Advances in Materials and Applications of Inorganic Electrides

Electrides are materials in which electrons serve as anions. Here, the concept of inorganic electrides is extended in several respects: from ionic crystals to intermetallic compounds in host materials, from crystalline to amorphous solids, and from 0-dimensional to 1- and 2-dimensional materials in...

Full description

Saved in:
Bibliographic Details
Published inChemical reviews Vol. 121; no. 5; pp. 3121 - 3185
Main Authors Hosono, Hideo, Kitano, Masaaki
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 10.03.2021
Subjects
Online AccessGet full text
ISSN0009-2665
1520-6890
1520-6890
DOI10.1021/acs.chemrev.0c01071

Cover

Loading…
Abstract Electrides are materials in which electrons serve as anions. Here, the concept of inorganic electrides is extended in several respects: from ionic crystals to intermetallic compounds in host materials, from crystalline to amorphous solids, and from 0-dimensional to 1- and 2-dimensional materials in electron-confined spaces. In particular, 2D electrides, in which anionic electrons are sandwiched by cationic slabs, can form a bulk crystal of a 2-dimensional electron gas, thus exhibiting a large electron mobility and providing a platform for topological materials. Exploration of new electrides by computation and high pressure has advanced, revealing that an electride is a stable equilibrium phase of many elements and compounds under high pressure. This review describes the history and current status of electride research and next summarizes the chemical application of electrides and relevant materials. An emphasis is placed on catalysts for ammonia synthesis from N2 and H2 at mild conditions. This subject is accelerated by a demand for on-site ammonia synthesis using hydrogen produced by renewable energy sources. A wide applicability of electride for chemical reactions such selective hydrogenation and carbon–carbon coupling is shown by extending the concept of electrides. Finally, a view for the relationship between electrides and crystallographic voids and current issues are described.
AbstractList Electrides are materials in which electrons serve as anions. Here, the concept of inorganic electrides is extended in several respects: from ionic crystals to intermetallic compounds in host materials, from crystalline to amorphous solids, and from 0-dimensional to 1- and 2-dimensional materials in electron-confined spaces. In particular, 2D electrides, in which anionic electrons are sandwiched by cationic slabs, can form a bulk crystal of a 2-dimensional electron gas, thus exhibiting a large electron mobility and providing a platform for topological materials. Exploration of new electrides by computation and high pressure has advanced, revealing that an electride is a stable equilibrium phase of many elements and compounds under high pressure. This review describes the history and current status of electride research and next summarizes the chemical application of electrides and relevant materials. An emphasis is placed on catalysts for ammonia synthesis from N2 and H2 at mild conditions. This subject is accelerated by a demand for on-site ammonia synthesis using hydrogen produced by renewable energy sources. A wide applicability of electride for chemical reactions such selective hydrogenation and carbon–carbon coupling is shown by extending the concept of electrides. Finally, a view for the relationship between electrides and crystallographic voids and current issues are described.
Electrides are materials in which electrons serve as anions. Here, the concept of inorganic electrides is extended in several respects: from ionic crystals to intermetallic compounds in host materials, from crystalline to amorphous solids, and from 0-dimensional to 1- and 2-dimensional materials in electron-confined spaces. In particular, 2D electrides, in which anionic electrons are sandwiched by cationic slabs, can form a bulk crystal of a 2-dimensional electron gas, thus exhibiting a large electron mobility and providing a platform for topological materials. Exploration of new electrides by computation and high pressure has advanced, revealing that an electride is a stable equilibrium phase of many elements and compounds under high pressure. This review describes the history and current status of electride research and next summarizes the chemical application of electrides and relevant materials. An emphasis is placed on catalysts for ammonia synthesis from N₂ and H₂ at mild conditions. This subject is accelerated by a demand for on-site ammonia synthesis using hydrogen produced by renewable energy sources. A wide applicability of electride for chemical reactions such selective hydrogenation and carbon–carbon coupling is shown by extending the concept of electrides. Finally, a view for the relationship between electrides and crystallographic voids and current issues are described.
Electrides are materials in which electrons serve as anions. Here, the concept of inorganic electrides is extended in several respects: from ionic crystals to intermetallic compounds in host materials, from crystalline to amorphous solids, and from 0-dimensional to 1- and 2-dimensional materials in electron-confined spaces. In particular, 2D electrides, in which anionic electrons are sandwiched by cationic slabs, can form a bulk crystal of a 2-dimensional electron gas, thus exhibiting a large electron mobility and providing a platform for topological materials. Exploration of new electrides by computation and high pressure has advanced, revealing that an electride is a stable equilibrium phase of many elements and compounds under high pressure. This review describes the history and current status of electride research and next summarizes the chemical application of electrides and relevant materials. An emphasis is placed on catalysts for ammonia synthesis from N and H at mild conditions. This subject is accelerated by a demand for on-site ammonia synthesis using hydrogen produced by renewable energy sources. A wide applicability of electride for chemical reactions such selective hydrogenation and carbon-carbon coupling is shown by extending the concept of electrides. Finally, a view for the relationship between electrides and crystallographic voids and current issues are described.
Electrides are materials in which electrons serve as anions. Here, the concept of inorganic electrides is extended in several respects: from ionic crystals to intermetallic compounds in host materials, from crystalline to amorphous solids, and from 0-dimensional to 1- and 2-dimensional materials in electron-confined spaces. In particular, 2D electrides, in which anionic electrons are sandwiched by cationic slabs, can form a bulk crystal of a 2-dimensional electron gas, thus exhibiting a large electron mobility and providing a platform for topological materials. Exploration of new electrides by computation and high pressure has advanced, revealing that an electride is a stable equilibrium phase of many elements and compounds under high pressure. This review describes the history and current status of electride research and next summarizes the chemical application of electrides and relevant materials. An emphasis is placed on catalysts for ammonia synthesis from N2 and H2 at mild conditions. This subject is accelerated by a demand for on-site ammonia synthesis using hydrogen produced by renewable energy sources. A wide applicability of electride for chemical reactions such selective hydrogenation and carbon-carbon coupling is shown by extending the concept of electrides. Finally, a view for the relationship between electrides and crystallographic voids and current issues are described.Electrides are materials in which electrons serve as anions. Here, the concept of inorganic electrides is extended in several respects: from ionic crystals to intermetallic compounds in host materials, from crystalline to amorphous solids, and from 0-dimensional to 1- and 2-dimensional materials in electron-confined spaces. In particular, 2D electrides, in which anionic electrons are sandwiched by cationic slabs, can form a bulk crystal of a 2-dimensional electron gas, thus exhibiting a large electron mobility and providing a platform for topological materials. Exploration of new electrides by computation and high pressure has advanced, revealing that an electride is a stable equilibrium phase of many elements and compounds under high pressure. This review describes the history and current status of electride research and next summarizes the chemical application of electrides and relevant materials. An emphasis is placed on catalysts for ammonia synthesis from N2 and H2 at mild conditions. This subject is accelerated by a demand for on-site ammonia synthesis using hydrogen produced by renewable energy sources. A wide applicability of electride for chemical reactions such selective hydrogenation and carbon-carbon coupling is shown by extending the concept of electrides. Finally, a view for the relationship between electrides and crystallographic voids and current issues are described.
