Microbial Arsenic Methylation in Soil and Rice Rhizosphere
Methylated arsenic (As) species are a common constituent of rice grains accounting for 10–90% of the total As. Recent studies have shown that higher plants are unlikely to methylate As in vivo suggesting that As methylation is a microbial mediated process that occurs in soils prior to plant uptake....
Saved in:
Published in | Environmental science & technology Vol. 47; no. 7; pp. 3141 - 3148 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
02.04.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Methylated arsenic (As) species are a common constituent of rice grains accounting for 10–90% of the total As. Recent studies have shown that higher plants are unlikely to methylate As in vivo suggesting that As methylation is a microbial mediated process that occurs in soils prior to plant uptake. In this study, we designed primers according to the conserved essential amino acids and structural motifs of arsenite S-adenosylmethionine methyltransferase (ArsM). We report for the first time the successful amplification of the prokaryotic arsM gene in 14 tested soils with wide ranging As concentrations. The abundance and diversity of the arsM gene in the rice rhizosphere soil and roots were analyzed using the designed primers. Results showed that microbes containing arsM genes were phylogenetically diverse, as revealed by the clone library and terminal restriction fragment length polymorphism (T-RFLP) analysis, and were branched into various phyla. Concentration of methylated As species in the soil solution was elevated in the rhizosphere soil and also by the addition of rice straw into the paddy soil, corresponding to the elevated abundance of the arsM gene in the soil. These results, together with evidence of horizontal gene transfer (HGT) of the arsM gene, suggest the genes encoding ArsM in soils are widespread. These findings demonstrate why most rice, when compared with other cereals, contains unusually high concentrations of methylated As species. |
---|---|
AbstractList | Methylated arsenic (As) species are a common constituent of rice grains accounting for 10-90% of the total As. Recent studies have shown that higher plants are unlikely to methylate As in vivo suggesting that As methylation is a microbial mediated process that occurs in soils prior to plant uptake. In this study, we designed primers according to the conserved essential amino acids and structural motifs of arsenite S-adenosylmethionine methyltransferase (ArsM). We report for the first time the successful amplification of the prokaryotic arsM gene in 14 tested soils with wide ranging As concentrations. The abundance and diversity of the arsM gene in the rice rhizosphere soil and roots were analyzed using the designed primers. Results showed that microbes containing arsM genes were phylogenetically diverse, as revealed by the clone library and terminal restriction fragment length polymorphism (T-RFLP) analysis, and were branched into various phyla. Concentration of methylated As species in the soil solution was elevated in the rhizosphere soil and also by the addition of rice straw into the paddy soil, corresponding to the elevated abundance of the arsM gene in the soil. These results, together with evidence of horizontal gene transfer (HGT) of the arsM gene, suggest the genes encoding ArsM in soils are widespread. These findings demonstrate why most rice, when compared with other cereals, contains unusually high concentrations of methylated As species. Methylated arsenic (As) species are a common constituent of rice grains accounting for 10-90% of the total As. Recent studies have shown that higher plants are unlikely to methylate As in vivo suggesting that As methylation is a microbial mediated process that occurs in soils prior to plant uptake. In this study, we designed primers according to the conserved essential amino acids and structural motifs of arsenite S-adenosylmethionine methyltransferase (ArsM). We report for the first time the successful amplification of the prokaryotic arsM gene in 14 tested soils with