oregeorev.2015.01.001_bb0385
  article-title: Random forest classifier for remote sensing classification
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160412331269698
– volume: 24
  start-page: 1151
  year: 2003
  ident: 10.1016/j.oregeorev.2015.01.001_bb0435
  article-title: Artificial neural networks as a tool for mineral potential mapping with GIS
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/0143116021000031791
– volume: 49
  start-page: 623
  year: 2012
  ident: 10.1016/j.oregeorev.2015.01.001_bb0275
  article-title: An evaluation of bagging, boosting, and random forests for land-cover classification in Cape Cod, Massachusetts, USA
  publication-title: GISci. Remote Sens.
  doi: 10.2747/1548-1603.49.5.623
– year: 2003
  ident: 10.1016/j.oregeorev.2015.01.001_bb0055
– volume: 207
  start-page: 304
  year: 2007
  ident: 10.1016/j.oregeorev.2015.01.001_bb0405
  article-title: Random forests as a tool for ecohydrological distribution modelling
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2007.05.011
– volume: 20
  start-page: 273
  year: 1995
  ident: 10.1016/j.oregeorev.2015.01.001_bb0190
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– volume: vols. 1–5
  start-page: 3324
  year: 2009
  ident: 10.1016/j.oregeorev.2015.01.001_bb0525
  article-title: Ensemble methods for spectral–spatial classification of urban hyperspectral data
– year: 2003
  ident: 10.1016/j.oregeorev.2015.01.001_bb0070
– volume: 48
  start-page: 349
  year: 2012
  ident: 10.1016/j.oregeorev.2015.01.001_bb0325
  article-title: Exploration targeting for orogenic gold deposits in the Granites–Tanami Orogen: mineral system analysis, targeting model and prospectivity analysis
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2012.05.004
– volume: 34
  start-page: 194
  year: 1998
  ident: 10.1016/j.oregeorev.2015.01.001_bb0440
  article-title: Merging remote-sensing images for geological–environmental mapping: application to the Cabo de Gata-Níjar Natural Park, Spain
  publication-title: Environ. Geol.
  doi: 10.1007/s002540050271
– volume: 387
  start-page: 141
  year: 2010
  ident: 10.1016/j.oregeorev.2015.01.001_bb0320
  article-title: Predictive models for forecasting hourly urban water demand
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2010.04.005
– volume: 38
  start-page: 184
  year: 2010
  ident: 10.1016/j.oregeorev.2015.01.001_bb0420
  article-title: Weights-of-evidence and logistic regression modeling of magmatic nickel sulfide prospectivity in the Yilgarn Craton, Western Australia
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2010.04.002
– volume: 17
  start-page: 1075
  year: 1996
  ident: 10.1016/j.oregeorev.2015.01.001_bb0300
  article-title: Classification trees: an alternative to traditional land cover classifiers
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431169608949069
– start-page: 299
  year: 1977
  ident: 10.1016/j.oregeorev.2015.01.001_bb0180
– volume: 420–421
  start-page: 292
  year: 2012
  ident: 10.1016/j.oregeorev.2015.01.001_bb0550
  article-title: Recognition of key regions for restoration of phytoplankton communities in the Huai River basin, China
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2011.12.016
– year: 1999
  ident: 10.1016/j.oregeorev.2015.01.001_bb0330
– volume: 64
  start-page: 450
  year: 2009
  ident: 10.1016/j.oregeorev.2015.01.001_bb0530
  article-title: Classifier ensembles for land cover mapping using multitemporal SAR imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2009.01.003
– year: 2010
  ident: 10.1016/j.oregeorev.2015.01.001_bb0340
– volume: 3
  start-page: 319
  year: 1989
  ident: 10.1016/j.oregeorev.2015.01.001_bb0365
  article-title: An empirical comparison of selection measures for decision-tree induction
  publication-title: Mach. Learn.
  doi: 10.1007/BF00116837
– year: 1993
  ident: 10.1016/j.oregeorev.2015.01.001_bb0430
– volume: 82
  start-page: 1
  year: 1987
  ident: 10.1016/j.oregeorev.2015.01.001_bb0315
  article-title: Comparative anatomy of volcanic-hosted epithermal deposits — acid-sulfate and adularia-sericite types
  publication-title: Econ. Geol.