Author Hosono, Hideo
Kitano, Masaaki
AuthorAffiliation International Center for Materials Nanoarchitectonics
Precursory Research for Embryonic Science and Technology (PRESTO)
Materials Research Center for Element Strategy
Japan Science and Technology Agency (JST)
Tokyo Institute of Technology
National Institute for Materials Science
AuthorAffiliation_xml – name: National Institute for Materials Science
– name: Precursory Research for Embryonic Science and Technology (PRESTO)
– name: Japan Science and Technology Agency (JST)
– name: Materials Research Center for Element Strategy
– name: International Center for Materials Nanoarchitectonics
– name: Tokyo Institute of Technology
Author_xml – sequence: 1
  givenname: Hideo
  orcidid: 0000-0001-9260-6728
  surname: Hosono
  fullname: Hosono, Hideo
  email: hosono@mces.titech.ac.jp
  organization: National Institute for Materials Science
– sequence: 2
  givenname: Masaaki
  orcidid: 0000-0003-4466-7387
  surname: Kitano
  fullname: Kitano, Masaaki
  organization: Japan Science and Technology Agency (JST)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33606511$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1KAzEUhYMo2lafQJABN26mzd9kJhuhlKqFipvuQ5rc0cg0U5Op4Nub2taFi7oKl3zn3OScPjr1rQeErgkeEkzJSJs4NG-wCvA5xAYTXJIT1CMFxbmoJD5FPYyxzKkQxQXqx_iexqKg5Tm6YExgURDSQ_dj-6m9gZg5nz3rDoLTTcy0t9l4vW6c0Z1rfczaOpv5Nrxq70w2bcB0wVmIl-isTjxc7c8BWjxMF5OnfP7yOJuM57nmJe3yilkpDa0tGNDULmsjGKs5twXltqTGyIpSVlEmRUmotABCMrtkGEQFlWADdLezXYf2YwOxUysXDTSN9tBuoqJFyRnnkvP_US6J5NsAE3r7B31vN8GnfyTDlGbJOS0TdbOnNssVWLUObqXDlzpkmAC5A0xoYwxQK-O6n9i6oF2jCFbbdSr1pfZ9qX1fScv-aA_2x1WjnWp7-fvmY4pvSgGqgw
CitedBy_id crossref_primary_10_1021_acscatal_2c03662
crossref_primary_10_1021_jacs_1c12367
crossref_primary_10_1021_jacs_3c00284
crossref_primary_10_1021_acs_inorgchem_2c01393
crossref_primary_10_1007_s11426_024_2471_9
crossref_primary_10_1016_j_xcrp_2022_100779
crossref_primary_10_1103_PhysRevB_109_134505
crossref_primary_10_1039_D4MH00437J
crossref_primary_10_1002_cssc_202300234
crossref_primary_10_20517_jmi_2024_41
crossref_primary_10_1002_apxr_202200119
crossref_primary_10_1016_j_solidstatesciences_2023_107331
crossref_primary_10_1016_j_cej_2024_148706
crossref_primary_10_1016_j_surfin_2022_102044
crossref_primary_10_1021_acs_inorgchem_3c04409
crossref_primary_10_1021_jacs_3c10876
crossref_primary_10_1103_PhysRevB_111_045120
crossref_primary_10_1093_chemle_upae083
crossref_primary_10_1002_anie_202310802
crossref_primary_10_1063_5_0187372
crossref_primary_10_3390_coatings14060657
crossref_primary_10_1063_5_0113084
crossref_primary_10_1007_s40145_022_0633_z
crossref_primary_10_5940_jcrsj_64_160
crossref_primary_10_1002_adma_202418904
crossref_primary_10_3390_nano13222914
crossref_primary_10_1021_acsomega_2c00956
crossref_primary_10_1134_S0023158423060137
crossref_primary_10_1021_acs_jpclett_2c03427
crossref_primary_10_1088_0256_307X_40_10_107401
crossref_primary_10_1103_PhysRevLett_134_036401
crossref_primary_10_1021_acs_jpclett_1c03637
crossref_primary_10_1021_jacs_3c09362
crossref_primary_10_1016_j_jre_2021_06_014
crossref_primary_10_1103_PhysRevB_109_014504
crossref_primary_10_1039_D5MR00005J
crossref_primary_10_1557_s43579_024_00684_8
crossref_primary_10_1103_PhysRevB_106_045138
crossref_primary_10_1021_acscatal_4c00830
crossref_primary_10_1021_acs_jpclett_3c01975
crossref_primary_10_1103_PhysRevB_106_L060506
crossref_primary_10_1021_jacs_3c01713
crossref_primary_10_1088_0256_307X_42_2_027302
crossref_primary_10_1246_cl_210577
crossref_primary_10_1002_smsc_202100020
crossref_primary_10_1021_jacs_4c05723
crossref_primary_10_1016_j_nxmate_2023_100018
crossref_primary_10_1039_D4CS00420E
crossref_primary_10_1021_acsami_4c05810
crossref_primary_10_1103_PhysRevB_103_L241101
crossref_primary_10_3390_en17194977
crossref_primary_10_1039_D3DT03984F
crossref_primary_10_1002_cphc_202200329
crossref_primary_10_1039_D3CC02956E
crossref_primary_10_1021_jacs_3c10538
crossref_primary_10_1016_j_corsci_2023_111233
crossref_primary_10_31857_S1234567823210061
crossref_primary_10_1021_acs_inorgchem_4c00254
crossref_primary_10_1016_j_chempr_2022_11_006
crossref_primary_10_1063_5_0252519
crossref_primary_10_2139_ssrn_4121307
crossref_primary_10_1021_jacs_4c17825
crossref_primary_10_1002_cssc_202301016
crossref_primary_10_1016_j_apsusc_2025_163020
crossref_primary_10_1063_5_0259675
crossref_primary_10_1063_5_0233622
crossref_primary_10_1039_D1DT03952K
crossref_primary_10_1039_D3TA04418A
crossref_primary_10_1021_acs_jpcc_4c06803
crossref_primary_10_1039_D4CP00724G
crossref_primary_10_1016_j_cclet_2022_06_066
crossref_primary_10_1021_acs_chemrev_2c00356
crossref_primary_10_1039_D4SE01604A
crossref_primary_10_1088_1361_648X_ad3ac2
crossref_primary_10_1039_D1CY01799C
crossref_primary_10_1021_acs_jpcc_2c08178
crossref_primary_10_31857_S0453881123060151
crossref_primary_10_1016_j_actaastro_2023_10_002
crossref_primary_10_1063_5_0171959
crossref_primary_10_1021_acs_jpcc_1c04485
crossref_primary_10_1039_D1NJ04443E
crossref_primary_10_1021_acs_jpca_4c03500
crossref_primary_10_1016_j_ijhydene_2023_07_121
crossref_primary_10_1039_D3FD00070B
crossref_primary_10_1002_aenm_202402353
crossref_primary_10_1039_D4CP01508H
crossref_primary_10_1021_acsomega_1c04349
crossref_primary_10_1021_jacs_4c07362
crossref_primary_10_3390_electronics11040668
crossref_primary_10_1016_j_mtcomm_2022_104176
crossref_primary_10_1038_s44160_023_00292_9
crossref_primary_10_1039_D2TA01967A
crossref_primary_10_1038_s41467_023_41935_x
crossref_primary_10_1002_jcc_27265
crossref_primary_10_1007_s10562_021_03648_y
crossref_primary_10_1021_acs_jpclett_1c03149
crossref_primary_10_1002_anie_202211759
crossref_primary_10_1039_D1CP05365E
crossref_primary_10_1088_1361_648X_ac9f93
crossref_primary_10_1088_1361_648X_ad12fe
crossref_primary_10_1021_jacs_2c03024
crossref_primary_10_1021_jacs_3c06066
crossref_primary_10_1103_PhysRevB_103_235126
crossref_primary_10_1016_j_commt_2024_100020
crossref_primary_10_1016_j_jpcs_2025_112583
crossref_primary_10_1038_s41467_025_57688_8
crossref_primary_10_1039_D3SC05447K
crossref_primary_10_1103_PhysRevB_108_104505
crossref_primary_10_1038_s44296_024_00041_9
crossref_primary_10_1039_D3CP01764H
crossref_primary_10_1103_PhysRevResearch_6_023249
crossref_primary_10_1002_nadc_20214110509
crossref_primary_10_1002_smsc_202400131
crossref_primary_10_1039_D3CY01187A
crossref_primary_10_1021_acs_jpcc_2c07066
crossref_primary_10_1021_jacs_2c01899
crossref_primary_10_1039_D4QI02575J
crossref_primary_10_1016_j_fmre_2024_11_026
crossref_primary_10_1002_apxr_202200041
crossref_primary_10_1021_acs_jpcc_4c06309
crossref_primary_10_1021_acs_jpcc_3c07496
crossref_primary_10_1063_5_0212246
crossref_primary_10_1021_acs_chemmater_1c03821
crossref_primary_10_1021_acs_jpclett_4c01263
crossref_primary_10_1039_D1TC04356K
crossref_primary_10_1021_acscatal_3c05696
crossref_primary_10_1021_acs_jpcc_1c08725
crossref_primary_10_1039_D2TC00667G
