The 2010-2011 Canterbury, New Zealand, seismic sequence: Multiple source analysis from InSAR data and modeling

The 2010–2011 Canterbury sequence is a complex system of seismic events that started with a Mw7.1 earthquake and continued with large aftershocks with dramatic consequences, particularly for the city of Christchurch. We model the main earthquakes using InSAR data, providing displacement maps and the...

Full description

Saved in:
Bibliographic Details
Published inJournal of Geophysical Research: Solid Earth Vol. 117; no. B8
Main Authors Atzori, S., Tolomei, C., Antonioli, A., Merryman Boncori, J. P., Bannister, S., Trasatti, E., Pasquali, P., Salvi, S.
Format Journal Article
LanguageEnglish
Published Washington, DC Blackwell Publishing Ltd 01.08.2012
American Geophysical Union
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The 2010–2011 Canterbury sequence is a complex system of seismic events that started with a Mw7.1 earthquake and continued with large aftershocks with dramatic consequences, particularly for the city of Christchurch. We model the main earthquakes using InSAR data, providing displacement maps and the respective modeling for the September 4th, 2010, February 22nd, 2011 and June 13th, 2011 events. Relocated aftershocks, field and GPS surveys are used to constrain models obtained by inversion of InSAR data; the fault slip distribution is retrieved with a variable patch size approach aimed at maximizing the spatial resolution on the fault plane. For the September 2010 earthquake we estimated significant slip values below 10 km depth; the calamitous February 2011 event in Christchurch is modeled with a double fault source with slip values less than 2 m down to 7 km depth; for the second June 13th event in Christchurch we identified a NW‐SE striking fault as responsible for the earthquake. Last, we introduce the use of InSAR coherence maps to quickly detect the areas subject to soil liquefaction in Christchurch, as shown for the two main events. Key Points We model with a full‐resolution approach the 2010‐2011 Canterbury sequence We analyze the stress transfer between faults We exploit coherence maps to detect soil liquefaction
AbstractList The 2010–2011 Canterbury sequence is a complex system of seismic events that started with a Mw7.1 earthquake and continued with large aftershocks with dramatic consequences, particularly for the city of Christchurch. We model the main earthquakes using InSAR data, providing displacement maps and the respective modeling for the September 4th, 2010, February 22nd, 2011 and June 13th, 2011 events. Relocated aftershocks, field and GPS surveys are used to constrain models obtained by inversion of InSAR data; the fault slip distribution is retrieved with a variable patch size approach aimed at maximizing the spatial resolution on the fault plane. For the September 2010 earthquake we estimated significant slip values below 10 km depth; the calamitous February 2011 event in Christchurch is modeled with a double fault source with slip values less than 2 m down to 7 km depth; for the second June 13th event in Christchurch we identified a NW‐SE striking fault as responsible for the earthquake. Last, we introduce the use of InSAR coherence maps to quickly detect the areas subject to soil liquefaction in Christchurch, as shown for the two main events. Key Points We model with a full‐resolution approach the 2010‐2011 Canterbury sequence We analyze the stress transfer between faults We exploit coherence maps to detect soil liquefaction
The 2010–2011 Canterbury sequence is a complex system of seismic events that started with a M w 7.1 earthquake and continued with large aftershocks with dramatic consequences, particularly for the city of Christchurch. We model the main earthquakes using InSAR data, providing displacement maps and the respective modeling for the September 4th, 2010, February 22nd, 2011 and June 13th, 2011 events. Relocated aftershocks, field and GPS surveys are used to constrain models obtained by inversion of InSAR data; the fault slip distribution is retrieved with a variable patch size approach aimed at maximizing the spatial resolution on the fault plane. For the September 2010 earthquake we estimated significant slip values below 10 km depth; the calamitous February 2011 event in Christchurch is modeled with a double fault source with slip values less than 2 m down to 7 km depth; for the second June 13th event in Christchurch we identified a NW‐SE striking fault as responsible for the earthquake. Last, we introduce the use of InSAR coherence maps to quickly detect the areas subject to soil liquefaction in Christchurch, as shown for the two main events. We model with a full‐resolution approach the 2010‐2011 Canterbury sequence We analyze the stress transfer between faults We exploit coherence maps to detect soil liquefaction
Author Atzori, S.
Pasquali, P.
Tolomei, C.
Trasatti, E.
Merryman Boncori, J. P.
Salvi, S.
Antonioli, A.
Bannister, S.
Author_xml – sequence: 1
  givenname: S.
  surname: Atzori
  fullname: Atzori, S.
  email: Simone.atzori@ingv.it, simone.atzori@ingv.it
  organization: Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy
– sequence: 2
  givenname: C.
  surname: Tolomei
  fullname: Tolomei, C.
  organization: Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy
– sequence: 3
  givenname: A.
  surname: Antonioli
  fullname: Antonioli, A.
  organization: Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy
– sequence: 4
  givenname: J. P.
  surname: Merryman Boncori
  fullname: Merryman Boncori, J. P.
  organization: Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy
– sequence: 5
  givenname: S.
  surname: Bannister
  fullname: Bannister, S.
  organization: GNS Science, Lower Hutt, New Zealand
– sequence: 6
  givenname: E.
  surname: Trasatti
  fullname: Trasatti, E.
  organization: Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy
– sequence: 7
  givenname: P.
  surname: Pasquali
  fullname: Pasquali, P.
  organization: SARMAP SA, Purasca, Switzerland
– sequence: 8
  givenname: S.
  surname: Salvi
  fullname: Salvi, S.