  doi: 10.2113/gsecongeo.82.1.1
– volume: 25
  start-page: S29
  year: 1990
  ident: 10.1016/j.oregeorev.2015.01.001_bb0480
  article-title: Mineralized and unmineralized calderas in Spain; part II, evolution of the Rodalquilar caldera complex and associated gold-alunite deposits
  publication-title: Mineral. Deposita
  doi: 10.1007/BF00205247
– volume: 28
  start-page: 1017
  year: 1996
  ident: 10.1016/j.oregeorev.2015.01.001_bb0495
  article-title: Application of a feedforward neural network in the search for kuroko deposits in the Hokuroku district, Japan
  publication-title: Math. Geol.
  doi: 10.1007/BF02068587
– volume: 37
  start-page: 1967
  year: 2011
  ident: 10.1016/j.oregeorev.2015.01.001_bb0560
  article-title: Support vector machine: a tool for mapping mineral prospectivity
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2010.09.014
– volume: 46
  start-page: 272
  year: 2012
  ident: 10.1016/j.oregeorev.2015.01.001_bb0010
  article-title: Support vector machine for multi-classification of mineral prospectivity areas
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2011.12.014
– volume: 434–435
  start-page: 78
  year: 2012
  ident: 10.1016/j.oregeorev.2015.01.001_bb0100
  article-title: Comparing methods for estimating flow duration curves at ungauged sites
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2012.02.031
– start-page: 15171
  year: 2010
  ident: 10.1016/j.oregeorev.2015.01.001_bb0425
  article-title: SVM-based base-metal prospectivity modeling of the Aravalli Orogen, northwestern India
– volume: 121
  start-page: 93
  year: 2012
  ident: 10.1016/j.oregeorev.2015.01.001_bb0445
  article-title: Random forest classification of Mediterranean land cover using multi-seasonal imagery and multi-seasonal texture
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.12.003
– start-page: 101
  year: 2009
  ident: 10.1016/j.oregeorev.2015.01.001_bb0310
  article-title: Linear methods for classification
– volume: 28
  start-page: 1336
  year: 2014
  ident: 10.1016/j.oregeorev.2015.01.001_bb0450
  article-title: Predictive modelling of gold potential with the integration of multisource information based on random forest: a case study on the Rodalquilar area, Southern Spain
  publication-title: Int. J. Geogr. Inf. Sci.
  doi: 10.1080/13658816.2014.885527
– volume: 74
  start-page: 1201
  year: 2008
  ident: 10.1016/j.oregeorev.2015.01.001_bb0345
  article-title: Mapping selective logging in mixed deciduous forest: a comparison of machine learning algorithms
  publication-title: Photogramm. Eng. Remote Sens.
  doi: 10.14358/PERS.74.10.1201
– volume: 100
  start-page: 11
  year: 2009
  ident: 10.1016/j.oregeorev.2015.01.001_bb0240
  article-title: Characterisation of the environmental impact of the Rodalquilar mine, Spain by ground-based reflectance spectroscopy
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2008.03.001
– volume: 80
  start-page: 377
  year: 2009
  ident: 10.1016/j.oregeorev.2015.01.001_bb0040
  article-title: Evaluation of the environmental contamination at an abandoned mining site using multivariate statistical techniques—the Rodalquilar (Southern Spain) mining district
  publication-title: Talanta
  doi: 10.1016/j.talanta.2009.06.075
– volume: 157
  start-page: 75
  year: 2000
  ident: 10.1016/j.oregeorev.2015.01.001_bb0545
  article-title: Revised geochronology of the Neogene calc-alkaline volcanic suite in Sierra de Gata, Alboran volcanic province, SE Spain
  publication-title: J. Geol. Soc.
  doi: 10.1144/jgs.157.1.75
– volume: 18
  start-page: 799
  year: 1997
  ident: 10.1016/j.oregeorev.2015.01.001_bb0260
  article-title: An evaluation of some factors affecting the accuracy of classification by an artificial neural network
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/014311697218764
– volume: 8
  start-page: 61
  year: 2006
  ident: 10.1016/j.oregeorev.2015.01.001_bb0500
  article-title: Indicator kriging applied to absorption band analysis in hyperspectral imagery: a case study from the Rodalquilar epithermal gold mining area, SE Spain
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  doi: 10.1016/j.jag.2005.07.001
– start-page: 107
  year: 2007
  ident: 10.1016/j.oregeorev.2015.01.001_bb0245
– volume: 112
  start-page: 2999
  year: 2008
  ident: 10.1016/j.oregeorev.2015.01.001_bb0155
  article-title: Evaluation of random forest and adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.02.011
– volume: 57
  start-page: 1049
  year: 2009
  ident: 10.1016/j.oregeorev.2015.01.001_bb0395
  article-title: Artificial neural networks applied to mineral potential mapping for copper–gold mineralizations in the Carajás Mineral Province, Brazil
  publication-title: Geophys. Prospect.
