The 2010-2011 Canterbury, New Zealand, seismic sequence: Multiple source analysis from InSAR data and modeling
The 2010–2011 Canterbury sequence is a complex system of seismic events that started with a Mw7.1 earthquake and continued with large aftershocks with dramatic consequences, particularly for the city of Christchurch. We model the main earthquakes using InSAR data, providing displacement maps and the...
Saved in:
Published in | Journal of Geophysical Research: Solid Earth Vol. 117; no. B8 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
Blackwell Publishing Ltd
01.08.2012
American Geophysical Union |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The 2010–2011 Canterbury sequence is a complex system of seismic events that started with a Mw7.1 earthquake and continued with large aftershocks with dramatic consequences, particularly for the city of Christchurch. We model the main earthquakes using InSAR data, providing displacement maps and the respective modeling for the September 4th, 2010, February 22nd, 2011 and June 13th, 2011 events. Relocated aftershocks, field and GPS surveys are used to constrain models obtained by inversion of InSAR data; the fault slip distribution is retrieved with a variable patch size approach aimed at maximizing the spatial resolution on the fault plane. For the September 2010 earthquake we estimated significant slip values below 10 km depth; the calamitous February 2011 event in Christchurch is modeled with a double fault source with slip values less than 2 m down to 7 km depth; for the second June 13th event in Christchurch we identified a NW‐SE striking fault as responsible for the earthquake. Last, we introduce the use of InSAR coherence maps to quickly detect the areas subject to soil liquefaction in Christchurch, as shown for the two main events.
Key Points
We model with a full‐resolution approach the 2010‐2011 Canterbury sequence
We analyze the stress transfer between faults
We exploit coherence maps to detect soil liquefaction |
---|---|
AbstractList | The 2010–2011 Canterbury sequence is a complex system of seismic events that started with a Mw7.1 earthquake and continued with large aftershocks with dramatic consequences, particularly for the city of Christchurch. We model the main earthquakes using InSAR data, providing displacement maps and the respective modeling for the September 4th, 2010, February 22nd, 2011 and June 13th, 2011 events. Relocated aftershocks, field and GPS surveys are used to constrain models obtained by inversion of InSAR data; the fault slip distribution is retrieved with a variable patch size approach aimed at maximizing the spatial resolution on the fault plane. For the September 2010 earthquake we estimated significant slip values below 10 km depth; the calamitous February 2011 event in Christchurch is modeled with a double fault source with slip values less than 2 m down to 7 km depth; for the second June 13th event in Christchurch we identified a NW‐SE striking fault as responsible for the earthquake. Last, we introduce the use of InSAR coherence maps to quickly detect the areas subject to soil liquefaction in Christchurch, as shown for the two main events.
Key Points
We model with a full‐resolution approach the 2010‐2011 Canterbury sequence
We analyze the stress transfer between faults
We exploit coherence maps to detect soil liquefaction The 2010–2011 Canterbury sequence is a complex system of seismic events that started with a M w 7.1 earthquake and continued with large aftershocks with dramatic consequences, particularly for the city of Christchurch. We model the main earthquakes using InSAR data, providing displacement maps and the respective modeling for the September 4th, 2010, February 22nd, 2011 and June 13th, 2011 events. Relocated aftershocks, field and GPS surveys are used to constrain models obtained by inversion of InSAR data; the fault slip distribution is retrieved with a variable patch size approach aimed at maximizing the spatial resolution on the fault plane. For the September 2010 earthquake we estimated significant slip values below 10 km depth; the calamitous February 2011 event in Christchurch is modeled with a double fault source with slip values less than 2 m down to 7 km depth; for the second June 13th event in Christchurch we identified a NW‐SE striking fault as responsible for the earthquake. Last, we introduce the use of InSAR coherence maps to quickly detect the areas subject to soil liquefaction in Christchurch, as shown for the two main events. We model with a full‐resolution approach the 2010‐2011 Canterbury sequence We analyze the stress transfer between faults We exploit coherence maps to detect soil liquefaction |
Author | Atzori, S. Pasquali, P. Tolomei, C. Trasatti, E. Merryman Boncori, J. P. Salvi, S. Antonioli, A. Bannister, S. |
Author_xml | – sequence: 1 givenname: S. surname: Atzori fullname: Atzori, S. email: Simone.atzori@ingv.it, simone.atzori@ingv.it organization: Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy – sequence: 2 givenname: C. surname: Tolomei fullname: Tolomei, C. organization: Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy – sequence: 3 givenname: A. surname: Antonioli fullname: Antonioli, A. organization: Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy – sequence: 4 givenname: J. P. surname: Merryman Boncori fullname: Merryman Boncori, J. P. organization: Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy – sequence: 5 givenname: S. surname: Bannister fullname: Bannister, S. organization: GNS Science, Lower Hutt, New Zealand – sequence: 6 givenname: E. surname: Trasatti fullname: Trasatti, E. organization: Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy – sequence: 7 givenname: P. surname: Pasquali fullname: Pasquali, P. organization: SARMAP SA, Purasca, Switzerland – sequence: 8 givenname: S. surname: Salvi fullname: Salvi, S. organization: Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26363510$$DView record in Pascal Francis |
