Synthesis of Silver Nanoparticles Using Curcumin-Cyclodextrins Loaded into Bacterial Cellulose-Based Hydrogels for Wound Dressing Applications
Chronic wounds are often recalcitrant to treatment because of high microbial bioburden and the problem of microbial resistance. Silver is a broad-spectrum natural antimicrobial agent with wide applications extending to proprietary wound dressings. Recently, silver nanoparticles have attracted attent...
Saved in:
Published in | Biomacromolecules Vol. 21; no. 5; pp. 1802 - 1811 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
11.05.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Chronic wounds are often recalcitrant to treatment because of high microbial bioburden and the problem of microbial resistance. Silver is a broad-spectrum natural antimicrobial agent with wide applications extending to proprietary wound dressings. Recently, silver nanoparticles have attracted attention in wound management. In the current study, the green synthesis of nanoparticles was accomplished using a natural reducing agent, curcumin, which is a natural polyphenolic compound that is well-known as a wound-healing agent. The hydrophobicity of curcumin was overcome by its microencapsulation in cyclodextrins. This study demonstrates the production, characterization of silver nanoparticles using aqueous curcumin:hydroxypropyl-β-cyclodextrin complex and loading them into bacterial cellulose hydrogel with moist wound-healing properties. These silver nanoparticle-loaded bacterial cellulose hydrogels were characterized for wound-management applications. In addition to high cytocompatibility, these novel dressings exhibited antimicrobial activity against three common wound-infecting pathogenic microbes Staphylococcus aureus, Pseudomonas aeruginosa, and Candida auris. |
---|---|
AbstractList | Chronic wounds are often recalcitrant to treatment because of high microbial bioburden and the problem of microbial resistance. Silver is a broad-spectrum natural antimicrobial agent with wide applications extending to proprietary wound dressings. Recently, silver nanoparticles have attracted attention in wound management. In the current study, the green synthesis of nanoparticles was accomplished using a natural reducing agent, curcumin, which is a natural polyphenolic compound that is well-known as a wound-healing agent. The hydrophobicity of curcumin was overcome by its microencapsulation in cyclodextrins. This study demonstrates the production, characterization of silver nanoparticles using aqueous curcumin:hydroxypropyl-β-cyclodextrin complex and loading them into bacterial cellulose hydrogel with moist wound-healing properties. These silver nanoparticle-loaded bacterial cellulose hydrogels were characterized for wound-management applications. In addition to high cytocompatibility, these novel dressings exhibited antimicrobial activity against three common wound-infecting pathogenic microbes
,
, and
. Chronic wounds are often recalcitrant to treatment because of high microbial bioburden and the problem of microbial resistance. Silver is a broad-spectrum natural antimicrobial agent with wide applications extending to proprietary wound dressings. Recently, silver nanoparticles have attracted attention in wound management. In the current study, the green synthesis of nanoparticles was accomplished using a natural reducing agent, curcumin, which is a natural polyphenolic compound that is well-known as a wound-healing agent. The hydrophobicity of curcumin was overcome by its microencapsulation in cyclodextrins. This study demonstrates the production, characterization of silver nanoparticles using aqueous curcumin:hydroxypropyl-β-cyclodextrin complex and loading them into bacterial cellulose hydrogel with moist wound-healing properties. These silver nanoparticle-loaded bacterial cellulose hydrogels were characterized for wound-management applications. In addition to high cytocompatibility, these novel dressings exhibited antimicrobial activity against three common wound-infecting pathogenic microbes Staphylococcus aureus, Pseudomonas aeruginosa, and Candida auris.Chronic wounds are often recalcitrant to treatment because of high microbial bioburden and the problem of microbial resistance. Silver is a broad-spectrum natural