wide ranging As concentrations. The abundance and diversity of the arsM gene in the rice rhizosphere soil and roots were analyzed using the designed primers. Results showed that microbes containing arsM genes were phylogenetically diverse, as revealed by the clone library and terminal restriction fragment length polymorphism (T-RFLP) analysis, and were branched into various phyla. Concentration of methylated As species in the soil solution was elevated in the rhizosphere soil and also by the addition of rice straw into the paddy soil, corresponding to the elevated abundance of the arsM gene in the soil. These results, together with evidence of horizontal gene transfer (HGT) of the arsM gene, suggest the genes encoding ArsM in soils are widespread. These findings demonstrate why most rice, when compared with other cereals, contains unusually high concentrations of methylated As species.Methylated arsenic (As) species are a common constituent of rice grains accounting for 10-90% of the total As. Recent studies have shown that higher plants are unlikely to methylate As in vivo suggesting that As methylation is a microbial mediated process that occurs in soils prior to plant uptake. In this study, we designed primers according to the conserved essential amino acids and structural motifs of arsenite S-adenosylmethionine methyltransferase (ArsM). We report for the first time the successful amplification of the prokaryotic arsM gene in 14 tested soils with wide ranging As concentrations. The abundance and diversity of the arsM gene in the rice rhizosphere soil and roots were analyzed using the designed primers. Results showed that microbes containing arsM genes were phylogenetically diverse, as revealed by the clone library and terminal restriction fragment length polymorphism (T-RFLP) analysis, and were branched into various phyla. Concentration of methylated As species in the soil solution was elevated in the rhizosphere soil and also by the addition of rice straw into the paddy soil, corresponding to the elevated abundance of the arsM gene in the soil. These results, together with evidence of horizontal gene transfer (HGT) of the arsM gene, suggest the genes encoding ArsM in soils are widespread. These findings demonstrate why most rice, when compared with other cereals, contains unusually high concentrations of methylated As species. Methylated arsenic (As) species are a common constituent of rice grains accounting for 10-90% of the total As. Recent studies have shown that higher plants are unlikely to methylate As in vivo suggesting that As methylation is a microbial mediated process that occurs in soils prior to plant uptake. In this study, we designed primers according to the conserved essential amino acids and structural motifs of arsenite S-adenosylmethionine methyltransferase (ArsM). We report for the first time the successful amplification of the prokaryotic arsM gene in 14 tested soils with wide ranging As concentrations. The abundance and diversity of the arsM gene in the rice rhizosphere soil and roots were analyzed using the designed primers. Results showed that microbes containing arsM genes were phylogenetically diverse, as revealed by the clone library and terminal restriction fragment length polymorphism (T-RFLP) analysis, and were branched into various phyla. Concentration of methylated As species in the soil solution was elevated in the rhizosphere soil and also by the addition of rice straw into the paddy soil, corresponding to the elevated abundance of the arsM gene in the soil. These results, together with evidence of horizontal gene transfer (HGT) of the arsM gene, suggest the genes encoding ArsM in soils are widespread. These findings demonstrate why most rice, when compared with other cereals, contains unusually high concentrations of methylated As species. [PUBLICATION ABSTRACT] |
Author | Zhong, Min Zhang, Li-Mei Huang, Hai Zhu, Yong-Guan Jia, Yan Wang, Feng-Hua |
AuthorAffiliation | Chinese Academy of Sciences Graduate University of the Chinese Academy of Sciences Key Lab of Urban Environment and Health State Key Lab of Urban and Regional Ecology |