BookMark | eNp9kE1vEzEQhi3USoS2N36AL9yydPy13nBrU5q2KgG1BSQu1tjrBcPGm9obtfn3GAUQQoI5zBzmeUaj9xnZi0P0hDxn8JIBnx1zYPzqFGDGdPOETDhTdcU58D0yASabCjjXT8lRzl-hlFS1BDYh8e6Lp0WFqjRG5xhHn-wmbad06R_oJ489xnZKsw95FVyZ9xsfnX9F32z6Max7T_OwSc5TjNhvc8i0S8OKXsbbkxva4ohl0dLV0Po-xM-HZL_DPvujn_OAvD9_fTe_qK7fLi7nJ9cVSi1FpQCdboCDsNjV1lvhOtl4bdsZ49AyyaQG1cy0FY3wSgmrhLTgBDa2qWslDsiL3d01Zod9lzC6kM06hRWmreG1qIViUDi-41wack6-My6MOIYhjglDbxiYH-GaP8Mt0vQv6dfdf-Bihz-E3m__y5qrxc0p0-W9YlU7K-TRP_62MH0ztRZamY_LhRHq9t352YelqcV330KWtQ |
CitedBy_id | crossref_primary_10_1016_j_jag_2015_02_008 crossref_primary_10_3130_aijs_86_553 crossref_primary_10_1080_00288306_2015_1133664 crossref_primary_10_3390_rs12162545 crossref_primary_10_1016_j_istruc_2022_10_018 crossref_primary_10_5194_nhess_13_935_2013 crossref_primary_10_1016_j_nhres_2025_03_009 crossref_primary_10_3390_rs14061350 crossref_primary_10_1002_2017JB014703 crossref_primary_10_1016_j_strusafe_2018_03_003 crossref_primary_10_1093_gji_ggu106 crossref_primary_10_3390_geosciences8080303 crossref_primary_10_1016_j_tecto_2014_06_019 crossref_primary_10_1093_gji_ggt404 crossref_primary_10_1785_0120230213 crossref_primary_10_3390_su15065264 crossref_primary_10_1029_2019JB017508 crossref_primary_10_1016_j_enggeo_2024_107648 crossref_primary_10_1016_j_soildyn_2019_03_021 crossref_primary_10_1093_gji_ggt222 crossref_primary_10_1111_ter_12584 crossref_primary_10_1007_s11069_016_2217_0 crossref_primary_10_1016_j_engstruct_2019_01_105 crossref_primary_10_1093_gji_ggt186 crossref_primary_10_1007_s00024_015_1062_5 crossref_primary_10_3389_feart_2020_00193 crossref_primary_10_1093_gji_ggt380 crossref_primary_10_1016_j_chaos_2021_111243 crossref_primary_10_1038_s41598_024_84668_7 crossref_primary_10_1061__ASCE_ST_1943_541X_0002170 crossref_primary_10_1007_s11803_021_2028_5 crossref_primary_10_3390_geosciences11050191 crossref_primary_10_1109_TGRS_2019_2943192 crossref_primary_10_3390_rs15174190 crossref_primary_10_1016_j_engstruct_2019_109341 crossref_primary_10_1785_0220190100 crossref_primary_10_3390_rs13091752 crossref_primary_10_1016_j_soildyn_2016_09_006 crossref_primary_10_1093_gji_ggz093 crossref_primary_10_5047_eps_2012_11_002 crossref_primary_10_1029_2020JB020845 |
Cites_doi | 10.1785/gssrl.82.6.893 10.1785/gssrl.82.6.800 10.1029/2004GL022256 10.1785/gssrl.82.6.905 10.1109/TGRS.2008.916213 10.1130/G32528.1 10.1785/gssrl.82.6.927 10.1038/364138a0 10.1109/LGRS.2009.2033317 10.1785/0120010156 10.1109/TGRS.2007.896615 10.1109/LGRS.2004.843203 10.5459/bnzsee.43.4.215-221 10.1016/j.jvolgeores.2004.11.031 10.1785/BSSA0750041135 10.1038/srep00098 10.1785/gssrl.82.6.783 10.1109/TGRS.2002.805079 10.1785/gssrl.82.6.919 10.1029/2004JF000233 10.5459/bnzsee.43.4.236-242 10.1785/gssrl.79.3.400 10.1080/07038992.2001.10854936 10.1029/175GM03 10.1111/j.1365‐246X.2006.03183.x 10.1111/j.1365‐246X.2011.04955.x 10.1029/2009GL039293 10.1785/gssrl.82.6.846 10.3189/172756402781817978 10.1785/gssrl.82.6.824 10.1029/2011JB008868 10.1029/2000GL000016 10.1785/gssrl.82.6.875 10.1785/gssrl.82.6.815 10.1785/gssrl.82.6.789 10.1109/LGRS.2008.915738 10.5459/bnzsee.43.4.228-235 10.1029/97GL02182 10.1785/gssrl.82.6.839 10.1029/98JB01576 10.1785/gssrl.82.6.767 |
ContentType | Journal Article |
Copyright | 2012. American Geophysical Union. All Rights Reserved. 2015 INIST-CNRS |
Copyright_xml | – notice: 2012. American Geophysical Union. All Rights Reserved. – notice: 2015 INIST-CNRS |
DBID | BSCLL AAYXX CITATION IQODW |
DOI | 10.1029/2012JB009178 |
DatabaseName | Istex CrossRef Pascal-Francis |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Biology Oceanography Geology Astronomy & Astrophysics Physics |
EISSN | 2156-2202 |
EndPage | n/a |
ExternalDocumentID | 26363510 10_1029_2012JB009178 JGRB17263 ark_67375_WNG_35SPFDVN_6 |
Genre | article |
GeographicLocations | New Zealand Canterbury New Zealand South Island |
GroupedDBID | 12K 1OC 24P 7XC 88I 8FE 8FH 8G5 8R4 8R5 AANLZ AAXRX ABUWG ACAHQ ACCZN ACXBN AEIGN AEUYR AFFPM AHBTC AITYG ALMA_UNASSIGNED_HOLDINGS AMYDB ATCPS BBNVY BENPR BHPHI BKSAR BPHCQ BRXPI BSCLL DCZOG DRFUL DRSTM DU5 DWQXO GNUQQ GUQSH HCIFZ LATKE LITHE LOXES LUTES LYRES M2O M2P MEWTI MSFUL MSSTM MXFUL MXSTM P-X Q2X RNS WHG WIN WXSBR XSW ~OA ~~A AAHQN AAMNL AAYXX AGYGG CITATION IQODW |
ID | FETCH-LOGICAL-a4743-50ac780203baf6beb3cf48e7bd9120d1414705897b383e553b534b0c3a8b86653 |
ISSN | 0148-0227 |
IngestDate | Mon Jul 21 09:10:47 EDT 2025 Tue Jul 01 01:55:55 EDT 2025 Thu Apr 24 22:57:46 EDT 2025 Wed Jan 22 16:36:29 EST 2025 Wed Oct 30 09:49:29 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | B8 |
Keywords | models inverse problem maps Australasia interferometry Complex system surveys liquefaction cartography urban areas earthquakes faults Modeling Global Positioning System depth slip displacements Radar observation fault planes aftershocks spatial resolution soils Synthetic aperture radar |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a4743-50ac780203baf6beb3cf48e7bd9120d1414705897b383e553b534b0c3a8b86653 |
Notes | ArticleID:2012JB009178 istex:81B145E26D17B045340582FACFF60E846CA5AA95 ark:/67375/WNG-35SPFDVN-6 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2012JB009178 |
PageCount | 16 |
ParticipantIDs | pascalfrancis_primary_26363510 crossref_citationtrail_10_1029_2012JB009178 crossref_primary_10_1029_2012JB009178 wiley_primary_10_1029_2012JB009178_JGRB17263 istex_primary_ark_67375_WNG_35SPFDVN_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2012 |
PublicationDateYYYYMMDD | 2012-08-01 |
PublicationDate_xml | – month: 08 year: 2012 text: August 2012 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC |
PublicationTitle | Journal of Geophysical Research: Solid Earth |
PublicationTitleAlternate | J. Geophys. Res |
PublicationYear | 2012 |
Publisher | Blackwell Publishing Ltd American Geophysical Union |
Publisher_xml | – name: Blackwell Publishing Ltd – name: American Geophysical Union |
References | Fry, B., R. Benites, and A. Kaiser (2011), The character of accelerations in the Mw 6.2 Christchurch earthquake, Seismol. Res. Lett., 82(6), 846-852, doi:10.1785/gssrl.82.6.846. Stramondo, S., C. Kyriakopoulos, C. Bignami, M. Chini, D. Melini, M. Moro, M. Picchiani, M. Saroli, and E. Boschi (2011), Did the September 2010 (Darfield) earthquake trigger the February 2011 (Christchurch) event?, Nat. Sci. Rep., 1, 98, doi:10.1038/srep00098 Zhan, Z., B. Jin, S. Wei, and R. W. Graves (2011), Coulomb stress change sensitivity due to variability in main shock source models and receiving fault parameters: A case study of the 2010-2011 Christchurch, New Zealand, earthquakes, Seismol. Res. Lett., 82(6), 800-814, doi:10.1785/gssrl.82.6.800. Barnhart, W. D., M. J. Willis, R. B. Lohman, and A. K. Melkonian (2011), InSAR and optical constraints on fault slip during the 2010-2011 New Zealand earthquake sequence, Seismol. Res. Lett., 82(6), 815-823, doi:10.1785/gssrl.82.6.815. Noir, J., E. Jacques, S. Bekri, P. M. Adler, P. Tapponier, and G. C. P. King (1997), Fluid flow triggered migration of events in the 1989 Dobi earth- quake sequence of central Afar, Geophys. Res. Lett., 24, 2335-2338, doi:10.1029/97GL02182. Raucoules, D., and M. De Michele (2010), Assessing ionospheric influence on L-band SAR data: Implications on coseismic displacement measurements of the 2008 Sichuan earthquake, IEEE Geosci. Remote Sens. Lett., 7(2), 286-290, doi:10.1109/LGRS.2009.2033317. deLange, R., A. Luckman, and T. Murray (2007), Improvement of satellite radar feature tracking for ice velocity derivation by spatial frequency filtering, IEEE Trans. Geosci. Remote Sens., 45(7), 2309-2318, doi:10.1109/TGRS.2007.896615. Gray, A. L., and K. E. Mattar (2000), Influence of ionospheric electron density fluctuations on satellite radar interferometry, Geophys. Res. Lett., 27(10), 1451-1454, doi:10.1029/2000GL000016. Franceschetti, G., and R. Lanari (1999), Synthetic Aperture Radar Processing, 328 pp., CRC Press, Boca Raton, Fla. Mohr, J. J., and J. P. Merryman Boncori (2008), An error prediction framework for interferometric SAR data, IEEE Trans. Geosci. Remote Sens., 46(6), 1600-1613, doi:10.1109/TGRS.2008.916213. Mucciarelli, M. (2011), Ambient noise measurements following the 2011 Christchurch earthquake: Relationships with previous microzonation studies, liquefaction, and nonlinearity, Seismol. Res. Lett., 82(6), 919-926, doi:10.1785/gssrl.82.6.919. Strozzi, T., A. Luckman, T. Murray, U. Wegmuller, and C. L. Werner (2002), Glacier motion estimation using SAR offset-tracking procedures, IEEE Trans. Geosci. Remote Sens., 40(11), 2384-2391, doi:10.1109/TGRS.2002.805079. Gledhill, K., J. Ristau, M. Reyners, B. Fry, and C. Holden (2010), The Darfield (Canterbury) earthquake of September 2010: Preliminary seismological report, Bull. N. Z. Soc. Earthquake Eng., 43(4), 215-221. Cubrinovski, M., J. D. Bray, M. Taylor, S. Giorgini, B. Bradley, L. Wotherspoon, and J. Zupan (2011), Soil liquefaction effects in the central business district during the February 2011 Christchurch earthquake, Seismol. Res. Lett., 82(6), 893-904, doi:10.1785/gssrl.82.6.893. Guidotti, R., M. Stupazzini, C. Smerzini, R. Paolucci, and P. Ramieri (2011), Numerical study on the role of basin geometry and kinematic seismic source in 3D ground motion simulation of the 22 February 2011 MW 6.2 Christchurch earthquake, Seismol. Res. Lett., 82(6), 767-782, doi:10.1785/gssrl.82.6.767. Quigley, M., R. Van Dissen, N. Lichtfield, P. Villamor, B. Duffy, D. Barrell, K. Furlong, T. Stahl, E. Bilderback, and D. Noble (2011), Surface rupture during the 2010 Mw7.1 Darfield (Canterbury) earthquake: Implications for fault rupture dynamics and seismic-hazard analysis, Geology, 40, 55-58, doi:10.1130/G32528.1. Bamler, R., and M. Eineder (2005), Accuracy of differential shift estimation by correlation and split-bandwidth interferometry for wideband and delta-k SAR systems, IEEE Geosci. Remote Sens. Lett., 2(2), 151-155, doi:10.1109/LGRS.2004.843203. Green, R. A., C. Wood, B. Cox, M. Cubrinovski, L. Wotherspoon, B. Bradley, T. Algie, J. Allen, A. Bradshaw, and G. Rix (2011), Use of DCP and SASW tests to evaluate liquefaction potential: Predictions vs. observations during the recent New Zealand earthquakes, Seismol. Res. Lett., 82(6), 927-938, doi:10.1785/gssrl.82.6.927. Bannister, S., B. Fry, M. Reyners, J. Ristau, and H. Zhang (2011), Fine-scale relocation of aftershocks of the 22 February Mw 6.2 Christchurch earthquake using double-difference tomography, Seismol. Res. Lett., 82(6), 839-845, doi:10.1785/gssrl.82.6.839. Lungarini, L., C. Troise, M. Meo, and G. De Natale (2005), Finite element modelling of topographic effects on elastic ground deformation at Mt. Etna, J. Volcanol. Geotherm. Res., 144, 257-271, doi:10.1016/j.jvolgeores.2004.11.031. Menke, W. (1989), Geophysical Data Analysis: Discrete Inverse Theory, Academic, San Diego, Calif. Beavan, J., S. Samsonov, M. Motagh, L. Wallace, S. Ellis, and N. Palmer (2010), The Darfield (Canterbury) earthquake: Geodetic observations and preliminary source model, Bull. N. Z. Soc. Earthquake Eng., 43(4), 228-235. Merryman Boncori, J. P., and J. J. Mohr (2008), A tunable closed form model for the structure function of tropospheric delay, IEEE Geosci. Remote Sens. Lett., 5(2), 222-226, doi:10.1109/LGRS.2008.915738. Stirling, M. W., G. H. McVerry, and K. R. Berryman (2002), A new seismic hazard model for New Zealand, Bull. Seismol. Soc. Am., 