antimicrobial agent with wide applications extending to proprietary wound dressings. Recently, silver nanoparticles have attracted attention in wound management. In the current study, the green synthesis of nanoparticles was accomplished using a natural reducing agent, curcumin, which is a natural polyphenolic compound that is well-known as a wound-healing agent. The hydrophobicity of curcumin was overcome by its microencapsulation in cyclodextrins. This study demonstrates the production, characterization of silver nanoparticles using aqueous curcumin:hydroxypropyl-β-cyclodextrin complex and loading them into bacterial cellulose hydrogel with moist wound-healing properties. These silver nanoparticle-loaded bacterial cellulose hydrogels were characterized for wound-management applications. In addition to high cytocompatibility, these novel dressings exhibited antimicrobial activity against three common wound-infecting pathogenic microbes Staphylococcus aureus, Pseudomonas aeruginosa, and Candida auris. Chronic wounds are often recalcitrant to treatment because of high microbial bioburden and the problem of microbial resistance. Silver is a broad-spectrum natural antimicrobial agent with wide applications extending to proprietary wound dressings. Recently, silver nanoparticles have attracted attention in wound management. In the current study, the green synthesis of nanoparticles was accomplished using a natural reducing agent, curcumin, which is a natural polyphenolic compound that is well-known as a wound-healing agent. The hydrophobicity of curcumin was overcome by its microencapsulation in cyclodextrins. This study demonstrates the production, characterization of silver nanoparticles using aqueous curcumin:hydroxypropyl-β-cyclodextrin complex and loading them into bacterial cellulose hydrogel with moist wound-healing properties. These silver nanoparticle-loaded bacterial cellulose hydrogels were characterized for wound-management applications. In addition to high cytocompatibility, these novel dressings exhibited antimicrobial activity against three common wound-infecting pathogenic microbes Staphylococcus aureus, Pseudomonas aeruginosa, and Candida auris. Chronic wounds are often recalcitrant to treatment because of high microbial bioburden and the problem of microbial resistance. Silver is a broad-spectrum natural antimicrobial agent with wide applications extending to proprietary wound dressings. Recently, silver nanoparticles have attracted attention in wound management. In the current study, the green synthesis of nanoparticles was accomplished using a natural reducing agent, curcumin, which is a natural polyphenolic compound that is well-known as a wound-healing agent. The hydrophobicity of curcumin was overcome by its microencapsulation in cyclodextrins. This study demonstrates the production, characterization of silver nanoparticles using aqueous curcumin:hydroxypropyl-β-cyclodextrin complex and loading them into bacterial cellulose hydrogel with moist wound-healing properties. These silver nanoparticle-loaded bacterial cellulose hydrogels were characterized for wound-management applications. In addition to high cytocompatibility, these novel dressings exhibited antimicrobial activity against three common wound-infecting pathogenic microbes Staphylococcus aureus , Pseudomonas aeruginosa , and Candida auris . |
Author | Briffa, Sophie M Gupta, Abhishek Adamus, Grazyna Kannappan, Vinodh Kowalczuk, Marek Swingler, Sam Radecka, Iza Martin, Claire Gibson, Hazel |
AuthorAffiliation | Research Institute in Healthcare Science, Faculty of Science and Engineering Wolverhampton School of Sciences, Faculty of Science and Engineering Centre of Polymer and Carbon Materials Department of Biological Sciences, School of Sciences and the Environment School of Pharmacy, Faculty of Science and Engineering School of Geography, Earth and Environmental Sciences |
AuthorAffiliation_xml | – name: Research Institute in Healthcare Science, Faculty of Science and Engineering – name: School of Pharmacy, Faculty of Science and Engineering – name: School of Geography, Earth and Environmental Sciences – name: Department of Biological Sciences, School of Sciences and the Environment – name: Wolverhampton School of Sciences, Faculty of Science and Engineering – name: Centre of Polymer and Carbon Materials |