crossref_primary_10_1021_acscatal_3c03654
crossref_primary_10_1103_PhysRevApplied_19_034014
crossref_primary_10_1134_S0021364023602762
crossref_primary_10_1002_ange_202310802
crossref_primary_10_1021_acs_jpcc_2c08517
crossref_primary_10_1039_D3TC03485B
crossref_primary_10_1021_acs_inorgchem_2c00884
crossref_primary_10_1039_D3NR00304C
crossref_primary_10_1103_PhysRevB_107_L100501
crossref_primary_10_1039_D2TC05254G
crossref_primary_10_1021_acscatal_1c01646
crossref_primary_10_1039_D3CP04472F
crossref_primary_10_1021_jacs_1c03278
crossref_primary_10_1021_acs_jpcc_2c07271
crossref_primary_10_1021_acs_chemmater_5c00158
crossref_primary_10_1039_D2TA08899A
crossref_primary_10_1021_acs_jpcc_2c04042
crossref_primary_10_1039_D4RA02473G
crossref_primary_10_1021_jacs_3c01074
crossref_primary_10_1002_adfm_202401466
crossref_primary_10_1002_ange_202211759
crossref_primary_10_1002_qua_26856
crossref_primary_10_1002_smll_202309962
crossref_primary_10_1016_j_nanoen_2022_107791
crossref_primary_10_1021_acs_jpclett_2c02002
crossref_primary_10_3390_catal11101154
crossref_primary_10_1039_D3TA06546D
crossref_primary_10_1039_D2CE00721E
crossref_primary_10_1063_5_0157403
crossref_primary_10_1541_ieejjournal_142_346
crossref_primary_10_1002_idm2_12240
crossref_primary_10_1002_adfm_202112198
crossref_primary_10_1021_acs_jpcc_3c04681
crossref_primary_10_12677_JAPC_2021_103006
crossref_primary_10_1007_s11426_024_2260_2
crossref_primary_10_1021_jacs_1c06657
crossref_primary_10_1140_epjb_s10051_022_00467_x
crossref_primary_10_1002_ece2_82
crossref_primary_10_1021_acs_inorgchem_3c00859
crossref_primary_10_1103_PhysRevB_110_144523
crossref_primary_10_1103_PhysRevMaterials_5_044203
crossref_primary_10_1016_j_jechem_2024_07_013
crossref_primary_10_1063_5_0092516
crossref_primary_10_1073_pnas_2322107121
crossref_primary_10_1039_D3NH90015K
Cites_doi 10.1038/s41567-020-0906-9
10.1021/acs.chemmater.8b02526
10.1021/ja504185m
10.1103/PhysRevX.8.031067
10.1166/jnn.2009.1747
10.1080/14786435.2012.685770
10.1038/s41567-020-0958-x
10.1007/s11244-016-0653-4
10.1016/S0920-5861(99)00115-7
10.1016/0038-1101(70)90056-0
10.1039/C6GC02782B
10.1038/s41560-018-0268-z
10.1021/jacs.8b06187
10.1039/C7SC05343F
10.1039/C9SC01539F
10.1021/jacs.5b12668
10.1016/j.cep.2015.02.004
10.1021/jacs.7b10338
10.1038/ncomms4515
10.1098/rspa.2010.0560
10.1021/acs.jpcc.8b11866
10.1002/adma.201606202
10.1016/S0926-860X(01)00626-3
10.1021/acscatal.7b00284
10.1038/nchem.626
10.7567/APEX.11.066201
10.1109/TPS.2003.818761
10.1103/PhysRevB.95.165430
10.1103/PhysRevB.40.1546
10.1016/j.jcat.2014.12.033
10.1007/s10562-009-0177-7
10.1021/ar9000857
10.1016/0021-9517(68)90088-2
10.1002/zaac.200900421
10.1016/S0021-9517(02)00182-3
10.1103/PhysRev.109.1909
10.1002/anie.198801591
10.1016/0022-2860(69)85023-4
10.1016/S1872-2067(14)60118-2
10.1103/PhysRevB.79.125304
10.1016/j.cattod.2016.08.012
10.1021/cr60323a001
10.1002/anie.201410773
10.1021/acs.jpcc.6b11919
10.1021/jacs.5b00242
10.1016/S0926-860X(01)00676-7
10.1006/jcat.1996.0268
10.1038/nature12435
10.1002/anie.201712398
10.1021/acscatal.7b01624
10.1016/0038-1098(79)91010-X
10.1021/ja410925g
10.1021/ja00377a066
10.1126/science.1207837
10.1021/ja066177w
10.1021/nn102839k
10.1016/j.energy.2004.12.004
10.1021/jacs.7b08891
10.1039/C5SC00933B
10.1021/acs.jpcc.7b07268
10.1080/01614949808007106
10.1088/0022-3719/11/5/016
10.1103/PhysRevB.92.201109
10.1016/j.cattod.2013.07.006
10.1039/C5SC00205B
10.1103/PhysRevMaterials.3.024205
10.1002/9783527610044
10.1080/00986445.2014.923995
10.1063/1.1674186
10.1063/1.118344
10.1016/j.elecom.2012.01.024
10.1002/anie.201305812
10.1038/s41586-020-2464-9
10.1016/j.vacuum.2018.09.055
10.1039/b002930k
10.1021/acs.jpcc.8b10379
10.1038/s41929-018-0045-1
10.1021/acscatal.6b01940
10.1002/anie.196404711
10.1246/cl.1973.161
10.1002/cctc.201501269
10.1016/j.apcatb.2017.12.039
10.1021/ja0724644
10.1126/science.1104168
10.1002/anie.200301669
10.1246/cl.2000.514
10.1002/anie.200800480
10.1016/0021-9517(72)90179-0
10.1021/nl062717b
10.1103/PhysRevB.80.075201
10.1109/JDT.2015.2496588
10.1038/s41535-017-0053-4
10.1038/s41586-019-0954-4
10.1038/ncomms3378
10.1038/ncomms5881
10.1039/C7TC02488F
10.1088/1674-1056/ab3f95
10.1021/acs.jpcc.5b06811
10.1016/S0166-9834(00)82492-6
10.1080/00107517708231483
10.1126/science.1211906
10.1038/s41929-017-0022-0
10.1038/365039a0
10.1016/j.ccr.2013.02.010
10.1021/jacs.7b06279
10.1039/C6CY01962E
10.1016/j.ijhydene.2015.10.064
10.1021/acscatal.5b00278
10.1098/rsta.2014.0450
10.1126/science.1261747
10.1021/ar700140m
10.1063/1.2149989
10.1038/nphys119
10.1002/anie.201806936
10.1021/acs.joc.8b02094
10.1016/0021-9517(92)90112-U
10.1038/nchem.906
10.1016/0009-2614(90)87265-S
10.1021/jacs.0c01227
10.1103/PhysRevB.73.205108
10.1021/ja01643a067
10.1021/jp065793b
10.1039/f19848001595
10.1103/PhysRevB.95.165436
10.1021/ic00345a030
10.1063/1.3463653
10.1021/acscatal.8b03650
10.1016/j.cattod.2016.06.035
10.1016/j.jechem.2019.10.014
10.1002/aenm.202003723
10.1039/C6TA09561E
10.1016/j.jcat.2004.03.046
10.1021/cr00039a007
10.1021/ol701885p
10.1103/PhysRevB.85.045204
10.7567/JJAP.52.090001
10.1038/s41578-019-0101-8
10.1016/j.jallcom.2005.01.052
10.1126/science.1064399
10.1016/j.apcatb.2017.04.073
10.1021/acs.inorgchem.9b03046
10.1002/adma.200304925
10.1002/adsc.200390000
10.1039/C1CP22271F
10.1021/acs.langmuir.6b04152
10.1038/444427a
10.1021/acs.chemmater.8b01819
10.1126/science.1143078
10.1002/anie.200301553
10.1021/acscatal.6b03357
10.1016/j.molcata.2008.08.006
10.1021/jacs.7b08252
10.1016/0021-9517(65)90016-3
10.1016/j.ccr.2012.10.005
10.1038/s41467-020-15868-8
10.1016/j.apcata.2004.09.020
10.1002/cssc.201501498
10.1021/ic501362b
10.1038/nature01053
10.1021/j100095a010
10.1038/scientificamerican0777-92
10.1038/ncomms7731
10.1038/nchem.2595
10.1038/nature07786
10.1002/adma.200306484
10.1016/0021-9517(89)90304-7
10.1038/nchem.121
10.1039/C7TC04989G
10.1016/0926-860X(96)00047-6
10.1002/1521-3773(20010316)40:6<1061::AID-ANIE10610>3.0.CO;2-B
10.1021/jacs.6b05586
10.1002/cctc.201301061
10.1039/C7EE02220D
10.1103/PhysRevB.96.125131
10.1103/PhysRevMaterials.2.053604
10.1021/ar400203e
10.1088/1367-2630/aa8a2d
10.1016/S0926-860X(01)00826-2
10.1103/PhysRevB.98.125128
10.1126/science.1088103
10.1007/s41614-019-0026-0
10.1006/jcat.1996.0314
10.1002/9783527693153
10.1103/PhysRevLett.53.850
10.1039/C4CS00085D
10.1038/s41586-019-1260-x
10.1016/j.elecom.2014.04.012
10.1021/cs400336z
10.1039/C8CP04216K
10.1016/0021-9517(67)90293-X
10.1021/ja109397k
10.1103/PhysRevB.48.12253
10.1021/cg0600290
10.1021/acs.inorgchem.6b01369
10.1103/PhysRevLett.112.136403
10.1021/jacs.0c11047
10.1038/332525a0
10.1021/acsami.8b18676
10.1246/bcsj.44.3216
10.1016/j.cpc.2012.05.008
10.1103/PhysRevB.93.205125
10.1021/j100304a034
10.1016/j.apcata.2004.01.002
10.1016/0021-9517(85)90265-9
10.1016/0021-9517(77)90237-8
10.1021/ja010963d
10.1002/anie.200905380
10.1002/chem.201800467
10.1038/s41565-018-0167-2
10.1021/jacs.0c02345
10.1103/PhysRevB.96.245303
10.1016/j.joule.2018.04.017