  organization: Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26363510$$DView record in Pascal Francis
BookMark eNp9kE1vEzEQhi3USoS2N36AL9yydPy13nBrU5q2KgG1BSQu1tjrBcPGm9obtfn3GAUQQoI5zBzmeUaj9xnZi0P0hDxn8JIBnx1zYPzqFGDGdPOETDhTdcU58D0yASabCjjXT8lRzl-hlFS1BDYh8e6Lp0WFqjRG5xhHn-wmbad06R_oJ489xnZKsw95FVyZ9xsfnX9F32z6Max7T_OwSc5TjNhvc8i0S8OKXsbbkxva4ohl0dLV0Po-xM-HZL_DPvujn_OAvD9_fTe_qK7fLi7nJ9cVSi1FpQCdboCDsNjV1lvhOtl4bdsZ49AyyaQG1cy0FY3wSgmrhLTgBDa2qWslDsiL3d01Zod9lzC6kM06hRWmreG1qIViUDi-41wack6-My6MOIYhjglDbxiYH-GaP8Mt0vQv6dfdf-Bihz-E3m__y5qrxc0p0-W9YlU7K-TRP_62MH0ztRZamY_LhRHq9t352YelqcV330KWtQ
CitedBy_id crossref_primary_10_1016_j_jag_2015_02_008
crossref_primary_10_3130_aijs_86_553
crossref_primary_10_1080_00288306_2015_1133664
crossref_primary_10_3390_rs12162545
crossref_primary_10_1016_j_istruc_2022_10_018
crossref_primary_10_5194_nhess_13_935_2013
crossref_primary_10_1016_j_nhres_2025_03_009
crossref_primary_10_3390_rs14061350
crossref_primary_10_1002_2017JB014703
crossref_primary_10_1016_j_strusafe_2018_03_003
crossref_primary_10_1093_gji_ggu106
crossref_primary_10_3390_geosciences8080303
crossref_primary_10_1016_j_tecto_2014_06_019
crossref_primary_10_1093_gji_ggt404
crossref_primary_10_1785_0120230213
crossref_primary_10_3390_su15065264
crossref_primary_10_1029_2019JB017508
crossref_primary_10_1016_j_enggeo_2024_107648
crossref_primary_10_1016_j_soildyn_2019_03_021
crossref_primary_10_1093_gji_ggt222
crossref_primary_10_1111_ter_12584
crossref_primary_10_1007_s11069_016_2217_0
crossref_primary_10_1016_j_engstruct_2019_01_105
crossref_primary_10_1093_gji_ggt186
crossref_primary_10_1007_s00024_015_1062_5
crossref_primary_10_3389_feart_2020_00193
crossref_primary_10_1093_gji_ggt380
crossref_primary_10_1016_j_chaos_2021_111243
crossref_primary_10_1038_s41598_024_84668_7
crossref_primary_10_1061__ASCE_ST_1943_541X_0002170
crossref_primary_10_1007_s11803_021_2028_5
crossref_primary_10_3390_geosciences11050191
crossref_primary_10_1109_TGRS_2019_2943192
crossref_primary_10_3390_rs15174190
crossref_primary_10_1016_j_engstruct_2019_109341
crossref_primary_10_1785_0220190100
crossref_primary_10_3390_rs13091752
crossref_primary_10_1016_j_soildyn_2016_09_006
crossref_primary_10_1093_gji_ggz093
crossref_primary_10_5047_eps_2012_11_002
crossref_primary_10_1029_2020JB020845
Cites_doi 10.1785/gssrl.82.6.893
10.1785/gssrl.82.6.800
10.1029/2004GL022256
10.1785/gssrl.82.6.905
10.1109/TGRS.2008.916213
10.1130/G32528.1
10.1785/gssrl.82.6.927
10.1038/364138a0
10.1109/LGRS.2009.2033317
10.1785/0120010156
10.1109/TGRS.2007.896615
10.1109/LGRS.2004.843203
10.5459/bnzsee.43.4.215-221
10.1016/j.jvolgeores.2004.11.031
10.1785/BSSA0750041135
10.1038/srep00098
10.1785/gssrl.82.6.783
10.1109/TGRS.2002.805079
10.1785/gssrl.82.6.919
10.1029/2004JF000233
10.5459/bnzsee.43.4.236-242
10.1785/gssrl.79.3.400
10.1080/07038992.2001.10854936
10.1029/175GM03
10.1111/j.1365‐246X.2006.03183.x
10.1111/j.1365‐246X.2011.04955.x
10.1029/2009GL039293
10.1785/gssrl.82.6.846
10.3189/172756402781817978
10.1785/gssrl.82.6.824
10.1029/2011JB008868
10.1029/2000GL000016
10.1785/gssrl.82.6.875
10.1785/gssrl.82.6.815
10.1785/gssrl.82.6.789
10.1109/LGRS.2008.915738
10.5459/bnzsee.43.4.228-235
10.1029/97GL02182
10.1785/gssrl.82.6.839
10.1029/98JB01576
10.1785/gssrl.82.6.767
ContentType Journal Article
Copyright 2012. American Geophysical Union. All Rights Reserved.
2015 INIST-CNRS
Copyright_xml – notice: 2012. American Geophysical Union. All Rights Reserved.
– notice: 2015 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
DOI 10.1029/2012JB009178
DatabaseName Istex
CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Oceanography
Geology
Astronomy & Astrophysics
Physics
EISSN 2156-2202
EndPage n/a
ExternalDocumentID 26363510
10_1029_2012JB009178
JGRB17263
ark_67375_WNG_35SPFDVN_6
Genre article
GeographicLocations New Zealand
Canterbury New Zealand
South Island
GroupedDBID 12K
1OC
24P
7XC
88I
8FE
8FH
8G5
8R4
8R5
AANLZ
AAXRX
ABUWG
ACAHQ
ACCZN
ACXBN
AEIGN
AEUYR
AFFPM
AHBTC
AITYG
ALMA_UNASSIGNED_HOLDINGS
AMYDB
ATCPS
BBNVY
BENPR
BHPHI
BKSAR
BPHCQ
BRXPI
BSCLL
DCZOG
DRFUL
DRSTM
DU5
DWQXO
GNUQQ
GUQSH
HCIFZ
LATKE
LITHE
LOXES
LUTES
LYRES
M2O
M2P
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
P-X
Q2X
RNS
WHG
WIN
WXSBR
XSW
~OA
~~A
AAHQN
AAMNL
AAYXX
AGYGG
CITATION
IQODW
ID FETCH-LOGICAL-a4743-50ac780203baf6beb3cf48e7bd9120d1414705897b383e553b534b0c3a8b86653
ISSN 0148-0227
IngestDate Mon Jul 21 09:10:47 EDT 2025
Tue Jul 01 01:55:55 EDT 2025
Thu Apr 24 22:57:46 EDT 2025
Wed Jan 22 16:36:29 EST 2025
Wed Oct 30 09:49:29 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue B8
Keywords models
inverse problem
maps
Australasia
interferometry
Complex system
surveys
liquefaction
cartography
urban areas
earthquakes
faults
Modeling
Global Positioning System
depth
slip
displacements
Radar observation
fault planes
aftershocks
spatial resolution
soils
Synthetic aperture radar
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a4743-50ac780203baf6beb3cf48e7bd9120d1414705897b383e553b534b0c3a8b86653
Notes ArticleID:2012JB009178
istex:81B145E26D17B045340582FACFF60E846CA5AA95
ark:/67375/WNG-35SPFDVN-6
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2012JB009178
PageCount 16
ParticipantIDs pascalfrancis_primary_26363510
crossref_citationtrail_10_1029_2012JB009178
crossref_primary_10_1029_2012JB009178
wiley_primary_10_1029_2012JB009178_JGRB17263
istex_primary_ark_67375_WNG_35SPFDVN_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2012
PublicationDateYYYYMMDD 2012-08-01
PublicationDate_xml – month: 08
  year: 2012
  text: August 2012
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
PublicationTitle Journal of Geophysical Research: Solid Earth
PublicationTitleAlternate J. Geophys. Res
PublicationYear 2012
Publisher Blackwell Publishing Ltd
American Geophysical Union
Publisher_xml – name: Blackwell Publishing Ltd
– name: American Geophysical Union
References Fry, B., R. Benites, and A. Kaiser (2011), The character of accelerations in the Mw 6.2 Christchurch earthquake, Seismol. Res. Lett., 82(6), 846-852, doi:10.1785/gssrl.82.6.846.