Author_xml | – sequence: 1 givenname: Abhishek orcidid: 0000-0001-7901-1818 surname: Gupta fullname: Gupta, Abhishek email: a.gupta@wlv.ac.uk organization: Research Institute in Healthcare Science, Faculty of Science and Engineering – sequence: 2 givenname: Sophie M surname: Briffa fullname: Briffa, Sophie M organization: School of Geography, Earth and Environmental Sciences – sequence: 3 givenname: Sam surname: Swingler fullname: Swingler, Sam organization: Wolverhampton School of Sciences, Faculty of Science and Engineering – sequence: 4 givenname: Hazel surname: Gibson fullname: Gibson, Hazel organization: Research Institute in Healthcare Science, Faculty of Science and Engineering – sequence: 5 givenname: Vinodh surname: Kannappan fullname: Kannappan, Vinodh organization: Research Institute in Healthcare Science, Faculty of Science and Engineering – sequence: 6 givenname: Grazyna surname: Adamus fullname: Adamus, Grazyna organization: Centre of Polymer and Carbon Materials – sequence: 7 givenname: Marek orcidid: 0000-0002-2877-7466 surname: Kowalczuk fullname: Kowalczuk, Marek email: marek.kowalczuk@cmpw-pan.edu.pl organization: Centre of Polymer and Carbon Materials – sequence: 8 givenname: Claire orcidid: 0000-0002-5497-4594 surname: Martin fullname: Martin, Claire organization: Department of Biological Sciences, School of Sciences and the Environment – sequence: 9 givenname: Iza orcidid: 0000-0003-3257-8803 surname: Radecka fullname: Radecka, Iza email: I.Radecka@wlv.ac.uk organization: Research Institute in Healthcare Science, Faculty of Science and Engineering |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31967794$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUstu1DAUtVARfcAPsEBessng2M5rg9SGR5FGsCgVS8t2bqauHDvYTsX8BN-MOzNFwKKsbPk8dK7vOUVHzjtA6GVJViWh5Rup40oZP0m96hQpG8qfoJOyonXBa0KPdveqaJquOUanMd4SQjrGq2fomJVdnd_5Cfp5tXXpBqKJ2I_4ytg7CPizdH6WIRltIeLraNwG90vQy2Rc0W-19QP8SMG4iNdeDjBg45LHF1InCEZa3IO1i_URigsZM3y5HYLfgI149AF_84sb8LsAced8Ps_WaJmMd_E5ejpKG-HF4TxD1x_ef-0vi_WXj5_683UhecNTofSgeD2ykTJd1YpDyztQtK0HNrZAKqZonSesQYJinFR0HCm0qqWElVVDNDtDb_e-86ImGDS4FKQVczCTDFvhpRF_I87ciI2_E03VtqRss8Hrg0Hw3xeISUwm6jy2dOCXKGhFOaOU1fz_VMY5pTXjNFNf_Rnrd56HfWVCuyfo4GMMMApt0u7rckpjRUnEfTVErobYV0McqpGl9B_pg_ujotVedI_d-iW4vJXHBL8AaXHTXQ |
CitedBy_id | crossref_primary_10_1080_15421406_2021_1905269 crossref_primary_10_1038_s41598_021_01262_x crossref_primary_10_3389_fphar_2024_1438227 crossref_primary_10_3390_ijms222413516 crossref_primary_10_1016_j_apmt_2022_101396 crossref_primary_10_1515_ijmr_2021_8377 crossref_primary_10_1016_j_mtsust_2023_100648 crossref_primary_10_1080_10717544_2023_2300945 crossref_primary_10_1021_acssuschemeng_1c03797 crossref_primary_10_1093_mmy_myac008 crossref_primary_10_1016_j_ijbiomac_2022_11_154 crossref_primary_10_3390_ijms232315376 crossref_primary_10_1021_acsomega_2c06806 crossref_primary_10_1021_acsanm_0c01164 crossref_primary_10_1021_acsmaterialslett_0c00304 crossref_primary_10_3390_catal12101096 crossref_primary_10_1590_0104_1428_09420 crossref_primary_10_1016_j_carbpol_2022_119160 crossref_primary_10_4103_abr_abr_92_24 crossref_primary_10_1016_j_matpr_2022_09_548 crossref_primary_10_3390_polym14194098 crossref_primary_10_1016_j_jmst_2021_10_011 crossref_primary_10_1016_j_carbpol_2021_118565 crossref_primary_10_1016_j_indcrop_2023_117525 crossref_primary_10_1002_slct_202203989 crossref_primary_10_1016_j_ijbiomac_2023_123913 crossref_primary_10_1016_j_plaphy_2024_108807 crossref_primary_10_1016_j_jcis_2022_04_119 crossref_primary_10_3389_fbioe_2020_593768 crossref_primary_10_1016_j_ijbiomac_2023_124321 crossref_primary_10_3390_gels7030082 crossref_primary_10_1039_D1TB01871J crossref_primary_10_1002_slct_202303328 crossref_primary_10_1016_j_molliq_2024_125434 crossref_primary_10_1002_anie_202423654 crossref_primary_10_1002_adfm_202404708 crossref_primary_10_1007_s42250_022_00514_1 crossref_primary_10_3390_pharmaceutics13122108 crossref_primary_10_1016_j_scp_2021_100553 crossref_primary_10_3390_polym13193365 crossref_primary_10_3390_molecules27175580 crossref_primary_10_1007_s00289_024_05190_4 crossref_primary_10_1016_j_jddst_2022_103484 crossref_primary_10_1016_j_compositesb_2022_110095 crossref_primary_10_3390_polym13203578 