OPLS Force Field for Choline Chloride-Based Deep Eutectic Solvents
Deep eutectic solvents (DES) are a class of solvents frequently composed of choline chloride and a neutral hydrogen bond donor (HBD) at ratios of 1:1, 1:2, or 1:3, respectively. As cost-effective and eco-friendly solvents, DESs have gained considerable popularity in multiple fields, including materi...
Saved in:
Published in | The journal of physical chemistry. B Vol. 122; no. 43; pp. 9982 - 9993 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
01.11.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Deep eutectic solvents (DES) are a class of solvents frequently composed of choline chloride and a neutral hydrogen bond donor (HBD) at ratios of 1:1, 1:2, or 1:3, respectively. As cost-effective and eco-friendly solvents, DESs have gained considerable popularity in multiple fields, including materials, separations, and nanotechnology. In the present work, a comprehensive set of transferable parameters have been fine-tuned to accurately reproduce bulk-phase physical properties and local intermolecular interactions for 8 different choline chloride-based DESs. This nonpolarizable force field, OPLS-DES, gave near quantitative agreement at multiple temperatures for experimental densities, viscosities, heat capacities, and surface tensions yielding overall mean absolute errors (MAEs) of ca. 1.1%, 1.6%, 5.5%, and 1.5%, respectively. Local interactions and solvent structuring between the ions and HBDs, including urea, glycerol, phenol, ethylene glycol, levulinic acid, oxalic acid, and malonic acid, were accurately reproduced when compared to radial distribution functions and coordination numbers derived from experimental liquid-phase neutron diffraction data and from first-principles molecular dynamics simulations. The reproduction of transport properties presented a considerable challenge and behaved more like a supercooled liquid near room temperature; higher-temperature simulations, e.g., 400–500 K, or an alternative polarizable force field is recommended when computing self-diffusion coefficients. |
---|---|
AbstractList | Deep eutectic solvents (DES) are a class of solvents frequently composed of choline chloride and a neutral hydrogen bond donor (HBD) at ratios of 1:1, 1:2, or 1:3, respectively. As cost-effective and eco-friendly solvents, DESs have gained considerable popularity in multiple fields, including materials, separations, and nanotechnology. In the present work, a comprehensive set of transferable parameters have been fine-tuned to accurately reproduce bulk-phase physical properties and local intermolecular interactions for 8 different choline chloride-based DESs. This nonpolarizable force field, OPLS-DES, gave near quantitative agreement at multiple temperatures for experimental densities, viscosities, heat capacities, and surface tensions yielding overall mean absolute errors (MAEs) of ca. 1.1%, 1.6%, 5.5%, and 1.5%, respectively. Local interactions and solvent structuring between the ions and HBDs, including urea, glycerol, phenol, ethylene glycol, levulinic acid, oxalic acid, and malonic acid, were