92, 1878-1903, doi:10.1785/0120010156. Antonioli, A., D. Piccinini, L. Chiaraluce, and M. Cocco (2005), Fluid flow and seismicity pattern: Evidence from the 1997 Colfiorito (central Italy) seismic sequence, Geophys. Res. Lett., 32, L10311, doi:10.1029/2004GL022256. Orense, R. P., T. Kiyota, S. Yamada, M. Cubrinovski, Y. Hosono, M. Okamura, and S. Yasuda (2011), Comparison of liquefaction features observed during the 2010 and 2011 Canterbury earthquakes, Seismol. Res. Lett., 82(6), 905-918, doi:10.1785/gssrl.82.6.905. Atzori, S., I. Hunstad, M. Chini, S. Salvi, C. Tolomei, C. Bignami, S. Stramondo, E. Trasatti, A. Antonioli, and E. Boschi (2009), Finite fault inversion of DInSAR coseismic displacement of the 2009 L'Aquila earthquake (central Italy), Geophys. Res. Lett., 36, L15305, doi:10.1029/2009GL039293. Atzori, S., and A. Antonioli (2011), Optimal fault resolution in geodetic inversion of coseismic data, Geophys. J. Int., 185, 529-538, doi:10.1111/j.1365-246X.2011.04955.x. Massonnet, D., M. Rossi, C. Carmona, F. Adragna, G. Peltzer, K. Feigl, and T. Rabaute (1993), The displacement field of the Landers earthquake mapped by radar interferometry, Nature, 364, 138-142, doi:10.1038/364138a0. Pritchard, H., T. Murray, A. Luckman, T. Strozzi, and S. Barr (2005), Glacier surge dynamics of Sortbrae, east Greenland, from synthetic aperture radar feature tracking, J. Geophys. Res., 110, F03005, doi:10.1029/2004JF000233. Ristau, J. (2008), Implementation of routine regional moment tensor analysis in New Zealand, Seismol. Res. Lett., 79, 400-415, doi:10.1785/gssrl.79.3.400. Iizuka, H., Y. Sakai, and K. Koketsu (2011), Strong ground motion and damage conditions associated with seismic stations in the February 2011 Christchurch, New Zealand, earthquake, Seismol. Res. Lett., 82(6), 875-881, doi:10.1785/gssrl.82.6.875. Beavan, J., E. Fielding, M. Motagh, S. Samsonov, and N. Donnelly (2011), Fault location and slip distribution of the 22 February 2011 Mw 6.2 Christchurch, New Zealand, earthquake from geodetic data, Seismol. Res. Lett., 82(6), 789-799, doi:10.1785/gssrl.82.6.789. Okada, Y. (1985), Surface deformation due to shear and tensile faults in a half-space, Bull. Seismol. Soc. Am., 75(4), 1135-1154. Harris, R. A. (1998), Introduction to special section: Stress trigger, stress shadows, and implication for seismic hazard, J. Geophys. Res., 103(B10), 24,347-24,358, doi:10.1029/98JB01576. Quigley, M., et al. (2010), Surface rupture of the Greendale fault during the Mw 7.1 Darfield (Canterbury) earthquake, New Zealand: Initial findings, Bull. N. Z. Soc. Earthquake Eng., 43, 236-242. Wallace, L. M., R. J. Beavan, R. McCaffrey, K. R. Berryman, and P. Denys (2007), Balancing the plate motion budget in the South Island, New Zealand using GPS, geological and seismological data, Geophys. J. Int., 168(1), 332-352, doi:10.1111/j.1365-246X.2006.03183.x. Elliott, J. R., E. Nissen, P. C. England, J. A. Jackson, S. Lamb, Z. Li, M. Oehlers, and B. E. Parsons (2012), Slip in the 2010-2011 Canterbury earthquakes, New Zealand, J. Geophys. Res., 117, B03401, doi:10.1029/2011JB008868. Joughin, I. (2002), Ice-sheet velocity mapping: A combined interferometric and speckle-tracking approach, Ann. Glaciol., 34, 195-201, doi:10.3189/172756402781817978. Gray, A. L., N. Short, K. E. Mattar, and K. C. Jezek (2001), Velocities and flux of the Filchner ice shelf and its tributaries determined from speckle tracking interferometry, Can. J. Remote Sens., 27(3), 193-206. Sibson, R., F. Ghisetti, and J. Ristau (2011), Stress control of an evolving strike-slip fault system during the 2010-2011 Canterbury, New Zealand, sequence, Seismol. Res. Lett., 82(6), 824-832, doi:10.1785/gssrl.82.6.824. Holden, C. (2011), Kinematic source model of the 22 February 2011 Mw 6.2 Christchurch earthquake using strong motion data, Seismol. Res. Lett., 82(6), 783-788, doi:10.1785/gssrl.82.6.783. 2007; 168 2000; 27 2011; 1 2005; 110 2011 2011; 82 2002; 34 1997; 24 2011; 40 2008 2008; 79 2008; 5 2001; 27 1999 1993; 364 2009; 36 2010; 43 2005; 144 2002; 40 2007; 175 2005; 32 2008; 46 2002; 92 1998; 103 2005; 2 2011; 185 1985; 75 2007; 45 2012; 117 2010; 7 1989 e_1_2_13_25_1 e_1_2_13_24_1 e_1_2_13_27_1 e_1_2_13_46_1 e_1_2_13_26_1 e_1_2_13_21_1 e_1_2_13_44_1 e_1_2_13_20_1 e_1_2_13_45_1 e_1_2_13_23_1 e_1_2_13_42_1 e_1_2_13_22_1 e_1_2_13_43_1 e_1_2_13_9_1 e_1_2_13_40_1 e_1_2_13_8_1 e_1_2_13_41_1 e_1_2_13_7_1 e_1_2_13_6_1 Gledhill K. (e_1_2_13_17_1) 2010; 43 e_1_2_13_18_1 e_1_2_13_39_1 e_1_2_13_19_1 e_1_2_13_13_1 e_1_2_13_36_1 e_1_2_13_14_1 e_1_2_13_35_1 e_1_2_13_38_1 e_1_2_13_16_1 e_1_2_13_32_1 e_1_2_13_10_1 e_1_2_13_31_1 e_1_2_13_11_1 e_1_2_13_34_1 e_1_2_13_12_1 e_1_2_13_33_1 Menke W. (e_1_2_13_29_1) 1989 e_1_2_13_30_1 Franceschetti G. (e_1_2_13_15_1) 1999 Quigley M. (e_1_2_13_37_1) 2010; 43 e_1_2_13_5_1 e_1_2_13_4_1 e_1_2_13_3_1 e_1_2_13_2_1 e_1_2_13_28_1 |
References_xml | – reference: Atzori, S., I. Hunstad, M. Chini, S. Salvi, C. Tolomei, C. Bignami, S. Stramondo, E. Trasatti, A. Antonioli, and E. Boschi (2009), Finite fault inversion of DInSAR coseismic displacement of the 2009 L'Aquila earthquake (central Italy), Geophys. Res. Lett., 36, L15305, doi:10.1029/2009GL039293. – reference: Raucoules, D., and M. De Michele (2010), Assessing ionospheric influence on L-band SAR data: Implications on coseismic displacement measurements of the 2008 Sichuan earthquake, IEEE Geosci. Remote Sens. Lett., 7(2), 286-290, doi:10.1109/LGRS.2009.2033317. – reference: Gledhill, K., J. Ristau, M. Reyners, B. Fry, and C. Holden (2010), The Darfield (Canterbury) earthquake of September 2010: Preliminary seismological report, Bull. N. Z. Soc. Earthquake Eng., 43(4), 215-221. – reference: Fry, B., R. Benites, and A. Kaiser (2011), The character of accelerations in the