The Molecular Evolution of Xenobiotic Metabolism and Resistance in Chelicerate Mites

Chelicerate mites diverged from other arthropod lineages more than 400 million years ago and subsequently developed specific and remarkable xenobiotic adaptations. The study of the two-spotted spider mite, Tetranychus urticae, for which a high-quality Sanger-sequenced genome was first available, rev...

Full description

Saved in:
Bibliographic Details
Published inAnnual review of entomology Vol. 61; p. 475
Main Authors Van Leeuwen, Thomas, Dermauw, Wannes
Format Journal Article
LanguageEnglish
Published United States 11.03.2016
Subjects
Online AccessGet more information

Cover

Loading…
Abstract Chelicerate mites diverged from other arthropod lineages more than 400 million years ago and subsequently developed specific and remarkable xenobiotic adaptations. The study of the two-spotted spider mite, Tetranychus urticae, for which a high-quality Sanger-sequenced genome was first available, revealed expansions and radiations in all major detoxification gene families, including P450 monooxygenases, carboxyl/cholinesterases, glutathione-S-transferases, and ATP-binding cassette transporters. Novel gene families that are not well studied in other arthropods, such as major facilitator family transporters and lipocalins, also reflect the evolution of xenobiotic adaptation. The acquisition of genes by horizontal gene transfer provided new routes to handle toxins, for example, the β-cyanoalanine synthase enzyme that metabolizes cyanide. The availability of genomic resources for other mite species has allowed researchers to study the lineage specificity of these gene family expansions and the distinct evolution of genes involved in xenobiotic metabolism in mites. Genome-based tools have been crucial in supporting the idiosyncrasies of mite detoxification and will further support the expanding field of mite-plant interactions.
AbstractList Chelicerate mites diverged from other arthropod lineages more than 400 million years ago and subsequently developed specific and remarkable xenobiotic adaptations. The study of the two-spotted spider mite, Tetranychus urticae, for which a high-quality Sanger-sequenced genome was first available, revealed expansions and radiations in all major detoxification gene families, including P450 monooxygenases, carboxyl/cholinesterases, glutathione-S-transferases, and ATP-binding cassette transporters. Novel gene families that are not well studied in other arthropods, such as major facilitator family transporters and lipocalins, also reflect the evolution of xenobiotic adaptation. The acquisition of genes by horizontal gene transfer provided new routes to handle toxins, for example, the β-cyanoalanine synthase enzyme that metabolizes cyanide. The availability of genomic resources for other mite species has allowed researchers to study the lineage specificity of these gene family expansions and the distinct evolution of genes involved in xenobiotic metabolism in mites. Genome-based tools have been crucial in supporting the idiosyncrasies of mite detoxification and will further support the expanding field of mite-plant interactions.
Author Van Leeuwen, Thomas
Dermauw, Wannes
Author_xml – sequence: 1
  givenname: Thomas
  surname: Van Leeuwen
  fullname: Van Leeuwen, Thomas
  email: thomas.vanleeuwen@ugent.be, wannes.dermauw@ugent.be
  organization: Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, The Netherlands
– sequence: 2
  givenname: Wannes
  surname: Dermauw
  fullname: Dermauw, Wannes
  email: thomas.vanleeuwen@ugent.be, wannes.dermauw@ugent.be