accurately reproduced when compared to radial distribution functions and coordination numbers derived from experimental liquid-phase neutron diffraction data and from first-principles molecular dynamics simulations. The reproduction of transport properties presented a considerable challenge and behaved more like a supercooled liquid near room temperature; higher temperature simulations, e.g., 400-500 K, or an alternative polarizable force field is recommended when computing self-diffusion coefficients. Deep eutectic solvents (DES) are a class of solvents frequently composed of choline chloride and a neutral hydrogen bond donor (HBD) at ratios of 1:1, 1:2, or 1:3, respectively. As cost-effective and eco-friendly solvents, DESs have gained considerable popularity in multiple fields, including materials, separations, and nanotechnology. In the present work, a comprehensive set of transferable parameters have been fine-tuned to accurately reproduce bulk-phase physical properties and local intermolecular interactions for 8 different choline chloride-based DESs. This nonpolarizable force field, OPLS-DES, gave near quantitative agreement at multiple temperatures for experimental densities, viscosities, heat capacities, and surface tensions yielding overall mean absolute errors (MAEs) of ca. 1.1%, 1.6%, 5.5%, and 1.5%, respectively. Local interactions and solvent structuring between the ions and HBDs, including urea, glycerol, phenol, ethylene glycol, levulinic acid, oxalic acid, and malonic acid, were accurately reproduced when compared to radial distribution functions and coordination numbers derived from experimental liquid-phase neutron diffraction data and from first-principles molecular dynamics simulations. The reproduction of transport properties presented a considerable challenge and behaved more like a supercooled liquid near room temperature; higher-temperature simulations, e.g., 400-500 K, or an alternative polarizable force field is recommended when computing self-diffusion coefficients.Deep eutectic solvents (DES) are a class of solvents frequently composed of choline chloride and a neutral hydrogen bond donor (HBD) at ratios of 1:1, 1:2, or 1:3, respectively. As cost-effective and eco-friendly solvents, DESs have gained considerable popularity in multiple fields, including materials, separations, and nanotechnology. In the present work, a comprehensive set of transferable parameters have been fine-tuned to accurately reproduce bulk-phase physical properties and local intermolecular interactions for 8 different choline chloride-based DESs. This nonpolarizable force field, OPLS-DES, gave near quantitative agreement at multiple temperatures for experimental densities, viscosities, heat capacities, and surface tensions yielding overall mean absolute errors (MAEs) of ca. 1.1%, 1.6%, 5.5%, and 1.5%, respectively. Local interactions and solvent structuring between the ions and HBDs, including urea, glycerol, phenol, ethylene glycol, levulinic acid, oxalic acid, and malonic acid, were accurately reproduced when compared to radial distribution functions and coordination numbers derived from experimental liquid-phase neutron diffraction data and from first-principles molecular dynamics simulations. The reproduction of transport properties presented a considerable challenge and behaved more like a supercooled liquid near room temperature; higher-temperature simulations, e.g., 400-500 K, or an alternative polarizable force field is recommended when computing self-diffusion coefficients. |