AuthorAffiliation_xml | – name: State Key Lab of Urban and Regional Ecology – name: Graduate University of the Chinese Academy of Sciences – name: Key Lab of Urban Environment and Health – name: Chinese Academy of Sciences |
Author_xml | – sequence: 1 givenname: Yan surname: Jia fullname: Jia, Yan – sequence: 2 givenname: Hai surname: Huang fullname: Huang, Hai – sequence: 3 givenname: Min surname: Zhong fullname: Zhong, Min – sequence: 4 givenname: Feng-Hua surname: Wang fullname: Wang, Feng-Hua – sequence: 5 givenname: Li-Mei surname: Zhang fullname: Zhang, Li-Mei – sequence: 6 givenname: Yong-Guan surname: Zhu fullname: Zhu, Yong-Guan email: ygzhu@rcees.ac.cn |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27205246$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23469919$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0ctKw0AUBuBBKvaiC19AAiLoInauScZdKd6gIlQFd-F0MqFT0kmdSYX69KYXq1TB1dl8Z5j__G3UsKXVCB0TfEkwJV3tGWYRl-97qEUExaFIBGmgFsaEhZJFr03U9n6CMaYMJweoSRmPpCSyha4ejHLlyEAR9JzX1qjgQVfjRQGVKW1gbPBUmiIAmwVDo3QwHJuP0s_G2ulDtJ9D4fXRZnbQy831c_8uHDze3vd7gxB4TKsQWA6CqozFseZcSkZkrGWWxFzJXFHCIImIyIEzkQkhY6UVzmgGbJRxgSNgHXS-fnfmyre59lU6NV7pogCry7lP6TKXkHW0fylhlNE4kRGp6ekOnZRzZ-sgS8UxTsRKnWzUfDTVWTpzZgpukX4dsAZnGwBeQZE7sMr4bxdTLCiPanexdvW1vXc63xKC02WJ6bbE2nZ3rDLVqo_KgSn-3Nj8ApT_keOX-wSkTqaT |
CODEN | ESTHAG |
CitedBy_id | crossref_primary_10_1016_j_jhazmat_2021_127965 crossref_primary_10_1002_saj2_20146 crossref_primary_10_1016_j_scitotenv_2021_149477 crossref_primary_10_1016_j_envexpbot_2016_08_004 crossref_primary_10_1016_j_apsoil_2022_104710 crossref_primary_10_1016_j_envint_2020_105535 crossref_primary_10_1021_acs_est_3c03051 crossref_primary_10_1016_j_chemosphere_2015_06_081 crossref_primary_10_1016_j_envexpbot_2014_08_002 crossref_primary_10_1016_j_soilbio_2016_05_015 crossref_primary_10_1021_acs_est_0c03908 crossref_primary_10_1021_acs_est_4c10242 crossref_primary_10_1016_j_scitotenv_2022_156979 crossref_primary_10_1007_s11783_017_0893_y crossref_primary_10_1007_s42729_019_00109_9 crossref_primary_10_1016_j_jhazmat_2020_122200 crossref_primary_10_1016_j_jhazmat_2019_03_113 crossref_primary_10_1128_aem_00891_22 crossref_primary_10_1016_j_scitotenv_2024_173873 crossref_primary_10_1002_jobm_201900373 crossref_primary_10_1128_aem_00570_23 crossref_primary_10_1007_s11356_017_9816_5 crossref_primary_10_1007_s11771_021_4738_2 crossref_primary_10_1007_s11270_013_1848_y crossref_primary_10_1016_j_chemosphere_2023_138128 crossref_primary_10_1007_s12403_023_00593_6 crossref_primary_10_1021_acs_est_9b05639 crossref_primary_10_1016_j_jhazmat_2019_121795 crossref_primary_10_1007_s40726_021_00175_7 crossref_primary_10_1371_journal_pone_0092236 crossref_primary_10_1016_j_scitotenv_2021_151696 crossref_primary_10_1016_j_eehl_2022_11_003 crossref_primary_10_1007_s10333_017_0627_6 crossref_primary_10_1038_srep42198 crossref_primary_10_1111_1462_2920_13775 crossref_primary_10_2139_ssrn_4179206 crossref_primary_10_1111_1462_2920_12572 crossref_primary_10_1016_j_chemosphere_2018_11_145 crossref_primary_10_1021_acs_est_3c00210 crossref_primary_10_1080_10643389_2020_1752611 crossref_primary_10_1021_acs_est_7b02970 crossref_primary_10_1021_acs_est_7b03028 crossref_primary_10_1016_j_envint_2024_108823 crossref_primary_10_1016_S1674_6384_17_60097_2 crossref_primary_10_2139_ssrn_4049563 crossref_primary_10_1016_j_agee_2018_11_009 crossref_primary_10_1007_s11104_021_05100_x crossref_primary_10_1021_acsearthspacechem_7b00115 crossref_primary_10_1016_j_scitotenv_2023_168351 crossref_primary_10_1007_s00128_024_03866_1 crossref_primary_10_1016_j_scitotenv_2020_139906 crossref_primary_10_1021_es403877s crossref_primary_10_1016_j_jes_2023_10_030 crossref_primary_10_1016_j_jhazmat_2020_123687 crossref_primary_10_1071_EN13225 crossref_primary_10_1016_j_envpol_2023_121064 crossref_primary_10_3390_ijms241311031 crossref_primary_10_1016_j_stress_2022_100076 crossref_primary_10_1016_j_scitotenv_2017_09_062 crossref_primary_10_1016_j_envpol_2017_05_001 crossref_primary_10_1016_S1003_6326_17_60047_5 crossref_primary_10_1016_j_soilbio_2016_12_021 