Stramondo, S., C. Kyriakopoulos, C. Bignami, M. Chini, D. Melini, M. Moro, M. Picchiani, M. Saroli, and E. Boschi (2011), Did the September 2010 (Darfield) earthquake trigger the February 2011 (Christchurch) event?, Nat. Sci. Rep., 1, 98, doi:10.1038/srep00098
Zhan, Z., B. Jin, S. Wei, and R. W. Graves (2011), Coulomb stress change sensitivity due to variability in main shock source models and receiving fault parameters: A case study of the 2010-2011 Christchurch, New Zealand, earthquakes, Seismol. Res. Lett., 82(6), 800-814, doi:10.1785/gssrl.82.6.800.
Barnhart, W. D., M. J. Willis, R. B. Lohman, and A. K. Melkonian (2011), InSAR and optical constraints on fault slip during the 2010-2011 New Zealand earthquake sequence, Seismol. Res. Lett., 82(6), 815-823, doi:10.1785/gssrl.82.6.815.
Noir, J., E. Jacques, S. Bekri, P. M. Adler, P. Tapponier, and G. C. P. King (1997), Fluid flow triggered migration of events in the 1989 Dobi earth- quake sequence of central Afar, Geophys. Res. Lett., 24, 2335-2338, doi:10.1029/97GL02182.
Raucoules, D., and M. De Michele (2010), Assessing ionospheric influence on L-band SAR data: Implications on coseismic displacement measurements of the 2008 Sichuan earthquake, IEEE Geosci. Remote Sens. Lett., 7(2), 286-290, doi:10.1109/LGRS.2009.2033317.
deLange, R., A. Luckman, and T. Murray (2007), Improvement of satellite radar feature tracking for ice velocity derivation by spatial frequency filtering, IEEE Trans. Geosci. Remote Sens., 45(7), 2309-2318, doi:10.1109/TGRS.2007.896615.
Gray, A. L., and K. E. Mattar (2000), Influence of ionospheric electron density fluctuations on satellite radar interferometry, Geophys. Res. Lett., 27(10), 1451-1454, doi:10.1029/2000GL000016.
Franceschetti, G., and R. Lanari (1999), Synthetic Aperture Radar Processing, 328 pp., CRC Press, Boca Raton, Fla.
Mohr, J. J., and J. P. Merryman Boncori (2008), An error prediction framework for interferometric SAR data, IEEE Trans. Geosci. Remote Sens., 46(6), 1600-1613, doi:10.1109/TGRS.2008.916213.
Mucciarelli, M. (2011), Ambient noise measurements following the 2011 Christchurch earthquake: Relationships with previous microzonation studies, liquefaction, and nonlinearity, Seismol. Res. Lett., 82(6), 919-926, doi:10.1785/gssrl.82.6.919.
Strozzi, T., A. Luckman, T. Murray, U. Wegmuller, and C. L. Werner (2002), Glacier motion estimation using SAR offset-tracking procedures, IEEE Trans. Geosci. Remote Sens., 40(11), 2384-2391, doi:10.1109/TGRS.2002.805079.
Gledhill, K., J. Ristau, M. Reyners, B. Fry, and C. Holden (2010), The Darfield (Canterbury) earthquake of September 2010: Preliminary seismological report, Bull. N. Z. Soc. Earthquake Eng., 43(4), 215-221.
Cubrinovski, M., J. D. Bray, M. Taylor, S. Giorgini, B. Bradley, L. Wotherspoon, and J. Zupan (2011), Soil liquefaction effects in the central business district during the February 2011 Christchurch earthquake, Seismol. Res. Lett., 82(6), 893-904, doi:10.1785/gssrl.82.6.893.
Guidotti, R., M. Stupazzini, C. Smerzini, R. Paolucci, and P. Ramieri (2011), Numerical study on the role of basin geometry and kinematic seismic source in 3D ground motion simulation of the 22 February 2011 MW 6.2 Christchurch earthquake, Seismol. Res. Lett., 82(6), 767-782, doi:10.1785/gssrl.82.6.767.
Quigley, M., R. Van Dissen, N. Lichtfield, P. Villamor, B. Duffy, D. Barrell, K. Furlong, T. Stahl, E. Bilderback, and D. Noble (2011), Surface rupture during the 2010 Mw7.1 Darfield (Canterbury) earthquake: Implications for fault rupture dynamics and seismic-hazard analysis, Geology, 40, 55-58, doi:10.1130/G32528.1.
Bamler, R., and M. Eineder (2005), Accuracy of differential shift estimation by correlation and split-bandwidth interferometry for wideband and delta-k SAR systems, IEEE Geosci. Remote Sens. Lett., 2(2), 151-155, doi:10.1109/LGRS.2004.843203.
Green, R. A., C. Wood, B. Cox, M. Cubrinovski, L. Wotherspoon, B. Bradley, T. Algie, J. Allen, A. Bradshaw, and G. Rix (2011), Use of DCP and SASW tests to evaluate liquefaction potential: Predictions vs. observations during the recent New Zealand earthquakes, Seismol. Res. Lett., 82(6), 927-938, doi:10.1785/gssrl.82.6.927.
Bannister, S., B. Fry, M. Reyners, J. Ristau, and H. Zhang (2011), Fine-scale relocation of aftershocks of the 22 February Mw 6.2 Christchurch earthquake using double-difference tomography, Seismol. Res. Lett., 82(6), 839-845, doi:10.1785/gssrl.82.6.839.
Lungarini, L., C. Troise, M. Meo, and G. De Natale (2005), Finite element modelling of topographic effects on elastic ground deformation at Mt. Etna, J. Volcanol. Geotherm. Res., 144, 257-271, doi:10.1016/j.jvolgeores.2004.11.031.
Menke, W. (1989), Geophysical Data Analysis: Discrete Inverse Theory, Academic, San Diego, Calif.
Beavan, J., S. Samsonov, M. Motagh, L. Wallace, S. Ellis, and N. Palmer (2010), The Darfield (Canterbury) earthquake: Geodetic observations and preliminary source model, Bull. N. Z. Soc. Earthquake Eng., 43(4), 228-235.
Merryman Boncori, J. P., and J. J. Mohr (2008), A tunable closed form model for the structure function of tropospheric delay, IEEE Geosci. Remote Sens. Lett., 5(2), 222-226, doi:10.1109/LGRS.2008.915738.
Stirling, M. W., G. H. McVerry, and K. R. Berryman (2002), A new seismic hazard model for New Zealand, Bull. Seismol. Soc. Am., 92, 1878-1903, doi:10.1785/0120010156.
Antonioli, A., D. Piccinini, L. Chiaraluce, and M. Cocco (2005), Fluid flow and seismicity pattern: Evidence from the 1997 Colfiorito (central Italy) seismic sequence, Geophys. Res. Lett., 32, L10311, doi:10.1029/2004GL022256.
Orense, R. P., T. Kiyota, S. Yamada, M. Cubrinovski, Y. Hosono, M. Okamura, and S. Yasuda (2011), Comparison of liquefaction features observed during the 2010 and 2011 Canterbury earthquakes, Seismol. Res. Lett., 82(6), 905-918, doi:10.1785/gssrl.82.6.905.
Atzori, S., I. Hunstad, M. Chini, S. Salvi, C. Tolomei, C. Bignami, S. Stramondo, E. Trasatti, A. Antonioli, and E. Boschi (2009), Finite fault inversion of DInSAR coseismic displacement of the 2009 L'Aquila earthquake (central Italy), Geophys. Res. Lett., 36, L15305, doi:10.1029/2009GL039293.
