OPLS Force Field for Choline Chloride-Based Deep Eutectic Solvents

Deep eutectic solvents (DES) are a class of solvents frequently composed of choline chloride and a neutral hydrogen bond donor (HBD) at ratios of 1:1, 1:2, or 1:3, respectively. As cost-effective and eco-friendly solvents, DESs have gained considerable popularity in multiple fields, including materi...

Full description

Saved in:
Bibliographic Details
Published inThe journal of physical chemistry. B Vol. 122; no. 43; pp. 9982 - 9993
Main Authors Doherty, Brian, Acevedo, Orlando
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 01.11.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Deep eutectic solvents (DES) are a class of solvents frequently composed of choline chloride and a neutral hydrogen bond donor (HBD) at ratios of 1:1, 1:2, or 1:3, respectively. As cost-effective and eco-friendly solvents, DESs have gained considerable popularity in multiple fields, including materials, separations, and nanotechnology. In the present work, a comprehensive set of transferable parameters have been fine-tuned to accurately reproduce bulk-phase physical properties and local intermolecular interactions for 8 different choline chloride-based DESs. This nonpolarizable force field, OPLS-DES, gave near quantitative agreement at multiple temperatures for experimental densities, viscosities, heat capacities, and surface tensions yielding overall mean absolute errors (MAEs) of ca. 1.1%, 1.6%, 5.5%, and 1.5%, respectively. Local interactions and solvent structuring between the ions and HBDs, including urea, glycerol, phenol, ethylene glycol, levulinic acid, oxalic acid, and malonic acid, were accurately reproduced when compared to radial distribution functions and coordination numbers derived from experimental liquid-phase neutron diffraction data and from first-principles molecular dynamics simulations. The reproduction of transport properties presented a considerable challenge and behaved more like a supercooled liquid near room temperature; higher-temperature simulations, e.g., 400–500 K, or an alternative polarizable force field is recommended when computing self-diffusion coefficients.
AbstractList Deep eutectic solvents (DES) are a class of solvents frequently composed of choline chloride and a neutral hydrogen bond donor (HBD) at ratios of 1:1, 1:2, or 1:3, respectively. As cost-effective and eco-friendly solvents, DESs have gained considerable popularity in multiple fields, including materials, separations, and nanotechnology. In the present work, a comprehensive set of transferable parameters have been fine-tuned to accurately reproduce bulk-phase physical properties and local intermolecular interactions for 8 different choline chloride-based DESs. This nonpolarizable force field, OPLS-DES, gave near quantitative agreement at multiple temperatures for experimental densities, viscosities, heat capacities, and surface tensions yielding overall mean absolute errors (MAEs) of ca. 1.1%, 1.6%, 5.5%, and 1.5%, respectively. Local interactions and solvent structuring between the ions and HBDs, including urea, glycerol, phenol, ethylene glycol, levulinic acid, oxalic acid, and malonic acid, were accurately reproduced when compared to radial distribution functions and coordination numbers derived from experimental liquid-phase neutron diffraction data and from first-principles molecular dynamics simulations. The reproduction of transport properties presented a considerable challenge and behaved more like a supercooled liquid near room temperature; higher temperature simulations, e.g., 400-500 K, or an alternative polarizable force field is recommended when computing self-diffusion coefficients.