Author | Acevedo, Orlando Doherty, Brian |
AuthorAffiliation | Department of Chemistry University of Miami |
AuthorAffiliation_xml | – name: University of Miami – name: Department of Chemistry |
Author_xml | – sequence: 1 givenname: Brian surname: Doherty fullname: Doherty, Brian – sequence: 2 givenname: Orlando orcidid: 0000-0002-6110-3930 surname: Acevedo fullname: Acevedo, Orlando email: orlando.acevedo@miami.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30125108$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkb1PwzAQxS1URD9gZ0IZGUg524mTjLS0gFSpSIU5cuyLcJXGxU6Q-O9JaWFAAobTO-l-74b3hqRX2xoJOacwpsDotVR-vN6qYpwWIESUHJEBjRmE3SS9wy4oiD4Zer8GYDFLxQnpc6AsppAOyGT5uFgFc-sUBnODlQ5K64Lpi61MjZ1W1hmN4UR61MEt4jaYtQ2qxqhgZas3rBt_So5LWXk8O-iIPM9nT9P7cLG8e5jeLEIZJawJNQhZiIJmJU9T5DTjaQxRUiQxZVTFCWrJpCxKTbXUKCIWaY7AhUKeIU-Aj8jl_u_W2dcWfZNvjFdYVbJG2_qcMQZpGjPO_0chox1Hs6xDLw5oW2xQ51tnNtK9518RdQDsAeWs9w7Lb4RCvmsh71rIdy3khxY6i_hhUaaRjbF146Sp_jJe7Y2fF9u6ugv0d_wDAASaaA |
CitedBy_id | crossref_primary_10_1016_j_molliq_2022_120243 crossref_primary_10_1016_j_jmgm_2022_108180 crossref_primary_10_1021_acs_jctc_3c00944 crossref_primary_10_1021_acs_jpcb_0c04058 crossref_primary_10_1016_j_cherd_2021_11_036 crossref_primary_10_1016_j_fluid_2024_114324 crossref_primary_10_1016_j_molliq_2022_120248 crossref_primary_10_1021_acs_jpcb_4c06838 crossref_primary_10_1016_j_molliq_2024_124326 crossref_primary_10_1021_acssuschemeng_2c05264 crossref_primary_10_1063_5_0047369 crossref_primary_10_1021_acs_jpcb_0c01860 crossref_primary_10_1021_acssuschemeng_3c08071 crossref_primary_10_1016_j_molliq_2020_112972 crossref_primary_10_1021_acs_jctc_4c01441 crossref_primary_10_1016_j_jiec_2024_09_027 crossref_primary_10_1021_acs_jpcb_3c04292 crossref_primary_10_1016_j_molliq_2025_127042 crossref_primary_10_1021_acs_jced_4c00505 crossref_primary_10_1007_s10570_019_02257_8 crossref_primary_10_1016_j_molliq_2021_117100 crossref_primary_10_1021_acs_jpcb_1c10671 crossref_primary_10_1021_acs_jpcb_2c01636 crossref_primary_10_1016_j_molliq_2021_116139 crossref_primary_10_1039_D3CP04357F crossref_primary_10_3390_molecules29030703 crossref_primary_10_1021_acs_iecr_3c03652 crossref_primary_10_1016_j_fluid_2021_113241 crossref_primary_10_1021_acs_jpcb_9b11352 crossref_primary_10_1021_acs_iecr_2c01324 crossref_primary_10_1080_08927022_2024_2427794 crossref_primary_10_1039_C9CP00036D crossref_primary_10_1016_j_seppur_2024_129592 crossref_primary_10_1016_j_molliq_2021_116709 crossref_primary_10_1016_j_molliq_2024_126475 crossref_primary_10_1007_s00894_023_05643_z crossref_primary_10_1021_acs_jpcb_0c00876 crossref_primary_10_1016_j_rser_2021_111986 crossref_primary_10_1021_acs_jpcb_4c03585 crossref_primary_10_1021_jacs_8b13542 