Atzori, S., and A. Antonioli (2011), Optimal fault resolution in geodetic inversion of coseismic data, Geophys. J. Int., 185, 529-538, doi:10.1111/j.1365-246X.2011.04955.x.
Massonnet, D., M. Rossi, C. Carmona, F. Adragna, G. Peltzer, K. Feigl, and T. Rabaute (1993), The displacement field of the Landers earthquake mapped by radar interferometry, Nature, 364, 138-142, doi:10.1038/364138a0.
Pritchard, H., T. Murray, A. Luckman, T. Strozzi, and S. Barr (2005), Glacier surge dynamics of Sortbrae, east Greenland, from synthetic aperture radar feature tracking, J. Geophys. Res., 110, F03005, doi:10.1029/2004JF000233.
Ristau, J. (2008), Implementation of routine regional moment tensor analysis in New Zealand, Seismol. Res. Lett., 79, 400-415, doi:10.1785/gssrl.79.3.400.
Iizuka, H., Y. Sakai, and K. Koketsu (2011), Strong ground motion and damage conditions associated with seismic stations in the February 2011 Christchurch, New Zealand, earthquake, Seismol. Res. Lett., 82(6), 875-881, doi:10.1785/gssrl.82.6.875.
Beavan, J., E. Fielding, M. Motagh, S. Samsonov, and N. Donnelly (2011), Fault location and slip distribution of the 22 February 2011 Mw 6.2 Christchurch, New Zealand, earthquake from geodetic data, Seismol. Res. Lett., 82(6), 789-799, doi:10.1785/gssrl.82.6.789.
Okada, Y. (1985), Surface deformation due to shear and tensile faults in a half-space, Bull. Seismol. Soc. Am., 75(4), 1135-1154.
Harris, R. A. (1998), Introduction to special section: Stress trigger, stress shadows, and implication for seismic hazard, J. Geophys. Res., 103(B10), 24,347-24,358, doi:10.1029/98JB01576.
Quigley, M., et al. (2010), Surface rupture of the Greendale fault during the Mw 7.1 Darfield (Canterbury) earthquake, New Zealand: Initial findings, Bull. N. Z. Soc. Earthquake Eng., 43, 236-242.
Wallace, L. M., R. J. Beavan, R. McCaffrey, K. R. Berryman, and P. Denys (2007), Balancing the plate motion budget in the South Island, New Zealand using GPS, geological and seismological data, Geophys. J. Int., 168(1), 332-352, doi:10.1111/j.1365-246X.2006.03183.x.
Elliott, J. R., E. Nissen, P. C. England, J. A. Jackson, S. Lamb, Z. Li, M. Oehlers, and B. E. Parsons (2012), Slip in the 2010-2011 Canterbury earthquakes, New Zealand, J. Geophys. Res., 117, B03401, doi:10.1029/2011JB008868.
Joughin, I. (2002), Ice-sheet velocity mapping: A combined interferometric and speckle-tracking approach, Ann. Glaciol., 34, 195-201, doi:10.3189/172756402781817978.
Gray, A. L., N. Short, K. E. Mattar, and K. C. Jezek (2001), Velocities and flux of the Filchner ice shelf and its tributaries determined from speckle tracking interferometry, Can. J. Remote Sens., 27(3), 193-206.
Sibson, R., F. Ghisetti, and J. Ristau (2011), Stress control of an evolving strike-slip fault system during the 2010-2011 Canterbury, New Zealand, sequence, Seismol. Res. Lett., 82(6), 824-832, doi:10.1785/gssrl.82.6.824.
Holden, C. (2011), Kinematic source model of the 22 February 2011 Mw 6.2 Christchurch earthquake using strong motion data, Seismol. Res. Lett., 82(6), 783-788, doi:10.1785/gssrl.82.6.783.
2007; 168
2000; 27
2011; 1
2005; 110
2011
2011; 82
2002; 34
1997; 24
2011; 40
2008
2008; 79
2008; 5
2001; 27
1999
1993; 364
2009; 36
2010; 43
2005; 144
2002; 40
2007; 175
2005; 32
2008; 46
2002; 92
1998; 103
2005; 2
2011; 185
1985; 75
2007; 45
2012; 117
2010; 7
1989
e_1_2_13_25_1
e_1_2_13_24_1
e_1_2_13_27_1
e_1_2_13_46_1
e_1_2_13_26_1
e_1_2_13_21_1
e_1_2_13_44_1
e_1_2_13_20_1
e_1_2_13_45_1
e_1_2_13_23_1
e_1_2_13_42_1
e_1_2_13_22_1
e_1_2_13_43_1
e_1_2_13_9_1
e_1_2_13_40_1
e_1_2_13_8_1
e_1_2_13_41_1
e_1_2_13_7_1
e_1_2_13_6_1
Gledhill K. (e_1_2_13_17_1) 2010; 43
e_1_2_13_18_1
e_1_2_13_39_1
e_1_2_13_19_1
e_1_2_13_13_1
e_1_2_13_36_1
e_1_2_13_14_1
e_1_2_13_35_1
e_1_2_13_38_1
e_1_2_13_16_1
e_1_2_13_32_1
e_1_2_13_10_1
e_1_2_13_31_1
e_1_2_13_11_1
e_1_2_13_34_1
e_1_2_13_12_1
e_1_2_13_33_1
Menke W. (e_1_2_13_29_1) 1989
e_1_2_13_30_1
Franceschetti G. (e_1_2_13_15_1) 1999
Quigley M. (e_1_2_13_37_1) 2010; 43
e_1_2_13_5_1
e_1_2_13_4_1
e_1_2_13_3_1
e_1_2_13_2_1
e_1_2_13_28_1
References_xml – reference: Atzori, S., I. Hunstad, M. Chini, S. Salvi, C. Tolomei, C. Bignami, S. Stramondo, E. Trasatti, A. Antonioli, and E. Boschi (2009), Finite fault inversion of DInSAR coseismic displacement of the 2009 L'Aquila earthquake (central Italy), Geophys. Res. Lett., 36, L15305, doi:10.1029/2009GL039293.
– reference: Raucoules, D., and M. De Michele (2010), Assessing ionospheric influence on L-band SAR data: Implications on coseismic displacement measurements of the 2008 Sichuan earthquake, IEEE Geosci. Remote Sens. Lett., 7(2), 286-290, doi:10.1109/LGRS.2009.2033317.
– reference: Gledhill, K., J. Ristau, M. Reyners, B. Fry, and C. Holden (2010), The Darfield (Canterbury) earthquake of September 2010: Preliminary seismological report, Bull. N. Z. Soc. Earthquake Eng., 43(4), 215-221.
– reference: Fry, B., R. Benites, and A. Kaiser (2011), The character of accelerations in the Mw 6.2 Christchurch earthquake, Seismol. Res. Lett., 82(6), 846-852, doi:10.1785/gssrl.82.6.846.