Deep eutectic solvents (DES) are a class of solvents frequently composed of choline chloride and a neutral hydrogen bond donor (HBD) at ratios of 1:1, 1:2, or 1:3, respectively. As cost-effective and eco-friendly solvents, DESs have gained considerable popularity in multiple fields, including materials, separations, and nanotechnology. In the present work, a comprehensive set of transferable parameters have been fine-tuned to accurately reproduce bulk-phase physical properties and local intermolecular interactions for 8 different choline chloride-based DESs. This nonpolarizable force field, OPLS-DES, gave near quantitative agreement at multiple temperatures for experimental densities, viscosities, heat capacities, and surface tensions yielding overall mean absolute errors (MAEs) of ca. 1.1%, 1.6%, 5.5%, and 1.5%, respectively. Local interactions and solvent structuring between the ions and HBDs, including urea, glycerol, phenol, ethylene glycol, levulinic acid, oxalic acid, and malonic acid, were accurately reproduced when compared to radial distribution functions and coordination numbers derived from experimental liquid-phase neutron diffraction data and from first-principles molecular dynamics simulations. The reproduction of transport properties presented a considerable challenge and behaved more like a supercooled liquid near room temperature; higher-temperature simulations, e.g., 400-500 K, or an alternative polarizable force field is recommended when computing self-diffusion coefficients.Deep eutectic solvents (DES) are a class of solvents frequently composed of choline chloride and a neutral hydrogen bond donor (HBD) at ratios of 1:1, 1:2, or 1:3, respectively. As cost-effective and eco-friendly solvents, DESs have gained considerable popularity in multiple fields, including materials, separations, and nanotechnology. In the present work, a comprehensive set of transferable parameters have been fine-tuned to accurately reproduce bulk-phase physical properties and local intermolecular interactions for 8 different choline chloride-based DESs. This nonpolarizable force field, OPLS-DES, gave near quantitative agreement at multiple temperatures for experimental densities, viscosities, heat capacities, and surface tensions yielding overall mean absolute errors (MAEs) of ca. 1.1%, 1.6%, 5.5%, and 1.5%, respectively. Local interactions and solvent structuring between the ions and HBDs, including urea, glycerol, phenol, ethylene glycol, levulinic acid, oxalic acid, and malonic acid, were accurately reproduced when compared to radial distribution functions and coordination numbers derived from experimental liquid-phase neutron diffraction data and from first-principles molecular dynamics simulations. The reproduction of transport properties presented a considerable challenge and behaved more like a supercooled liquid near room temperature; higher-temperature simulations, e.g., 400-500 K, or an alternative polarizable force field is recommended when computing self-diffusion coefficients.
Author Acevedo, Orlando
Doherty, Brian