Mw 6.2 Christchurch earthquake, Seismol. Res. Lett., 82(6), 846-852, doi:10.1785/gssrl.82.6.846. – reference: Green, R. A., C. Wood, B. Cox, M. Cubrinovski, L. Wotherspoon, B. Bradley, T. Algie, J. Allen, A. Bradshaw, and G. Rix (2011), Use of DCP and SASW tests to evaluate liquefaction potential: Predictions vs. observations during the recent New Zealand earthquakes, Seismol. Res. Lett., 82(6), 927-938, doi:10.1785/gssrl.82.6.927. – reference: Merryman Boncori, J. P., and J. J. Mohr (2008), A tunable closed form model for the structure function of tropospheric delay, IEEE Geosci. Remote Sens. Lett., 5(2), 222-226, doi:10.1109/LGRS.2008.915738. – reference: Cubrinovski, M., J. D. Bray, M. Taylor, S. Giorgini, B. Bradley, L. Wotherspoon, and J. Zupan (2011), Soil liquefaction effects in the central business district during the February 2011 Christchurch earthquake, Seismol. Res. Lett., 82(6), 893-904, doi:10.1785/gssrl.82.6.893. – reference: deLange, R., A. Luckman, and T. Murray (2007), Improvement of satellite radar feature tracking for ice velocity derivation by spatial frequency filtering, IEEE Trans. Geosci. Remote Sens., 45(7), 2309-2318, doi:10.1109/TGRS.2007.896615. – reference: Elliott, J. R., E. Nissen, P. C. England, J. A. Jackson, S. Lamb, Z. Li, M. Oehlers, and B. E. Parsons (2012), Slip in the 2010-2011 Canterbury earthquakes, New Zealand, J. Geophys. Res., 117, B03401, doi:10.1029/2011JB008868. – reference: Harris, R. A. (1998), Introduction to special section: Stress trigger, stress shadows, and implication for seismic hazard, J. Geophys. Res., 103(B10), 24,347-24,358, doi:10.1029/98JB01576. – reference: Mohr, J. J., and J. P. Merryman Boncori (2008), An error prediction framework for interferometric SAR data, IEEE Trans. Geosci. Remote Sens., 46(6), 1600-1613, doi:10.1109/TGRS.2008.916213. – reference: Massonnet, D., M. Rossi, C. Carmona, F. Adragna, G. Peltzer, K. Feigl, and T. Rabaute (1993), The displacement field of the Landers earthquake mapped by radar interferometry, Nature, 364, 138-142, doi:10.1038/364138a0. – reference: Pritchard, H., T. Murray, A. Luckman, T. Strozzi, and S. Barr (2005), Glacier surge dynamics of Sortbrae, east Greenland, from synthetic aperture radar feature tracking, J. Geophys. Res., 110, F03005, doi:10.1029/2004JF000233. – reference: Orense, R. P., T. Kiyota, S. Yamada, M. Cubrinovski, Y. Hosono, M. Okamura, and S. Yasuda (2011), Comparison of liquefaction features observed during the 2010 and 2011 Canterbury earthquakes, Seismol. Res. Lett., 82(6), 905-918, doi:10.1785/gssrl.82.6.905. – reference: Stramondo, S., C. Kyriakopoulos, C. Bignami, M. Chini, D. Melini, M. Moro, M. Picchiani, M. Saroli, and E. Boschi (2011), Did the September 2010 (Darfield) earthquake trigger the February 2011 (Christchurch) event?, Nat. Sci. Rep., 1, 98, doi:10.1038/srep00098 – reference: Menke, W. (1989), Geophysical Data Analysis: Discrete Inverse Theory, Academic, San Diego, Calif. – reference: Franceschetti, G., and R. Lanari (1999), Synthetic Aperture Radar Processing, 328 pp., CRC Press, Boca Raton, Fla. – reference: Iizuka, H., Y. Sakai, and K. Koketsu (2011), Strong ground motion and damage conditions associated with seismic stations in the February 2011 Christchurch, New Zealand, earthquake, Seismol. Res. Lett., 82(6), 875-881, doi:10.1785/gssrl.82.6.875. – reference: Beavan, J., E. Fielding, M. Motagh, S. Samsonov, and N. Donnelly (2011), Fault location and slip distribution of the 22 February 2011 Mw 6.2 Christchurch, New Zealand, earthquake from geodetic data, Seismol. Res. Lett., 82(6), 789-799, doi:10.1785/gssrl.82.6.789. – reference: Strozzi, T., A. Luckman, T. Murray, U. Wegmuller, and C. L. Werner (2002), Glacier motion estimation using SAR offset-tracking procedures, IEEE Trans. Geosci. Remote Sens., 40(11), 2384-2391, doi:10.1109/TGRS.2002.805079. – reference: Barnhart, W. D., M. J. Willis, R. B. Lohman, and A. K. Melkonian (2011), InSAR and optical constraints on fault slip during the 2010-2011 New Zealand earthquake sequence, Seismol. Res. Lett., 82(6), 815-823, doi:10.1785/gssrl.82.6.815. – reference: Antonioli, A., D. Piccinini, L. Chiaraluce, and M. Cocco (2005), Fluid flow and seismicity pattern: Evidence from the 1997 Colfiorito (central Italy) seismic sequence, Geophys. Res. Lett., 32, L10311, doi:10.1029/2004GL022256. – reference: Zhan, Z., B. Jin, S. Wei, and R. W. Graves (2011), Coulomb stress change sensitivity due to variability in main shock source models and receiving fault parameters: A case study of the 2010-2011 Christchurch, New Zealand, earthquakes, Seismol. Res. Lett., 82(6), 800-814, doi:10.1785/gssrl.82.6.800. – reference: Bannister, S., B. Fry, M. Reyners, J. Ristau, and H. Zhang (2011), Fine-scale relocation of aftershocks of the 22 February Mw 6.2 Christchurch earthquake using double-difference tomography, Seismol. Res. Lett., 82(6), 839-845, doi:10.1785/gssrl.82.6.839. – reference: Wallace, L. M., R. J. Beavan, R. McCaffrey, K. R. Berryman, and P. Denys (2007), Balancing the plate motion budget in the South Island, New Zealand using GPS, geological and seismological data, Geophys. J. Int., 168(1), 332-352, doi:10.1111/j.1365-246X.2006.03183.x. – reference: Okada, Y. (1985), Surface deformation due to shear and tensile faults in a half-space, Bull. Seismol. Soc. Am., 75(4), 1135-1154. – reference: Ristau, J. (2008), Implementation of routine regional moment tensor analysis in New Zealand, Seismol. Res. Lett., 79, 400-415, doi:10.1785/gssrl.79.3.400. – reference: Atzori, S., and A. Antonioli (2011), Optimal fault resolution in geodetic inversion of coseismic data, Geophys. J. Int., 185, 529-538, doi:10.1111/j.1365-246X.2011.04955.x. – reference: Holden, C. (2011), Kinematic source model of the 22 February 2011 Mw 6.2 Christchurch