crossref_primary_10_1021_acs_analchem_0c04956 crossref_primary_10_3390_microorganisms9030634 crossref_primary_10_1016_j_heliyon_2022_e12063 crossref_primary_10_1016_j_ijbiomac_2024_135602 crossref_primary_10_1016_j_eng_2022_05_022 crossref_primary_10_1016_j_cplett_2023_140850 crossref_primary_10_3390_ma14051095 crossref_primary_10_2174_0115734072294675240502065442 crossref_primary_10_1016_j_ijbiomac_2022_03_067 crossref_primary_10_1177_08853282231184734 crossref_primary_10_3390_coatings12091292 crossref_primary_10_1007_s10570_021_04001_7 crossref_primary_10_1016_j_eurpolymj_2024_113260 crossref_primary_10_3390_gels9080633 crossref_primary_10_3390_ijms22137192 crossref_primary_10_3390_biomedicines9091235 crossref_primary_10_1080_07388551_2025_2458006 crossref_primary_10_3390_ma13122853 crossref_primary_10_1016_j_colsurfb_2021_111948 crossref_primary_10_1021_acssuschemeng_3c04907 crossref_primary_10_3390_biom10111511 crossref_primary_10_3390_pharmaceutics14122816 crossref_primary_10_14233_ajchem_2021_23392 crossref_primary_10_1002_wnan_1745 crossref_primary_10_1016_j_ijbiomac_2022_08_056 crossref_primary_10_1007_s10570_023_05210_y crossref_primary_10_1021_acsnano_2c12448 crossref_primary_10_1038_s41598_021_04674_x crossref_primary_10_1016_j_carbpol_2023_121438 crossref_primary_10_3390_molecules29173998 crossref_primary_10_1016_j_engreg_2024_06_004 crossref_primary_10_1002_adhm_202302626 crossref_primary_10_1016_j_eurpolymj_2022_111293 crossref_primary_10_1039_D4TB02068E crossref_primary_10_1021_acs_biomac_0c00760 crossref_primary_10_4028_p_D9PnjE crossref_primary_10_1002_jbm_b_35037 crossref_primary_10_1016_j_ijpharm_2025_125254 crossref_primary_10_1016_j_ijpharm_2022_121843 crossref_primary_10_1007_s10570_024_05741_y crossref_primary_10_1007_s13205_024_04095_3 crossref_primary_10_1002_ange_202423654 crossref_primary_10_1177_15353702231211863 crossref_primary_10_1016_j_bioadv_2022_213099 crossref_primary_10_1016_j_xcrp_2024_102093 crossref_primary_10_3390_ijms24021719 crossref_primary_10_1016_j_carbpol_2021_117716 crossref_primary_10_3390_ijms24020986 crossref_primary_10_1039_D2BM00029F crossref_primary_10_1021_acs_chemmater_3c00926 crossref_primary_10_1039_D4MA00384E crossref_primary_10_1016_j_colsurfa_2022_130368 crossref_primary_10_1021_acs_biomac_0c01069 crossref_primary_10_1016_j_mib_2022_102154 crossref_primary_10_3390_nano10081566 crossref_primary_10_3390_pharmaceutics13122029 crossref_primary_10_1016_j_cej_2024_157272 crossref_primary_10_3390_molecules29204889 crossref_primary_10_1021_acs_cgd_3c00042 crossref_primary_10_1080_07373937_2023_2274402 crossref_primary_10_3390_ma16124447 crossref_primary_10_3390_nano12020192 crossref_primary_10_1016_j_msec_2020_110925 crossref_primary_10_3390_ma17102439 crossref_primary_10_1016_j_jddst_2023_104731 crossref_primary_10_1177_08839115241241294 crossref_primary_10_3390_pharmaceutics15020424 crossref_primary_10_1002_mabi_202300333 crossref_primary_10_1002_cbic_202400335 crossref_primary_10_3390_coatings11050519 crossref_primary_10_1016_j_ijbiomac_2024_134158 crossref_primary_10_3390_gels9110878 crossref_primary_10_1021_acsomega_4c11045 crossref_primary_10_3390_ijms23020610 crossref_primary_10_1016_j_ijbiomac_2025_141427 crossref_primary_10_1016_j_ijbiomac_2022_123118 crossref_primary_10_1021_jacs_1c08679 crossref_primary_10_1016_j_jddst_2023_104723 crossref_primary_10_1039_D1TA03264J crossref_primary_10_3390_pharmaceutics13030352 crossref_primary_10_1016_j_jddst_2024_106211 crossref_primary_10_1039_D0MA00732C crossref_primary_10_2174_0113892010281021231229100228 crossref_primary_10_1515_znc_2021_0298 crossref_primary_10_3390_ma14174987 crossref_primary_10_1016_j_mtbio_2022_100429 crossref_primary_10_1080_02652048_2025_2480598 crossref_primary_10_3390_polym14235316 crossref_primary_10_1002_pen_25410 crossref_primary_10_1016_j_carbpol_2024_122961 crossref_primary_10_1002_advs_202207347 crossref_primary_10_33483_jfpau_1253376 crossref_primary_10_1016_j_molliq_2020_113269 crossref_primary_10_1016_j_bioadv_2023_213345 crossref_primary_10_1039_D4TB00887A crossref_primary_10_1021_acsomega_2c07062 crossref_primary_10_1007_s10570_025_06435_9 crossref_primary_10_1039_D3RA03477A crossref_primary_10_3390_ijms22137130 crossref_primary_10_1007_s40005_020_00499_4 crossref_primary_10_3390_molecules29112693 