crossref_primary_10_1039_D1GC04059F crossref_primary_10_1016_j_molliq_2025_127150 crossref_primary_10_3390_molecules28145293 crossref_primary_10_1021_acs_jpcb_3c08480 crossref_primary_10_1021_acs_jpcb_4c06295 crossref_primary_10_1021_acs_jpcb_4c05480 crossref_primary_10_1021_acs_jpcc_1c02704 crossref_primary_10_1016_j_molliq_2023_123930 crossref_primary_10_1021_acs_jpcb_1c01692 crossref_primary_10_1038_s41598_021_85824_z crossref_primary_10_1021_acs_jctc_1c00268 crossref_primary_10_1016_j_ces_2024_120231 crossref_primary_10_1016_j_molliq_2019_112183 crossref_primary_10_1021_acs_jcim_1c01181 crossref_primary_10_1039_D2CP04139A crossref_primary_10_1002_er_8146 crossref_primary_10_1016_j_cogsc_2020_100395 crossref_primary_10_1021_acs_jpcb_9b06624 crossref_primary_10_1039_D4NJ02664K crossref_primary_10_3390_ijms23020645 crossref_primary_10_1021_acs_jpcb_4c06787 crossref_primary_10_1021_acs_jpclett_4c03051 crossref_primary_10_1021_acs_jpcb_0c04907 crossref_primary_10_1039_C9CP03552D crossref_primary_10_1063_5_0058561 crossref_primary_10_1063_5_0088290 crossref_primary_10_1021_acs_jpcb_3c02652 crossref_primary_10_1021_acs_jpcb_2c01735 crossref_primary_10_1021_acs_jpcb_3c03223 crossref_primary_10_1016_j_chphi_2023_100223 crossref_primary_10_1021_acs_jctc_1c00274 crossref_primary_10_1016_j_molliq_2021_116510 crossref_primary_10_1039_D1CP00734C crossref_primary_10_1002_aic_18093 crossref_primary_10_1016_j_molliq_2023_121862 crossref_primary_10_1063_5_0062408 crossref_primary_10_1021_acs_iecr_3c02102 crossref_primary_10_1039_D0CP06572B crossref_primary_10_1016_j_jphotochem_2022_114504 crossref_primary_10_1021_acs_jpcb_1c03367 crossref_primary_10_1021_acs_jpcb_1c06636 crossref_primary_10_1002_cphc_202200446 crossref_primary_10_1080_07391102_2023_2275178 crossref_primary_10_1080_05704928_2024_2390962 crossref_primary_10_3390_molecules30030574 crossref_primary_10_1002_cssc_202000286 crossref_primary_10_1016_j_jmgm_2024_108775 crossref_primary_10_1021_acs_chemrev_0c00385 crossref_primary_10_1080_08927022_2021_1983178 crossref_primary_10_1016_j_molliq_2021_115956 crossref_primary_10_1016_j_molliq_2020_112940 crossref_primary_10_1016_j_jmgm_2024_108805 crossref_primary_10_1016_j_molliq_2019_111538 crossref_primary_10_1016_j_ceja_2023_100564 crossref_primary_10_1021_acs_jpcb_2c00076 crossref_primary_10_1016_j_molliq_2023_121899 crossref_primary_10_1038_s41467_021_27842_z crossref_primary_10_1007_s00894_021_05017_3 crossref_primary_10_3390_min14070711 crossref_primary_10_1016_j_est_2024_111029 crossref_primary_10_1007_s13399_021_01379_z crossref_primary_10_1016_j_jmgm_2024_108784 crossref_primary_10_1021_acs_jpcb_3c02191 crossref_primary_10_1016_j_jpowsour_2024_234975 crossref_primary_10_1021_acs_jced_9b00548 crossref_primary_10_1021_acs_iecr_1c04923 crossref_primary_10_1021_acs_jpcb_3c08338 crossref_primary_10_1016_j_csite_2022_102298 crossref_primary_10_1021_acs_jpcb_1c01501 crossref_primary_10_1039_C9CP04343H crossref_primary_10_1039_D4CP01471E crossref_primary_10_18321_ectj1563 crossref_primary_10_1063_5_0251283 crossref_primary_10_1016_j_molliq_2023_122973 crossref_primary_10_1021_acs_jctc_1c00156 