  organization: Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium; email: thomas.vanleeuwen@ugent.be , wannes.dermauw@ugent.be
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26982444$$D View this record in MEDLINE/PubMed
BookMark eNo1z8tKAzEUgOEgir3oK0hwH00yZ5KZpZR6gRZBRnBXcjlDI9OkTDIF315BXf27D_4FOY8pIiG3gt8JAerexDiNeGIYS2JccC1qxmXVcn1G5qKGmgE0ekYWOX9yzlsB8pLMpGobCQBz0nV7pNs0oJsGM9L1KQ1TCSnS1NMPjMmGVIKjWyzGpiHkAzXR0zfMIRcTHdIQ6WqPQ3A4mvJDhYL5ilz0Zsh4_dcleX9cd6tntnl9elk9bJgBDYV5WTultPK2srrpG8kr0M5C01eVt06r1lupDHiuoBUSeKutVRV3Sru67a1ckptf9zjZA_rdcQwHM37t_vfkNwpnVig
CitedBy_id crossref_primary_10_1016_j_cbd_2019_01_005
crossref_primary_10_1073_pnas_1706865114
crossref_primary_10_7554_eLife_56689
crossref_primary_10_1111_1755_0998_14054
crossref_primary_10_1073_pnas_2020380118
crossref_primary_10_1007_s10493_021_00626_2
crossref_primary_10_1111_1744_7917_13408
crossref_primary_10_1371_journal_pone_0160009
crossref_primary_10_1007_s10340_017_0852_1
crossref_primary_10_1016_j_pestbp_2024_105905
crossref_primary_10_1038_s41598_020_74998_7
crossref_primary_10_1186_s12864_021_07894_7
crossref_primary_10_1094_MPMI_07_17_0168_CR
crossref_primary_10_1534_genetics_118_301803
crossref_primary_10_1016_j_pestbp_2019_10_001
crossref_primary_10_1016_j_pestbp_2022_105235
crossref_primary_10_1590_0001_3765202320221113
crossref_primary_10_1016_j_aspen_2020_01_014
crossref_primary_10_3390_insects11080511
crossref_primary_10_1016_j_pestbp_2022_105115
crossref_primary_10_1093_plphys_kiab412
crossref_primary_10_1002_ps_8223
crossref_primary_10_1093_gbe_evab091
crossref_primary_10_1080_01647954_2022_2062048
crossref_primary_10_1016_j_pestbp_2020_02_016
crossref_primary_10_1007_s10340_020_01213_x
crossref_primary_10_1016_j_pestbp_2016_07_004
crossref_primary_10_1016_j_pestbp_2018_07_008
crossref_primary_10_1038_s42003_021_02380_y
crossref_primary_10_1371_journal_pone_0227264
crossref_primary_10_1002_ps_4677
crossref_primary_10_1007_s13744_022_00970_x
crossref_primary_10_3389_fgene_2020_595166
crossref_primary_10_1016_j_ijbiomac_2023_125458
crossref_primary_10_1007_s10493_021_00665_9
crossref_primary_10_1016_j_pestbp_2021_104799
crossref_primary_10_1016_j_ibmb_2016_12_003
crossref_primary_10_1016_j_cropro_2024_106659
crossref_primary_10_1007_s00248_023_02314_7
crossref_primary_10_1002_ps_6747
crossref_primary_10_3389_fpls_2018_00986
crossref_primary_10_1038_s41598_019_55708_4
crossref_primary_10_1016_j_pestbp_2022_105255
crossref_primary_10_33064_iycuaa2025945778
crossref_primary_10_1016_j_cropro_2023_106343
crossref_primary_10_7585_kjps_2021_25_3_177
crossref_primary_10_1093_gigascience_giab016
crossref_primary_10_1016_j_cropro_2022_106049
crossref_primary_10_1016_j_jip_2016_09_004
crossref_primary_10_1371_journal_pgen_1009422
crossref_primary_10_1038_srep41312
crossref_primary_10_1002_ps_6516
crossref_primary_10_1002_ps_6632
crossref_primary_10_1128_AEM_00089_17
crossref_primary_10_1111_oik_06871
crossref_primary_10_1002_ps_5392
crossref_primary_10_1002_ps_5391
crossref_primary_10_1016_j_pestbp_2018_11_014
crossref_primary_10_1002_ps_5831
crossref_primary_10_3390_plants13131792
crossref_primary_10_1016_j_pestbp_2023_105396
crossref_primary_10_1017_S0007485317000414
crossref_primary_10_1111_imb_12642
crossref_primary_10_1002_ps_6130
crossref_primary_10_1086_719183
crossref_primary_10_1016_j_cbpc_2019_108561
crossref_primary_10_1016_j_jinsphys_2016_10_015
crossref_primary_10_1093_jee_toaf003
crossref_primary_10_3389_fpls_2018_01057
crossref_primary_10_1007_s10493_024_00923_6
crossref_primary_10_33202_comuagri_910489
crossref_primary_10_1016_j_ibmb_2020_103413
crossref_primary_10_1111_1744_7917_13214