– reference: Green, R. A., C. Wood, B. Cox, M. Cubrinovski, L. Wotherspoon, B. Bradley, T. Algie, J. Allen, A. Bradshaw, and G. Rix (2011), Use of DCP and SASW tests to evaluate liquefaction potential: Predictions vs. observations during the recent New Zealand earthquakes, Seismol. Res. Lett., 82(6), 927-938, doi:10.1785/gssrl.82.6.927.
– reference: Merryman Boncori, J. P., and J. J. Mohr (2008), A tunable closed form model for the structure function of tropospheric delay, IEEE Geosci. Remote Sens. Lett., 5(2), 222-226, doi:10.1109/LGRS.2008.915738.
– reference: Cubrinovski, M., J. D. Bray, M. Taylor, S. Giorgini, B. Bradley, L. Wotherspoon, and J. Zupan (2011), Soil liquefaction effects in the central business district during the February 2011 Christchurch earthquake, Seismol. Res. Lett., 82(6), 893-904, doi:10.1785/gssrl.82.6.893.
– reference: deLange, R., A. Luckman, and T. Murray (2007), Improvement of satellite radar feature tracking for ice velocity derivation by spatial frequency filtering, IEEE Trans. Geosci. Remote Sens., 45(7), 2309-2318, doi:10.1109/TGRS.2007.896615.
– reference: Elliott, J. R., E. Nissen, P. C. England, J. A. Jackson, S. Lamb, Z. Li, M. Oehlers, and B. E. Parsons (2012), Slip in the 2010-2011 Canterbury earthquakes, New Zealand, J. Geophys. Res., 117, B03401, doi:10.1029/2011JB008868.
– reference: Harris, R. A. (1998), Introduction to special section: Stress trigger, stress shadows, and implication for seismic hazard, J. Geophys. Res., 103(B10), 24,347-24,358, doi:10.1029/98JB01576.
– reference: Mohr, J. J., and J. P. Merryman Boncori (2008), An error prediction framework for interferometric SAR data, IEEE Trans. Geosci. Remote Sens., 46(6), 1600-1613, doi:10.1109/TGRS.2008.916213.
– reference: Massonnet, D., M. Rossi, C. Carmona, F. Adragna, G. Peltzer, K. Feigl, and T. Rabaute (1993), The displacement field of the Landers earthquake mapped by radar interferometry, Nature, 364, 138-142, doi:10.1038/364138a0.
– reference: Pritchard, H., T. Murray, A. Luckman, T. Strozzi, and S. Barr (2005), Glacier surge dynamics of Sortbrae, east Greenland, from synthetic aperture radar feature tracking, J. Geophys. Res., 110, F03005, doi:10.1029/2004JF000233.
– reference: Orense, R. P., T. Kiyota, S. Yamada, M. Cubrinovski, Y. Hosono, M. Okamura, and S. Yasuda (2011), Comparison of liquefaction features observed during the 2010 and 2011 Canterbury earthquakes, Seismol. Res. Lett., 82(6), 905-918, doi:10.1785/gssrl.82.6.905.
– reference: Stramondo, S., C. Kyriakopoulos, C. Bignami, M. Chini, D. Melini, M. Moro, M. Picchiani, M. Saroli, and E. Boschi (2011), Did the September 2010 (Darfield) earthquake trigger the February 2011 (Christchurch) event?, Nat. Sci. Rep., 1, 98, doi:10.1038/srep00098
– reference: Menke, W. (1989), Geophysical Data Analysis: Discrete Inverse Theory, Academic, San Diego, Calif.
– reference: Franceschetti, G., and R. Lanari (1999), Synthetic Aperture Radar Processing, 328 pp., CRC Press, Boca Raton, Fla.
– reference: Iizuka, H., Y. Sakai, and K. Koketsu (2011), Strong ground motion and damage conditions associated with seismic stations in the February 2011 Christchurch, New Zealand, earthquake, Seismol. Res. Lett., 82(6), 875-881, doi:10.1785/gssrl.82.6.875.
– reference: Beavan, J., E. Fielding, M. Motagh, S. Samsonov, and N. Donnelly (2011), Fault location and slip distribution of the 22 February 2011 Mw 6.2 Christchurch, New Zealand, earthquake from geodetic data, Seismol. Res. Lett., 82(6), 789-799, doi:10.1785/gssrl.82.6.789.
– reference: Strozzi, T., A. Luckman, T. Murray, U. Wegmuller, and C. L. Werner (2002), Glacier motion estimation using SAR offset-tracking procedures, IEEE Trans. Geosci. Remote Sens., 40(11), 2384-2391, doi:10.1109/TGRS.2002.805079.
– reference: Barnhart, W. D., M. J. Willis, R. B. Lohman, and A. K. Melkonian (2011), InSAR and optical constraints on fault slip during the 2010-2011 New Zealand earthquake sequence, Seismol. Res. Lett., 82(6), 815-823, doi:10.1785/gssrl.82.6.815.
– reference: Antonioli, A., D. Piccinini, L. Chiaraluce, and M. Cocco (2005), Fluid flow and seismicity pattern: Evidence from the 1997 Colfiorito (central Italy) seismic sequence, Geophys. Res. Lett., 32, L10311, doi:10.1029/2004GL022256.
– reference: Zhan, Z., B. Jin, S. Wei, and R. W. Graves (2011), Coulomb stress change sensitivity due to variability in main shock source models and receiving fault parameters: A case study of the 2010-2011 Christchurch, New Zealand, earthquakes, Seismol. Res. Lett., 82(6), 800-814, doi:10.1785/gssrl.82.6.800.
– reference: Bannister, S., B. Fry, M. Reyners, J. Ristau, and H. Zhang (2011), Fine-scale relocation of aftershocks of the 22 February Mw 6.2 Christchurch earthquake using double-difference tomography, Seismol. Res. Lett., 82(6), 839-845, doi:10.1785/gssrl.82.6.839.
– reference: Wallace, L. M., R. J. Beavan, R. McCaffrey, K. R. Berryman, and P. Denys (2007), Balancing the plate motion budget in the South Island, New Zealand using GPS, geological and seismological data, Geophys. J. Int., 168(1), 332-352, doi:10.1111/j.1365-246X.2006.03183.x.
– reference: Okada, Y. (1985), Surface deformation due to shear and tensile faults in a half-space, Bull. Seismol. Soc. Am., 75(4), 1135-1154.
– reference: Ristau, J. (2008), Implementation of routine regional moment tensor analysis in New Zealand, Seismol. Res. Lett., 79, 400-415, doi:10.1785/gssrl.79.3.400.
– reference: Atzori, S., and A. Antonioli (2011), Optimal fault resolution in geodetic inversion of coseismic data, Geophys. J. Int., 185, 529-538, doi:10.1111/j.1365-246X.2011.04955.x.
– reference: Holden, C. (2011), Kinematic source model of the 22 February 2011 Mw 6.2 Christchurch earthquake using strong motion data, Seismol. Res. Lett., 82(6), 783-788, doi:10.1785/gssrl.82.6.783.