crossref_primary_10_1146_annurev_arplant_043015_112301 crossref_primary_10_1007_s12403_024_00655_3 crossref_primary_10_1016_j_ecoenv_2019_109791 crossref_primary_10_1016_j_scitotenv_2016_03_051 crossref_primary_10_3390_molecules28031474 crossref_primary_10_1016_j_envpol_2022_119829 crossref_primary_10_1016_j_microb_2024_100082 crossref_primary_10_1016_j_scitotenv_2016_12_111 crossref_primary_10_17221_470_2023_PSE crossref_primary_10_1093_nargab_lqac080 crossref_primary_10_1016_j_jes_2022_02_027 crossref_primary_10_1016_j_ecoenv_2021_112100 crossref_primary_10_1016_j_envpol_2022_119038 crossref_primary_10_1016_j_scitotenv_2020_136758 crossref_primary_10_1038_s41598_022_09236_3 crossref_primary_10_1128_AEM_03804_14 crossref_primary_10_1016_j_envpol_2018_01_099 crossref_primary_10_1016_j_envres_2024_120257 crossref_primary_10_3390_ijms25052861 crossref_primary_10_1021_acs_est_4c08620 crossref_primary_10_1021_acs_est_4c04730 crossref_primary_10_1007_s10646_018_1958_9 crossref_primary_10_1038_s41561_020_0533_1 crossref_primary_10_1007_s00344_016_9663_5 crossref_primary_10_1021_acs_est_5b00028 crossref_primary_10_1007_s11356_020_10824_x crossref_primary_10_1038_s41396_023_01425_w crossref_primary_10_1016_j_scitotenv_2018_08_216 crossref_primary_10_1007_s00248_015_0621_8 crossref_primary_10_1007_s10653_023_01702_9 crossref_primary_10_1039_D4CC03722G crossref_primary_10_1016_j_soilbio_2021_108129 crossref_primary_10_1016_j_jhazmat_2016_06_022 crossref_primary_10_1016_j_scitotenv_2022_161077 crossref_primary_10_1007_s10653_022_01425_3 crossref_primary_10_1016_j_scitotenv_2022_156049 crossref_primary_10_1016_S1002_0160_17_60357_6 crossref_primary_10_1038_s41396_022_01220_z crossref_primary_10_1021_acs_est_2c08814 crossref_primary_10_1038_s41396_023_01498_7 crossref_primary_10_1016_j_jhazmat_2017_10_037 crossref_primary_10_1016_j_bcab_2024_103030 crossref_primary_10_1016_j_chemosphere_2020_129092 crossref_primary_10_1128_AEM_02220_20 crossref_primary_10_1007_s00248_015_0710_8 crossref_primary_10_1007_s11356_020_10274_5 crossref_primary_10_1007_s10646_019_02144_9 crossref_primary_10_1016_j_jhazmat_2014_12_052 crossref_primary_10_1007_s11368_014_0864_x crossref_primary_10_1016_j_jhazmat_2024_134947 crossref_primary_10_5696_2156_9614_9_22_190603 crossref_primary_10_1016_j_scitotenv_2021_145040 crossref_primary_10_1038_s41561_020_00659_z crossref_primary_10_1016_j_scitotenv_2014_11_093 crossref_primary_10_1146_annurev_earth_060313_054942 crossref_primary_10_1038_s41467_019_12946_4 crossref_primary_10_1016_j_chemosphere_2019_125603 crossref_primary_10_1016_j_jhazmat_2016_08_079 crossref_primary_10_1016_j_scitotenv_2023_168939 crossref_primary_10_1016_S1002_0160_17_60409_0 crossref_primary_10_1021_es304977m crossref_primary_10_1007_s11157_017_9448_8 crossref_primary_10_1007_s13762_024_05657_x crossref_primary_10_1080_10643389_2020_1795053 crossref_primary_10_1016_j_scitotenv_2024_177828 crossref_primary_10_1016_j_ecoenv_2018_11_025 crossref_primary_10_1016_j_ecoenv_2023_115046 crossref_primary_10_1016_j_jhazmat_2021_125123 crossref_primary_10_3389_fmicb_2018_02959 crossref_primary_10_1016_j_envpol_2020_114624 crossref_primary_10_1016_j_jfca_2017_12_011 crossref_primary_10_1016_j_scitotenv_2021_149776 crossref_primary_10_1002_jobm_201600584 crossref_primary_10_1016_j_envres_2021_111584 crossref_primary_10_1039_c8mt00320c crossref_primary_10_1016_j_jhazmat_2020_124913 crossref_primary_10_1007_s11356_017_8460_4 crossref_primary_10_1016_j_scitotenv_2023_166870 crossref_primary_10_1016_j_envpol_2021_117389 crossref_primary_10_1007_s13213_016_1229_z crossref_primary_10_1007_s11104_022_05350_3 crossref_primary_10_1007_s11356_014_4065_3 crossref_primary_10_1016_j_envpol_2022_120281 crossref_primary_10_1016_j_envexpbot_2016_02_002 crossref_primary_10_1007_s11104_021_05103_8 crossref_primary_10_3847_1538_4357_ac8799 crossref_primary_10_1128_AEM_01383_21 crossref_primary_10_1016_j_scitotenv_2016_05_157 crossref_primary_10_1371_journal_pone_0175422 crossref_primary_10_1016_j_scitotenv_2022_156486 crossref_primary_10_1021_acs_est_3c07367 crossref_primary_10_1007_s11274_018_2557_x