earthquake using strong motion data, Seismol. Res. Lett., 82(6), 783-788, doi:10.1785/gssrl.82.6.783. – reference: Quigley, M., R. Van Dissen, N. Lichtfield, P. Villamor, B. Duffy, D. Barrell, K. Furlong, T. Stahl, E. Bilderback, and D. Noble (2011), Surface rupture during the 2010 Mw7.1 Darfield (Canterbury) earthquake: Implications for fault rupture dynamics and seismic-hazard analysis, Geology, 40, 55-58, doi:10.1130/G32528.1. – reference: Quigley, M., et al. (2010), Surface rupture of the Greendale fault during the Mw 7.1 Darfield (Canterbury) earthquake, New Zealand: Initial findings, Bull. N. Z. Soc. Earthquake Eng., 43, 236-242. – reference: Stirling, M. W., G. H. McVerry, and K. R. Berryman (2002), A new seismic hazard model for New Zealand, Bull. Seismol. Soc. Am., 92, 1878-1903, doi:10.1785/0120010156. – reference: Joughin, I. (2002), Ice-sheet velocity mapping: A combined interferometric and speckle-tracking approach, Ann. Glaciol., 34, 195-201, doi:10.3189/172756402781817978. – reference: Sibson, R., F. Ghisetti, and J. Ristau (2011), Stress control of an evolving strike-slip fault system during the 2010-2011 Canterbury, New Zealand, sequence, Seismol. Res. Lett., 82(6), 824-832, doi:10.1785/gssrl.82.6.824. – reference: Noir, J., E. Jacques, S. Bekri, P. M. Adler, P. Tapponier, and G. C. P. King (1997), Fluid flow triggered migration of events in the 1989 Dobi earth- quake sequence of central Afar, Geophys. Res. Lett., 24, 2335-2338, doi:10.1029/97GL02182. – reference: Mucciarelli, M. (2011), Ambient noise measurements following the 2011 Christchurch earthquake: Relationships with previous microzonation studies, liquefaction, and nonlinearity, Seismol. Res. Lett., 82(6), 919-926, doi:10.1785/gssrl.82.6.919. – reference: Bamler, R., and M. Eineder (2005), Accuracy of differential shift estimation by correlation and split-bandwidth interferometry for wideband and delta-k SAR systems, IEEE Geosci. Remote Sens. Lett., 2(2), 151-155, doi:10.1109/LGRS.2004.843203. – reference: Lungarini, L., C. Troise, M. Meo, and G. De Natale (2005), Finite element modelling of topographic effects on elastic ground deformation at Mt. Etna, J. Volcanol. Geotherm. Res., 144, 257-271, doi:10.1016/j.jvolgeores.2004.11.031. – reference: Gray, A. L., and K. E. Mattar (2000), Influence of ionospheric electron density fluctuations on satellite radar interferometry, Geophys. Res. Lett., 27(10), 1451-1454, doi:10.1029/2000GL000016. – reference: Beavan, J., S. Samsonov, M. Motagh, L. Wallace, S. Ellis, and N. Palmer (2010), The Darfield (Canterbury) earthquake: Geodetic observations and preliminary source model, Bull. N. Z. Soc. Earthquake Eng., 43(4), 228-235. – reference: Guidotti, R., M. Stupazzini, C. Smerzini, R. Paolucci, and P. Ramieri (2011), Numerical study on the role of basin geometry and kinematic seismic source in 3D ground motion simulation of the 22 February 2011 MW 6.2 Christchurch earthquake, Seismol. Res. Lett., 82(6), 767-782, doi:10.1785/gssrl.82.6.767. – reference: Gray, A. L., N. Short, K. E. Mattar, and K. C. Jezek (2001), Velocities and flux of the Filchner ice shelf and its tributaries determined from speckle tracking interferometry, Can. J. Remote Sens., 27(3), 193-206. – year: 2011 – volume: 175 start-page: 19 year: 2007 end-page: 46 – volume: 82 start-page: 783 issue: 6 year: 2011 end-page: 788 article-title: Kinematic source model of the 22 February 2011 Mw 6.2 Christchurch earthquake using strong motion data publication-title: Seismol. Res. Lett. – volume: 92 start-page: 1878 year: 2002 end-page: 1903 article-title: A new seismic hazard model for New Zealand publication-title: Bull. Seismol. Soc. Am. – volume: 40 start-page: 55 year: 2011 end-page: 58 article-title: Surface rupture during the 2010 M 7.1 Darfield (Canterbury) earthquake: Implications for fault rupture dynamics and seismic‐hazard analysis publication-title: Geology – volume: 43 start-page: 236 year: 2010 end-page: 242 article-title: Surface rupture of the Greendale fault during the Mw 7.1 Darfield (Canterbury) earthquake, New Zealand: Initial findings publication-title: Bull. N. Z. Soc. Earthquake Eng. – volume: 82 start-page: 846 issue: 6 year: 2011 end-page: 852 article-title: The character of accelerations in the Mw 6.2 Christchurch earthquake publication-title: Seismol. Res. Lett. – volume: 185 start-page: 529 year: 2011 end-page: 538 article-title: Optimal fault resolution in geodetic inversion of coseismic data publication-title: Geophys. J. Int. – volume: 82 start-page: 815 issue: 6 year: 2011 end-page: 823 article-title: InSAR and optical constraints on fault slip during the 2010–2011 New Zealand earthquake sequence publication-title: Seismol. Res. Lett. – volume: 168 start-page: 332 issue: 1 year: 2007 end-page: 352 article-title: Balancing the plate motion budget in the South Island, New Zealand using GPS, geological and seismological data publication-title: Geophys. J. Int. – volume: 43 start-page: 228 issue: 4 year: 2010 end-page: 235 article-title: The Darfield (Canterbury) earthquake: Geodetic observations and preliminary source model publication-title: Bull. N. Z. Soc. Earthquake Eng. – year: 1989 – volume: 40 start-page: 2384 issue: 11 year: 2002 end-page: 2391 article-title: Glacier motion estimation using SAR offset‐tracking procedures publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 117 year: 2012 article-title: Slip in the 2010–2011 Canterbury earthquakes, New Zealand publication-title: J. Geophys. Res. – volume: 36 year: 2009 article-title: Finite fault inversion of DInSAR coseismic displacement of the 2009 L'Aquila earthquake (central Italy) publication-title: Geophys. Res. Lett. – volume: 2 start-page: 151 issue: 2 year: 2005 end-page: 155 article-title: Accuracy of differential shift