crossref_primary_10_1016_j_ibmb_2020_103410
crossref_primary_10_1016_j_jare_2024_09_015
crossref_primary_10_1111_1744_7917_13212
crossref_primary_10_1002_ps_8440
crossref_primary_10_1590_1676_0611_bn_2023_1602
crossref_primary_10_1016_j_ibmb_2024_104127
crossref_primary_10_1111_1744_7917_13103
crossref_primary_10_25308_aduziraat_1189053
crossref_primary_10_1111_1744_7917_13341
crossref_primary_10_1186_s12915_022_01323_1
crossref_primary_10_1016_j_cropro_2024_106604
crossref_primary_10_1016_j_jhazmat_2024_135163
crossref_primary_10_1016_j_pestbp_2022_105062
crossref_primary_10_1007_s10340_021_01342_x
crossref_primary_10_1371_journal_pgen_1010333
crossref_primary_10_1002_ps_5628
crossref_primary_10_1080_09670874_2020_1817619
crossref_primary_10_3390_ijms20040806
crossref_primary_10_1002_ps_5627
crossref_primary_10_1016_j_ibmb_2016_11_010
crossref_primary_10_1002_ps_7007
crossref_primary_10_1007_s10493_023_00879_z
crossref_primary_10_1007_s10340_023_01669_7
crossref_primary_10_1021_acs_jnatprod_0c00480
crossref_primary_10_1146_annurev_ento_070621_061328
crossref_primary_10_3389_fagro_2023_1304656
crossref_primary_10_1002_ps_8065
crossref_primary_10_1007_s10493_021_00668_6
crossref_primary_10_3390_insects13111011
crossref_primary_10_3390_ijms232416220
crossref_primary_10_1016_j_cropro_2023_106519
crossref_primary_10_1038_srep36695
crossref_primary_10_1007_s00360_016_1018_9
crossref_primary_10_1007_s10493_020_00567_2
crossref_primary_10_1016_j_pestbp_2023_105591
crossref_primary_10_1111_jnc_13990
crossref_primary_10_54975_sduzfd_1510109
crossref_primary_10_1094_MPMI_06_17_0139_R
crossref_primary_10_1007_s10493_022_00772_1
crossref_primary_10_3389_fpls_2021_773439
crossref_primary_10_1016_j_jia_2023_06_008
crossref_primary_10_1038_s41598_017_13397_x
crossref_primary_10_1016_j_ibmb_2023_103981
crossref_primary_10_1016_j_pestbp_2018_06_015
crossref_primary_10_3390_plants13091239
crossref_primary_10_1016_j_ibmb_2023_104039
crossref_primary_10_1016_j_pestbp_2017_04_003
crossref_primary_10_3390_biology11111630
crossref_primary_10_1016_j_ijbiomac_2024_138982
crossref_primary_10_1016_j_pestbp_2024_105888
crossref_primary_10_1002_ps_6337
crossref_primary_10_1002_ps_5242
crossref_primary_10_1038_s41597_024_03579_4
crossref_primary_10_1093_jee_toae220
crossref_primary_10_3390_ijms252413298
crossref_primary_10_3389_frbee_2023_1297326
crossref_primary_10_1016_j_ibmb_2020_103347
crossref_primary_10_1016_j_envpol_2022_120945
crossref_primary_10_1038_s41598_017_09054_y
crossref_primary_10_1016_j_vetpar_2023_109957
crossref_primary_10_1080_01647954_2025_2475176
crossref_primary_10_1002_ps_8647
crossref_primary_10_1007_s00436_020_06879_x
crossref_primary_10_1007_s10493_021_00673_9
crossref_primary_10_1007_s10493_019_00359_3
crossref_primary_10_1016_j_pestbp_2021_104822
crossref_primary_10_1016_S2095_3119_16_61480_6
crossref_primary_10_1007_s10493_019_00398_w
crossref_primary_10_1021_acs_jafc_4c06169
crossref_primary_10_1016_j_ibmb_2019_04_011
crossref_primary_10_1016_j_ibmb_2019_04_010
crossref_primary_10_1016_j_cois_2020_03_005
crossref_primary_10_3389_fpls_2018_01786
crossref_primary_10_3389_fpls_2018_00458
crossref_primary_10_1111_1744_7917_13032
crossref_primary_10_1016_j_cropro_2020_105166
crossref_primary_10_1111_1744_7917_13151
crossref_primary_10_1016_j_pestbp_2024_106031
crossref_primary_10_1016_j_pestbp_2021_105000
crossref_primary_10_1080_01647954_2023_2195865
crossref_primary_10_1016_j_pestbp_2021_104855
crossref_primary_10_1038_s41467_023_40778_w
crossref_primary_10_3389_fphys_2022_889757
crossref_primary_10_3389_fpls_2018_01222
crossref_primary_10_1007_s10493_024_00987_4