crossref_primary_10_1016_j_scitotenv_2022_158549 crossref_primary_10_3390_ijerph16245012 crossref_primary_10_5696_2156_9614_10_26_200612 crossref_primary_10_1007_s13213_016_1239_x crossref_primary_10_1016_j_envint_2019_105046 crossref_primary_10_1093_femsec_fiz040 crossref_primary_10_1186_s12866_024_03562_4 crossref_primary_10_1016_j_jhazmat_2024_134582 crossref_primary_10_1016_j_geoderma_2022_116278 crossref_primary_10_1016_j_scitotenv_2024_177068 crossref_primary_10_1016_j_micres_2023_127391 crossref_primary_10_1093_femsle_fnu003 crossref_primary_10_1016_j_soilbio_2023_109305 crossref_primary_10_7717_peerj_18383 crossref_primary_10_1038_ismej_2015_25 crossref_primary_10_2166_ws_2024_045 crossref_primary_10_1021_acs_est_8b03798 crossref_primary_10_1016_j_envpol_2020_114010 crossref_primary_10_1016_j_envpol_2018_03_091 crossref_primary_10_1016_S1001_0742_13_60432_5 crossref_primary_10_1016_j_jhazmat_2020_124027 crossref_primary_10_1021_acs_est_6b02286 crossref_primary_10_1016_j_envres_2024_118421 crossref_primary_10_1016_j_jhazmat_2020_124946 crossref_primary_10_1021_acs_analchem_3c05958 crossref_primary_10_1515_biol_2022_0870 crossref_primary_10_1016_j_gca_2024_10_012 crossref_primary_10_1021_acs_estlett_4c00400 crossref_primary_10_1016_j_envpol_2015_12_023 crossref_primary_10_1007_s11356_021_14115_x crossref_primary_10_1016_j_chemosphere_2016_10_093 crossref_primary_10_1016_j_envpol_2014_08_004 crossref_primary_10_1016_j_chemosphere_2022_136653 crossref_primary_10_1016_j_jhazmat_2021_127180 crossref_primary_10_1021_acsestwater_3c00432 crossref_primary_10_1016_j_jhazmat_2023_131458 crossref_primary_10_1016_j_scitotenv_2022_157767 crossref_primary_10_1007_s11356_020_08829_7 crossref_primary_10_1093_pcp_pcv143 crossref_primary_10_3389_fagro_2021_741557 crossref_primary_10_1016_j_eti_2021_101800 crossref_primary_10_1186_s12915_019_0661_5 crossref_primary_10_1021_acs_est_2c01878 crossref_primary_10_1021_acs_jafc_0c06853 crossref_primary_10_1016_j_jhazmat_2022_128325 crossref_primary_10_1007_s11368_016_1369_6 crossref_primary_10_1016_j_envint_2019_04_060 crossref_primary_10_3389_fpls_2018_00140 crossref_primary_10_1371_journal_pone_0191893 crossref_primary_10_3389_fpls_2017_00268 crossref_primary_10_1071_EN14247 crossref_primary_10_3390_agronomy7040067 crossref_primary_10_1016_j_chemosphere_2022_134368 crossref_primary_10_1021_acs_est_7b04791 crossref_primary_10_1021_acs_est_8b07008 |
Cites_doi | 10.1021/es1033316 10.1111/j.1462-2920.2010.02420.x 10.1111/j.1462-2920.2008.01613.x 10.1007/s11104-009-9991-3 10.1073/pnas.0900238106 10.1021/es901121j 10.1016/j.tplants.2011.12.003 10.1039/C0EM00460J 10.1016/j.envpol.2008.03.015 10.1104/pp.111.178947 10.1021/es103463d 10.1021/es0502324 10.1021/es203635s 10.1021/es702910g 10.1016/j.scitotenv.2007.02.037 10.1021/bi201500c 10.1016/j.envexpbot.2007.07.016 10.1021/es8001103 10.1111/j.1469-8137.2011.03956.x 10.1111/j.1469-8137.2008.02716.x 10.1111/j.1469-8137.2010.03456.x 10.1017/S0043174500033762 10.1111/j.1462-2920.2006.01215.x 10.1021/es300499a 10.1021/es800324u 10.1039/C0JA00125B 10.1038/ismej.2011.192 10.1016/j.envpol.2011.11.021 10.1073/pnas.0506836103 10.1146/annurev-arplant-042809-112152 10.1016/j.chemosphere.2008.04.056 10.1042/bj0291757 10.1126/science.1102374 10.1016/j.tox.2006.03.013 10.1186/1471-2180-9-4 |
ContentType | Journal Article |
Copyright | Copyright © 2013 American Chemical Society 2014 INIST-CNRS Copyright American Chemical Society Apr 2, 2013 |
Copyright_xml | – notice: Copyright © 2013 American Chemical Society – notice: 2014 INIST-CNRS – notice: Copyright American Chemical Society Apr 2, 2013 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7S9 L.6 |
DOI | 10.1021/es303649v |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic Biotechnology Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1520-5851 |
EndPage | 3148 |