AuthorAffiliation Department of Chemistry
University of Miami
AuthorAffiliation_xml – name: University of Miami
– name: Department of Chemistry
Author_xml – sequence: 1
  givenname: Brian
  surname: Doherty
  fullname: Doherty, Brian
– sequence: 2
  givenname: Orlando
  orcidid: 0000-0002-6110-3930
  surname: Acevedo
  fullname: Acevedo, Orlando
  email: orlando.acevedo@miami.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30125108$$D View this record in MEDLINE/PubMed
BookMark eNqFkb1PwzAQxS1URD9gZ0IZGUg524mTjLS0gFSpSIU5cuyLcJXGxU6Q-O9JaWFAAobTO-l-74b3hqRX2xoJOacwpsDotVR-vN6qYpwWIESUHJEBjRmE3SS9wy4oiD4Zer8GYDFLxQnpc6AsppAOyGT5uFgFc-sUBnODlQ5K64Lpi61MjZ1W1hmN4UR61MEt4jaYtQ2qxqhgZas3rBt_So5LWXk8O-iIPM9nT9P7cLG8e5jeLEIZJawJNQhZiIJmJU9T5DTjaQxRUiQxZVTFCWrJpCxKTbXUKCIWaY7AhUKeIU-Aj8jl_u_W2dcWfZNvjFdYVbJG2_qcMQZpGjPO_0chox1Hs6xDLw5oW2xQ51tnNtK9518RdQDsAeWs9w7Lb4RCvmsh71rIdy3khxY6i_hhUaaRjbF146Sp_jJe7Y2fF9u6ugv0d_wDAASaaA
CitedBy_id crossref_primary_10_1016_j_molliq_2022_120243
crossref_primary_10_1016_j_jmgm_2022_108180
crossref_primary_10_1021_acs_jctc_3c00944
crossref_primary_10_1021_acs_jpcb_0c04058
crossref_primary_10_1016_j_cherd_2021_11_036
crossref_primary_10_1016_j_fluid_2024_114324
crossref_primary_10_1016_j_molliq_2022_120248
crossref_primary_10_1021_acs_jpcb_4c06838
crossref_primary_10_1016_j_molliq_2024_124326
crossref_primary_10_1021_acssuschemeng_2c05264
crossref_primary_10_1063_5_0047369
crossref_primary_10_1021_acs_jpcb_0c01860
crossref_primary_10_1021_acssuschemeng_3c08071
crossref_primary_10_1016_j_molliq_2020_112972
crossref_primary_10_1021_acs_jctc_4c01441
crossref_primary_10_1016_j_jiec_2024_09_027
crossref_primary_10_1021_acs_jpcb_3c04292
crossref_primary_10_1016_j_molliq_2025_127042
crossref_primary_10_1021_acs_jced_4c00505
crossref_primary_10_1007_s10570_019_02257_8
crossref_primary_10_1016_j_molliq_2021_117100
crossref_primary_10_1021_acs_jpcb_1c10671
crossref_primary_10_1021_acs_jpcb_2c01636
crossref_primary_10_1016_j_molliq_2021_116139
crossref_primary_10_1039_D3CP04357F
crossref_primary_10_3390_molecules29030703
crossref_primary_10_1021_acs_iecr_3c03652
crossref_primary_10_1016_j_fluid_2021_113241
crossref_primary_10_1021_acs_jpcb_9b11352
crossref_primary_10_1021_acs_iecr_2c01324
crossref_primary_10_1080_08927022_2024_2427794
crossref_primary_10_1039_C9CP00036D
crossref_primary_10_1016_j_seppur_2024_129592
crossref_primary_10_1016_j_molliq_2021_116709
crossref_primary_10_1016_j_molliq_2024_126475
crossref_primary_10_1007_s00894_023_05643_z
crossref_primary_10_1021_acs_jpcb_0c00876
crossref_primary_10_1016_j_rser_2021_111986
crossref_primary_10_1021_acs_jpcb_4c03585
crossref_primary_10_1021_jacs_8b13542
crossref_primary_10_1039_D1GC04059F
crossref_primary_10_1016_j_molliq_2025_127150
crossref_primary_10_3390_molecules28145293
crossref_primary_10_1021_acs_jpcb_3c08480
crossref_primary_10_1021_acs_jpcb_4c06295
crossref_primary_10_1021_acs_jpcb_4c05480
crossref_primary_10_1021_acs_jpcc_1c02704
crossref_primary_10_1016_j_molliq_2023_123930
crossref_primary_10_1021_acs_jpcb_1c01692