crossref_primary_10_1063_5_0058605 crossref_primary_10_1016_j_molliq_2023_121647 crossref_primary_10_1016_j_molliq_2023_122856 crossref_primary_10_1016_j_jics_2023_100998 crossref_primary_10_1021_acssuschemeng_2c01375 crossref_primary_10_1021_acs_langmuir_4c04322 crossref_primary_10_1039_D1CP03282H crossref_primary_10_1002_cbic_201900624 crossref_primary_10_1021_acs_jpcb_0c04916 crossref_primary_10_1016_j_molliq_2022_120180 crossref_primary_10_1111_php_13950 crossref_primary_10_1002_wcms_1572 crossref_primary_10_1021_acs_jctc_1c00047 crossref_primary_10_1021_acs_jpcb_2c01425 crossref_primary_10_1021_acs_jpcb_9b08954 crossref_primary_10_1007_s42250_024_00999_y crossref_primary_10_1021_acssuschemeng_3c01858 crossref_primary_10_1021_acs_jced_1c00841 crossref_primary_10_3389_fchem_2022_983281 crossref_primary_10_1039_D4CP03453H crossref_primary_10_1016_j_jmro_2023_100094 crossref_primary_10_1016_j_molliq_2020_113729 crossref_primary_10_1149_1945_7111_ac58c6 crossref_primary_10_1021_acs_jpclett_4c03645 crossref_primary_10_1016_j_rser_2025_115358 crossref_primary_10_1016_j_jcis_2021_10_163 crossref_primary_10_1021_acs_jpcb_1c09092 crossref_primary_10_1016_j_fluid_2019_05_022 crossref_primary_10_1039_D3CP02774K crossref_primary_10_1016_j_measurement_2021_110630 crossref_primary_10_1021_acs_jpcb_2c06521 crossref_primary_10_1016_j_colsurfa_2023_131818 crossref_primary_10_1021_acs_jpcc_9b01111 crossref_primary_10_1016_j_ces_2024_119727 crossref_primary_10_1039_D0CP05341D crossref_primary_10_1088_1742_6596_1893_1_012001 crossref_primary_10_1021_acs_iecr_4c01600 crossref_primary_10_1063_5_0049259 crossref_primary_10_1021_acs_jpcb_0c07934 crossref_primary_10_1021_acs_jpcb_4c02784 crossref_primary_10_1063_5_0139153 crossref_primary_10_1021_acsomega_2c03458 crossref_primary_10_1016_j_molliq_2023_123563 crossref_primary_10_1002_wcms_1598 crossref_primary_10_1007_s10570_022_04671_x crossref_primary_10_1016_j_molliq_2021_117779 crossref_primary_10_1039_D3CP03668E crossref_primary_10_1039_D4CP01694G crossref_primary_10_1016_j_molliq_2021_115750 crossref_primary_10_1142_S2737416524500443 crossref_primary_10_1016_j_molliq_2021_117019 crossref_primary_10_1016_j_molliq_2021_117932 crossref_primary_10_3390_molecules28227592 |
Cites_doi | 10.1021/acs.jpcb.7b10422 10.1063/1.478334 10.1039/c2cs35178a 10.1016/j.softx.2015.06.001 10.1021/acs.jctc.7b00520 10.1016/j.tca.2012.09.041 10.1016/j.fluid.2007.06.028 10.1002/ejoc.201501197 10.1016/j.comptc.2011.11.003 10.1039/C0GC00395F 10.1039/C5GC02914G 10.1126/science.1096205 10.1039/b210714g 10.1039/C6CP08017K 10.1080/00986448708960487 10.1016/j.molliq.2015.12.015 10.1063/1.446044 10.1021/jp905585e 10.1016/j.elecom.2017.03.020 10.1080/00268976.2017.1288936 10.1002/anie.201207548 10.1039/c2gc36005e 10.1021/je500520h 10.1021/ja9621760 10.1002/chem.201702892 10.1063/1.1624057 10.1021/ci200217w 10.1063/1.3035978 10.1021/ct500271z 10.1021/ie071055d 10.1021/acs.jpcb.6b07233 10.1039/c2cs15353j 10.1021/ct200731v 10.1021/jp103470e 10.1021/acsomega.7b00618 10.1039/C5CP03364K 10.1016/j.fluid.2012.01.025 10.1021/acs.jced.6b00608 10.1039/c3gc40815a 10.1039/C6CP02815B 