crossref_primary_10_3390_polym14030421 crossref_primary_10_1016_j_colsurfa_2021_127924 crossref_primary_10_1038_s41598_021_85584_w crossref_primary_10_1016_j_apmt_2023_101829 crossref_primary_10_1021_acssynbio_4c00206 crossref_primary_10_1055_a_1995_5303 crossref_primary_10_3390_nano10091885 crossref_primary_10_1002_adma_202102520 crossref_primary_10_3390_molecules29081757 crossref_primary_10_1007_s10876_021_02190_6 crossref_primary_10_1049_nbt2_12007 crossref_primary_10_1021_acs_biomac_1c01597 crossref_primary_10_3390_bioengineering10070804 crossref_primary_10_3390_gels9050390 crossref_primary_10_1016_j_ijbiomac_2024_133831 crossref_primary_10_1016_j_ejmcr_2022_100088 crossref_primary_10_1021_acsanm_3c02266 crossref_primary_10_1080_00319104_2023_2297223 crossref_primary_10_3390_ijms24043184 crossref_primary_10_1016_j_mtbio_2024_101177 crossref_primary_10_1016_j_mtchem_2021_100746 crossref_primary_10_1016_j_ijbiomac_2023_128330 crossref_primary_10_1155_2024_3280349 crossref_primary_10_1186_s12951_021_00996_0 crossref_primary_10_1007_s10924_021_02257_5 crossref_primary_10_1021_acsami_1c12319 crossref_primary_10_1021_acsomega_2c03495 crossref_primary_10_3390_microorganisms11092234 crossref_primary_10_1007_s11468_023_02127_x crossref_primary_10_1016_j_ijbiomac_2024_139128 crossref_primary_10_3389_fbioe_2023_1239183 crossref_primary_10_1007_s11696_024_03366_w crossref_primary_10_1016_j_ijbiomac_2023_124703 crossref_primary_10_3390_fermentation10060316 crossref_primary_10_1002_pc_26334 crossref_primary_10_1016_j_matdes_2023_112179 crossref_primary_10_1080_17518253_2022_2158690 crossref_primary_10_3390_ijms232012198 crossref_primary_10_1039_D2BM00338D crossref_primary_10_1039_D1TB02709C crossref_primary_10_1016_j_envres_2023_117625 crossref_primary_10_1039_D2RA00231K crossref_primary_10_1002_admt_202400547 crossref_primary_10_1039_D1NJ01228B crossref_primary_10_3389_fphar_2022_820806 crossref_primary_10_1007_s10570_021_04130_z crossref_primary_10_1007_s00289_023_04915_1 crossref_primary_10_1016_j_arr_2021_101364 crossref_primary_10_1021_acsapm_4c02289 crossref_primary_10_1089_wound_2020_1219 crossref_primary_10_18231_j_jpmhh_2024_016 crossref_primary_10_1016_j_colsurfa_2024_133852 crossref_primary_10_1016_j_mycmed_2021_101232 crossref_primary_10_3390_ma14102654 crossref_primary_10_1016_j_bioactmat_2022_03_034 crossref_primary_10_3389_fbioe_2024_1375784 crossref_primary_10_3390_polym14040769 crossref_primary_10_1016_j_mtsust_2022_100272 crossref_primary_10_1021_acs_biomac_1c01428 crossref_primary_10_1007_s10570_024_06102_5 crossref_primary_10_3390_ijms21249656 crossref_primary_10_1080_09506608_2023_2193784 crossref_primary_10_3390_gels10060383 crossref_primary_10_3390_polym13121942 crossref_primary_10_61186_iau_34_2_112 crossref_primary_10_1016_j_apmt_2021_101224 crossref_primary_10_1016_j_bioadv_2022_213130 crossref_primary_10_1016_j_ijbiomac_2025_141849 crossref_primary_10_3390_gels9100780 crossref_primary_10_3390_gels9020161 crossref_primary_10_1039_D1BM02010B crossref_primary_10_1016_j_csbj_2023_08_031 crossref_primary_10_1016_j_surfin_2023_103347 crossref_primary_10_1016_j_ijbiomac_2024_130525 crossref_primary_10_1016_j_ijbiomac_2024_135418 crossref_primary_10_1002_slct_202003666 crossref_primary_10_3390_ijms251910408 crossref_primary_10_1063_5_0220070 crossref_primary_10_1080_17512433_2021_1949285 crossref_primary_10_1016_j_cofs_2021_09_003 crossref_primary_10_1108_SR_07_2023_0314 crossref_primary_10_1016_j_biopha_2022_112862 crossref_primary_10_1016_j_carbpol_2021_118995 crossref_primary_10_1016_j_vibspec_2023_103604 crossref_primary_10_3390_nano12111841 crossref_primary_10_1016_j_carbpol_2021_118871 crossref_primary_10_1016_j_ijbiomac_2023_123944 crossref_primary_10_1021_acsami_1c06986 crossref_primary_10_1016_j_ijbiomac_2023_123269 crossref_primary_10_15407_hftp16_01_090 crossref_primary_10_69547_tsfjb_v1i2_18 crossref_primary_10_1080_09205063_2023_2278814 crossref_primary_10_1016_j_matdes_2023_111604 crossref_primary_10_2147_IJN_S469724 crossref_primary_10_3390_pharmaceutics15030857 crossref_primary_10_1016_j_carbpol_2024_122656 crossref_primary_10_1016_j_carbpol_2023_121268 crossref_primary_10_3390_coatings12020271 crossref_primary_10_1007_s42114_021_00369_z crossref_primary_10_3390_polym13030412 crossref_primary_10_1515_ntrev_2021_0046 crossref_primary_10_3390_pharmaceutics14071377 crossref_primary_10_1080_15583724_2024_2400961 crossref_primary_10_1155_2022_1214734 crossref_primary_10_1016_j_btre_2022_e00726 crossref_primary_10_1186_s12951_021_01152_4 |