10.1038/s41467-020-15253-5
10.1021/ar4002922
10.1021/jp711631j
10.1021/cm051662w
10.1002/advs.201800666
10.1016/j.jcrysgro.2016.08.048
10.1038/nchem.2716
10.1103/PhysRevX.7.011017
10.1126/science.1254234
10.1126/science.1083842
10.1021/acsnano.7b06277
10.1016/j.ijhydene.2018.12.024
10.1021/ja9943445
10.1063/1.1829151
10.1002/anie.199107891
10.1039/C6SC01864E
10.1016/j.mseb.2009.12.018
10.1021/ja016112n
10.1103/PhysRevLett.107.087201
10.1038/srep10366
10.1088/0256-307X/31/11/118501
10.1063/1.2735280
10.1021/ja00464a015
10.1002/anie.197101951
10.1021/acscatal.0c03416
10.1016/S0926-860X(00)00713-4
10.1021/cs401044a
10.1103/PhysRevLett.68.3789
10.1002/anie.201409885
10.1016/S0926-860X(96)00304-3
10.1021/acs.nanolett.6b05199
10.1103/PhysRevLett.91.126401
10.1109/JDT.2005.858942
10.1016/0021-9517(86)90316-7
10.1038/s41467-019-10492-7
10.1134/S0021364019060043
10.1246/bcsj.20140395
10.1103/PhysRevB.17.2575
10.1103/PhysRevLett.83.1814
10.1039/C4CC00802B
10.1021/jz502588x
10.1103/PhysRevB.96.035421
10.1021/jacs.6b09067
10.1002/anie.198810211
10.1038/nature02274
10.1021/ja5042836
10.1039/C8DT02548G
10.1016/S0021-9517(03)00156-8
10.1021/acs.chemmater.8b02907
10.1016/S0022-0248(01)02038-3
10.1002/cctc.201700353
10.1038/nature01210
10.1021/jacs.7b05492
10.1039/C6SC02382G
10.1016/j.apcata.2005.05.045
10.1021/jacs.8b08334
10.1021/acs.jpcc.6b00983
10.1016/0167-5729(91)90014-O
10.1088/0022-3719/19/9/008
10.1038/nature11812
10.1021/ja5065125
10.1016/S0022-3093(99)00415-9
10.1021/acs.chemmater.8b03021
10.1002/adma.200700663
10.1021/ic00255a003
10.1021/jacs.9b03472
10.1021/jacs.6b00124
10.1038/s41598-019-55207-6
10.1021/jacs.9b10726
10.1038/nmat3696
10.1016/S0920-5861(97)81502-5
10.1021/ic4031624
10.1103/PhysRevLett.120.026401
10.1021/cm503512h
10.1002/aenm.201801772
10.1021/ja00272a073
10.1126/science.1238663
10.1038/s41467-019-13679-0
10.1103/PhysRevLett.122.097002
10.1002/anie.201701681
10.1039/dt9960000001
10.1002/anie.201201726
10.1103/PhysRevB.2.1
10.1021/jp2076885
10.1021/jp036808y
10.1126/science.282.5386.98
10.1002/anie.201703695
10.1021/acs.jpcc.5b11768
10.1038/s41586-019-1134-2
10.1039/C6SC00767H
10.1021/cm9007987
10.1021/acs.jpcc.7b12364
10.1021/acs.nanolett.7b05386
10.1103/PhysRevB.94.060502
10.1021/acs.accounts.6b00523
10.1021/j100390a004
10.1021/jacs.8b12784
10.1021/acs.chemmater.8b03202
10.1246/bcsj.80.872
10.1021/acs.jpcc.9b10850
10.1039/c3sc50794g
10.1039/cs9760500337
10.1016/j.jcat.2018.04.029
10.1126/science.1085326
10.1680/cc.25929
10.1021/acscatal.8b02839
10.1039/C5CC04645A
10.1021/jacs.0c06624
10.1021/acs.jpcc.9b03878
10.1016/0009-2614(79)80595-3
10.1103/PhysRevB.77.092505
10.3938/jkps.63.477
10.1073/pnas.1606891113
10.1021/acsaem.0c00754
10.1039/C2EE02865D
10.1021/jacs.9b03155
10.1002/adma.201700924
10.1021/acs.jpcc.6b04748
10.1039/c2jm14966d
10.1021/jo900904f
10.1063/1.323539
10.1039/C5FD00179J
10.1016/j.jallcom.2014.08.079
10.1021/cr100355b
10.1021/ja067140e
10.1103/PhysRevLett.123.206402
10.1016/S1381-1169(00)00396-4
10.1038/nmat2796
10.1021/jacs.5b10145
10.1143/JPSJ.79.103704
10.1039/c39910001544
10.1038/nchem.1476
10.1016/j.mseb.2008.11.042
10.1023/A:1021028718491
10.1021/jp072635r
10.1038/s41467-019-14216-9
10.1021/acssuschemeng.9b06299
10.1016/0021-9517(87)90109-6
10.1006/jcat.1997.1447
10.1016/j.physc.2009.03.014
10.1021/ja901105a
10.1021/acs.jpcc.9b06089
10.1142/8199
10.1088/1468-6996/12/3/034410
10.1021/ja043990n
10.1021/acscatal.8b03743
10.1038/331599a0
10.1002/wcms.1330
10.1002/anie.201810409
10.1126/science.247.4943.663
10.1021/ja01951a001
10.1021/acssuschemeng.8b04683
10.1006/jcat.2000.2858
10.1016/0021-9517(82)90016-1
10.1073/pnas.1617186114
10.1038/nmat4757
10.1126/science.1204394
10.1103/PhysRevLett.108.246404
10.1002/anie.201812131
10.1021/acs.jpcc.5b02342
ContentType Journal Article
Copyright 2021 American Chemical Society
Copyright American Chemical Society Mar 10, 2021
Copyright_xml – notice: 2021 American Chemical Society
– notice: Copyright American Chemical Society Mar 10, 2021
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
7S9
L.6
DOI 10.1021/acs.chemrev.0c01071
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Materials Research Database
AGRICOLA
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-6890
EndPage 3185
ExternalDocumentID 33606511
10_1021_acs_chemrev_0c01071
c26143890
Genre Journal Article
GroupedDBID -
.K2
02
1AW
29B
4.4
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
D0L
DU5
DZ
EBS
ED
ED~
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
P2P
PQEST
PQQKQ
ROL
RWL
TAE
TN5
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
YZZ
ZHY
---
-DZ
-~X
.DC
53G
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACGFO
ADHLV
AFXLT
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
XSW
~02
NPM
7SR
8BQ
8FD
JG9
7X8
7S9
L.6
ID FETCH-LOGICAL-a472t-83d99c2fdecea2dbfc633f44d524d72cc98223823967129dee693db30e68e863
IEDL.DBID ACS
ISSN 0009-2665
1520-6890
IngestDate Fri Jul 11 12:25:18 EDT 2025
Thu Jul 10 22:51:27 EDT 2025
Mon Jun 30 07:48:13 EDT 2025
Thu Jan 02 22:56:50 EST 2025
Thu Apr 24 23:01:51 EDT 2025
Tue Jul 01 03:16:20 EDT 2025
Fri Mar 12 03:12:11 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a472t-83d99c2fdecea2dbfc633f44d524d72cc98223823967129dee693db30e68e863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9260-6728
0000-0003-4466-7387
PMID 33606511
PQID 2507174427
PQPubID 45407
PageCount 65
ParticipantIDs proquest_miscellaneous_2574344944
proquest_miscellaneous_2491941021
proquest_journals_2507174427
pubmed_primary_33606511
crossref_citationtrail_10_1021_acs_chemrev_0c01071
crossref_primary_10_1021_acs_chemrev_0c01071
acs_journals_10_1021_acs_chemrev_0c01071
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-10
PublicationDateYYYYMMDD 2021-03-10
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-10
  day: 10
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Easton
PublicationTitle Chemical reviews
PublicationTitleAlternate Chem. Rev
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref99/cit99
ref3/cit3
ref81/cit81
ref330/cit330
ref332/cit332
ref16/cit16
Oganov A. R. (ref50/cit50) 2011
ref185/cit185
ref23/cit23
ref115/cit115
ref259/cit259
ref187/cit187
ref181/cit181
ref327/cit327
ref111/cit111
ref255/cit255
ref329/cit329
ref113/cit113
ref183/cit183
ref257/cit257
ref117/cit117
ref48/cit48
ref74/cit74
ref189/cit189
ref119/cit119
ref10/cit10
ref35/cit35
ref93/cit93
ref251/cit251
ref325/cit325
ref253/cit253
ref42/cit42
ref321/cit321
ref323/cit323
ref120/cit120
ref178/cit178
ref122/cit122
ref248/cit248
ref61/cit61
ref176/cit176
ref67/cit67
ref128/cit128
ref124/cit124
ref126/cit126
Haber F. (ref209/cit209) 1913; 19
ref54/cit54
ref240/cit240
ref137/cit137
ref380/cit380
ref310/cit310
ref318/cit318
ref11/cit11
ref102/cit102
ref29/cit29
Rylander P. N. (ref336/cit336) 1979
ref314/cit314
ref86/cit86
ref170/cit170
ref244/cit244
ref271/cit271
ref345/cit345
ref5/cit5
ref341/cit341
ref43/cit43
ref80/cit80
ref133/cit133
ref207/cit207
ref28/cit28