10.1039/B514848K 10.1021/ja060035k 10.1002/cphc.201600348 10.1021/acs.jpcb.7b11996 10.1039/C4CC04661G 10.1016/j.tca.2011.11.036 10.1021/ja048266j 10.1002/jcc.21224 10.1021/jp404619x 10.1039/C0CP01549K 10.1007/s00706-013-1050-3 10.1039/C6CP07932F 10.1016/j.molcatb.2012.09.003 10.1039/c1cp22554e 10.1007/s00894-013-1791-2 10.1021/ct900009a 10.1063/1.1421362 10.1063/1.2408420 10.1039/C4CP05550K 10.1021/acs.chemrev.7b00571 10.1016/j.cej.2015.03.091 10.1007/s10765-013-1482-3 10.1021/jp0364699 10.1039/C5RA05746A 10.1021/acs.jpcc.5b08172 10.1021/cr300162p 10.1021/jp0362133 10.1016/j.cplett.2015.06.017 10.1016/j.molliq.2015.07.070 10.1021/ar5000488 10.1016/j.fluid.2017.03.024 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/acs.jpcb.8b06647 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5207 |
EndPage | 9993 |
ExternalDocumentID | 30125108 10_1021_acs_jpcb_8b06647 b800033287 |
Genre | Journal Article |
GroupedDBID | - .K2 02 123 29L 53G 55A 5VS 7~N 85S 8RP AABXI ABFLS ABMVS ABPTK ABUCX ACGFS ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F20 F5P GNL IH9 IHE JG JG~ K2 PZZ RNS ROL TAE TN5 UI2 UKR UPT VF5 VG9 VQA W1F WH7 X YZZ ZGI ZHY --- -~X .DC 4.4 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHLV AHGAQ CITATION CUPRZ GGK XSW YQT ~02 NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a472t-d06ab6b19f388e319385047b75121c57eda2aabfd1dade6424d3e036ce39e3703 |
IEDL.DBID | ACS |
ISSN | 1520-6106 1520-5207 |
IngestDate | Fri Jul 11 00:22:01 EDT 2025 Fri Jul 11 00:49:00 EDT 2025 Wed Feb 19 02:42:04 EST 2025 Thu Apr 24 22:57:22 EDT 2025 Tue Jul 01 01:00:24 EDT 2025 Thu Aug 27 13:42:07 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 43 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a472t-d06ab6b19f388e319385047b75121c57eda2aabfd1dade6424d3e036ce39e3703 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6110-3930 |
PMID | 30125108 |
PQID | 2091233199 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2220885233 proquest_miscellaneous_2091233199 pubmed_primary_30125108 crossref_primary_10_1021_acs_jpcb_8b06647 crossref_citationtrail_10_1021_acs_jpcb_8b06647 acs_journals_10_1021_acs_jpcb_8b06647 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-11-01 |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The journal of physical chemistry. B |
PublicationTitleAlternate | J. Phys. Chem. B |
PublicationYear | 2018 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref71/cit71 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref70/cit70 ref7/cit7 |
References_xml | – ident: ref31/cit31 doi: 10.1021/acs.jpcb.7b10422 – ident: ref68/cit68 doi: 10.1063/1.478334 – ident: ref8/cit8 doi: 10.1039/c2cs35178a – ident: ref43/cit43 doi: 10.1016/j.softx.2015.06.001 – ident: ref33/cit33 doi: 10.1021/acs.jctc.7b00520 – ident: ref10/cit10 doi: 10.1016/j.tca.2012.09.041 – ident: ref50/cit50 doi: 10.1016/j.fluid.2007.06.028 – ident: ref17/cit17 doi: 10.1002/ejoc.201501197 – ident: ref26/cit26 doi: 10.1016/j.comptc.2011.11.003 – ident: ref6/cit6 doi: 10.1039/C0GC00395F – ident: ref48/cit48 doi: 10.1039/C5GC02914G – ident: ref70/cit70 doi: 10.1126/science.1096205 – ident: ref23/cit23 doi: 10.1039/b210714g – ident: ref29/cit29 doi: 10.1039/C6CP08017K – ident: ref62/cit62 doi: 10.1080/00986448708960487 – ident: ref3/cit3 doi: 10.1016/j.molliq.2015.12.015 – ident: ref54/cit54 doi: 10.1063/1.446044 – ident: ref58/cit58 doi: 10.1021/jp905585e – ident: ref16/cit16 doi: 10.1016/j.elecom.2017.03.020 – ident: ref37/cit37 doi: 10.1080/00268976.2017.1288936 – ident: ref5/cit5 doi: 10.1002/anie.201207548 – ident: ref19/cit19 doi: 10.1039/c2gc36005e – ident: ref36/cit36 doi: 10.1021/je500520h – ident: ref49/cit49 doi: 10.1021/ja9621760 – ident: ref21/cit21 doi: 10.1002/chem.201702892 – ident: ref52/cit52 doi: 10.1063/1.1624057 – ident: ref46/cit46 doi: 10.1021/ci200217w – ident: ref69/cit69 doi: 10.1063/1.3035978 – ident: ref56/cit56 doi: 10.1021/ct500271z – ident: ref63/cit63 doi: 10.1021/ie071055d – ident: ref40/cit40 doi: 10.1021/acs.jpcb.6b07233 – ident: ref13/cit13 doi: 10.1039/c2cs15353j – ident: ref53/cit53 doi: 10.1021/ct200731v – ident: ref71/cit71 doi: 10.1021/jp103470e – ident: ref20/cit20 doi: 10.1021/acsomega.7b00618 – ident: ref39/cit39 doi: 10.1039/C5CP03364K – ident: ref61/cit61 doi: 10.1016/j.fluid.2012.01.025 – ident: ref22/cit22 doi: 10.1021/acs.jced.6b00608 – ident: ref11/cit11 doi: 10.1039/c3gc40815a – ident: ref25/cit25 doi: 10.1039/C6CP02815B – ident: ref59/cit59 doi: 10.1039/B514848K – ident: ref60/cit60 doi: 10.1021/ja060035k – ident: ref28/cit28 doi: 10.1002/cphc.201600348 – ident: ref32/cit32 doi: 10.1021/acs.jpcb.7b11996 – ident: ref14/cit14 doi: 10.1039/C4CC04661G – ident: ref57/cit57 doi: 10.1016/j.tca.2011.11.036 – ident: ref7/cit7 doi: 10.1021/ja048266j – ident: ref44/cit44 doi: 10.1002/jcc.21224 – ident: ref35/cit35 doi: 10.1021/jp404619x – ident: ref55/cit55 doi: 10.1039/C0CP01549K – ident: ref4/cit4 doi: 10.1007/s00706-013-1050-3 – ident: ref27/cit27 doi: 10.1039/C6CP07932F – ident: ref9/cit9 doi: 10.1016/j.molcatb.2012.09.003 – ident: ref64/cit64 doi: 10.1039/c1cp22554e – ident: ref38/cit38 doi: 10.1007/s00894-013-1791-2 – ident: ref41/cit41 doi: 10.1021/ct900009a – ident: ref51/cit51 doi: 10.1063/1.1421362 – ident: ref45/cit45 doi: 10.1063/1.2408420 – ident: ref34/cit34 doi: 10.1039/C4CP05550K – ident: ref1/cit1 doi: 10.1021/acs.chemrev.7b00571 – ident: ref15/cit15 doi: 10.1016/j.cej.2015.03.091 – ident: ref66/cit66 doi: 10.1007/s10765-013-1482-3 – ident: ref67/cit67 doi: 10.1021/jp0364699 – ident: ref18/cit18 doi: 10.1039/C5RA05746A – ident: ref65/cit65 doi: 10.1021/acs.jpcc.5b08172 – ident: ref2/cit2 doi: 10.1021/cr300162p – ident: ref42/cit42 doi: 10.1021/jp0362133 – ident: ref24/cit24 doi: 10.1016/j.cplett.2015.06.017 – ident: ref47/cit47 doi: 10.1016/j.molliq.2015.07.070 – ident: ref12/cit12 doi: 10.1021/ar5000488 – ident: ref30/cit30 doi: 10.1016/j.fluid.2017.03.024 |
SSID | ssj0025286 |
Score | 2.6234462 |
Snippet | Deep eutectic solvents (DES) are a class of solvents frequently composed of choline chloride and a neutral hydrogen bond donor (HBD) at ratios of 1:1, 1:2, or... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 9982 |
SubjectTerms | ambient temperature choline cost effectiveness ethylene glycol glycerol heat hydrogen bonding ions levulinic acid liquids malonic acid molecular dynamics nanotechnology neutron diffraction oxalic acid reproduction simulation models solvents surface tension urea viscosity |
Title | OPLS Force Field for Choline Chloride-Based Deep Eutectic Solvents |
URI | http://dx.doi.org/10.1021/acs.jpcb.8b06647 https://www.ncbi.nlm.nih.gov/pubmed/30125108 https://www.proquest.com/docview/2091233199 https://www.proquest.com/docview/2220885233 |
Volume | 122 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JbsIwELVaemgv3Re6yZXaQw-BxHYS5wgUhKpuEkXiFnmLuiBABC79-o6TQNUNcYoU2Yk8Xt57mckMQpdBIkkkReKYUBGHMeI5XLnMAbHlB4JxSbMPbvcPQbvLbnt-7ytNzk8PPvGqQqWVt5GSFS4BHlm4itZIwEMrtGqNzlxc-SSr6ghwZOWQO3NJ_vUEC0Qq_Q5E_7DLDGVaW3m5ojRLTmiDS94r04msqI_fqRuXGMA22izIJq7lq2MHrZjBLlpvzGq87aH649NdB7eGY2Vwy8ayYeCwuPFiK_kYuNrwPG2cOkCdxjfGjHBzar0Orwp3hn0bKpnuo26r-dxoO0VVBUewkEwc7QZCBtKLEsq5gR1Iue-yUIYA_Z7yQ6MFEUIm2tNCG5AnTFMDOKcMjQyFA-IAlQbDgTlCWKiAU1cLaltFkRBaEpA4HGibcANFyugKBh8XuyKNM4c38eLsJlgkLixSRtXZVMSqSE1uK2T0F_S4nvcY5Wk5FrS9mM1uDOa1DhExMMNpGhMgS4SCCaIFbQiBgxjkOi2jw3xpzN8IhyPQQ5cfLznOE7QBfIvnvzKeotJkPDVnwGkm8jxbzJ-sKu5J |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFH_ayqG7ABswysZmJDjskDaxncQ5dmVVYW1Bayv1Fvkr2qBqq6a98NfznCZFIKjYKZJlO_Hzx-_38p7fA3gfZYomSmaejTX1OKeBJ7TPPVS2wkhyoVjxw20wjHoT_nkaTg8gqO7C4Efk2FNeGPF_RRcIWq7s21KrplCIkjw-hCfIRajTt9qd0U7HCmmR3BFRyWlFfmWZ_FsPDo90_jse_YNkFmDTfQZ3u88sfEy-Nzdr1dQ__ojg-KhxPIenJfUk7e1aOYYDOz-BeqfK-PYCrr987Y9Id7HSlnSdZxtBRks69y6vj8Wnc9Yz1rtG4DPko7VLcrNxNogHTUaLmXOczF_CpHsz7vS8MseCJ3lM157xI6kiFSQZE8LifmQi9HmsYiQCgQ5jaySVUmUmMNJYVFa4YRZRT1uWWIbHxSuozRdz-xqI1JFgvpHM1UoSKY2iqPAIJHHSjzRtwAccfFrukTwtzN80SItClEhaSqQBrWpGUl0GKnf5MmZ7WlztWiy3QTr21H1XTXKK4nXmETm3i02eUqROlKEIkj11KMVjGZV31oDT7QrZvRGPSiSLvnjzn-O8hHpvPOin_U_D2zM4QiYmtpccz6G2Xm3sW2Q7a3VRrO-f3iP2qg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED9BJwEvbONr3RgYCR54SJvYTuI8QiGCjZVKBcRb5K8IWNVWpH3hr985TSqBtmo8RbJsJz5_3O-XO98BHEa5oomSuWdjTT3OaeAJ7XMPyVYYSS4UK3-4_epGF7f8x314vwRhfRcGP6LAnorSiO929djkVYSBoO3Kn8ZatYRCTcnjZfjgrHaOc510-nOeFdIywSNqJseM_No6-bcenE7SxWud9A-gWSqc9CPczT-19DP53ZpOVEu_vIni-O6xfIL1CoKSk9ma-QxLdrgBq50689smnF73rvokHT1rS1Ln4UYQ2ZLOg8vvY_HpnPaM9U5RARpyZu2YnE-dLeJRk_5o4Bwoiy24Tc9vOhdelWvBkzymE8_4kVSRCpKcCWFxXzIR-jxWMQKCQIexNZJKqXITGGkskhZumEXtpy1LLMNjYxsaw9HQfgEidSSYbyRztZJESqMoEh-BYE76kaZNOMLBZ9VeKbLSDE6DrCxEiWSVRJrQrmcl01XAcpc3Y7CgxfG8xXgWrGNB3YN6ojMUrzOTyKEdTYuMIoSiDEWQLKhDKR7PSOJZE3Zmq2T-RjwyETT64ut_jnMfVnpnaXZ12f35DdYQkInZXcddaEyep_Y7gp6J2iuX-B_8Ivkt |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=OPLS+Force+Field+for+Choline+Chloride-Based+Deep+Eutectic+Solvents&rft.jtitle=The+journal+of+physical+chemistry.+B&rft.au=Doherty%2C+Brian&rft.au=Acevedo%2C+Orlando&rft.date=2018-11-01&rft.pub=American+Chemical+Society&rft.issn=1520-6106&rft.eissn=1520-5207&rft.volume=122&rft.issue=43&rft.spage=9982&rft.epage=9993&rft_id=info:doi/10.1021%2Facs.jpcb.8b06647&rft.externalDocID=b800033287 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6106&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6106&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6106&client=summon |