Cites_doi | 10.1086/593185 10.1002/jbm.a.33148 10.2147/IJN.S36786 10.1016/j.jddst.2017.12.019 10.1016/j.carbpol.2019.115296 10.1039/C5NR07918G 10.1016/j.carbpol.2013.10.093 10.1016/j.jtv.2018.08.007 10.1016/j.jddst.2019.101308 10.1016/j.jece.2018.08.009 10.1016/j.carbpol.2018.12.014 10.1155/2016/5356404 10.1080/02652048.2016.1253796 10.1016/j.nano.2011.07.005 10.1016/j.biortech.2010.05.051 10.1016/j.jid.2018.04.014 10.3390/antiox7080098 10.1016/j.jdiacomp.2019.107471 10.1517/13543776.15.2.125 10.1016/j.msec.2018.12.053 10.1016/j.tibtech.2018.10.011 10.1016/j.ijbiomac.2014.03.047 10.1111/1751-7915.13392 10.1016/j.burns.2017.06.007 10.1016/j.jddst.2019.03.043 10.12968/jowc.2003.12.5.26493 10.1016/j.msec.2019.03.111 10.1007/s13205-015-0302-9 10.3390/molecules24040719 10.1016/j.ajps.2018.09.001 10.1002/mabi.201300298 10.1016/j.jaim.2017.11.003 10.1016/j.carbpol.2019.115302 10.1016/j.colsurfb.2018.07.059 10.1016/j.micres.2018.07.009 10.1111/jphp.12234 10.1016/j.eurpolymj.2017.12.046 10.1002/mbo3.578 10.1039/C7RA06699F 10.1016/j.bcab.2019.101332 10.1016/j.poly.2018.10.049 10.3390/jof4040129 10.1163/092050611X581516 10.1016/j.ijbiomac.2018.10.192 10.3390/nano7090257 10.1016/j.jaim.2019.09.002 10.1016/j.nano.2011.05.007 10.1016/j.msec.2019.110130 10.1016/j.eurpolymj.2019.06.018 10.1016/j.ijbiomac.2018.06.067 10.7326/M19-2205 10.2174/1568026618666180528121707 10.2147/IJN.S202404 10.1038/193293a0 10.5920/bjpharm.2017.27 10.3389/fmicb.2017.02027 10.1111/j.1524-475X.2007.00321.x 10.1016/j.carbpol.2019.115573 10.1016/j.biopha.2018.02.040 10.1128/mSphere.00458-19 10.1042/bj0580345 10.1016/j.fgb.2019.103243 10.1016/j.colsurfb.2013.06.031 10.1016/j.wndm.2019.100170 10.1016/j.lfs.2014.08.016 10.1016/j.ijbiomac.2015.01.050 10.1016/j.eurpolymj.2018.12.019 |
ContentType | Journal Article |
Copyright | 2020 American Chemical Society |
Copyright_xml | – notice: 2020 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 5PM |
DOI | 10.1021/acs.biomac.9b01724 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1526-4602 |
EndPage | 1811 |
ExternalDocumentID | PMC7588018 31967794 10_1021_acs_biomac_9b01724 c176357316 |
Genre | Journal Article |
GroupedDBID | - 02 23N 53G 55A 5GY 5VS 7~N AABXI ABFLS ABMVS ABPTK ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 DU5 EBS ED ED~ F5P GNL IH9 JG JG~ P2P RNS ROL TN5 UI2 VF5 VG9 W1F X XKZ --- -~X 4.4 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ BAANH CITATION CUPRZ GGK ZCA ~02 NPM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-a474t-bcdb46f3f23c56b4e849eb286d3f8e053b269676eaeb34052ff2e8b82031570c3 |
IEDL.DBID | ACS |
ISSN | 1525-7797 1526-4602 |
IngestDate | Thu Aug 21 14:06:59 EDT 2025 Fri Jul 11 00:58:44 EDT 2025 Thu Jul 10 19:29:42 EDT 2025 Mon Jul 21 05:56:40 EDT 2025 Tue Jul 01 04:08:01 EDT 2025 Thu Apr 24 23:06:50 EDT 2025 Wed Sep 30 03:13:33 EDT 2020 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a474t-bcdb46f3f23c56b4e849eb286d3f8e053b269676eaeb34052ff2e8b82031570c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3257-8803 0000-0001-7901-1818 0000-0002-2877-7466 0000-0002-5497-4594 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7588018 |
PMID | 31967794 |
PQID | 2344226342 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7588018 proquest_miscellaneous_2524322364 proquest_miscellaneous_2344226342 pubmed_primary_31967794 crossref_citationtrail_10_1021_acs_biomac_9b01724 crossref_primary_10_1021_acs_biomac_9b01724 acs_journals_10_1021_acs_biomac_9b01724 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-11 |
PublicationDateYYYYMMDD | 2020-05-11 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-11 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Biomacromolecules |