ref279/cit279
ref203/cit203
ref275/cit275
ref349/cit349
ref233/cit233
ref148/cit148
ref307/cit307
ref55/cit55
ref144/cit144
ref303/cit303
ref218/cit218
ref167/cit167
ref163/cit163
ref237/cit237
ref66/cit66
Ken-Ichi A. (ref213/cit213) 1995
ref264/cit264
ref22/cit22
ref260/cit260
ref334/cit334
ref87/cit87
ref106/cit106
ref190/cit190
ref140/cit140
ref198/cit198
ref214/cit214
ref194/cit194
ref98/cit98
ref268/cit268
ref369/cit369
ref153/cit153
ref297/cit297
ref227/cit227
Taylor H. F. W. (ref129/cit129) 1997
ref222/cit222
ref366/cit366
ref150/cit150
ref294/cit294
ref368/cit368
ref63/cit63
ref224/cit224
ref295/cit295
ref155/cit155
ref229/cit229
ref156/cit156
ref158/cit158
ref8/cit8
ref59/cit59
ref85/cit85
ref34/cit34
ref363/cit363
ref37/cit37
ref221/cit221
ref292/cit292
ref360/cit360
ref60/cit60
ref361/cit361
ref17/cit17
ref219/cit219
ref82/cit82
ref147/cit147
ref232/cit232
ref306/cit306
ref377/cit377
Thomas J. M. (ref169/cit169) 2014
ref230/cit230
ref145/cit145
ref304/cit304
ref238/cit238
ref21/cit21
ref166/cit166
ref379/cit379
ref164/cit164
ref350/cit350
ref352/cit352
Ando Y. (ref41/cit41) 2013
ref284/cit284
ref358/cit358
ref286/cit286
ref371/cit371
ref78/cit78
ref211/cit211
ref382/cit382
ref312/cit312
ref36/cit36
Ertl G. (ref210/cit210) 2008
ref83/cit83
ref79/cit79
ref139/cit139
ref172/cit172
ref246/cit246
ref243/cit243
Sheldon R. A. (ref338/cit338) 2001
ref317/cit317
ref270/cit270
ref200/cit200
ref344/cit344
ref14/cit14
ref57/cit57
ref278/cit278
ref134/cit134
ref208/cit208
ref40/cit40
ref273/cit273
ref347/cit347
ref131/cit131
ref205/cit205
ref161/cit161
ref320/cit320
ref142/cit142
ref216/cit216
ref301/cit301
ref374/cit374
ref289/cit289
Surburg H. (ref342/cit342) 2016
ref15/cit15
ref180/cit180
ref235/cit235
ref309/cit309
ref62/cit62
ref58/cit58
ref104/cit104
ref262/cit262
ref177/cit177
ref84/cit84
ref1/cit1
ref123/cit123
ref196/cit196
ref281/cit281
ref355/cit355
ref7/cit7
ref45/cit45
ref331/cit331
ref333/cit333
ref52/cit52
ref184/cit184
ref114/cit114
ref258/cit258
ref186/cit186
ref116/cit116
ref110/cit110
ref254/cit254
ref182/cit182
ref328/cit328
ref2/cit2
ref112/cit112
ref256/cit256
ref77/cit77
ref71/cit71
ref188/cit188
ref20/cit20
ref118/cit118
ref89/cit89
ref19/cit19
ref96/cit96
Zhang L. (ref56/cit56) 2017; 2
ref107/cit107
ref191/cit191
ref265/cit265
ref109/cit109
ref339/cit339
ref13/cit13
ref193/cit193
ref105/cit105
ref261/cit261
ref335/cit335
ref263/cit263
ref197/cit197
ref38/cit38
ref199/cit199
ref90/cit90
ref267/cit267
ref195/cit195
ref269/cit269
ref64/cit64
ref311/cit311
ref6/cit6
ref18/cit18
ref136/cit136
ref65/cit65
ref171/cit171
ref97/cit97
ref101/cit101
ref245/cit245
ref319/cit319
ref241/cit241
ref315/cit315
ref76/cit76
ref32/cit32
ref39/cit39
ref272/cit272
ref202/cit202
ref346/cit346
ref168/cit168
ref206/cit206
ref132/cit132
ref276/cit276
ref91/cit91
ref376/cit376
ref372/cit372
ref287/cit287
ref252/cit252
ref12/cit12
ref326/cit326
ref322/cit322
ref179/cit179
ref121/cit121
ref175/cit175
ref33/cit33
ref249/cit249
ref283/cit283
ref357/cit357
ref44/cit44
ref353/cit353
ref70/cit70
ref125/cit125
ref9/cit9
ref152/cit152
ref225/cit225
ref296/cit296
ref226/cit226
ref154/cit154
ref298/cit298
ref27/cit27
ref228/cit228
ref299/cit299
ref293/cit293
ref223/cit223
ref367/cit367
ref151/cit151
ref159/cit159
Nishimura S. (ref337/cit337) 2001
ref92/cit92
ref157/cit157
ref31/cit31
ref290/cit290
ref220/cit220
ref291/cit291
ref364/cit364
ref365/cit365
ref88/cit88
ref362/cit362
ref160/cit160
ref234/cit234
ref143/cit143
ref302/cit302
ref373/cit373
ref217/cit217
ref288/cit288
ref53/cit53
ref375/cit375
ref149/cit149
ref162/cit162
ref308/cit308
ref46/cit46
ref236/cit236
ref49/cit49
ref75/cit75
ref356/cit356
ref141/cit141
ref300/cit300
ref215/cit215
ref280/cit280
ref354/cit354
ref282/cit282
ref313/cit313
ref138/cit138
ref381/cit381
ref100/cit100
ref25/cit25
ref173/cit173
ref103/cit103
ref247/cit247
ref72/cit72
ref242/cit242
ref316/cit316
ref343/cit343
ref201/cit201
ref340/cit340
ref51/cit51
ref277/cit277
ref135/cit135
ref68/cit68
ref94/cit94
ref130/cit130
ref274/cit274
ref204/cit204
ref348/cit348
ref146/cit146
ref305/cit305
ref26/cit26
ref378/cit378
ref73/cit73
ref231/cit231
ref69/cit69
ref165/cit165
ref324/cit324
ref239/cit239
Liu H. (ref174/cit174) 2013
ref250/cit250
ref95/cit95
ref108/cit108
ref192/cit192
ref351/cit351
ref266/cit266
ref4/cit4
ref30/cit30
ref212/cit212
ref47/cit47
ref127/cit127
ref370/cit370
ref285/cit285
Inoshita T. (ref24/cit24) 2014; 4
ref359/cit359
References_xml – ident: ref101/cit101
  doi: 10.1038/s41567-020-0906-9
– ident: ref63/cit63
  doi: 10.1021/acs.chemmater.8b02526
– ident: ref135/cit135
  doi: 10.1021/ja504185m
– ident: ref46/cit46
  doi: 10.1103/PhysRevX.8.031067
– ident: ref146/cit146
  doi: 10.1166/jnn.2009.1747
– ident: ref128/cit128
  doi: 10.1080/14786435.2012.685770
– ident: ref380/cit380
  doi: 10.1038/s41567-020-0958-x
– ident: ref172/cit172
  doi: 10.1007/s11244-016-0653-4
– ident: ref221/cit221
  doi: 10.1016/S0920-5861(99)00115-7
– ident: ref168/cit168
  doi: 10.1016/0038-1101(70)90056-0
– ident: ref350/cit350
  doi: 10.1039/C6GC02782B
– ident: ref262/cit262
  doi: 10.1038/s41560-018-0268-z
– ident: ref265/cit265
  doi: 10.1021/jacs.8b06187
– ident: ref295/cit295
  doi: 10.1039/C7SC05343F
– ident: ref253/cit253
  doi: 10.1039/C9SC01539F
– ident: ref23/cit23
  doi: 10.1021/jacs.5b12668
– ident: ref179/cit179
  doi: 10.1016/j.cep.2015.02.004
– ident: ref106/cit106
  doi: 10.1021/jacs.7b10338
– ident: ref134/cit134
  doi: 10.1038/ncomms4515
– ident: ref157/cit157
  doi: 10.1098/rspa.2010.0560
– ident: ref158/cit158
  doi: 10.1021/acs.jpcc.8b11866
– ident: ref382/cit382
  doi: 10.1002/adma.201606202
– ident: ref235/cit235
  doi: 10.1016/S0926-860X(01)00626-3
– ident: ref259/cit259
  doi: 10.1021/acscatal.7b00284
– ident: ref321/cit321
  doi: 10.1038/nchem.626
– ident: ref87/cit87
  doi: 10.7567/APEX.11.066201
– ident: ref191/cit191
  doi: 10.1109/TPS.2003.818761
– ident: ref27/cit27
  doi: 10.1103/PhysRevB.95.165430
– ident: ref86/cit86
  doi: 10.1103/PhysRevB.40.1546
– ident: ref231/cit231
  doi: 10.1016/j.jcat.2014.12.033
– ident: ref299/cit299
  doi: 10.1007/s10562-009-0177-7
– ident: ref4/cit4
  doi: 10.1021/ar9000857
– ident: ref268/cit268
  doi: 10.1016/0021-9517(68)90088-2
– ident: ref113/cit113
  doi: 10.1002/zaac.200900421
– ident: ref275/cit275
  doi: 10.1016/S0021-9517(02)00182-3
– ident: ref71/cit71
  doi: 10.1103/PhysRev.109.1909
– ident: ref78/cit78
  doi: 10.1002/anie.198801591
– ident: ref283/cit283
  doi: 10.1016/0022-2860(69)85023-4
– ident: ref200/cit200
  doi: 10.1016/S1872-2067(14)60118-2
– ident: ref302/cit302
  doi: 10.1103/PhysRevB.79.125304
– ident: ref214/cit214
  doi: 10.1016/j.cattod.2016.08.012
– ident: ref2/cit2
  doi: 10.1021/cr60323a001
– ident: ref328/cit328
  doi: 10.1002/anie.201410773
– ident: ref114/cit114
  doi: 10.1021/acs.jpcc.6b11919
– ident: ref40/cit40
  doi: 10.1021/jacs.5b00242
– volume: 19
  start-page: 53
  year: 1913
  ident: ref209/cit209