crossref_primary_10_3389_fphys_2020_00758
crossref_primary_10_1038_s41598_022_05461_y
crossref_primary_10_3389_frchs_2022_1097945
crossref_primary_10_16969_entoteb_555172
crossref_primary_10_1016_j_pestbp_2024_105952
crossref_primary_10_1111_phen_12201
crossref_primary_10_1021_acs_jafc_2c06149
crossref_primary_10_1111_1744_7917_13166
crossref_primary_10_1016_j_cois_2018_01_001
crossref_primary_10_1038_s42003_023_05488_5
crossref_primary_10_1016_j_pestbp_2021_104966
crossref_primary_10_1016_j_pestbp_2019_03_008
crossref_primary_10_1002_arch_21869
crossref_primary_10_1016_j_ibmb_2022_103761
crossref_primary_10_3390_insects14050451
crossref_primary_10_5937_BiljLek2105626P
crossref_primary_10_1016_j_cropro_2024_107081
crossref_primary_10_1016_j_vetpar_2017_09_002
crossref_primary_10_1021_acs_jafc_4c01456
crossref_primary_10_1093_jee_toz087
crossref_primary_10_1016_j_pestbp_2023_105543
crossref_primary_10_1080_01647954_2023_2244960
crossref_primary_10_1534_g3_118_200585
crossref_primary_10_1002_ps_5564
crossref_primary_10_1016_j_pestbp_2020_01_010
crossref_primary_10_1186_s12870_020_02584_0
crossref_primary_10_1016_j_pestbp_2020_104677
crossref_primary_10_1016_j_ibmb_2018_12_001
crossref_primary_10_1111_eva_12643
crossref_primary_10_1016_j_jia_2024_07_020
crossref_primary_10_1007_s10340_018_1050_5
crossref_primary_10_2139_ssrn_4062455
crossref_primary_10_1016_j_chemosphere_2023_141089
crossref_primary_10_1016_j_ibmb_2022_103757
crossref_primary_10_1021_acs_jafc_4c04978
crossref_primary_10_1093_jee_toz171
crossref_primary_10_1016_j_pestbp_2025_106305
crossref_primary_10_3390_ijms22136909
crossref_primary_10_1002_ps_5339
crossref_primary_10_1021_acs_jafc_7b01333
crossref_primary_10_1093_gbe_evw249
crossref_primary_10_1002_ps_6544
crossref_primary_10_1016_j_pestbp_2023_105411
crossref_primary_10_1016_j_jbc_2023_105421
crossref_primary_10_1093_jee_toy404
crossref_primary_10_3390_insects16030259
crossref_primary_10_1002_ps_5582
crossref_primary_10_1016_j_cropro_2019_104903
crossref_primary_10_1007_s10493_019_00353_9
crossref_primary_10_1016_j_pestbp_2021_104984
crossref_primary_10_1016_j_pestbp_2021_104985
crossref_primary_10_1007_s10493_024_00928_1
crossref_primary_10_1074_mcp_M116_058081
crossref_primary_10_1007_s10493_019_00436_7
crossref_primary_10_1093_gbe_evw119
crossref_primary_10_3390_insects11120829
crossref_primary_10_1016_j_micpath_2018_09_044
crossref_primary_10_1371_journal_pntd_0006933
crossref_primary_10_1016_j_jia_2022_10_012
crossref_primary_10_1002_ps_6431
crossref_primary_10_1002_ps_7640
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1146/annurev-ento-010715-023907
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Zoology
Agriculture
EISSN 1545-4487
ExternalDocumentID 26982444
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
-QD
-QH
-~X
.GJ
0R~
1KX
23M
36B
39C
3O-
3V.
4.4
51A
53G
5FA
5FB
5FC
5FD
5FE
5FF
5FH
5GY
6J9
70K
70N
70Q
70S
70W
79.
7A.
7B-
7X2
7X7
85S
88A
88E
88I
8AF
8AO
8CJ
8FE
8FH
8FI
8FJ
8NG
8R4
8R5
AABJL
AAGWO
AALHT
AALUV
AAOHI
AARJV
AAWJP
AAYIS
ABDBF
ABDOG
ABGRM
ABIPL
ABJNI
ABKGM
ABUWG
ABVYV
ABZNY
ACAHA
ACDVT
ACGFO
ACGFS
ACGOD
ACMXS
ACNCT
ACPRK
ACQCJ
ACRLM
ACSOE
ACUHS
ADANS
ADBBV
ADEJD
ADHEY
ADNJN
ADSVE
AEAIQ
AEKBM
AENEX
AEPIK
AEUYN
AEWIE
AFCZG
AFERR
AFFNX
AFKDQ
AFKEJ
AFKRA
AFONB
AFRAH
AGBCJ
AHIXL
AHKZM
AHMBA
AHVNO
AI.
AIDEK
AIJFW
AIZOL
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTJG
AOUBY
AQQLW
ATAUN
ATCPS
AZQEC
B0M
B9D
B9E
B9F
B9G
B9H
B9L
B9N
BBNVY
BCFVH
BENPR
BHPHI
BJPMW
BKSAR
BMYRD
BPHCQ
BVXVI
CCPQU
CGR
CS3
CUY
CVF
D1J
DWQXO
EAP
EBC
EBD
EBS
ECM
EIF
EJD
EMB
EMK
EMOBN
ESX
F-Q
F-V
F-X
F-Y
F-Z
F5P
FIWKU
FIXEU
FMZAJ
FQMFW
FT0
FU.