PublicationTitleAlternate | Biomacromolecules |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 Speare-Cole R. (ref26/cit26) 2019 ref8/cit8 ref59/cit59 ref2/cit2 Kowalczuk M. M. (ref23/cit23) 2017; 1 ref34/cit34 ref71/cit71 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref74/cit74 ref17/cit17 ref10/cit10 Khosravi K. (ref18/cit18) 2016; 6 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref67/cit67 ref24/cit24 ref38/cit38 Gohlar G. (ref31/cit31) 2019; 303 ref50/cit50 ref64/cit64 ref54/cit54 Song H. Y. (ref69/cit69) 2006; 11 ref6/cit6 ref36/cit36 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref72/cit72 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref68/cit68 ref55/cit55 ref73/cit73 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref70/cit70 ref7/cit7 |
References_xml | – ident: ref7/cit7 doi: 10.1086/593185 – ident: ref63/cit63 doi: 10.1002/jbm.a.33148 – ident: ref50/cit50 doi: 10.2147/IJN.S36786 – ident: ref54/cit54 doi: 10.1016/j.jddst.2017.12.019 – ident: ref4/cit4 doi: 10.1016/j.carbpol.2019.115296 – ident: ref46/cit46 doi: 10.1039/C5NR07918G – ident: ref56/cit56 doi: 10.1016/j.carbpol.2013.10.093 – ident: ref25/cit25 – ident: ref36/cit36 doi: 10.1016/j.jtv.2018.08.007 – ident: ref38/cit38 doi: 10.1016/j.jddst.2019.101308 – ident: ref68/cit68 doi: 10.1016/j.jece.2018.08.009 – ident: ref52/cit52 doi: 10.1016/j.carbpol.2018.12.014 – ident: ref45/cit45 doi: 10.1155/2016/5356404 – volume: 1 start-page: e001 year: 2017 ident: ref23/cit23 publication-title: Mathews J. Forensic Research – ident: ref33/cit33 doi: 10.1080/02652048.2016.1253796 – ident: ref35/cit35 doi: 10.1016/j.nano.2011.07.005 – ident: ref53/cit53 doi: 10.1016/j.biortech.2010.05.051 – ident: ref6/cit6 doi: 10.1016/j.jid.2018.04.014 – ident: ref70/cit70 doi: 10.3390/antiox7080098 – ident: ref74/cit74 doi: 10.1016/j.jdiacomp.2019.107471 – ident: ref34/cit34 doi: 10.1517/13543776.15.2.125 – ident: ref43/cit43 doi: 10.1016/j.msec.2018.12.053 – ident: ref5/cit5 doi: 10.1016/j.tibtech.2018.10.011 – ident: ref61/cit61 doi: 10.1016/j.ijbiomac.2014.03.047 – ident: ref57/cit57 doi: 10.1111/1751-7915.13392 – ident: ref73/cit73 doi: 10.1016/j.burns.2017.06.007 – ident: ref16/cit16 doi: 10.1016/j.jddst.2019.03.043 – volume: 11 start-page: 58 year: 2006 ident: ref69/cit69 publication-title: Eur. Cells Mater. – ident: ref72/cit72 doi: 10.12968/jowc.2003.12.5.26493 – ident: ref11/cit11 doi: 10.1016/j.msec.2019.03.111 – ident: ref44/cit44 doi: 10.1007/s13205-015-0302-9 – ident: ref48/cit48 doi: 10.3390/molecules24040719 – ident: ref8/cit8 doi: 10.1016/j.ajps.2018.09.001 – ident: ref60/cit60 doi: 10.1002/mabi.201300298 – ident: ref39/cit39 doi: 10.1016/j.jaim.2017.11.003 – ident: ref10/cit10 doi: 10.1016/j.carbpol.2019.115302 – ident: ref40/cit40 doi: 10.1016/j.colsurfb.2018.07.059 – ident: ref2/cit2 doi: 10.1016/j.micres.2018.07.009 – ident: ref19/cit19 doi: 10.1111/jphp.12234 – ident: ref12/cit12 doi: 10.1016/j.eurpolymj.2017.12.046 – volume: 303 start-page: 7927 year: 2019 ident: ref31/cit31 publication-title: Pharmaceutical J. – ident: ref27/cit27 doi: 10.1002/mbo3.578 – ident: ref58/cit58 doi: 10.1039/C7RA06699F – ident: ref65/cit65 – ident: ref17/cit17 doi: 10.1016/j.bcab.2019.101332 – ident: ref41/cit41 doi: 10.1016/j.poly.2018.10.049 – ident: ref30/cit30 doi: 10.3390/jof4040129 – ident: ref59/cit59 doi: 10.1163/092050611X581516 – ident: ref15/cit15 doi: 10.1016/j.ijbiomac.2018.10.192 – volume: 6 start-page: 1511 year: 2016 ident: ref18/cit18 publication-title: Biointerface Res. Appl. Chem. – ident: ref62/cit62 doi: 10.3390/nano7090257 – year: 2019 ident: ref26/cit26 publication-title: Evening Standard – ident: ref66/cit66 doi: 10.1016/j.jaim.2019.09.002 – ident: ref67/cit67 doi: 10.1016/j.nano.2011.05.007 – ident: ref3/cit3 doi: 10.1016/j.msec.2019.110130 – ident: ref22/cit22 doi: 10.1016/j.eurpolymj.2019.06.018 – ident: ref21/cit21 doi: 10.1016/j.ijbiomac.2018.06.067 – ident: ref29/cit29 doi: 10.7326/M19-2205 – ident: ref32/cit32 doi: 10.2174/1568026618666180528121707 – ident: ref47/cit47 doi: 10.2147/IJN.S202404 – ident: ref9/cit9 doi: 10.1038/193293a0 – ident: ref20/cit20 doi: 10.5920/bjpharm.2017.27 – ident: ref14/cit14 doi: 10.3389/fmicb.2017.02027 – ident: ref1/cit1 doi: 10.1111/j.1524-475X.2007.00321.x – ident: ref49/cit49 doi: 10.1016/j.carbpol.2019.115573 – ident: ref71/cit71 doi: 10.1016/j.biopha.2018.02.040 – ident: ref24/cit24 doi: 10.1128/mSphere.00458-19 – ident: ref51/cit51 doi: 10.1042/bj0580345 – ident: ref28/cit28 doi: 10.1016/j.fgb.2019.103243 – ident: ref64/cit64 doi: 10.1016/j.colsurfb.2013.06.031 – ident: ref37/cit37 doi: 10.1016/j.wndm.2019.100170 – ident: ref42/cit42 doi: 10.1016/j.lfs.2014.08.016 – ident: ref55/cit55 doi: 10.1016/j.ijbiomac.2015.01.050 – ident: ref13/cit13 doi: 10.1016/j.eurpolymj.2018.12.019 |