crossref_primary_10_1038_s41598_021_85824_z
crossref_primary_10_1021_acs_jctc_1c00268
crossref_primary_10_1016_j_ces_2024_120231
crossref_primary_10_1016_j_molliq_2019_112183
crossref_primary_10_1021_acs_jcim_1c01181
crossref_primary_10_1039_D2CP04139A
crossref_primary_10_1002_er_8146
crossref_primary_10_1016_j_cogsc_2020_100395
crossref_primary_10_1021_acs_jpcb_9b06624
crossref_primary_10_1039_D4NJ02664K
crossref_primary_10_3390_ijms23020645
crossref_primary_10_1021_acs_jpcb_4c06787
crossref_primary_10_1021_acs_jpclett_4c03051
crossref_primary_10_1021_acs_jpcb_0c04907
crossref_primary_10_1039_C9CP03552D
crossref_primary_10_1063_5_0058561
crossref_primary_10_1063_5_0088290
crossref_primary_10_1021_acs_jpcb_3c02652
crossref_primary_10_1021_acs_jpcb_2c01735
crossref_primary_10_1021_acs_jpcb_3c03223
crossref_primary_10_1016_j_chphi_2023_100223
crossref_primary_10_1021_acs_jctc_1c00274
crossref_primary_10_1016_j_molliq_2021_116510
crossref_primary_10_1039_D1CP00734C
crossref_primary_10_1002_aic_18093
crossref_primary_10_1016_j_molliq_2023_121862
crossref_primary_10_1063_5_0062408
crossref_primary_10_1021_acs_iecr_3c02102
crossref_primary_10_1039_D0CP06572B
crossref_primary_10_1016_j_jphotochem_2022_114504
crossref_primary_10_1021_acs_jpcb_1c03367
crossref_primary_10_1021_acs_jpcb_1c06636
crossref_primary_10_1002_cphc_202200446
crossref_primary_10_1080_07391102_2023_2275178
crossref_primary_10_1080_05704928_2024_2390962
crossref_primary_10_3390_molecules30030574
crossref_primary_10_1002_cssc_202000286
crossref_primary_10_1016_j_jmgm_2024_108775
crossref_primary_10_1021_acs_chemrev_0c00385
crossref_primary_10_1080_08927022_2021_1983178
crossref_primary_10_1016_j_molliq_2021_115956
crossref_primary_10_1016_j_molliq_2020_112940
crossref_primary_10_1016_j_jmgm_2024_108805
crossref_primary_10_1016_j_molliq_2019_111538
crossref_primary_10_1016_j_ceja_2023_100564
crossref_primary_10_1021_acs_jpcb_2c00076
crossref_primary_10_1016_j_molliq_2023_121899
crossref_primary_10_1038_s41467_021_27842_z
crossref_primary_10_1007_s00894_021_05017_3
crossref_primary_10_3390_min14070711
crossref_primary_10_1016_j_est_2024_111029
crossref_primary_10_1007_s13399_021_01379_z
crossref_primary_10_1016_j_jmgm_2024_108784
crossref_primary_10_1021_acs_jpcb_3c02191
crossref_primary_10_1016_j_jpowsour_2024_234975
crossref_primary_10_1021_acs_jced_9b00548
crossref_primary_10_1021_acs_iecr_1c04923
crossref_primary_10_1021_acs_jpcb_3c08338
crossref_primary_10_1016_j_csite_2022_102298
crossref_primary_10_1021_acs_jpcb_1c01501
crossref_primary_10_1039_C9CP04343H
crossref_primary_10_1039_D4CP01471E
crossref_primary_10_18321_ectj1563
crossref_primary_10_1063_5_0251283
crossref_primary_10_1016_j_molliq_2023_122973
crossref_primary_10_1021_acs_jctc_1c00156
crossref_primary_10_1063_5_0058605
crossref_primary_10_1016_j_molliq_2023_121647
crossref_primary_10_1016_j_molliq_2023_122856
crossref_primary_10_1016_j_jics_2023_100998
crossref_primary_10_1021_acssuschemeng_2c01375
crossref_primary_10_1021_acs_langmuir_4c04322
crossref_primary_10_1039_D1CP03282H