ExternalDocumentID | 2936975441 23469919 27205246 10_1021_es303649v a146635085 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | - .K2 1AW 3R3 4.4 4R4 53G 55A 5GY 5VS 63O 7~N 85S AABXI ABFLS ABMVS ABOGM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACPRK ACS AEESW AENEX AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ K2 LG6 MS PQEST PQQKQ ROL RXW TN5 TWZ U5U UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK XZL YZZ --- -DZ -~X ..I .DC 6TJ AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV ADUKH AGXLV AHGAQ CITATION CUPRZ GGK MS~ MW2 XSW ZCA .HR 186 1WB 42X 8WZ A6W ABHMW ACKIV ACRPL ADMHC ADNMO AETEA AEYZD AGQPQ ANPPW ANTXH IHE IQODW MVM NHB OHT RNS TAE UBC UBX UBY UQL VJK VOH YV5 ZCG ZY4 ~A~ CGR CUY CVF ECM EIF NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a472t-a3fa52cd377e44993197e9d874c9fc213a8615fa435d5597cec0d2da3bd4506a3 |
IEDL.DBID | ACS |
ISSN | 0013-936X 1520-5851 |
IngestDate | Thu Jul 10 21:58:43 EDT 2025 Fri Jul 11 07:22:17 EDT 2025 Mon Jun 30 02:19:49 EDT 2025 Mon Jul 21 05:50:06 EDT 2025 Mon Jul 21 09:10:53 EDT 2025 Thu Apr 24 23:04:54 EDT 2025 Tue Jul 01 04:28:34 EDT 2025 Thu Aug 27 13:41:55 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Microbial activity Monocotyledones Arsenic Pollutant behavior Cereal crop Trace element Carcinogen Oryza sativa Rhizosphere Soils Gramineae Biotransformation Angiospermae Poison Spermatophyta Methylation Food Chemical contamination Rice |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a472t-a3fa52cd377e44993197e9d874c9fc213a8615fa435d5597cec0d2da3bd4506a3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 23469919 |
PQID | 1324008561 |
PQPubID | 45412 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2000259230 proquest_miscellaneous_1323278961 proquest_journals_1324008561 pubmed_primary_23469919 pascalfrancis_primary_27205246 crossref_primary_10_1021_es303649v crossref_citationtrail_10_1021_es303649v acs_journals_10_1021_es303649v |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-04-02 |
PublicationDateYYYYMMDD | 2013-04-02 |
PublicationDate_xml | – month: 04 year: 2013 text: 2013-04-02 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States – name: Easton |
PublicationTitle | Environmental science & technology |
PublicationTitleAlternate | Environ. Sci. Technol |
PublicationYear | 2013 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Chilvers D. (ref34/cit34) 1987 Buée M. (ref17/cit17) 2009; 321 Huang H. (ref23/cit23) 2012; 46 Ascar L. (ref29/cit29) 2008; 72 Hansen H. R. (ref13/cit13) 2011; 13 Marapakala K. (ref24/cit24) 2012; 51 Yin X. X. (ref21/cit21) 2011; 156 Zhu Y. G. (ref1/cit1) 2008; 154 Zhu Y. G. (ref8/cit8) 2008; 42 Mestrot A. (ref10/cit10) 2011; 45 Malasarn D. (ref2/cit2) 2004; 306 Cai L. (ref37/cit37) 2009; 9 Qin J. (ref20/cit20) 2009; 106 Lomax C. (ref16/cit16) 2011; 193 Yoshinaga M. (ref6/cit6) 2011; 13 Xu X. Y. (ref28/cit28) 2008; 42 Huang J. H. (ref11/cit11) 2011; 219 Rahman M. A. (ref33/cit33) 2008; 62 Zhao F. J. (ref25/cit25) 2010; 61 Woolson E. (ref35/cit35) 1977 Ye J. (ref22/cit22) 2012; 17 Yuan C. (ref36/cit36) 2008; 42 Bhattacharya P. (ref7/cit7) 2007; 379 Knief C. (ref18/cit18) 2011; 6 Jia Y. (ref15/cit15) 2012; 46 Arao T. (ref12/cit12) 2011; 45 D′Amato M. (ref9/cit9) 2010; 26 Zheng M. Z. (ref14/cit14) 2010; 189 Arnold L. L. (ref31/cit31) 2006; 223 Inskeep W. P. (ref4/cit4) 2007; 9 Challenger F. (ref19/cit19) 1935; 29 Sun G. X. (ref32/cit32) 2012; 162 Williams P. N. (ref26/cit26) 2005; 39 Chen X. P. (ref30/cit30) 2008; 10 Qin J. (ref3/cit3) 2006; 103 Zhao F. J. (ref5/cit5) 2009; 181 Norton G. J. (ref27/cit27) 2009; 43 |
References_xml | – volume: 45 start-page: 1291 issue: 4 year: 2011 ident: ref12/cit12 publication-title: Environ. Sci. Technol. doi: 10.1021/es1033316 – volume: 13 start-page: 1205 issue: 5 year: 2011 ident: ref6/cit6 publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2010.02420.x – volume: 10 start-page: 1978 issue: 8 year: 2008 ident: ref30/cit30 publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2008.01613.x – volume: 321 start-page: 189 issue: 1 year: 2009 ident: ref17/cit17 publication-title: Plant Soil doi: 10.1007/s11104-009-9991-3 – volume: 106 start-page: 5213 issue: 13 year: 2009 ident: ref20/cit20 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0900238106 – volume: 43 start-page: 6070 issue: 15 year: 2009 ident: ref27/cit27 