SSID | ssj0009345 |
Score | 2.676667 |
Snippet | Chronic wounds are often recalcitrant to treatment because of high microbial bioburden and the problem of microbial resistance. Silver is a broad-spectrum... Chronic wounds are often recalcitrant to treatment because of high microbial bioburden and the problem of microbial resistance. Silver is a broad-spectrum... |
SourceID | pubmedcentral proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1802 |
SubjectTerms | anti-infective agents antimicrobial properties Candida cellulose curcumin cyclodextrins hydrogels hydrophobicity microbial load microencapsulation nanosilver Pseudomonas aeruginosa silver Staphylococcus aureus wound treatment |
Title | Synthesis of Silver Nanoparticles Using Curcumin-Cyclodextrins Loaded into Bacterial Cellulose-Based Hydrogels for Wound Dressing Applications |
URI | http://dx.doi.org/10.1021/acs.biomac.9b01724 https://www.ncbi.nlm.nih.gov/pubmed/31967794 https://www.proquest.com/docview/2344226342 https://www.proquest.com/docview/2524322364 https://pubmed.ncbi.nlm.nih.gov/PMC7588018 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKOcCllFdbXjISEgfI0tiOkxzbQLVClMtS0VtkOzaNCA7aJIflR_CbmUmy2y6FVa-xPVbGE883mRchr0BsdOo0WKq8iNBAsYFWhQAgl8RxwXXKEswdPv0sp2fi43l0vkXe_seDz8J3yjQTTEUH8qlGi0XcIreZBFIIhLLZZYld3rckxoY-sFUajyky_6aBysg068roGsL8O1DyiuY5uUdOl_k7Q8DJ90nX6on5db2c441eapfsjBCUHg0yc59sWf-A3MmWnd8ekt-zhQdc2JQNrR2dlRg8TeEaBvt6DKOjfaQBzbq56X6UPsgWpsLc-HZe-oZ-qlVhC1r6tqbHQzVo2C-zVdVVdWODY9CcBZ0uinn9DVQzBdxMv2J7J_q-j8oFykdX_OqPyNnJhy_ZNBj7NgRKxKINtCm0kI47xk0ktbCJSMGAT2TBXYKtKDSTqYylVWDJA2BkzjGbaMAiPIziQ8Mfk21fe7tPqFJwX9jDWOlECJemWoRCMcm1sVKkTh6Q18DKfPzumrx3qbMwx4cDf_ORvwckXB51bsby59iFo9q45s1qzc-h-MfG2S-XEpTDgaHjRXlbd03OuMCEZS7YhjkRE3C5cgl09gapW-2J1yRINIzEa_K4moA1wtdHfHnR1woHcxAwSPLkxnx6Su4y_KWABWrDZ2S7nXf2OeCuVr_oP7c_Nagt2Q |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagHMqF96NAwUhIHFDaxnac5LhNqRbY9rJb0VsUOw5EBAetk8P2R_Q3M5Nkt92CVnCNX4kz8XyTmfmGkHcgNiouFFiqPA_QQDGeynIBQC4Kw5yrmEWYO3xyKsdn4vN5cD7kcWMuDNyEg5lc58S_Yhfw9_EaZqTDKrFCw0XcJncAjTC0uEbJ9Ippl3eVibGuD6wYh0OmzN_nQJ2k3bpO-gNo3oyXvKaAju-T2erWu7iTH3tto_b0xQ1Wx_98tgfk3gBI6aiXoIfklrGPyHayrAP3mFxOFxZQoisdrQs6LTGUmsKhDNb2EFRHu7gDmrRz3f4srZcsdIWZ8s28tI5O6iw3OS1tU9PDnhsa1ktMVbVV7Yx3CHo0p-NFPq-_gaKmgKLpVyz2RI-6GF2YeXTNy_6EnB1_nCVjb6ji4GUiFI2ndK6ELHjBuA6kEiYSMZjzkcx5EWFhCsVkLENpMrDrAT6yomAmUoBMuB-EB5o_JVu2tuY5oVkGp4c5CDMVCVHEsRK-yJjkShsp4kLukPewlenwFbq0c7AzP8WL_f6mw_7uEH_5xlM9kKFjTY5q45gPqzG_eiqQjb3fLgUphReGbpjMmrp1KeMC05e5YBv6BEzAUcslzPOsF77VmnhogmBDS7gmlqsOyBi-3mLL7x1zOBiHgEiiF_-8T2_I9nh2Mkknn06_vCR3Gf5sQOpa_xXZauat2QVE1qjX3Rf4G9-3Njo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWgSMClfEMLBSMhcUBpG9txkuM2ZbVAqZCWir1FdmxDREiqTXJYfgS_mZkku-0WtEJcE8dOnLHnjWfmDSGvQGx07DRYqtwEaKBYTysjAMhFYWi4jlmEucMfT-XkTLyfBbPh6AJzYeAlauip7pz4uKrPjRsYBvwDvI5Z6TBSrNF4EdfJDfTbodU1SqYXbLu8q06MtX1g1DgcsmX-3gfqpaxe10t_gM2rMZOXlND4DpmtXr-LPfm-3zZ6P_t5hdnxP77vLtkegCkd9ZJ0j1yz5X1yK1nWg3tAfk0XJaDFOq9p5eg0x5BqCpszWN1DcB3t4g9o0s6z9kdeeskiKzBjvpnnZU1PKmWsoXnZVPSo54iG8RJbFG1R1dY7An1q6GRh5tVXUNgU0DT9gkWf6HEXqws9jy552x-Ss_Hbz8nEG6o5eEqEovF0ZrSQjjvGs0BqYSMRg1kfScNdhAUqNJOxDKVVYN8DjGTOMRtpQCjcD8LDjD8iW2VV2ieEKgW7iD0MlY6EcHGshS8Uk1xnVorYyR3yGqYyHVZjnXaOduaneLGf33SY3x3iL_96mg2k6Fibo9j4zJvVM-c9JcjG1i-XwpTCD0N3jCpt1dYp4wLTmLlgG9oETMCWyyX087gXwNWYuHmCcMOdcE00Vw2QOXz9Tpl_6xjEwUgEZBLt_vM8vSA3Px2P05N3px-ektsMzxyQwdZ_RraaeWv3AJg1-nm3CH8DlmY4vQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+of+Silver+Nanoparticles+Using+Curcumin-Cyclodextrins+Loaded+into+Bacterial+Cellulose-Based+Hydrogels+for+Wound+Dressing+Applications&rft.jtitle=Biomacromolecules&rft.au=Gupta%2C+Abhishek&rft.au=Briffa%2C+Sophie+M.&rft.au=Swingler%2C+Sam&rft.au=Gibson%2C+Hazel&rft.date=2020-05-11&rft.pub=American+Chemical+Society&rft.issn=1525-7797&rft.eissn=1526-4602&rft.volume=21&rft.issue=5&rft.spage=1802&rft.epage=1811&rft_id=info:doi/10.1021%2Facs.biomac.9b01724&rft_id=info%3Apmid%2F31967794&rft.externalDocID=PMC7588018 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1525-7797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1525-7797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1525-7797&client=summon |