crossref_primary_10_1002_cbic_201900624
crossref_primary_10_1021_acs_jpcb_0c04916
crossref_primary_10_1016_j_molliq_2022_120180
crossref_primary_10_1111_php_13950
crossref_primary_10_1002_wcms_1572
crossref_primary_10_1021_acs_jctc_1c00047
crossref_primary_10_1021_acs_jpcb_2c01425
crossref_primary_10_1021_acs_jpcb_9b08954
crossref_primary_10_1007_s42250_024_00999_y
crossref_primary_10_1021_acssuschemeng_3c01858
crossref_primary_10_1021_acs_jced_1c00841
crossref_primary_10_3389_fchem_2022_983281
crossref_primary_10_1039_D4CP03453H
crossref_primary_10_1016_j_jmro_2023_100094
crossref_primary_10_1016_j_molliq_2020_113729
crossref_primary_10_1149_1945_7111_ac58c6
crossref_primary_10_1021_acs_jpclett_4c03645
crossref_primary_10_1016_j_rser_2025_115358
crossref_primary_10_1016_j_jcis_2021_10_163
crossref_primary_10_1021_acs_jpcb_1c09092
crossref_primary_10_1016_j_fluid_2019_05_022
crossref_primary_10_1039_D3CP02774K
crossref_primary_10_1016_j_measurement_2021_110630
crossref_primary_10_1021_acs_jpcb_2c06521
crossref_primary_10_1016_j_colsurfa_2023_131818
crossref_primary_10_1021_acs_jpcc_9b01111
crossref_primary_10_1016_j_ces_2024_119727
crossref_primary_10_1039_D0CP05341D
crossref_primary_10_1088_1742_6596_1893_1_012001
crossref_primary_10_1021_acs_iecr_4c01600
crossref_primary_10_1063_5_0049259
crossref_primary_10_1021_acs_jpcb_0c07934
crossref_primary_10_1021_acs_jpcb_4c02784
crossref_primary_10_1063_5_0139153
crossref_primary_10_1021_acsomega_2c03458
crossref_primary_10_1016_j_molliq_2023_123563
crossref_primary_10_1002_wcms_1598
crossref_primary_10_1007_s10570_022_04671_x
crossref_primary_10_1016_j_molliq_2021_117779
crossref_primary_10_1039_D3CP03668E
crossref_primary_10_1039_D4CP01694G
crossref_primary_10_1016_j_molliq_2021_115750
crossref_primary_10_1142_S2737416524500443
crossref_primary_10_1016_j_molliq_2021_117019
crossref_primary_10_1016_j_molliq_2021_117932
crossref_primary_10_3390_molecules28227592
Cites_doi 10.1021/acs.jpcb.7b10422
10.1063/1.478334
10.1039/c2cs35178a
10.1016/j.softx.2015.06.001
10.1021/acs.jctc.7b00520
10.1016/j.tca.2012.09.041
10.1016/j.fluid.2007.06.028
10.1002/ejoc.201501197
10.1016/j.comptc.2011.11.003
10.1039/C0GC00395F
10.1039/C5GC02914G
10.1126/science.1096205
10.1039/b210714g
10.1039/C6CP08017K
10.1080/00986448708960487
10.1016/j.molliq.2015.12.015
10.1063/1.446044
10.1021/jp905585e
10.1016/j.elecom.2017.03.020
10.1080/00268976.2017.1288936
10.1002/anie.201207548
10.1039/c2gc36005e
10.1021/je500520h
10.1021/ja9621760
10.1002/chem.201702892
10.1063/1.1624057
10.1021/ci200217w
10.1063/1.3035978
10.1021/ct500271z
10.1021/ie071055d
10.1021/acs.jpcb.6b07233
10.1039/c2cs15353j
10.1021/ct200731v
10.1021/jp103470e
10.1021/acsomega.7b00618
10.1039/C5CP03364K
10.1016/j.fluid.2012.01.025
10.1021/acs.jced.6b00608
10.1039/c3gc40815a
10.1039/C6CP02815B
10.1039/B514848K
10.1021/ja060035k
10.1002/cphc.201600348
10.1021/acs.jpcb.7b11996
10.1039/C4CC04661G
10.1016/j.tca.2011.11.036
10.1021/ja048266j
10.1002/jcc.21224
10.1021/jp404619x
10.1039/C0CP01549K
10.1007/s00706-013-1050-3
10.1039/C6CP07932F
10.1016/j.molcatb.2012.09.003