  doi: 10.1111/j.1365-2478.2008.00779.x
– volume: 17
  start-page: 331
  year: 1996
  ident: 10.1016/j.oregeorev.2015.01.001_bb0250
  article-title: The application of imaging spectrometry data to mapping alteration zones associated with gold mineralization in southern Spain
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431169608949009
SSID ssj0006001
Score 2.6318805
Snippet Machine learning algorithms (MLAs) such us artificial neural networks (ANNs), regression trees (RTs), random forest (RF) and support vector machines (SVMs) are...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 804
SubjectTerms Data-driven modelling
Hyperion
Machine learning
Mineral potential
Mineral prospectivity mapping
Title Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines
URI https://dx.doi.org/10.1016/j.oregeorev.2015.01.001
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6iCHoQn_hc5uDRuq1p0q63RVxXRS8qeCtpmsiK2y7bVfDiH_HPOtNkfeDBg8c0mRKSMN-EfPMNY_upNqlGIA7yVKsAEU8EHdz2ILFxkQuDEQCnROGra9m_iy_uxf0MO5nmwhCt0vt-59Mbb-2_tP1qtkeDQfuGdEQiLtOINP1DThnlcZzQKT98-6J5EKA7fe9OQKN_cLyqMV7NKyr2gjjo9Dt9dZhfCPUNdXrLbMmHi9B1M1phM6ZcZYvfRARX2fxZU5z3dY29XzXMSAO-FMQDjMb0DkMeDZqSNzVgjArDQSM1jb2VT7TEUPwYuiV8aX9DZYG0LnFY6Zji9QEgrhXVkP6BWIJN8-BYtCXQ23YN2A3184hCenhpngNg6KZUr7O73untST_wxRcCFSfxJLCFFVFiMdrLjVJproXmCo8dT0KVSK1tUdhCCyWNSEl0Xx_JVHKFAYQVRoSGb7DZsirNJgOFN15hJLdcdmJ1lOa55R28qER0dzEi2mJyuuCZ9srkVCDjKZtS0B6zz53KaKeyMCIy3hYLPw1HTpzjb5Pj6Y5mP85ZhhDyl_H2f4x32AK1HBVml81Oxs9mDwOaSd5qTmyLzXXPL_vXHzQN-2M
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB3RrarCAbW0FbTQzqHHppvg2MnuDSFg27JcChK3yHFstKibrDYLEpf-Ef5sZ2IvH-qBA8fEnsjyOPPG8vMbgK-5sbkhII7K3OiIEE9GA3J7lLm0KqWlDEDwReHxiRqdpT_P5fkK7C_vwjCtMsR-H9O7aB3e9MNs9meTSf8364gkQuUJa_rHInsBL1P6fbmMwfe_9zwPRnQv8D2IuPsjklczp715w9VeCAi9gGcoD_MfRD2AncM3sB7yRdzzQ3oLK7begLUHKoIb8Oqoq8578w5uxx010mKoBXGBszkfxHBIw67mTYuUpOJ00mlNU2sTblpSLj7EvRrvxb-xcchil9St9lTx9hsSsFXNlL9BYEKP9sLTaGvkw-0WqRnbqxnn9HjdnQfg1A-pfQ9nhwen-6MoVF-IdJqli8hVTiaZo3SvtFrnpZFGaFp3Iot1poxxVeUqI7WyMmfVfbOrciU0ZRBOWhlb8QF6dVPbTUBNW15plXBCDVK9m5elEwPaqSS8ebEy2QK1nPDCBGlyrpDxp1hy0C6LO08V7KkiTpiNtwXxneHMq3M8bTJcerR4tNAKwpCnjD8-x_gLvB6djo-L4x8nvz7BKrd4Xsw29BbzK7tD2c2i_Nyt3n_luPzx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+predictive+models+for+mineral+prospectivity%3A+An+evaluation+of+neural+networks%2C+random+forest%2C+regression+trees+and+support+vector+machines&rft.jtitle=Ore+geology+reviews&rft.au=Rodriguez-Galiano%2C+V.&rft.au=Sanchez-Castillo%2C+M.&rft.au=Chica-Olmo%2C+M.&rft.au=Chica-Rivas%2C+M.&rft.date=2015-12-01&rft.issn=0169-1368&rft.volume=71&rft.spage=804&rft.epage=818&rft_id=info:doi/10.1016%2Fj.oregeorev.2015.01.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_oregeorev_2015_01_001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-1368&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-1368&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-1368&client=summon