FUEKT
FXG
FYUFA
GJQJI
GLOEX
GNDDA
GNUQQ
GOAVI
GQXMV
H13
HCIFZ
HMCUK
HZ~
H~9
J1V
LK8
M0K
M0L
M1P
M22
M2P
M7P
N9A
NEJ
NHB
NPM
O9-
OHT
P0P
P2P
PCBAR
PKN
PQQKQ
PROAC
PSQYO
Q2X
RAR
RAV
RNS
SV3
TUS
UKHRP
UKR
UMF
VH1
WH7
XOL
YSK
YZZ
ZCG
ZYWBE
~8M
~KM
ID FETCH-LOGICAL-a474t-d25c6676db3b78f820347cb48f33dbc769db26a4d0649124097bb630c67c59fb2
IngestDate Wed Feb 19 01:55:43 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords gene family radiations
target site
mapping
Acari
bulked segregant analysis
adaptation
xenosensor
chemoreceptor
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a474t-d25c6676db3b78f820347cb48f33dbc769db26a4d0649124097bb630c67c59fb2
PMID 26982444
ParticipantIDs pubmed_primary_26982444
PublicationCentury 2000
PublicationDate 2016-03-11
PublicationDateYYYYMMDD 2016-03-11
PublicationDate_xml – month: 03
  year: 2016
  text: 2016-03-11
  day: 11
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Annual review of entomology
PublicationTitleAlternate Annu Rev Entomol
PublicationYear 2016
SSID ssj0009142
Score 2.5877898
SecondaryResourceType review_article
Snippet Chelicerate mites diverged from other arthropod lineages more than 400 million years ago and subsequently developed specific and remarkable xenobiotic...
SourceID pubmed
SourceType Index Database
StartPage 475
SubjectTerms Adaptation, Biological
Animals
Biological Evolution
Evolution, Molecular
Mites - genetics
Mites - metabolism
Xenobiotics - metabolism
Title The Molecular Evolution of Xenobiotic Metabolism and Resistance in Chelicerate Mites
URI https://www.ncbi.nlm.nih.gov/pubmed/26982444
Volume 61
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB5sRdCHom3V1gvz4NsykstkLo-LrCzC-iBbXXxZMpeo0CbFZlvor-85yWSTbrd4eQkhA0nId_LlO5M53yHknVSZ1UoIlivnGBBexnRkCxZ56bQulIsVFifPPovpCf-0yBZ9z9amuqQ27-311rqS_0EVjgGuWCX7D8iuTwoHYB_whS0gDNu_xnjW9bcdTS7DxVAALnyJBktoxzrzNSB92nXD-OIvUDPiC40Vfz_9KXAFGkaMZiA_L4ZqNZjv9-Ut8IWqzm5NxH_Ftr_er65a-hqsN0J1jLS_an4efcuB0G_NMcQCF1kFDvSBF3nGIJOTQ-JsXdQD8_G2AcpdRh5aETO8TQYpoIyxLjzVbcfbAVTnZw1WidAKhAf_8-iGW3Y3tEN2IG_ARqg4e9OZMMc8Ccazg0Y_W24KLaLDiTbSjUZ2zJ-SvZAv0HEL_jPywJf75Mn4x-_gmeL3yaPvVQPJAZlDQNB1QNB1QNCqoH1A0D4gKAQE7QOC_irpICBoExCH5OTjZP5hykLbDJZzyWvmksziymVnUiNVARIv5dIaroo0dcZKoZ1JRM4dqFEN8i7S0hiRRlZIm-nCJM_JblmV_iWhkZK5MCqxyhkuYC8yPAXJbUQSizwyR-RF-3CW5603yrJ7bMf3jrwij_sQe00eFvAy-jeg7GrztoHrBh9VTws
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Molecular+Evolution+of+Xenobiotic+Metabolism+and+Resistance+in+Chelicerate+Mites&rft.jtitle=Annual+review+of+entomology&rft.au=Van+Leeuwen%2C+Thomas&rft.au=Dermauw%2C+Wannes&rft.date=2016-03-11&rft.eissn=1545-4487&rft.volume=61&rft.spage=475&rft_id=info:doi/10.1146%2Fannurev-ento-010715-023907&rft_id=info%3Apmid%2F26982444&rft_id=info%3Apmid%2F26982444&rft.externalDocID=26982444