10.1039/c1cp22554e
10.1007/s00894-013-1791-2
10.1021/ct900009a
10.1063/1.1421362
10.1063/1.2408420
10.1039/C4CP05550K
10.1021/acs.chemrev.7b00571
10.1016/j.cej.2015.03.091
10.1007/s10765-013-1482-3
10.1021/jp0364699
10.1039/C5RA05746A
10.1021/acs.jpcc.5b08172
10.1021/cr300162p
10.1021/jp0362133
10.1016/j.cplett.2015.06.017
10.1016/j.molliq.2015.07.070
10.1021/ar5000488
10.1016/j.fluid.2017.03.024
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/acs.jpcb.8b06647
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5207
EndPage 9993
ExternalDocumentID 30125108
10_1021_acs_jpcb_8b06647
b800033287
Genre Journal Article
GroupedDBID -
.K2
02
123
29L
53G
55A
5VS
7~N
85S
8RP
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ACGFS
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F20
F5P
GNL
IH9
IHE
JG
JG~
K2
PZZ
RNS
ROL
TAE
TN5
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
YZZ
ZGI
ZHY
---
-~X
.DC
4.4
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
XSW
YQT
~02
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a472t-d06ab6b19f388e319385047b75121c57eda2aabfd1dade6424d3e036ce39e3703
IEDL.DBID ACS
ISSN 1520-6106
1520-5207
IngestDate Fri Jul 11 00:22:01 EDT 2025
Fri Jul 11 00:49:00 EDT 2025
Wed Feb 19 02:42:04 EST 2025
Thu Apr 24 22:57:22 EDT 2025
Tue Jul 01 01:00:24 EDT 2025
Thu Aug 27 13:42:07 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 43
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a472t-d06ab6b19f388e319385047b75121c57eda2aabfd1dade6424d3e036ce39e3703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6110-3930
PMID 30125108
PQID 2091233199
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2220885233
proquest_miscellaneous_2091233199
pubmed_primary_30125108
crossref_primary_10_1021_acs_jpcb_8b06647
crossref_citationtrail_10_1021_acs_jpcb_8b06647
acs_journals_10_1021_acs_jpcb_8b06647
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-11-01
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The journal of physical chemistry. B
PublicationTitleAlternate J. Phys. Chem. B
PublicationYear 2018
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref71/cit71
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref70/cit70
ref7/cit7
References_xml – ident: ref31/cit31
  doi: 10.1021/acs.jpcb.7b10422
– ident: ref68/cit68
  doi: 10.1063/1.478334
– ident: ref8/cit8
  doi: 10.1039/c2cs35178a
– ident: ref43/cit43
  doi: 10.1016/j.softx.2015.06.001
– ident: ref33/cit33
  doi: 10.1021/acs.jctc.7b00520
– ident: ref10/cit10
  doi: 10.1016/j.tca.2012.09.041
– ident: ref50/cit50
  doi: 10.1016/j.fluid.2007.06.028
– ident: ref17/cit17
  doi: 10.1002/ejoc.201501197
– ident: ref26/cit26
  doi: 10.1016/j.comptc.2011.11.003
– ident: ref6/cit6
  doi: 10.1039/C0GC00395F
– ident: ref48/cit48
  doi: 10.1039/C5GC02914G
– ident: ref70/cit70
  doi: 10.1126/science.1096205
– ident: ref23/cit23
  doi: 10.1039/b210714g
– ident: ref29/cit29
  doi: 10.1039/C6CP08017K
– ident: ref62/cit62
  doi: 10.1080/00986448708960487
– ident: ref3/cit3
  doi: 10.1016/j.molliq.2015.12.015
– ident: ref54/cit54