– reference: Quigley, M., R. Van Dissen, N. Lichtfield, P. Villamor, B. Duffy, D. Barrell, K. Furlong, T. Stahl, E. Bilderback, and D. Noble (2011), Surface rupture during the 2010 Mw7.1 Darfield (Canterbury) earthquake: Implications for fault rupture dynamics and seismic-hazard analysis, Geology, 40, 55-58, doi:10.1130/G32528.1.
– reference: Quigley, M., et al. (2010), Surface rupture of the Greendale fault during the Mw 7.1 Darfield (Canterbury) earthquake, New Zealand: Initial findings, Bull. N. Z. Soc. Earthquake Eng., 43, 236-242.
– reference: Stirling, M. W., G. H. McVerry, and K. R. Berryman (2002), A new seismic hazard model for New Zealand, Bull. Seismol. Soc. Am., 92, 1878-1903, doi:10.1785/0120010156.
– reference: Joughin, I. (2002), Ice-sheet velocity mapping: A combined interferometric and speckle-tracking approach, Ann. Glaciol., 34, 195-201, doi:10.3189/172756402781817978.
– reference: Sibson, R., F. Ghisetti, and J. Ristau (2011), Stress control of an evolving strike-slip fault system during the 2010-2011 Canterbury, New Zealand, sequence, Seismol. Res. Lett., 82(6), 824-832, doi:10.1785/gssrl.82.6.824.
– reference: Noir, J., E. Jacques, S. Bekri, P. M. Adler, P. Tapponier, and G. C. P. King (1997), Fluid flow triggered migration of events in the 1989 Dobi earth- quake sequence of central Afar, Geophys. Res. Lett., 24, 2335-2338, doi:10.1029/97GL02182.
– reference: Mucciarelli, M. (2011), Ambient noise measurements following the 2011 Christchurch earthquake: Relationships with previous microzonation studies, liquefaction, and nonlinearity, Seismol. Res. Lett., 82(6), 919-926, doi:10.1785/gssrl.82.6.919.
– reference: Bamler, R., and M. Eineder (2005), Accuracy of differential shift estimation by correlation and split-bandwidth interferometry for wideband and delta-k SAR systems, IEEE Geosci. Remote Sens. Lett., 2(2), 151-155, doi:10.1109/LGRS.2004.843203.
– reference: Lungarini, L., C. Troise, M. Meo, and G. De Natale (2005), Finite element modelling of topographic effects on elastic ground deformation at Mt. Etna, J. Volcanol. Geotherm. Res., 144, 257-271, doi:10.1016/j.jvolgeores.2004.11.031.
– reference: Gray, A. L., and K. E. Mattar (2000), Influence of ionospheric electron density fluctuations on satellite radar interferometry, Geophys. Res. Lett., 27(10), 1451-1454, doi:10.1029/2000GL000016.
– reference: Beavan, J., S. Samsonov, M. Motagh, L. Wallace, S. Ellis, and N. Palmer (2010), The Darfield (Canterbury) earthquake: Geodetic observations and preliminary source model, Bull. N. Z. Soc. Earthquake Eng., 43(4), 228-235.
– reference: Guidotti, R., M. Stupazzini, C. Smerzini, R. Paolucci, and P. Ramieri (2011), Numerical study on the role of basin geometry and kinematic seismic source in 3D ground motion simulation of the 22 February 2011 MW 6.2 Christchurch earthquake, Seismol. Res. Lett., 82(6), 767-782, doi:10.1785/gssrl.82.6.767.
– reference: Gray, A. L., N. Short, K. E. Mattar, and K. C. Jezek (2001), Velocities and flux of the Filchner ice shelf and its tributaries determined from speckle tracking interferometry, Can. J. Remote Sens., 27(3), 193-206.
– year: 2011
– volume: 175
  start-page: 19
  year: 2007
  end-page: 46
– volume: 82
  start-page: 783
  issue: 6
  year: 2011
  end-page: 788
  article-title: Kinematic source model of the 22 February 2011 Mw 6.2 Christchurch earthquake using strong motion data
  publication-title: Seismol. Res. Lett.
– volume: 92
  start-page: 1878
  year: 2002
  end-page: 1903
  article-title: A new seismic hazard model for New Zealand
  publication-title: Bull. Seismol. Soc. Am.
– volume: 40
  start-page: 55
  year: 2011
  end-page: 58
  article-title: Surface rupture during the 2010 M 7.1 Darfield (Canterbury) earthquake: Implications for fault rupture dynamics and seismic‐hazard analysis
  publication-title: Geology
– volume: 43
  start-page: 236
  year: 2010
  end-page: 242
  article-title: Surface rupture of the Greendale fault during the Mw 7.1 Darfield (Canterbury) earthquake, New Zealand: Initial findings
  publication-title: Bull. N. Z. Soc. Earthquake Eng.
– volume: 82
  start-page: 846
  issue: 6
  year: 2011
  end-page: 852
  article-title: The character of accelerations in the Mw 6.2 Christchurch earthquake
  publication-title: Seismol. Res. Lett.
– volume: 185
  start-page: 529
  year: 2011
  end-page: 538
  article-title: Optimal fault resolution in geodetic inversion of coseismic data
  publication-title: Geophys. J. Int.
– volume: 82
  start-page: 815
  issue: 6
  year: 2011
  end-page: 823
  article-title: InSAR and optical constraints on fault slip during the 2010–2011 New Zealand earthquake sequence
  publication-title: Seismol. Res. Lett.
– volume: 168
  start-page: 332
  issue: 1
  year: 2007
  end-page: 352
  article-title: Balancing the plate motion budget in the South Island, New Zealand using GPS, geological and seismological data
  publication-title: Geophys. J. Int.
– volume: 43
  start-page: 228
  issue: 4
  year: 2010
  end-page: 235
  article-title: The Darfield (Canterbury) earthquake: Geodetic observations and preliminary source model
  publication-title: Bull. N. Z. Soc. Earthquake Eng.
– year: 1989
– volume: 40
  start-page: 2384
  issue: 11
  year: 2002
  end-page: 2391
  article-title: Glacier motion estimation using SAR offset‐tracking procedures
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 117
  year: 2012
  article-title: Slip in the 2010–2011 Canterbury earthquakes, New Zealand
  publication-title: J. Geophys. Res.
– volume: 36
  year: 2009
  article-title: Finite fault inversion of DInSAR coseismic displacement of the 2009 L'Aquila earthquake (central Italy)
  publication-title: Geophys. Res. Lett.
– volume: 2
  start-page: 151
  issue: 2
  year: 2005
  end-page: 155
  article-title: Accuracy of differential shift estimation by correlation and split‐bandwidth interferometry for wideband and delta‐k SAR systems
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 82
  start-page: 800
  issue: 6
  year: 2011
  end-page: 814
  article-title: Coulomb stress change sensitivity due to variability in main shock source models and receiving fault parameters: A case study of the 2010–2011 Christchurch, New Zealand, earthquakes
  publication-title: Seismol. Res. Lett.
– volume: 82
  start-page: 893
  issue: 6
  year: 2011
  end-page: 904
  article-title: Soil liquefaction effects in the central business district during the February 2011 Christchurch earthquake
  publication-title: Seismol. Res. Lett.