estimation by correlation and split‐bandwidth interferometry for wideband and delta‐k SAR systems publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 82 start-page: 800 issue: 6 year: 2011 end-page: 814 article-title: Coulomb stress change sensitivity due to variability in main shock source models and receiving fault parameters: A case study of the 2010–2011 Christchurch, New Zealand, earthquakes publication-title: Seismol. Res. Lett. – volume: 82 start-page: 893 issue: 6 year: 2011 end-page: 904 article-title: Soil liquefaction effects in the central business district during the February 2011 Christchurch earthquake publication-title: Seismol. Res. Lett. – volume: 34 start-page: 195 year: 2002 end-page: 201 article-title: Ice‐sheet velocity mapping: A combined interferometric and speckle‐tracking approach publication-title: Ann. Glaciol. – volume: 364 start-page: 138 year: 1993 end-page: 142 article-title: The displacement field of the Landers earthquake mapped by radar interferometry publication-title: Nature – volume: 79 start-page: 400 year: 2008 end-page: 415 article-title: Implementation of routine regional moment tensor analysis in New Zealand publication-title: Seismol. Res. Lett. – volume: 103 start-page: 24,347 issue: B10 year: 1998 end-page: 24,358 article-title: Introduction to special section: Stress trigger, stress shadows, and implication for seismic hazard publication-title: J. Geophys. Res. – volume: 45 start-page: 2309 issue: 7 year: 2007 end-page: 2318 article-title: Improvement of satellite radar feature tracking for ice velocity derivation by spatial frequency filtering publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 7 start-page: 286 issue: 2 year: 2010 end-page: 290 article-title: Assessing ionospheric influence on L‐band SAR data: Implications on coseismic displacement measurements of the 2008 Sichuan earthquake publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 43 start-page: 215 issue: 4 year: 2010 end-page: 221 article-title: The Darfield (Canterbury) earthquake of September 2010: Preliminary seismological report publication-title: Bull. N. Z. Soc. Earthquake Eng. – volume: 82 start-page: 789 issue: 6 year: 2011 end-page: 799 article-title: Fault location and slip distribution of the 22 February 2011 Mw 6.2 Christchurch, New Zealand, earthquake from geodetic data publication-title: Seismol. Res. Lett. – volume: 82 start-page: 839 issue: 6 year: 2011 end-page: 845 article-title: Fine‐scale relocation of aftershocks of the 22 February Mw 6.2 Christchurch earthquake using double‐difference tomography publication-title: Seismol. Res. Lett. – volume: 110 year: 2005 article-title: Glacier surge dynamics of Sortbrae, east Greenland, from synthetic aperture radar feature tracking publication-title: J. Geophys. Res. – volume: 5 start-page: 222 issue: 2 year: 2008 end-page: 226 article-title: A tunable closed form model for the structure function of tropospheric delay publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 82 start-page: 824 issue: 6 year: 2011 end-page: 832 article-title: Stress control of an evolving strike‐slip fault system during the 2010–2011 Canterbury, New Zealand, sequence publication-title: Seismol. Res. Lett. – year: 2008 – volume: 82 start-page: 905 issue: 6 year: 2011 end-page: 918 article-title: Comparison of liquefaction features observed during the 2010 and 2011 Canterbury earthquakes publication-title: Seismol. Res. Lett. – volume: 75 start-page: 1135 issue: 4 year: 1985 end-page: 1154 article-title: Surface deformation due to shear and tensile faults in a half‐space publication-title: Bull. Seismol. Soc. Am. – volume: 24 start-page: 2335 year: 1997 end-page: 2338 article-title: Fluid flow triggered migration of events in the 1989 Dobi earth‐ quake sequence of central Afar publication-title: Geophys. Res. Lett. – volume: 27 start-page: 1451 issue: 10 year: 2000 end-page: 1454 article-title: Influence of ionospheric electron density fluctuations on satellite radar interferometry publication-title: Geophys. Res. Lett. – volume: 82 start-page: 927 issue: 6 year: 2011 end-page: 938 article-title: Use of DCP and SASW tests to evaluate liquefaction potential: Predictions vs. observations during the recent New Zealand earthquakes publication-title: Seismol. Res. Lett. – volume: 32 year: 2005 article-title: Fluid flow and seismicity pattern: Evidence from the 1997 Colfiorito (central Italy) seismic sequence publication-title: Geophys. Res. Lett. – volume: 82 start-page: 767 issue: 6 year: 2011 end-page: 782 article-title: Numerical study on the role of basin geometry and kinematic seismic source in 3D ground motion simulation of the 22 February 2011 M 6.2 Christchurch earthquake publication-title: Seismol. Res. Lett. – volume: 82 start-page: 919 issue: 6 year: 2011 end-page: 926 article-title: Ambient noise measurements following the 2011 Christchurch earthquake: Relationships with previous microzonation studies, liquefaction, and nonlinearity publication-title: Seismol. Res. Lett. – volume: 144 start-page: 257 year: 2005 end-page: 271 article-title: Finite element modelling of topographic effects on elastic ground deformation at Mt. Etna publication-title: J. Volcanol. Geotherm. Res. – volume: 1 start-page: 98 year: 2011 article-title: Did the September 2010 (Darfield) earthquake trigger the February 2011 (Christchurch) event? publication-title: Nat. Sci. Rep. – volume: 82 start-page: 875 issue: 6 year: 2011 end-page: 881 article-title: Strong ground motion and damage conditions associated with seismic stations in the February 2011 Christchurch, New Zealand, earthquake publication-title: Seismol. Res. Lett. – year: 1999 – volume: 27 start-page: 193 issue: 3 year: 2001 end-page: 206 article-title: Velocities and flux of the