  doi: 10.1063/1.446044
– ident: ref58/cit58
  doi: 10.1021/jp905585e
– ident: ref16/cit16
  doi: 10.1016/j.elecom.2017.03.020
– ident: ref37/cit37
  doi: 10.1080/00268976.2017.1288936
– ident: ref5/cit5
  doi: 10.1002/anie.201207548
– ident: ref19/cit19
  doi: 10.1039/c2gc36005e
– ident: ref36/cit36
  doi: 10.1021/je500520h
– ident: ref49/cit49
  doi: 10.1021/ja9621760
– ident: ref21/cit21
  doi: 10.1002/chem.201702892
– ident: ref52/cit52
  doi: 10.1063/1.1624057
– ident: ref46/cit46
  doi: 10.1021/ci200217w
– ident: ref69/cit69
  doi: 10.1063/1.3035978
– ident: ref56/cit56
  doi: 10.1021/ct500271z
– ident: ref63/cit63
  doi: 10.1021/ie071055d
– ident: ref40/cit40
  doi: 10.1021/acs.jpcb.6b07233
– ident: ref13/cit13
  doi: 10.1039/c2cs15353j
– ident: ref53/cit53
  doi: 10.1021/ct200731v
– ident: ref71/cit71
  doi: 10.1021/jp103470e
– ident: ref20/cit20
  doi: 10.1021/acsomega.7b00618
– ident: ref39/cit39
  doi: 10.1039/C5CP03364K
– ident: ref61/cit61
  doi: 10.1016/j.fluid.2012.01.025
– ident: ref22/cit22
  doi: 10.1021/acs.jced.6b00608
– ident: ref11/cit11
  doi: 10.1039/c3gc40815a
– ident: ref25/cit25
  doi: 10.1039/C6CP02815B
– ident: ref59/cit59
  doi: 10.1039/B514848K
– ident: ref60/cit60
  doi: 10.1021/ja060035k
– ident: ref28/cit28
  doi: 10.1002/cphc.201600348
– ident: ref32/cit32
  doi: 10.1021/acs.jpcb.7b11996
– ident: ref14/cit14
  doi: 10.1039/C4CC04661G
– ident: ref57/cit57
  doi: 10.1016/j.tca.2011.11.036
– ident: ref7/cit7
  doi: 10.1021/ja048266j
– ident: ref44/cit44
  doi: 10.1002/jcc.21224
– ident: ref35/cit35
  doi: 10.1021/jp404619x
– ident: ref55/cit55
  doi: 10.1039/C0CP01549K
– ident: ref4/cit4
  doi: 10.1007/s00706-013-1050-3
– ident: ref27/cit27
  doi: 10.1039/C6CP07932F
– ident: ref9/cit9
  doi: 10.1016/j.molcatb.2012.09.003
– ident: ref64/cit64
  doi: 10.1039/c1cp22554e
– ident: ref38/cit38
  doi: 10.1007/s00894-013-1791-2
– ident: ref41/cit41
  doi: 10.1021/ct900009a
– ident: ref51/cit51
  doi: 10.1063/1.1421362
– ident: ref45/cit45
  doi: 10.1063/1.2408420
– ident: ref34/cit34
  doi: 10.1039/C4CP05550K
– ident: ref1/cit1
  doi: 10.1021/acs.chemrev.7b00571
– ident: ref15/cit15
  doi: 10.1016/j.cej.2015.03.091
– ident: ref66/cit66
  doi: 10.1007/s10765-013-1482-3
– ident: ref67/cit67
  doi: 10.1021/jp0364699
– ident: ref18/cit18
  doi: 10.1039/C5RA05746A
– ident: ref65/cit65
  doi: 10.1021/acs.jpcc.5b08172
– ident: ref2/cit2
  doi: 10.1021/cr300162p
– ident: ref42/cit42
  doi: 10.1021/jp0362133
– ident: ref24/cit24
  doi: 10.1016/j.cplett.2015.06.017
– ident: ref47/cit47
  doi: 10.1016/j.molliq.2015.07.070
– ident: ref12/cit12
  doi: 10.1021/ar5000488
– ident: ref30/cit30
  doi: 10.1016/j.fluid.2017.03.024
SSID ssj0025286
Score 2.6234462
Snippet Deep eutectic solvents (DES) are a class of solvents frequently composed of choline chloride and a neutral hydrogen bond donor (HBD) at ratios of 1:1, 1:2, or...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9982
SubjectTerms ambient temperature
choline
cost effectiveness
ethylene glycol
glycerol
heat
hydrogen bonding
ions
levulinic acid