– volume: 34
  start-page: 195
  year: 2002
  end-page: 201
  article-title: Ice‐sheet velocity mapping: A combined interferometric and speckle‐tracking approach
  publication-title: Ann. Glaciol.
– volume: 364
  start-page: 138
  year: 1993
  end-page: 142
  article-title: The displacement field of the Landers earthquake mapped by radar interferometry
  publication-title: Nature
– volume: 79
  start-page: 400
  year: 2008
  end-page: 415
  article-title: Implementation of routine regional moment tensor analysis in New Zealand
  publication-title: Seismol. Res. Lett.
– volume: 103
  start-page: 24,347
  issue: B10
  year: 1998
  end-page: 24,358
  article-title: Introduction to special section: Stress trigger, stress shadows, and implication for seismic hazard
  publication-title: J. Geophys. Res.
– volume: 45
  start-page: 2309
  issue: 7
  year: 2007
  end-page: 2318
  article-title: Improvement of satellite radar feature tracking for ice velocity derivation by spatial frequency filtering
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 7
  start-page: 286
  issue: 2
  year: 2010
  end-page: 290
  article-title: Assessing ionospheric influence on L‐band SAR data: Implications on coseismic displacement measurements of the 2008 Sichuan earthquake
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 43
  start-page: 215
  issue: 4
  year: 2010
  end-page: 221
  article-title: The Darfield (Canterbury) earthquake of September 2010: Preliminary seismological report
  publication-title: Bull. N. Z. Soc. Earthquake Eng.
– volume: 82
  start-page: 789
  issue: 6
  year: 2011
  end-page: 799
  article-title: Fault location and slip distribution of the 22 February 2011 Mw 6.2 Christchurch, New Zealand, earthquake from geodetic data
  publication-title: Seismol. Res. Lett.
– volume: 82
  start-page: 839
  issue: 6
  year: 2011
  end-page: 845
  article-title: Fine‐scale relocation of aftershocks of the 22 February Mw 6.2 Christchurch earthquake using double‐difference tomography
  publication-title: Seismol. Res. Lett.
– volume: 110
  year: 2005
  article-title: Glacier surge dynamics of Sortbrae, east Greenland, from synthetic aperture radar feature tracking
  publication-title: J. Geophys. Res.
– volume: 5
  start-page: 222
  issue: 2
  year: 2008
  end-page: 226
  article-title: A tunable closed form model for the structure function of tropospheric delay
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 82
  start-page: 824
  issue: 6
  year: 2011
  end-page: 832
  article-title: Stress control of an evolving strike‐slip fault system during the 2010–2011 Canterbury, New Zealand, sequence
  publication-title: Seismol. Res. Lett.
– year: 2008
– volume: 82
  start-page: 905
  issue: 6
  year: 2011
  end-page: 918
  article-title: Comparison of liquefaction features observed during the 2010 and 2011 Canterbury earthquakes
  publication-title: Seismol. Res. Lett.
– volume: 75
  start-page: 1135
  issue: 4
  year: 1985
  end-page: 1154
  article-title: Surface deformation due to shear and tensile faults in a half‐space
  publication-title: Bull. Seismol. Soc. Am.
– volume: 24
  start-page: 2335
  year: 1997
  end-page: 2338
  article-title: Fluid flow triggered migration of events in the 1989 Dobi earth‐ quake sequence of central Afar
  publication-title: Geophys. Res. Lett.
– volume: 27
  start-page: 1451
  issue: 10
  year: 2000
  end-page: 1454
  article-title: Influence of ionospheric electron density fluctuations on satellite radar interferometry
  publication-title: Geophys. Res. Lett.
– volume: 82
  start-page: 927
  issue: 6
  year: 2011
  end-page: 938
  article-title: Use of DCP and SASW tests to evaluate liquefaction potential: Predictions vs. observations during the recent New Zealand earthquakes
  publication-title: Seismol. Res. Lett.
– volume: 32
  year: 2005
  article-title: Fluid flow and seismicity pattern: Evidence from the 1997 Colfiorito (central Italy) seismic sequence
  publication-title: Geophys. Res. Lett.
– volume: 82
  start-page: 767
  issue: 6
  year: 2011
  end-page: 782
  article-title: Numerical study on the role of basin geometry and kinematic seismic source in 3D ground motion simulation of the 22 February 2011 M 6.2 Christchurch earthquake
  publication-title: Seismol. Res. Lett.
– volume: 82
  start-page: 919
  issue: 6
  year: 2011
  end-page: 926
  article-title: Ambient noise measurements following the 2011 Christchurch earthquake: Relationships with previous microzonation studies, liquefaction, and nonlinearity
  publication-title: Seismol. Res. Lett.
– volume: 144
  start-page: 257
  year: 2005
  end-page: 271
  article-title: Finite element modelling of topographic effects on elastic ground deformation at Mt. Etna
  publication-title: J. Volcanol. Geotherm. Res.
– volume: 1
  start-page: 98
  year: 2011
  article-title: Did the September 2010 (Darfield) earthquake trigger the February 2011 (Christchurch) event?
  publication-title: Nat. Sci. Rep.
– volume: 82
  start-page: 875
  issue: 6
  year: 2011
  end-page: 881
  article-title: Strong ground motion and damage conditions associated with seismic stations in the February 2011 Christchurch, New Zealand, earthquake
  publication-title: Seismol. Res. Lett.
– year: 1999
– volume: 27
  start-page: 193
  issue: 3
  year: 2001
  end-page: 206
  article-title: Velocities and flux of the Filchner ice shelf and its tributaries determined from speckle tracking interferometry
  publication-title: Can. J. Remote Sens.
– volume: 46
  start-page: 1600
  issue: 6
  year: 2008
  end-page: 1613
  article-title: An error prediction framework for interferometric SAR data
  publication-title: IEEE Trans. Geosci. Remote Sens.
– ident: e_1_2_13_24_1
– ident: e_1_2_13_11_1
  doi: 10.1785/gssrl.82.6.893
– ident: e_1_2_13_46_1
  doi: 10.1785/gssrl.82.6.800
– ident: e_1_2_13_2_1
  doi: 10.1029/2004GL022256
– ident: e_1_2_13_35_1
  doi: 10.1785/gssrl.82.6.905
– ident: e_1_2_13_31_1
  doi: 10.1109/TGRS.2008.916213
– ident: e_1_2_13_38_1
  doi: 10.1130/G32528.1
– ident: e_1_2_13_20_1
  doi: 10.1785/gssrl.82.6.927
– ident: e_1_2_13_28_1
  doi: 10.1038/364138a0
– ident: e_1_2_13_39_1
  doi: 10.1109/LGRS.2009.2033317
– ident: e_1_2_13_42_1
  doi: 10.1785/0120010156
– ident: e_1_2_13_12_1
  doi: 10.1109/TGRS.2007.896615
– ident: e_1_2_13_5_1
  doi: 10.1109/LGRS.2004.843203
– volume: 43
  start-page: 215
  issue: 4
  year: 2010
  ident: e_1_2_13_17_1
  article-title: The Darfield (Canterbury) earthquake of September 2010: Preliminary seismological report
  publication-title: Bull. N. Z. Soc. Earthquake Eng.
  doi: 10.5459/bnzsee.43.4.215-221
– ident: e_1_2_13_27_1
  doi: 10.1016/j.jvolgeores.2004.11.031
– ident: e_1_2_13_34_1
  doi: 10.1785/BSSA0750041135
– ident: e_1_2_13_43_1
  doi: 10.1038/srep00098
– ident: e_1_2_13_23_1
  doi: 10.1785/gssrl.82.6.783
– ident: e_1_2_13_44_1
  doi: 10.1109/TGRS.2002.805079
– ident: e_1_2_13_32_1
  doi: 10.1785/gssrl.82.6.919
– ident: e_1_2_13_36_1
  doi: 10.1029/2004JF000233
– volume: 43
  start-page: 236
  year: 2010
  ident: e_1_2_13_37_1
  article-title: Surface rupture of the Greendale fault during the Mw 7.1 Darfield (Canterbury) earthquake, New Zealand: Initial findings
  publication-title: Bull. N. Z. Soc. Earthquake Eng.
  doi: 10.5459/bnzsee.43.4.236-242
– volume-title: Geophysical Data Analysis: Discrete Inverse Theory
  year: 1989
  ident: e_1_2_13_29_1
– ident: e_1_2_13_40_1
  doi: 10.1785/gssrl.79.3.400
– ident: e_1_2_13_19_1
  doi: 10.1080/07038992.2001.10854936
– ident: e_1_2_13_10_1
  doi: 10.1029/175GM03
– ident: e_1_2_13_45_1
  doi: 10.1111/j.1365‐246X.2006.03183.x
– ident: e_1_2_13_3_1
  doi: 10.1111/j.1365‐246X.2011.04955.x
– ident: e_1_2_13_4_1
  doi: 10.1029/2009GL039293
– ident: e_1_2_13_16_1
  doi: 10.1785/gssrl.82.6.846
– ident: e_1_2_13_26_1
  doi: 10.3189/172756402781817978
– ident: e_1_2_13_41_1
  doi: 10.1785/gssrl.82.6.824
– ident: e_1_2_13_13_1
  doi: 10.1029/2011JB008868
– ident: e_1_2_13_14_1
– ident: e_1_2_13_18_1
  doi: 10.1029/2000GL000016
– ident: e_1_2_13_25_1
  doi: 10.1785/gssrl.82.6.875
– ident: e_1_2_13_7_1
  doi: 10.1785/gssrl.82.6.815
– ident: e_1_2_13_9_1
  doi: 10.1785/gssrl.82.6.789
– ident: e_1_2_13_30_1
  doi: 10.1109/LGRS.2008.915738
– ident: e_1_2_13_8_1
  doi: 10.5459/bnzsee.43.4.228-235
– ident: e_1_2_13_33_1
  doi: 10.1029/97GL02182
– ident: e_1_2_13_6_1
  doi: 10.1785/gssrl.82.6.839
– ident: e_1_2_13_22_1
  doi: 10.1029/98JB01576
– ident: e_1_2_13_21_1
  doi: 10.1785/gssrl.82.6.767
– volume-title: Synthetic Aperture Radar Processing
  year: 1999
  ident: e_1_2_13_15_1
SSID ssj0000456401
ssj0014561
ssj0030581
ssj0030583
ssj0043761
ssj0030582
ssj0030585
ssj0030584
ssj0030586
Score 2.327596
Snippet The 2010–2011 Canterbury sequence is a complex system of seismic events that started with a Mw7.1 earthquake and continued with large aftershocks with dramatic...
The 2010–2011 Canterbury sequence is a complex system of seismic events that started with a M w 7.1 earthquake and continued with large aftershocks with...
SourceID pascalfrancis
crossref
wiley
istex
SourceType Index Database
Enrichment Source
Publisher
SubjectTerms Canterbury
Earth sciences
Earth, ocean, space
Exact sciences and technology
InSAR
liquefaction
modeling
seismic sequence
stress transfer
Title The 2010-2011 Canterbury, New Zealand, seismic sequence: Multiple source analysis from InSAR data and modeling
URI https://api.istex.fr/ark:/67375/WNG-35SPFDVN-6/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2012JB009178
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLaqVUgICcEArVwmP8Beuo4mTtKUt7R0XaslqboOBi9RnDpoYrRV20mMJ34DEn-QX8I5jp0mMK4vkU8SO5fjzz4-PhdCnsYgBbettN1IjYQ1QCJOGm3bchrMit2paQonlnG2_cA5OrWGZ_ZZpfKlYLV0ueYHyadr_Ur-h6twDviKXrL_wNm8UTgBZeAvHIHDcPxrHuM-s7ZYsHGerXfznyVZXTZgXInzFZrDaxNq1Aj42qgw0-TXYx2oRPqeDGYn3riOlqRyo0GmztHz3c9S7TsxX2jWq0BCucLZm7wNx4OSvnUSHod-b1BS13rBJAwG4fGgpGr1e-PxG98L6p0w6KpmhgfKPU2pLdD-wy2ZgOj9qH7htUDMVn1xo-zEEIel0Tpz9VTdsuNeOw00TYyiio8ddkCINLIsQeVo2z_MgrltoukwEMLQa69qwtIDxs5qpxeMxrnmTkbg2RgSGZZ0Dc4IGD3dEmEWCVYkrCJhFwlHExaM_llCTfUjlOcGfN7z4seVZKoqDg8f0cY3XsFPTbP8LOW1lxSeJnfIbdU_qJd14bukImbbZMdb4T7M_MMV3aOynLFotU1uZClSr6DUF6pU82F9N19KCip0L85hsaWu3QoTEc9U9HWoNMoaukcWABGKEPn2-SuCg27AsU8BGlRBY58qYFANjBdUw4JmsKAaFhRhQSUsKMICLkyphsV9cnrYm3SPGirJSCO2MDyv3YyTlov78TxOHS44S1LLFS0-bRtmc2pYhtXC1JstzlwmbJtxm1m8mbDY5Rgrkj0gW7P5TOwQajexopi6HGS-Nk_5tAWLJxCxWTM1hc1qpK7ZFCUqAj8mgrmIpCWI2Y6KTK2RZ_ndiyzyzC_u25Mcz2-Kl-_RWrNlR6-DfsTsk9Hhy1dB5NTIbqlL5BV0j6-RfdlHfvu4aNgfd2DV47CHf2rvEbm5Qf5jsrVeXoonIMKv-a7C1Hd8ptlO
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+2010%E2%80%952011+Canterbury%2C+New+Zealand%2C+seismic+sequence%3A+Multiple+source+analysis+from+InSAR+data+and+modeling&rft.jtitle=Journal+of+geophysical+research&rft.au=ATZORI%2C+S&rft.au=TOLOMEI%2C+C&rft.au=ANTONIOLI%2C+A&rft.au=MERRYMAN+BONCORI%2C+J.+P&rft.date=2012-08-01&rft.pub=American+Geophysical+Union&rft.issn=0148-0227&rft.volume=117&rft.issue=B8&rft_id=info:doi/10.1029%2F2012JB009178&rft.externalDBID=n%2Fa&rft.externalDocID=26363510
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-0227&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-0227&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-0227&client=summon