Filchner ice shelf and its tributaries determined from speckle tracking interferometry publication-title: Can. J. Remote Sens. – volume: 46 start-page: 1600 issue: 6 year: 2008 end-page: 1613 article-title: An error prediction framework for interferometric SAR data publication-title: IEEE Trans. Geosci. Remote Sens. – ident: e_1_2_13_24_1 – ident: e_1_2_13_11_1 doi: 10.1785/gssrl.82.6.893 – ident: e_1_2_13_46_1 doi: 10.1785/gssrl.82.6.800 – ident: e_1_2_13_2_1 doi: 10.1029/2004GL022256 – ident: e_1_2_13_35_1 doi: 10.1785/gssrl.82.6.905 – ident: e_1_2_13_31_1 doi: 10.1109/TGRS.2008.916213 – ident: e_1_2_13_38_1 doi: 10.1130/G32528.1 – ident: e_1_2_13_20_1 doi: 10.1785/gssrl.82.6.927 – ident: e_1_2_13_28_1 doi: 10.1038/364138a0 – ident: e_1_2_13_39_1 doi: 10.1109/LGRS.2009.2033317 – ident: e_1_2_13_42_1 doi: 10.1785/0120010156 – ident: e_1_2_13_12_1 doi: 10.1109/TGRS.2007.896615 – ident: e_1_2_13_5_1 doi: 10.1109/LGRS.2004.843203 – volume: 43 start-page: 215 issue: 4 year: 2010 ident: e_1_2_13_17_1 article-title: The Darfield (Canterbury) earthquake of September 2010: Preliminary seismological report publication-title: Bull. N. Z. Soc. Earthquake Eng. doi: 10.5459/bnzsee.43.4.215-221 – ident: e_1_2_13_27_1 doi: 10.1016/j.jvolgeores.2004.11.031 – ident: e_1_2_13_34_1 doi: 10.1785/BSSA0750041135 – ident: e_1_2_13_43_1 doi: 10.1038/srep00098 – ident: e_1_2_13_23_1 doi: 10.1785/gssrl.82.6.783 – ident: e_1_2_13_44_1 doi: 10.1109/TGRS.2002.805079 – ident: e_1_2_13_32_1 doi: 10.1785/gssrl.82.6.919 – ident: e_1_2_13_36_1 doi: 10.1029/2004JF000233 – volume: 43 start-page: 236 year: 2010 ident: e_1_2_13_37_1 article-title: Surface rupture of the Greendale fault during the Mw 7.1 Darfield (Canterbury) earthquake, New Zealand: Initial findings publication-title: Bull. N. Z. Soc. Earthquake Eng. doi: 10.5459/bnzsee.43.4.236-242 – volume-title: Geophysical Data Analysis: Discrete Inverse Theory year: 1989 ident: e_1_2_13_29_1 – ident: e_1_2_13_40_1 doi: 10.1785/gssrl.79.3.400 – ident: e_1_2_13_19_1 doi: 10.1080/07038992.2001.10854936 – ident: e_1_2_13_10_1 doi: 10.1029/175GM03 – ident: e_1_2_13_45_1 doi: 10.1111/j.1365‐246X.2006.03183.x – ident: e_1_2_13_3_1 doi: 10.1111/j.1365‐246X.2011.04955.x – ident: e_1_2_13_4_1 doi: 10.1029/2009GL039293 – ident: e_1_2_13_16_1 doi: 10.1785/gssrl.82.6.846 – ident: e_1_2_13_26_1 doi: 10.3189/172756402781817978 – ident: e_1_2_13_41_1 doi: 10.1785/gssrl.82.6.824 – ident: e_1_2_13_13_1 doi: 10.1029/2011JB008868 – ident: e_1_2_13_14_1 – ident: e_1_2_13_18_1 doi: 10.1029/2000GL000016 – ident: e_1_2_13_25_1 doi: 10.1785/gssrl.82.6.875 – ident: e_1_2_13_7_1 doi: 10.1785/gssrl.82.6.815 – ident: e_1_2_13_9_1 doi: 10.1785/gssrl.82.6.789 – ident: e_1_2_13_30_1 doi: 10.1109/LGRS.2008.915738 – ident: e_1_2_13_8_1 doi: 10.5459/bnzsee.43.4.228-235 – ident: e_1_2_13_33_1 doi: 10.1029/97GL02182 – ident: e_1_2_13_6_1 doi: 10.1785/gssrl.82.6.839 – ident: e_1_2_13_22_1 doi: 10.1029/98JB01576 – ident: e_1_2_13_21_1 doi: 10.1785/gssrl.82.6.767 – volume-title: Synthetic Aperture Radar Processing year: 1999 ident: e_1_2_13_15_1 |
SSID | ssj0000456401 ssj0014561 ssj0030581 ssj0030583 ssj0043761 ssj0030582 ssj0030585 ssj0030584 ssj0030586 |
Score | 2.327596 |
Snippet | The 2010–2011 Canterbury sequence is a complex system of seismic events that started with a Mw7.1 earthquake and continued with large aftershocks with dramatic... The 2010–2011 Canterbury sequence is a complex system of seismic events that started with a M w 7.1 earthquake and continued with large aftershocks with... |
SourceID | pascalfrancis crossref wiley istex |
SourceType | Index Database Enrichment Source Publisher |
SubjectTerms | Canterbury Earth sciences Earth, ocean, space Exact sciences and technology InSAR liquefaction modeling seismic sequence stress transfer |
Title | The 2010-2011 Canterbury, New Zealand, seismic sequence: Multiple source analysis from InSAR data and modeling |
URI | https://api.istex.fr/ark:/67375/WNG-35SPFDVN-6/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2012JB009178 |
Volume | 117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLaqVUgICcEArVwmP8Beuo4mTtKUt7R0XaslqboOBi9RnDpoYrRV20mMJ34DEn-QX8I5jp0mMK4vkU8SO5fjzz4-PhdCnsYgBbettN1IjYQ1QCJOGm3bchrMit2paQonlnG2_cA5OrWGZ_ZZpfKlYLV0ueYHyadr_Ur-h6twDviKXrL_wNm8UTgBZeAvHIHDcPxrHuM-s7ZYsHGerXfznyVZXTZgXInzFZrDaxNq1Aj42qgw0-TXYx2oRPqeDGYn3riOlqRyo0GmztHz3c9S7TsxX2jWq0BCucLZm7wNx4OSvnUSHod-b1BS13rBJAwG4fGgpGr1e-PxG98L6p0w6KpmhgfKPU2pLdD-wy2ZgOj9qH7htUDMVn1xo-zEEIel0Tpz9VTdsuNeOw00TYyiio8ddkCINLIsQeVo2z_MgrltoukwEMLQa69qwtIDxs5qpxeMxrnmTkbg2RgSGZZ0Dc4IGD3dEmEWCVYkrCJhFwlHExaM_llCTfUjlOcGfN7z4seVZKoqDg8f0cY3XsFPTbP8LOW1lxSeJnfIbdU_qJd14bukImbbZMdb4T7M_MMV3aOynLFotU1uZClSr6DUF6pU82F9N19KCip0L85hsaWu3QoTEc9U9HWoNMoaukcWABGKEPn2-SuCg27AsU8BGlRBY58qYFANjBdUw4JmsKAaFhRhQSUsKMICLkyphsV9cnrYm3SPGirJSCO2MDyv3YyTlov78TxOHS44S1LLFS0-bRtmc2pYhtXC1JstzlwmbJtxm1m8mbDY5Rgrkj0gW7P5TOwQajexopi6HGS-Nk_5tAWLJxCxWTM1hc1qpK7ZFCUqAj8mgrmIpCWI2Y6KTK2RZ_ndiyzyzC_u25Mcz2-Kl-_RWrNlR6-DfsTsk9Hhy1dB5NTIbqlL5BV0j6-RfdlHfvu4aNgfd2DV47CHf2rvEbm5Qf5jsrVeXoonIMKv-a7C1Hd8ptlO |
linkProvider | ProQuest |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+2010%E2%80%952011+Canterbury%2C+New+Zealand%2C+seismic+sequence%3A+Multiple+source+analysis+from+InSAR+data+and+modeling&rft.jtitle=Journal+of+geophysical+research&rft.au=ATZORI%2C+S&rft.au=TOLOMEI%2C+C&rft.au=ANTONIOLI%2C+A&rft.au=MERRYMAN+BONCORI%2C+J.+P&rft.date=2012-08-01&rft.pub=American+Geophysical+Union&rft.issn=0148-0227&rft.volume=117&rft.issue=B8&rft_id=info:doi/10.1029%2F2012JB009178&rft.externalDBID=n%2Fa&rft.externalDocID=26363510 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-0227&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-0227&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-0227&client=summon |