publication-title: Environ. Sci. Technol. doi: 10.1021/es901121j – volume: 17 start-page: 155 issue: 3 year: 2012 ident: ref22/cit22 publication-title: Trend. Plant Sci. doi: 10.1016/j.tplants.2011.12.003 – volume: 13 start-page: 32 year: 2011 ident: ref13/cit13 publication-title: J. Environ. Monitor. doi: 10.1039/C0EM00460J – volume: 154 start-page: 169 issue: 2 year: 2008 ident: ref1/cit1 publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2008.03.015 – volume: 156 start-page: 1631 year: 2011 ident: ref21/cit21 publication-title: Plant Physiol. doi: 10.1104/pp.111.178947 – volume: 45 start-page: 1798 issue: 5 year: 2011 ident: ref10/cit10 publication-title: Environ. Sci. Technol. doi: 10.1021/es103463d – volume: 219 start-page: 1 issue: 1 year: 2011 ident: ref11/cit11 publication-title: Water Air Soil Pollut. – volume: 39 start-page: 5531 issue: 15 year: 2005 ident: ref26/cit26 publication-title: Environ. Sci. Technol. doi: 10.1021/es0502324 – volume: 46 start-page: 2163 issue: 4 year: 2012 ident: ref23/cit23 publication-title: Environ. Sci. Technol. doi: 10.1021/es203635s – volume: 42 start-page: 3201 issue: 9 year: 2008 ident: ref36/cit36 publication-title: Environ. Sci. Technol. doi: 10.1021/es702910g – volume: 379 start-page: 109 issue: 2 year: 2007 ident: ref7/cit7 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2007.02.037 – volume: 51 start-page: 944 year: 2012 ident: ref24/cit24 publication-title: Biochem. doi: 10.1021/bi201500c – volume: 62 start-page: 54 issue: 1 year: 2008 ident: ref33/cit33 publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2007.07.016 – volume: 42 start-page: 5008 issue: 13 year: 2008 ident: ref8/cit8 publication-title: Environ. Sci. Technol. doi: 10.1021/es8001103 – volume: 193 start-page: 665 issue: 3 year: 2011 ident: ref16/cit16 publication-title: New Phytol. doi: 10.1111/j.1469-8137.2011.03956.x – volume: 181 start-page: 777 issue: 4 year: 2009 ident: ref5/cit5 publication-title: New Phytol. doi: 10.1111/j.1469-8137.2008.02716.x – volume: 189 start-page: 200 issue: 1 year: 2010 ident: ref14/cit14 publication-title: New Phytol. doi: 10.1111/j.1469-8137.2010.03456.x – start-page: 412 year: 1977 ident: ref35/cit35 publication-title: Weed Sci. doi: 10.1017/S0043174500033762 – volume: 9 start-page: 934 issue: 4 year: 2007 ident: ref4/cit4 publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2006.01215.x – volume: 46 start-page: 8090 issue: 15 year: 2012 ident: ref15/cit15 publication-title: Environ. Sci. Technol. doi: 10.1021/es300499a – volume: 42 start-page: 5574 issue: 15 year: 2008 ident: ref28/cit28 publication-title: Environ. Sci. Technol. doi: 10.1021/es800324u – volume: 26 start-page: 207 issue: 1 year: 2010 ident: ref9/cit9 publication-title: J. Anal. At. Spectrom. doi: 10.1039/C0JA00125B – volume: 6 start-page: 1378 year: 2011 ident: ref18/cit18 publication-title: ISME J. doi: 10.1038/ismej.2011.192 – volume: 162 start-page: 241 year: 2012 ident: ref32/cit32 publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2011.11.021 – volume: 103 start-page: 2075 issue: 7 year: 2006 ident: ref3/cit3 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0506836103 – volume: 61 start-page: 535 year: 2010 ident: ref25/cit25 publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-042809-112152 – volume: 72 start-page: 1548 issue: 10 year: 2008 ident: ref29/cit29 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2008.04.056 – volume: 29 start-page: 1757 issue: 7 year: 1935 ident: ref19/cit19 publication-title: Biochem. J. doi: 10.1042/bj0291757 – volume: 306 start-page: 455 issue: 5695 year: 2004 ident: ref2/cit2 publication-title: Science doi: 10.1126/science.1102374 – volume: 223 start-page: 82 issue: 1 year: 2006 ident: ref31/cit31 publication-title: Toxicol. doi: 10.1016/j.tox.2006.03.013 – start-page: 279 volume-title: Lead, Mercury, Cadmium and Arsenic in the Environment year: 1987 ident: ref34/cit34 – volume: 9 start-page: 4 issue: 1 year: 2009 ident: ref37/cit37 publication-title: BMC Microbiol. doi: 10.1186/1471-2180-9-4 |
SSID | ssj0002308 |
Score | 2.5393107 |