liquids
malonic acid
molecular dynamics
nanotechnology
neutron diffraction
oxalic acid
reproduction
simulation models
solvents
surface tension
urea
viscosity
Title OPLS Force Field for Choline Chloride-Based Deep Eutectic Solvents
URI http://dx.doi.org/10.1021/acs.jpcb.8b06647
https://www.ncbi.nlm.nih.gov/pubmed/30125108
https://www.proquest.com/docview/2091233199
https://www.proquest.com/docview/2220885233
Volume 122
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JbsIwELVaemgv3Re6yZXaQw-BxHYS5wgUhKpuEkXiFnmLuiBABC79-o6TQNUNcYoU2Yk8Xt57mckMQpdBIkkkReKYUBGHMeI5XLnMAbHlB4JxSbMPbvcPQbvLbnt-7ytNzk8PPvGqQqWVt5GSFS4BHlm4itZIwEMrtGqNzlxc-SSr6ghwZOWQO3NJ_vUEC0Qq_Q5E_7DLDGVaW3m5ojRLTmiDS94r04msqI_fqRuXGMA22izIJq7lq2MHrZjBLlpvzGq87aH649NdB7eGY2Vwy8ayYeCwuPFiK_kYuNrwPG2cOkCdxjfGjHBzar0Orwp3hn0bKpnuo26r-dxoO0VVBUewkEwc7QZCBtKLEsq5gR1Iue-yUIYA_Z7yQ6MFEUIm2tNCG5AnTFMDOKcMjQyFA-IAlQbDgTlCWKiAU1cLaltFkRBaEpA4HGibcANFyugKBh8XuyKNM4c38eLsJlgkLixSRtXZVMSqSE1uK2T0F_S4nvcY5Wk5FrS9mM1uDOa1DhExMMNpGhMgS4SCCaIFbQiBgxjkOi2jw3xpzN8IhyPQQ5cfLznOE7QBfIvnvzKeotJkPDVnwGkm8jxbzJ-sKu5J
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFH_ayqG7ABswysZmJDjskDaxncQ5dmVVYW1Bayv1Fvkr2qBqq6a98NfznCZFIKjYKZJlO_Hzx-_38p7fA3gfZYomSmaejTX1OKeBJ7TPPVS2wkhyoVjxw20wjHoT_nkaTg8gqO7C4Efk2FNeGPF_RRcIWq7s21KrplCIkjw-hCfIRajTt9qd0U7HCmmR3BFRyWlFfmWZ_FsPDo90_jse_YNkFmDTfQZ3u88sfEy-Nzdr1dQ__ojg-KhxPIenJfUk7e1aOYYDOz-BeqfK-PYCrr987Y9Id7HSlnSdZxtBRks69y6vj8Wnc9Yz1rtG4DPko7VLcrNxNogHTUaLmXOczF_CpHsz7vS8MseCJ3lM157xI6kiFSQZE8LifmQi9HmsYiQCgQ5jaySVUmUmMNJYVFa4YRZRT1uWWIbHxSuozRdz-xqI1JFgvpHM1UoSKY2iqPAIJHHSjzRtwAccfFrukTwtzN80SItClEhaSqQBrWpGUl0GKnf5MmZ7WlztWiy3QTr21H1XTXKK4nXmETm3i02eUqROlKEIkj11KMVjGZV31oDT7QrZvRGPSiSLvnjzn-O8hHpvPOin_U_D2zM4QiYmtpccz6G2Xm3sW2Q7a3VRrO-f3iP2qg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED9BJwEvbONr3RgYCR54SJvYTuI8QiGCjZVKBcRb5K8IWNVWpH3hr985TSqBtmo8RbJsJz5_3O-XO98BHEa5oomSuWdjTT3OaeAJ7XMPyVYYSS4UK3-4_epGF7f8x314vwRhfRcGP6LAnorSiO929djkVYSBoO3Kn8ZatYRCTcnjZfjgrHaOc510-nOeFdIywSNqJseM_No6-bcenE7SxWud9A-gWSqc9CPczT-19DP53ZpOVEu_vIni-O6xfIL1CoKSk9ma-QxLdrgBq50689smnF73rvokHT1rS1Ln4UYQ2ZLOg8vvY_HpnPaM9U5RARpyZu2YnE-dLeJRk_5o4Bwoiy24Tc9vOhdelWvBkzymE8_4kVSRCpKcCWFxXzIR-jxWMQKCQIexNZJKqXITGGkskhZumEXtpy1LLMNjYxsaw9HQfgEidSSYbyRztZJESqMoEh-BYE76kaZNOMLBZ9VeKbLSDE6DrCxEiWSVRJrQrmcl01XAcpc3Y7CgxfG8xXgWrGNB3YN6ojMUrzOTyKEdTYuMIoSiDEWQLKhDKR7PSOJZE3Zmq2T-RjwyETT64ut_jnMfVnpnaXZ12f35DdYQkInZXcddaEyep_Y7gp6J2iuX-B_8Ivkt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=OPLS+Force+Field+for+Choline+Chloride-Based+Deep+Eutectic+Solvents&rft.jtitle=The+journal+of+physical+chemistry.+B&rft.au=Doherty%2C+Brian&rft.au=Acevedo%2C+Orlando&rft.date=2018-11-01&rft.pub=American+Chemical+Society&rft.issn=1520-6106&rft.eissn=1520-5207&rft.volume=122&rft.issue=43&rft.spage=9982&rft.epage=9993&rft_id=info:doi/10.1021%2Facs.jpcb.8b06647&rft.externalDocID=b800033287
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6106&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6106&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6106&client=summon