  publication-title: Z. Elktrochem Angew. P
– ident: ref310/cit310
  doi: 10.1016/S0926-860X(01)00676-7
– volume-title: Catalytic hydrogenation in organic syntheses
  year: 1979
  ident: ref336/cit336
– ident: ref226/cit226
  doi: 10.1006/jcat.1996.0268
– ident: ref183/cit183
  doi: 10.1038/nature12435
– ident: ref250/cit250
  doi: 10.1002/anie.201712398
– ident: ref193/cit193
  doi: 10.1021/acscatal.7b01624
– ident: ref25/cit25
  doi: 10.1016/0038-1098(79)91010-X
– ident: ref273/cit273
  doi: 10.1021/ja410925g
– ident: ref378/cit378
  doi: 10.1021/ja00377a066
– ident: ref3/cit3
  doi: 10.1126/science.1207837
– ident: ref139/cit139
  doi: 10.1021/ja066177w
– ident: ref153/cit153
  doi: 10.1021/nn102839k
– ident: ref170/cit170
  doi: 10.1016/j.energy.2004.12.004
– ident: ref263/cit263
  doi: 10.1021/jacs.7b08891
– ident: ref373/cit373
  doi: 10.1039/C5SC00933B
– ident: ref247/cit247
  doi: 10.1021/acs.jpcc.7b07268
– ident: ref343/cit343
  doi: 10.1080/01614949808007106
– ident: ref77/cit77
  doi: 10.1088/0022-3719/11/5/016
– ident: ref104/cit104
  doi: 10.1103/PhysRevB.92.201109
– ident: ref229/cit229
  doi: 10.1016/j.cattod.2013.07.006
– ident: ref330/cit330
  doi: 10.1039/C5SC00205B
– ident: ref48/cit48
  doi: 10.1103/PhysRevMaterials.3.024205
– volume-title: Handbook of heterogeneous catalysis
  year: 2008
  ident: ref210/cit210
  doi: 10.1002/9783527610044
– ident: ref224/cit224
  doi: 10.1080/00986445.2014.923995
– ident: ref80/cit80
  doi: 10.1063/1.1674186
– ident: ref117/cit117
  doi: 10.1063/1.118344
– ident: ref365/cit365
  doi: 10.1016/j.elecom.2012.01.024
– ident: ref171/cit171
  doi: 10.1002/anie.201305812
– ident: ref255/cit255
  doi: 10.1038/s41586-020-2464-9
– ident: ref147/cit147
  doi: 10.1016/j.vacuum.2018.09.055
– ident: ref234/cit234
  doi: 10.1039/b002930k
– ident: ref103/cit103
  doi: 10.1021/acs.jpcc.8b10379
– ident: ref194/cit194
  doi: 10.1038/s41929-018-0045-1
– ident: ref248/cit248
  doi: 10.1021/acscatal.6b01940
– ident: ref282/cit282
  doi: 10.1002/anie.196404711
– ident: ref314/cit314
  doi: 10.1246/cl.1973.161
– ident: ref345/cit345
  doi: 10.1002/cctc.201501269
– ident: ref320/cit320
  doi: 10.1016/j.apcatb.2017.12.039
– ident: ref19/cit19
  doi: 10.1021/ja0724644
– ident: ref363/cit363
  doi: 10.1126/science.1104168
– ident: ref176/cit176
  doi: 10.1002/anie.200301669
– ident: ref233/cit233
  doi: 10.1246/cl.2000.514
– ident: ref207/cit207
  doi: 10.1002/anie.200800480
– ident: ref212/cit212
  doi: 10.1016/0021-9517(72)90179-0
– ident: ref18/cit18
  doi: 10.1021/nl062717b
– ident: ref143/cit143
  doi: 10.1103/PhysRevB.80.075201
– ident: ref83/cit83
  doi: 10.1109/JDT.2015.2496588
– ident: ref94/cit94
  doi: 10.1038/s41535-017-0053-4
– ident: ref42/cit42
  doi: 10.1038/s41586-019-0954-4
– ident: ref155/cit155
  doi: 10.1038/ncomms3378
– ident: ref372/cit372
  doi: 10.1038/ncomms5881
– ident: ref29/cit29
  doi: 10.1039/C7TC02488F
– ident: ref38/cit38
  doi: 10.1088/1674-1056/ab3f95
– ident: ref279/cit279
  doi: 10.1021/acs.jpcc.5b06811
– ident: ref274/cit274
  doi: 10.1016/S0166-9834(00)82492-6
– ident: ref69/cit69
  doi: 10.1080/00107517708231483
– ident: ref182/cit182
  doi: 10.1126/science.1211906
– ident: ref249/cit249
  doi: 10.1038/s41929-017-0022-0
– ident: ref12/cit12
  doi: 10.1038/365039a0
– ident: ref186/cit186
  doi: 10.1016/j.ccr.2013.02.010
– ident: ref55/cit55
  doi: 10.1021/jacs.7b06279
– ident: ref243/cit243
  doi: 10.1039/C6CY01962E
– ident: ref166/cit166
  doi: 10.1016/j.ijhydene.2015.10.064
– ident: ref327/cit327
  doi: 10.1021/acscatal.5b00278
– ident: ref20/cit20
  doi: 10.1098/rsta.2014.0450
– ident: ref364/cit364
  doi: 10.1126/science.1261747
– ident: ref341/cit341
  doi: 10.1021/ar700140m
– ident: ref82/cit82
  doi: 10.1063/1.2149989
– ident: ref76/cit76
  doi: 10.1038/nphys119
– ident: ref357/cit357
  doi: 10.1002/anie.201806936
– ident: ref377/cit377
  doi: 10.1021/acs.joc.8b02094
– ident: ref225/cit225
  doi: 10.1016/0021-9517(92)90112-U
– ident: ref184/cit184
  doi: 10.1038/nchem.906
– ident: ref79/cit79
  doi: 10.1016/0009-2614(90)87265-S
– ident: ref43/cit43
  doi: 10.1021/jacs.0c01227
– ident: ref137/cit137
  doi: 10.1103/PhysRevB.73.205108
– ident: ref347/cit347
  doi: 10.1021/ja01643a067
– ident: ref131/cit131
  doi: 10.1021/jp065793b
– ident: ref323/cit323
  doi: 10.1039/f19848001595
– ident: ref116/cit116
  doi: 10.1103/PhysRevB.95.165436
– ident: ref61/cit61
  doi: 10.1021/ic00345a030
– ident: ref152/cit152
  doi: 10.1063/1.3463653
– ident: ref245/cit245
  doi: 10.1021/acscatal.8b03650
– ident: ref306/cit306
  doi: 10.1016/j.cattod.2016.06.035
– ident: ref335/cit335
  doi: 10.1016/j.jechem.2019.10.014
– ident: ref257/cit257
  doi: 10.1002/aenm.202003723
– ident: ref167/cit167
  doi: 10.1039/C6TA09561E
– ident: ref267/cit267
  doi: 10.1016/j.jcat.2004.03.046
– ident: ref353/cit353
  doi: 10.1021/cr00039a007
– ident: ref370/cit370
  doi: 10.1021/ol701885p
– ident: ref141/cit141
  doi: 10.1103/PhysRevB.85.045204
– ident: ref144/cit144
  doi: 10.7567/JJAP.52.090001
– ident: ref51/cit51
  doi: 10.1038/s41578-019-0101-8
– ident: ref285/cit285
  doi: 10.1016/j.jallcom.2005.01.052
– ident: ref217/cit217
  doi: 10.1126/science.1064399
– ident: ref307/cit307
  doi: 10.1016/j.apcatb.2017.04.073
– ident: ref57/cit57
  doi: 10.1021/acs.inorgchem.9b03046
– ident: ref126/cit126
  doi: 10.1002/adma.200304925
– ident: ref339/cit339
  doi: 10.1002/adsc.200390000
– ident: ref199/cit199
  doi: 10.1039/C1CP22271F
– ident: ref375/cit375
  doi: 10.1021/acs.langmuir.6b04152
– ident: ref91/cit91
  doi: 10.1038/444427a
– ident: ref242/cit242
  doi: 10.1021/acs.chemmater.8b01819
– ident: ref300/cit300
  doi: 10.1126/science.1143078
– volume-title: Fine chemicals through heterogeneous catalysis
  year: 2001
  ident: ref338/cit338
– ident: ref178/cit178
  doi: 10.1002/anie.200301553
– ident: ref241/cit241
  doi: 10.1021/acscatal.6b03357
– ident: ref308/cit308
  doi: 10.1016/j.molcata.2008.08.006
– ident: ref346/cit346
  doi: 10.1021/jacs.7b08252
– ident: ref312/cit312
  doi: 10.1016/0021-9517(65)90016-3
– ident: ref313/cit313
  doi: 10.1016/j.ccr.2012.10.005
– ident: ref73/cit73
  doi: 10.1038/s41467-020-15868-8
– ident: ref318/cit318
  doi: 10.1016/j.apcata.2004.09.020
– ident: ref331/cit331
  doi: 10.1002/cssc.201501498
– ident: ref96/cit96
  doi: 10.1021/ic501362b
– ident: ref17/cit17
  doi: 10.1038/nature01053
– ident: ref216/cit216
  doi: 10.1021/j100095a010
– ident: ref5/cit5
  doi: 10.1038/scientificamerican0777-92
– ident: ref238/cit238
  doi: 10.1038/ncomms7731
– ident: ref258/cit258
  doi: 10.1038/nchem.2595
– ident: ref31/cit31
  doi: 10.1038/nature07786
– ident: ref84/cit84
  doi: 10.1002/adma.200306484
– ident: ref208/cit208
  doi: 10.1016/0021-9517(89)90304-7
– ident: ref232/cit232
  doi: 10.1038/nchem.121
– ident: ref44/cit44
  doi: 10.1039/C7TC04989G
– volume: 2
  start-page: 1
  year: 2017
  ident: ref56/cit56
  publication-title: Nat. Rev. Mater.
– ident: ref289/cit289
  doi: 10.1016/0926-860X(96)00047-6
– ident: ref223/cit223
  doi: 10.1002/1521-3773(20010316)40:6<1061::AID-ANIE10610>3.0.CO;2-B
– ident: ref287/cit287
  doi: 10.1021/jacs.6b05586
– ident: ref240/cit240
  doi: 10.1002/cctc.201301061
– ident: ref190/cit190
  doi: 10.1039/C7EE02220D
– ident: ref115/cit115
  doi: 10.1103/PhysRevB.96.125131
– ident: ref32/cit32
  doi: 10.1103/PhysRevMaterials.2.053604
– ident: ref362/cit362
  doi: 10.1021/ar400203e
– ident: ref95/cit95
  doi: 10.1088/1367-2630/aa8a2d
– ident: ref271/cit271
  doi: 10.1016/S0926-860X(01)00826-2
– ident: ref161/cit161
  doi: 10.1103/PhysRevB.98.125128
– ident: ref368/cit368
  doi: 10.1126/science.1088103
– ident: ref88/cit88
  doi: 10.1007/s41614-019-0026-0
– ident: ref228/cit228
  doi: 10.1006/jcat.1996.0314
– volume-title: Common fragrance and flavor materials: preparation, properties and uses
  year: 2016
  ident: ref342/cit342
  doi: 10.1002/9783527693153
– volume-title: Ammonia: catalysis and manufacture
  year: 1995
  ident: ref213/cit213
– ident: ref201/cit201
  doi: 10.1103/PhysRevLett.53.850
– ident: ref196/cit196
  doi: 10.1039/C4CS00085D
– ident: ref198/cit198
  doi: 10.1038/s41586-019-1260-x
– ident: ref366/cit366
  doi: 10.1016/j.elecom.2014.04.012
– ident: ref305/cit305
  doi: 10.1021/cs400336z
– ident: ref304/cit304
  doi: 10.1039/C8CP04216K
– ident: ref316/cit316
  doi: 10.1016/0021-9517(67)90293-X
– ident: ref36/cit36
  doi: 10.1021/ja109397k
– ident: ref110/cit110
  doi: 10.1103/PhysRevB.48.12253
– ident: ref15/cit15
  doi: 10.1021/cg0600290
– ident: ref72/cit72
  doi: 10.1021/acs.inorgchem.6b01369
– ident: ref74/cit74
  doi: 10.1103/PhysRevLett.112.136403
– ident: ref379/cit379
  doi: 10.1021/jacs.0c11047
– ident: ref130/cit130
  doi: 10.1038/332525a0
– ident: ref59/cit59
  doi: 10.1021/acsami.8b18676
– ident: ref211/cit211
  doi: 10.1246/bcsj.44.3216
– ident: ref53/cit53
  doi: 10.1016/j.cpc.2012.05.008
– ident: ref30/cit30
  doi: 10.1103/PhysRevB.93.205125
– ident: ref322/cit322
  doi: 10.1021/j100304a034
– ident: ref192/cit192
  doi: 10.1016/j.apcata.2004.01.002
– ident: ref288/cit288
  doi: 10.1016/0021-9517(85)90265-9
– ident: ref204/cit204
  doi: 10.1016/0021-9517(77)90237-8
– ident: ref230/cit230
  doi: 10.1021/ja010963d
– ident: ref348/cit348
  doi: 10.1002/anie.200905380
– ident: ref325/cit325
  doi: 10.1002/chem.201800467
– ident: ref356/cit356
  doi: 10.1038/s41565-018-0167-2
– ident: ref277/cit277
  doi: 10.1021/jacs.0c02345
– ident: ref100/cit100
  doi: 10.1103/PhysRevB.96.245303
– ident: ref180/cit180
  doi: 10.1016/j.joule.2018.04.017
– ident: ref102/cit102
  doi: 10.1038/s41467-020-15253-5
– ident: ref39/cit39
  doi: 10.1021/ar4002922
– ident: ref67/cit67
  doi: 10.1021/jp711631j
– ident: ref138/cit138
  doi: 10.1021/cm051662w
– ident: ref89/cit89
  doi: 10.1002/advs.201800666
– ident: ref16/cit16
  doi: 10.1016/j.jcrysgro.2016.08.048
– ident: ref35/cit35
  doi: 10.1038/nchem.2716
– ident: ref52/cit52
  doi: 10.1103/PhysRevX.7.011017
– ident: ref197/cit197
  doi: 10.1126/science.1254234
– ident: ref14/cit14
  doi: 10.1126/science.1083842
– ident: ref148/cit148
  doi: 10.1021/acsnano.7b06277
– ident: ref173/cit173
  doi: 10.1016/j.ijhydene.2018.12.024
– ident: ref81/cit81
  doi: 10.1021/ja9943445
– ident: ref127/cit127
  doi: 10.1063/1.1829151
– ident: ref159/cit159
  doi: 10.1002/anie.199107891
– ident: ref340/cit340
  doi: 10.1039/C6SC01864E
– ident: ref123/cit123
  doi: 10.1016/j.mseb.2009.12.018
– ident: ref133/cit133
  doi: 10.1021/ja016112n
– ident: ref108/cit108
  doi: 10.1103/PhysRevLett.107.087201
– ident: ref374/cit374
  doi: 10.1038/srep10366
– ident: ref118/cit118
  doi: 10.1088/0256-307X/31/11/118501
– ident: ref125/cit125
  doi: 10.1063/1.2735280
– ident: ref187/cit187
  doi: 10.1021/ja00464a015
– ident: ref311/cit311
  doi: 10.1002/anie.197101951
– ident: ref359/cit359
  doi: 10.1021/acscatal.0c03416
– ident: ref227/cit227
  doi: 10.1016/S0926-860X(00)00713-4
– ident: ref239/cit239
  doi: 10.1021/cs401044a
– ident: ref109/cit109
  doi: 10.1103/PhysRevLett.68.3789
– ident: ref175/cit175
  doi: 10.1002/anie.201409885
– ident: ref222/cit222
  doi: 10.1016/S0926-860X(96)00304-3
– ident: ref99/cit99
  doi: 10.1021/acs.nanolett.6b05199
– ident: ref140/cit140
  doi: 10.1103/PhysRevLett.91.126401
– ident: ref122/cit122
  doi: 10.1109/JDT.2005.858942
– ident: ref309/cit309
  doi: 10.1016/0021-9517(86)90316-7
– ident: ref292/cit292
  doi: 10.1038/s41467-019-10492-7
– ident: ref33/cit33
  doi: 10.1134/S0021364019060043
– ident: ref315/cit315
  doi: 10.1246/bcsj.20140395
– ident: ref151/cit151
  doi: 10.1103/PhysRevB.17.2575
– ident: ref218/cit218
  doi: 10.1103/PhysRevLett.83.1814
– ident: ref371/cit371
  doi: 10.1039/C4CC00802B
– ident: ref112/cit112
  doi: 10.1021/jz502588x
– ident: ref49/cit49
  doi: 10.1103/PhysRevB.96.035421
– ident: ref58/cit58
  doi: 10.1021/jacs.6b09067
– ident: ref9/cit9
  doi: 10.1002/anie.198810211
– ident: ref177/cit177
  doi: 10.1038/nature02274
– ident: ref326/cit326
  doi: 10.1021/ja5042836
– ident: ref150/cit150
  doi: 10.1039/C8DT02548G
– ident: ref270/cit270
  doi: 10.1016/S0021-9517(03)00156-8
– ident: ref60/cit60
  doi: 10.1021/acs.chemmater.8b02907
– ident: ref145/cit145
  doi: 10.1016/S0022-0248(01)02038-3
– ident: ref244/cit244
  doi: 10.1002/cctc.201700353
– ident: ref286/cit286
  doi: 10.1038/nature01210
– ident: ref298/cit298
  doi: 10.1021/jacs.7b05492
– ident: ref294/cit294
  doi: 10.1039/C6SC02382G
– ident: ref344/cit344
  doi: 10.1016/j.apcata.2005.05.045
– ident: ref260/cit260
  doi: 10.1021/jacs.8b08334
– ident: ref360/cit360
  doi: 10.1021/acs.jpcc.6b00983
– ident: ref203/cit203
  doi: 10.1016/0167-5729(91)90014-O
– ident: ref381/cit381
  doi: 10.1088/0022-3719/19/9/008
– ident: ref22/cit22
  doi: 10.1038/nature11812
– ident: ref26/cit26
  doi: 10.1021/ja5065125
– ident: ref154/cit154
  doi: 10.1016/S0022-3093(99)00415-9
– ident: ref54/cit54
  doi: 10.1021/acs.chemmater.8b03021
– ident: ref21/cit21
  doi: 10.1002/adma.200700663
– ident: ref132/cit132
  doi: 10.1021/ic00255a003
– ident: ref64/cit64
  doi: 10.1021/jacs.9b03472
– ident: ref160/cit160
  doi: 10.1021/jacs.6b00124
– ident: ref367/cit367
  doi: 10.1038/s41598-019-55207-6
– ident: ref254/cit254
  doi: 10.1021/jacs.9b10726
– ident: ref188/cit188
  doi: 10.1038/nmat3696
– ident: ref284/cit284
  doi: 10.1016/S0920-5861(97)81502-5
– ident: ref164/cit164
  doi: 10.1021/ic4031624
– ident: ref47/cit47
  doi: 10.1103/PhysRevLett.120.026401
– ident: ref105/cit105
  doi: 10.1021/cm503512h
– ident: ref264/cit264
  doi: 10.1002/aenm.201801772
– ident: ref11/cit11
  doi: 10.1021/ja00272a073
– ident: ref301/cit301
  doi: 10.1126/science.1238663
– ident: ref358/cit358
  doi: 10.1038/s41467-019-13679-0
– volume: 4
  start-page: 031023
  year: 2014
  ident: ref24/cit24
  publication-title: Phys. Rev. X
– ident: ref37/cit37
  doi: 10.1103/PhysRevLett.122.097002
– ident: ref70/cit70
  doi: 10.1002/anie.201701681
– ident: ref62/cit62
  doi: 10.1039/dt9960000001
– volume-title: Principles and practice of heterogeneous catalysis
  year: 2014
  ident: ref169/cit169
– ident: ref352/cit352
  doi: 10.1002/anie.201201726
– ident: ref290/cit290
  doi: 10.1103/PhysRevB.2.1
– ident: ref349/cit349
  doi: 10.1021/jp2076885
– ident: ref111/cit111
  doi: 10.1021/jp036808y
– ident: ref195/cit195
  doi: 10.1126/science.282.5386.98
– ident: ref261/cit261
  doi: 10.1002/anie.201703695
– ident: ref333/cit333
  doi: 10.1021/acs.jpcc.5b11768
– ident: ref185/cit185
  doi: 10.1038/s41586-019-1134-2
– ident: ref246/cit246
  doi: 10.1039/C6SC00767H
– ident: ref149/cit149
  doi: 10.1021/cm9007987
– ident: ref280/cit280
  doi: 10.1021/acs.jpcc.7b12364
– start-page: 82
  year: 2013
  ident: ref41/cit41
  publication-title: J. Phys. Soc. Jpn.
– ident: ref45/cit45
  doi: 10.1021/acs.nanolett.7b05386
– ident: ref98/cit98
  doi: 10.1103/PhysRevB.94.060502
– ident: ref189/cit189
  doi: 10.1021/acs.accounts.6b00523
– ident: ref10/cit10
  doi: 10.1021/j100390a004
– ident: ref256/cit256
  doi: 10.1021/jacs.8b12784
– ident: ref376/cit376
  doi: 10.1021/acs.chemmater.8b03202
– ident: ref276/cit276
  doi: 10.1246/bcsj.80.872
– ident: ref281/cit281
  doi: 10.1021/acs.jpcc.9b10850
– ident: ref324/cit324
  doi: 10.1039/c3sc50794g
– ident: ref6/cit6
  doi: 10.1039/cs9760500337
– ident: ref278/cit278
  doi: 10.1016/j.jcat.2018.04.029
– ident: ref181/cit181
  doi: 10.1126/science.1085326
– volume-title: Cement chemistry
  year: 1997
  ident: ref129/cit129
  doi: 10.1680/cc.25929
– ident: ref251/cit251
  doi: 10.1021/acscatal.8b02839
– ident: ref329/cit329
  doi: 10.1039/C5CC04645A
– ident: ref317/cit317
  doi: 10.1021/jacs.0c06624
– ident: ref334/cit334
  doi: 10.1021/acs.jpcc.9b03878
– ident: ref202/cit202
  doi: 10.1016/0009-2614(79)80595-3
– ident: ref92/cit92
  doi: 10.1103/PhysRevB.77.092505
– ident: ref93/cit93
  doi: 10.3938/jkps.63.477
– ident: ref68/cit68
  doi: 10.1073/pnas.1606891113
– ident: ref293/cit293
  doi: 10.1021/acsaem.0c00754
– ident: ref319/cit319
  doi: 10.1039/C2EE02865D
– ident: ref28/cit28
  doi: 10.1021/jacs.9b03155
– ident: ref163/cit163
  doi: 10.1002/adma.201700924
– ident: ref303/cit303
  doi: 10.1021/acs.jpcc.6b04748
– ident: ref120/cit120
  doi: 10.1039/c2jm14966d
– ident: ref7/cit7
  doi: 10.1021/jo900904f
– ident: ref291/cit291
  doi: 10.1063/1.323539
– ident: ref332/cit332
  doi: 10.1039/C5FD00179J
– ident: ref162/cit162
  doi: 10.1016/j.jallcom.2014.08.079
– ident: ref354/cit354
  doi: 10.1021/cr100355b
– ident: ref369/cit369
  doi: 10.1021/ja067140e
– ident: ref65/cit65
  doi: 10.1103/PhysRevLett.123.206402
– ident: ref220/cit220
  doi: 10.1016/S1381-1169(00)00396-4
– volume-title: Handbook of heterogeneous catalytic hydrogenation for organic synthesis
  year: 2001
  ident: ref337/cit337
– ident: ref34/cit34
  doi: 10.1038/nmat2796
– ident: ref237/cit237
  doi: 10.1021/jacs.5b10145
– ident: ref142/cit142
  doi: 10.1143/JPSJ.79.103704
– ident: ref215/cit215
  doi: 10.1039/c39910001544
– ident: ref236/cit236
  doi: 10.1038/nchem.1476
– ident: ref124/cit124
  doi: 10.1016/j.mseb.2008.11.042
– ident: ref219/cit219
  doi: 10.1023/A:1021028718491
– ident: ref119/cit119
  doi: 10.1021/jp072635r
– ident: ref156/cit156
  doi: 10.1038/s41467-019-14216-9
– ident: ref297/cit297
  doi: 10.1021/acssuschemeng.9b06299
– ident: ref206/cit206
  doi: 10.1016/0021-9517(87)90109-6
– ident: ref269/cit269
  doi: 10.1006/jcat.1997.1447
– volume-title: Modern methods of crystal structure prediction
  year: 2011
  ident: ref50/cit50
– ident: ref90/cit90
  doi: 10.1016/j.physc.2009.03.014
– ident: ref355/cit355
  doi: 10.1021/ja901105a
– ident: ref107/cit107
  doi: 10.1021/acs.jpcc.9b06089
– volume-title: Ammonia synthesis catalysts: innovation and practice
  year: 2013
  ident: ref174/cit174
  doi: 10.1142/8199
– ident: ref85/cit85
  doi: 10.1088/1468-6996/12/3/034410
– ident: ref136/cit136
  doi: 10.1021/ja043990n
– ident: ref252/cit252
  doi: 10.1021/acscatal.8b03743
– ident: ref13/cit13
  doi: 10.1038/331599a0
– ident: ref97/cit97
  doi: 10.1002/wcms.1330
– ident: ref266/cit266
  doi: 10.1002/anie.201810409
– ident: ref8/cit8
  doi: 10.1126/science.247.4943.663
– ident: ref1/cit1
  doi: 10.1021/ja01951a001
– ident: ref296/cit296
  doi: 10.1021/acssuschemeng.8b04683
– ident: ref272/cit272
  doi: 10.1006/jcat.2000.2858
– ident: ref205/cit205
  doi: 10.1016/0021-9517(82)90016-1
– ident: ref121/cit121
  doi: 10.1073/pnas.1617186114
– ident: ref351/cit351
  doi: 10.1038/nmat4757
– ident: ref66/cit66
  doi: 10.1126/science.1204394
– ident: ref75/cit75
  doi: 10.1103/PhysRevLett.108.246404
– ident: ref165/cit165
  doi: 10.1002/anie.201812131
– ident: ref361/cit361
  doi: 10.1021/acs.jpcc.5b02342
SSID ssj0005527
Score 2.665203
SecondaryResourceType review_article
Snippet Electrides are materials in which electrons serve as anions. Here, the concept of inorganic electrides is extended in several respects: from ionic crystals to...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3121
SubjectTerms Ammonia
Amorphous materials
Anions
Carbon
Chemical reactions
Chemical synthesis
Confined spaces
Crystallography
Crystals
Electron gas
Electron mobility
Electrons
High pressure
hydrogen
hydrogenation
Intermetallic compounds
Ionic crystals
Renewable energy sources
topology
Title Advances in Materials and Applications of Inorganic Electrides
URI http://dx.doi.org/10.1021/acs.chemrev.0c01071
https://www.ncbi.nlm.nih.gov/pubmed/33606511
https://www.proquest.com/docview/2507174427
https://www.proquest.com/docview/2491941021
https://www.proquest.com/docview/2574344944
Volume 121
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JSwMxFA5SD3pxX6pVInjw4NSZJJNMLkIpLVVoL1bobZhsWNSp2OnFX28yS1u34nXmJSQvL-R7vOUD4NLHIkq04B5WSnpEhNzjWgmPhhYu-5hhljee7w9o75Hcj8LRUrH6twg-Cm4SaZX_pF8dJYsvrfvgKsbXEbXX2CGh9sMio6NiaHVBA0rDqsnQ75O450hOvz5Hf2DM_K3pboNBVbFTpJg8N2eZaMqPnw0c_7eNHbBVok7YKsxkF6zpdA9stCuyt31w2ypyAaZwnMJ-khV2CZNUwdZSiBtODLxLCyYoCTs5hc5Y6ekBGHY7w3bPK6kVvIQwlHkRVpxLZJSWOkFKGEkxNoSoEBHFkJSurZ8LEXLKLCJQWlOOlcC-ppGOKD4EtXSS6mMApaScG6ZlYCiJjImYsX6vCAwOZRJRUgdXdutxeTOmcR70RkHsPpb6iEt91AGqziKWZYdyR5TxsnrQ9XzQW9GgY7V4ozrkxZqQA8WMEMTq4GL-256AC54kqZ7MrAzhASdu2hUyocVjhHBid31UGNB8TRhbV9Gi25P_6-MUbCKXQZNnDzZALXuf6TMLgTJxnhv-J6pSAS0
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYQDLDwfhQKGImBgUBjO3a8IFVVqxYoC63ULYpfUgWkiKQLvx47jxYQVLAmtnVnn-XPuvP3AXDewCKMteAeVkp6RATc41oJjwYWLjcwwywnnu8_0O6Q3I6CUfkozL2FsUakdqQ0T-LP2QX8a_fNuvHilFka0t4i3MPxFQtHkIvrZutxXthRCbW63AGlQcU19PMg7lSS6ddT6ReomR85nQ0wnBmbV5o8XU0zcSXfv_E4_tebTbBeYlDYLIJmCyzpZBustirptx1w0ywqA1I4TmA_zooohXGiYPNTwhtODOwlhS6UhO1cUGesdLoLBp32oNX1SqEFLyYMZV6IFecSGaWljpESRlKMDSEqQEQxJKUj-XMJQ06ZxQdKa8qxErihaahDivfAcjJJ9AGAUlLODdPSN5SExoTM2Fuw8A0OZBxSUgMX1vWo3CdplKfAkR-5j-V8ROV81ACqliSSJV-5k814XtzpctbptaDrWNy8Xq313CbkIDIjBLEaOJv9tivgUilxoidT24ZwnxM37II2gUVnhHBivd4v4mhmE8b24mix7uHf5-MUrHYH_fvovvdwdwTWkKutyesK62A5e5vqYwuOMnGS74UPwtMJjg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NbxMxEB1FQSpcCi3QBkLrShw4sGnW9trrC1IUEiVtEyERpHBarb-kCNhE7ObCr8fejwQQRKjXXduascfys974DcDrPpFxaqQIiNYqoDISgTBaBixycLlPOOGl8Pxsziaf6M0yWrYgbt7COCNyN1Jekvh-V2-0rRUGwmv_3bnyzVdn6St3k_CPxx944s7H9mD4cZ_c0RRr9fwBY1GjN_T3QfzJpPLfT6Z_wM3y2Bk_hs87g8tsky-9bSF76scfWo738egJHNdYFA2q4DmBlslO4eGwKQH3FN4NqgyBHK0yNEuLKlpRmmk0-IX4RmuLpllVH0qhUVlYZ6VN_gwW49FiOAnqggtBSjkugphoIRS22iiTYi2tYoRYSnWEqeZYKS_254lDwbjDCdoYJoiWpG9YbGJGnkM7W2fmHJBSTAjLjQoto7G1MbfuNixDSyKVxox24I1zPan3S56UVDgOE_-xno-kno8O4GZZElXrlvvyGV8Pd3q767SpZDsON-826723CXuozCnFvANXu99uBTylkmZmvXVtqAgF9cMeaBM5lEapoM7rsyqWdjYR4i6QDvO--P_5uISjD-_Hyd10fvsSHmGfYlOmF3ahXXzfmlcOIxXyotwOPwFXowwR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advances+in+Materials+and+Applications+of+Inorganic+Electrides&rft.jtitle=Chemical+reviews&rft.au=Hosono%2C+Hideo&rft.au=Kitano%2C+Masaaki&rft.date=2021-03-10&rft.issn=1520-6890&rft.eissn=1520-6890&rft.volume=121&rft.issue=5&rft.spage=3121&rft_id=info:doi/10.1021%2Facs.chemrev.0c01071&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2665&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2665&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2665&client=summon