Snippet | Methylated arsenic (As) species are a common constituent of rice grains accounting for 10–90% of the total As. Recent studies have shown that higher plants are... Methylated arsenic (As) species are a common constituent of rice grains accounting for 10-90% of the total As. Recent studies have shown that higher plants are... |
SourceID | proquest pubmed pascalfrancis crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3141 |
SubjectTerms | Agronomy. Soil science and plant productions Arsenic Arsenic - metabolism Arsenic content arsenites Bacteria - genetics Bacteria - metabolism Base Sequence Biodiversity Biological and medical sciences DNA Primers - metabolism essential amino acids Food toxicology Fundamental and applied biological sciences. Psychology Gene Dosage - genetics Genes Genes, Bacterial - genetics horizontal gene transfer Medical sciences Methylation methyltransferases microorganisms Nonnative species Oryza - metabolism Oryza - microbiology paddy soils Phylogeny Plant Roots - microbiology Polymorphism restriction fragment length polymorphism Rhizosphere Rice roots S-adenosylmethionine Soil - chemistry Soil and water pollution Soil Microbiology Soil science soil solution Soils Solutions Toxicology |
Title | Microbial Arsenic Methylation in Soil and Rice Rhizosphere |
URI | http://dx.doi.org/10.1021/es303649v https://www.ncbi.nlm.nih.gov/pubmed/23469919 https://www.proquest.com/docview/1324008561 https://www.proquest.com/docview/1323278961 https://www.proquest.com/docview/2000259230 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwEB4t9AJC0EIpge0qLRx6CU1srxP3VlEQqkQPPKS9rRx7LK1AWUR2OfDrGefFIh4957PkeDz2Z83MNwAHRAKYS5WOUu7ySDCXRLlMbITOK41IprmpEmT_ydMr8Xc0HPVg_40IPkt-YulPWaHul-ADk-S8nv8cXXTHLXHorG1ToLgctfJBi0P91WPKZ1fP2q0uaRVc3b7ibX5Z3TMnG_Cnrdap00uuD-ez_NA8vBRvfO8XPsJ6wzPD3_XG-AQ9LDZhdUF9cBO2j5-K3AjaeHm5Bb_OJpU8UzW-xGJiwjMkg9Zpc-GkCC-mk5tQFzY8p3MmPPd5e6XXJ8DPcHVyfHl0GjU9FiItUjaLNHd6yIzlaYqCXj_kkSkqm6XCKGdYwnVGnMdpYlXWPz4Mmtgyq3luxTCWmm_DcjEtcAdCbrPcKkP8jyuhrcsx1rFCkzFEJFoTwICMMG58pBxX4W-WjLvVCeBHa5-xaRTKfaOMm9eg3zvobS3L8Rpo8MzIHdLHnodMyAD6rdUXpuUlComIyiSAb91ncjofSdEFTucVhvsS4vcwvgaK3pa0PQP4Uu-opwlwIYmYq93_LckerLCq_4aIYtaH5dndHL8SC5rlg8oLHgG91v-p |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BOQBCPAqFtGUJiAOXlMT2JjG3qmq1QLeHPqS9RY49llZU2QrvcuDXd-xks9uqPM6ZRJN52J_lmW8APhIIYLaQKim4rRPBbJbUeWYStJ5pJGeK61Age5KPLsS3yXDS0eT4XhhSwtGXXLjEX7ELZJ_R-cVWyF_34QGBEOajef_grF91CUqXy2kFkueTJYvQ-qt-B9Luxg705Eo5MoZtp1j8GWaG7eboWTu3KCgaqkx-7C3m9Z7-fYvD8f_-5Dk87VBnvN-GyQu4h80mPF7jItyErcNVyxuJdjnvXsKX8TSQNYX3HTZTHY-R3NsW0cXTJj6bTS9j1Zj4lFad-NRX8TnPVoCv4OLo8PxglHQTFxIlCjZPFLdqyLThRYGCzkKUnwVKUxZCS6tZxlVJCMgqwljGH0U06tQwo3htxDDNFd-CjWbW4BuIuSlrIzWhQS6FMrbGVKUSdckQkUBOBAMyTtVljKvCZTjLqt46EXxauqnSHV-5H5txeZfoh170qiXpuEtocMPXvaS_iR4ykUewu3T-mlqesJBgaZ5F8L5_TCno71VUg7NFkOG-ofhvMr4jik6aFKURvG4Da6UAFznBdLn9L5O8g4ej8_Fxdfz15PsOPGJhModIUrYLG_OfC3xL-GheD0JiXAPUuggZ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDLdgSAiEGIwNysZREA-8dLRJrm32No2dxscG2ph0b1WaONKJqXcidzzw1-Okve42jY_nupWb2MnPsv0zwBsCAcwWUiUFt3UimM2SOs9MgtYzjeRMcR0KZE_yo3PxcTwcd4Gi74UhJRx9yYUkvvfqmbEdw0D2Dp0_cIX8eRvu-HSdt-j9g7P-5CU4XS4nFkiej5dMQquv-ltIuyu30IOZcrQgtp1k8WeoGa6c0Tp86ZUNlSbfdxfzelf_usbj-P9_8wgedugz3m_N5THcwmYD7q9wEm7A1uFl6xuJdr7vnsDe8SSQNoX3HTYTHR8jbXNbTBdPmvhsOrmIVWPiUzp94lNfzec8awFuwvno8NvBUdJNXkiUKNg8UdyqIdOGFwUKionITwuUpiyEllazjKuSkJBVhLWMD0k06tQwo3htxDDNFd-CtWba4DOIuSlrIzWhQi6FMrbGVKUSdckQkcBOBANaoKrzHFeFpDjLqn51Ini73KpKd7zlfnzGxU2ir3vRWUvWcZPQ4Mp-95I-Iz1kIo9gZ2kAK2p54kKCp3kWwav-Mbmiz6-oBqeLIMN9Y_HfZHxnFEWcZKkRPG2N61IBLnKC6_L5v5bkJdz9-n5Uff5w8mkb7rEwoEMkKduBtfmPBb4gmDSvB8E3fgNzJQqc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microbial+Arsenic+Methylation+in+Soil+and+Rice+Rhizosphere&rft.jtitle=Environmental+science+%26+technology&rft.au=Jia%2C+Yan&rft.au=Huang%2C+Hai&rft.au=Zhong%2C+Min&rft.au=Wang%2C+Feng-Hua&rft.date=2013-04-02&rft.pub=American+Chemical+Society&rft.issn=0013-936X&rft.volume=47&rft.issue=7&rft.spage=3141&rft_id=info:doi/10.1021%2Fes303649v&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2936975441 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon |