Advances in Materials and Applications of Inorganic Electrides
Electrides are materials in which electrons serve as anions. Here, the concept of inorganic electrides is extended in several respects: from ionic crystals to intermetallic compounds in host materials, from crystalline to amorphous solids, and from 0-dimensional to 1- and 2-dimensional materials in...
Saved in:
Published in | Chemical reviews Vol. 121; no. 5; pp. 3121 - 3185 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
10.03.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0009-2665 1520-6890 1520-6890 |
DOI | 10.1021/acs.chemrev.0c01071 |
Cover
Loading…
Abstract | Electrides are materials in which electrons serve as anions. Here, the concept of inorganic electrides is extended in several respects: from ionic crystals to intermetallic compounds in host materials, from crystalline to amorphous solids, and from 0-dimensional to 1- and 2-dimensional materials in electron-confined spaces. In particular, 2D electrides, in which anionic electrons are sandwiched by cationic slabs, can form a bulk crystal of a 2-dimensional electron gas, thus exhibiting a large electron mobility and providing a platform for topological materials. Exploration of new electrides by computation and high pressure has advanced, revealing that an electride is a stable equilibrium phase of many elements and compounds under high pressure. This review describes the history and current status of electride research and next summarizes the chemical application of electrides and relevant materials. An emphasis is placed on catalysts for ammonia synthesis from N2 and H2 at mild conditions. This subject is accelerated by a demand for on-site ammonia synthesis using hydrogen produced by renewable energy sources. A wide applicability of electride for chemical reactions such selective hydrogenation and carbon–carbon coupling is shown by extending the concept of electrides. Finally, a view for the relationship between electrides and crystallographic voids and current issues are described. |
---|---|
AbstractList | Electrides are materials in which electrons serve as anions. Here, the concept of inorganic electrides is extended in several respects: from ionic crystals to intermetallic compounds in host materials, from crystalline to amorphous solids, and from 0-dimensional to 1- and 2-dimensional materials in electron-confined spaces. In particular, 2D electrides, in which anionic electrons are sandwiched by cationic slabs, can form a bulk crystal of a 2-dimensional electron gas, thus exhibiting a large electron mobility and providing a platform for topological materials. Exploration of new electrides by computation and high pressure has advanced, revealing that an electride is a stable equilibrium phase of many elements and compounds under high pressure. This review describes the history and current status of electride research and next summarizes the chemical application of electrides and relevant materials. An emphasis is placed on catalysts for ammonia synthesis from N2 and H2 at mild conditions. This subject is accelerated by a demand for on-site ammonia synthesis using hydrogen produced by renewable energy sources. A wide applicability of electride for chemical reactions such selective hydrogenation and carbon–carbon coupling is shown by extending the concept of electrides. Finally, a view for the relationship between electrides and crystallographic voids and current issues are described. Electrides are materials in which electrons serve as anions. Here, the concept of inorganic electrides is extended in several respects: from ionic crystals to intermetallic compounds in host materials, from crystalline to amorphous solids, and from 0-dimensional to 1- and 2-dimensional materials in electron-confined spaces. In particular, 2D electrides, in which anionic electrons are sandwiched by cationic slabs, can form a bulk crystal of a 2-dimensional electron gas, thus exhibiting a large electron mobility and providing a platform for topological materials. Exploration of new electrides by computation and high pressure has advanced, revealing that an electride is a stable equilibrium phase of many elements and compounds under high pressure. This review describes the history and current status of electride research and next summarizes the chemical application of electrides and relevant materials. An emphasis is placed on catalysts for ammonia synthesis from N₂ and H₂ at mild conditions. This subject is accelerated by a demand for on-site ammonia synthesis using hydrogen produced by renewable energy sources. A wide applicability of electride for chemical reactions such selective hydrogenation and carbon–carbon coupling is shown by extending the concept of electrides. Finally, a view for the relationship between electrides and crystallographic voids and current issues are described. Electrides are materials in which electrons serve as anions. Here, the concept of inorganic electrides is extended in several respects: from ionic crystals to intermetallic compounds in host materials, from crystalline to amorphous solids, and from 0-dimensional to 1- and 2-dimensional materials in electron-confined spaces. In particular, 2D electrides, in which anionic electrons are sandwiched by cationic slabs, can form a bulk crystal of a 2-dimensional electron gas, thus exhibiting a large electron mobility and providing a platform for topological materials. Exploration of new electrides by computation and high pressure has advanced, revealing that an electride is a stable equilibrium phase of many elements and compounds under high pressure. This review describes the history and current status of electride research and next summarizes the chemical application of electrides and relevant materials. An emphasis is placed on catalysts for ammonia synthesis from N and H at mild conditions. This subject is accelerated by a demand for on-site ammonia synthesis using hydrogen produced by renewable energy sources. A wide applicability of electride for chemical reactions such selective hydrogenation and carbon-carbon coupling is shown by extending the concept of electrides. Finally, a view for the relationship between electrides and crystallographic voids and current issues are described. Electrides are materials in which electrons serve as anions. Here, the concept of inorganic electrides is extended in several respects: from ionic crystals to intermetallic compounds in host materials, from crystalline to amorphous solids, and from 0-dimensional to 1- and 2-dimensional materials in electron-confined spaces. In particular, 2D electrides, in which anionic electrons are sandwiched by cationic slabs, can form a bulk crystal of a 2-dimensional electron gas, thus exhibiting a large electron mobility and providing a platform for topological materials. Exploration of new electrides by computation and high pressure has advanced, revealing that an electride is a stable equilibrium phase of many elements and compounds under high pressure. This review describes the history and current status of electride research and next summarizes the chemical application of electrides and relevant materials. An emphasis is placed on catalysts for ammonia synthesis from N2 and H2 at mild conditions. This subject is accelerated by a demand for on-site ammonia synthesis using hydrogen produced by renewable energy sources. A wide applicability of electride for chemical reactions such selective hydrogenation and carbon-carbon coupling is shown by extending the concept of electrides. Finally, a view for the relationship between electrides and crystallographic voids and current issues are described.Electrides are materials in which electrons serve as anions. Here, the concept of inorganic electrides is extended in several respects: from ionic crystals to intermetallic compounds in host materials, from crystalline to amorphous solids, and from 0-dimensional to 1- and 2-dimensional materials in electron-confined spaces. In particular, 2D electrides, in which anionic electrons are sandwiched by cationic slabs, can form a bulk crystal of a 2-dimensional electron gas, thus exhibiting a large electron mobility and providing a platform for topological materials. Exploration of new electrides by computation and high pressure has advanced, revealing that an electride is a stable equilibrium phase of many elements and compounds under high pressure. This review describes the history and current status of electride research and next summarizes the chemical application of electrides and relevant materials. An emphasis is placed on catalysts for ammonia synthesis from N2 and H2 at mild conditions. This subject is accelerated by a demand for on-site ammonia synthesis using hydrogen produced by renewable energy sources. A wide applicability of electride for chemical reactions such selective hydrogenation and carbon-carbon coupling is shown by extending the concept of electrides. Finally, a view for the relationship between electrides and crystallographic voids and current issues are described. |
Author | Hosono, Hideo Kitano, Masaaki |
AuthorAffiliation | International Center for Materials Nanoarchitectonics Precursory Research for Embryonic Science and Technology (PRESTO) Materials Research Center for Element Strategy Japan Science and Technology Agency (JST) Tokyo Institute of Technology National Institute for Materials Science |
AuthorAffiliation_xml | – name: National Institute for Materials Science – name: Precursory Research for Embryonic Science and Technology (PRESTO) – name: Japan Science and Technology Agency (JST) – name: Materials Research Center for Element Strategy – name: International Center for Materials Nanoarchitectonics – name: Tokyo Institute of Technology |
Author_xml | – sequence: 1 givenname: Hideo orcidid: 0000-0001-9260-6728 surname: Hosono fullname: Hosono, Hideo email: hosono@mces.titech.ac.jp organization: National Institute for Materials Science – sequence: 2 givenname: Masaaki orcidid: 0000-0003-4466-7387 surname: Kitano fullname: Kitano, Masaaki organization: Japan Science and Technology Agency (JST) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33606511$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1KAzEUhYMo2lafQJABN26mzd9kJhuhlKqFipvuQ5rc0cg0U5Op4Nub2taFi7oKl3zn3OScPjr1rQeErgkeEkzJSJs4NG-wCvA5xAYTXJIT1CMFxbmoJD5FPYyxzKkQxQXqx_iexqKg5Tm6YExgURDSQ_dj-6m9gZg5nz3rDoLTTcy0t9l4vW6c0Z1rfczaOpv5Nrxq70w2bcB0wVmIl-isTjxc7c8BWjxMF5OnfP7yOJuM57nmJe3yilkpDa0tGNDULmsjGKs5twXltqTGyIpSVlEmRUmotABCMrtkGEQFlWADdLezXYf2YwOxUysXDTSN9tBuoqJFyRnnkvP_US6J5NsAE3r7B31vN8GnfyTDlGbJOS0TdbOnNssVWLUObqXDlzpkmAC5A0xoYwxQK-O6n9i6oF2jCFbbdSr1pfZ9qX1fScv-aA_2x1WjnWp7-fvmY4pvSgGqgw |
CitedBy_id | crossref_primary_10_1021_acscatal_2c03662 crossref_primary_10_1021_jacs_1c12367 crossref_primary_10_1021_jacs_3c00284 crossref_primary_10_1021_acs_inorgchem_2c01393 crossref_primary_10_1007_s11426_024_2471_9 crossref_primary_10_1016_j_xcrp_2022_100779 crossref_primary_10_1103_PhysRevB_109_134505 crossref_primary_10_1039_D4MH00437J crossref_primary_10_1002_cssc_202300234 crossref_primary_10_20517_jmi_2024_41 crossref_primary_10_1002_apxr_202200119 crossref_primary_10_1016_j_solidstatesciences_2023_107331 crossref_primary_10_1016_j_cej_2024_148706 crossref_primary_10_1016_j_surfin_2022_102044 crossref_primary_10_1021_acs_inorgchem_3c04409 crossref_primary_10_1021_jacs_3c10876 crossref_primary_10_1103_PhysRevB_111_045120 crossref_primary_10_1093_chemle_upae083 crossref_primary_10_1002_anie_202310802 crossref_primary_10_1063_5_0187372 crossref_primary_10_3390_coatings14060657 crossref_primary_10_1063_5_0113084 crossref_primary_10_1007_s40145_022_0633_z crossref_primary_10_5940_jcrsj_64_160 crossref_primary_10_1002_adma_202418904 crossref_primary_10_3390_nano13222914 crossref_primary_10_1021_acsomega_2c00956 crossref_primary_10_1134_S0023158423060137 crossref_primary_10_1021_acs_jpclett_2c03427 crossref_primary_10_1088_0256_307X_40_10_107401 crossref_primary_10_1103_PhysRevLett_134_036401 crossref_primary_10_1021_acs_jpclett_1c03637 crossref_primary_10_1021_jacs_3c09362 crossref_primary_10_1016_j_jre_2021_06_014 crossref_primary_10_1103_PhysRevB_109_014504 crossref_primary_10_1039_D5MR00005J crossref_primary_10_1557_s43579_024_00684_8 crossref_primary_10_1103_PhysRevB_106_045138 crossref_primary_10_1021_acscatal_4c00830 crossref_primary_10_1021_acs_jpclett_3c01975 crossref_primary_10_1103_PhysRevB_106_L060506 crossref_primary_10_1021_jacs_3c01713 crossref_primary_10_1088_0256_307X_42_2_027302 crossref_primary_10_1246_cl_210577 crossref_primary_10_1002_smsc_202100020 crossref_primary_10_1021_jacs_4c05723 crossref_primary_10_1016_j_nxmate_2023_100018 crossref_primary_10_1039_D4CS00420E crossref_primary_10_1021_acsami_4c05810 crossref_primary_10_1103_PhysRevB_103_L241101 crossref_primary_10_3390_en17194977 crossref_primary_10_1039_D3DT03984F crossref_primary_10_1002_cphc_202200329 crossref_primary_10_1039_D3CC02956E crossref_primary_10_1021_jacs_3c10538 crossref_primary_10_1016_j_corsci_2023_111233 crossref_primary_10_31857_S1234567823210061 crossref_primary_10_1021_acs_inorgchem_4c00254 crossref_primary_10_1016_j_chempr_2022_11_006 crossref_primary_10_1063_5_0252519 crossref_primary_10_2139_ssrn_4121307 crossref_primary_10_1021_jacs_4c17825 crossref_primary_10_1002_cssc_202301016 crossref_primary_10_1016_j_apsusc_2025_163020 crossref_primary_10_1063_5_0259675 crossref_primary_10_1063_5_0233622 crossref_primary_10_1039_D1DT03952K crossref_primary_10_1039_D3TA04418A crossref_primary_10_1021_acs_jpcc_4c06803 crossref_primary_10_1039_D4CP00724G crossref_primary_10_1016_j_cclet_2022_06_066 crossref_primary_10_1021_acs_chemrev_2c00356 crossref_primary_10_1039_D4SE01604A crossref_primary_10_1088_1361_648X_ad3ac2 crossref_primary_10_1039_D1CY01799C crossref_primary_10_1021_acs_jpcc_2c08178 crossref_primary_10_31857_S0453881123060151 crossref_primary_10_1016_j_actaastro_2023_10_002 crossref_primary_10_1063_5_0171959 crossref_primary_10_1021_acs_jpcc_1c04485 crossref_primary_10_1039_D1NJ04443E crossref_primary_10_1021_acs_jpca_4c03500 crossref_primary_10_1016_j_ijhydene_2023_07_121 crossref_primary_10_1039_D3FD00070B crossref_primary_10_1002_aenm_202402353 crossref_primary_10_1039_D4CP01508H crossref_primary_10_1021_acsomega_1c04349 crossref_primary_10_1021_jacs_4c07362 crossref_primary_10_3390_electronics11040668 crossref_primary_10_1016_j_mtcomm_2022_104176 crossref_primary_10_1038_s44160_023_00292_9 crossref_primary_10_1039_D2TA01967A crossref_primary_10_1038_s41467_023_41935_x crossref_primary_10_1002_jcc_27265 crossref_primary_10_1007_s10562_021_03648_y crossref_primary_10_1021_acs_jpclett_1c03149 crossref_primary_10_1002_anie_202211759 crossref_primary_10_1039_D1CP05365E crossref_primary_10_1088_1361_648X_ac9f93 crossref_primary_10_1088_1361_648X_ad12fe crossref_primary_10_1021_jacs_2c03024 crossref_primary_10_1021_jacs_3c06066 crossref_primary_10_1103_PhysRevB_103_235126 crossref_primary_10_1016_j_commt_2024_100020 crossref_primary_10_1016_j_jpcs_2025_112583 crossref_primary_10_1038_s41467_025_57688_8 crossref_primary_10_1039_D3SC05447K crossref_primary_10_1103_PhysRevB_108_104505 crossref_primary_10_1038_s44296_024_00041_9 crossref_primary_10_1039_D3CP01764H crossref_primary_10_1103_PhysRevResearch_6_023249 crossref_primary_10_1002_nadc_20214110509 crossref_primary_10_1002_smsc_202400131 crossref_primary_10_1039_D3CY01187A crossref_primary_10_1021_acs_jpcc_2c07066 crossref_primary_10_1021_jacs_2c01899 crossref_primary_10_1039_D4QI02575J crossref_primary_10_1016_j_fmre_2024_11_026 crossref_primary_10_1002_apxr_202200041 crossref_primary_10_1021_acs_jpcc_4c06309 crossref_primary_10_1021_acs_jpcc_3c07496 crossref_primary_10_1063_5_0212246 crossref_primary_10_1021_acs_chemmater_1c03821 crossref_primary_10_1021_acs_jpclett_4c01263 crossref_primary_10_1039_D1TC04356K crossref_primary_10_1021_acscatal_3c05696 crossref_primary_10_1021_acs_jpcc_1c08725 crossref_primary_10_1039_D2TC00667G crossref_primary_10_1021_acscatal_3c03654 crossref_primary_10_1103_PhysRevApplied_19_034014 crossref_primary_10_1134_S0021364023602762 crossref_primary_10_1002_ange_202310802 crossref_primary_10_1021_acs_jpcc_2c08517 crossref_primary_10_1039_D3TC03485B crossref_primary_10_1021_acs_inorgchem_2c00884 crossref_primary_10_1039_D3NR00304C crossref_primary_10_1103_PhysRevB_107_L100501 crossref_primary_10_1039_D2TC05254G crossref_primary_10_1021_acscatal_1c01646 crossref_primary_10_1039_D3CP04472F crossref_primary_10_1021_jacs_1c03278 crossref_primary_10_1021_acs_jpcc_2c07271 crossref_primary_10_1021_acs_chemmater_5c00158 crossref_primary_10_1039_D2TA08899A crossref_primary_10_1021_acs_jpcc_2c04042 crossref_primary_10_1039_D4RA02473G crossref_primary_10_1021_jacs_3c01074 crossref_primary_10_1002_adfm_202401466 crossref_primary_10_1002_ange_202211759 crossref_primary_10_1002_qua_26856 crossref_primary_10_1002_smll_202309962 crossref_primary_10_1016_j_nanoen_2022_107791 crossref_primary_10_1021_acs_jpclett_2c02002 crossref_primary_10_3390_catal11101154 crossref_primary_10_1039_D3TA06546D crossref_primary_10_1039_D2CE00721E crossref_primary_10_1063_5_0157403 crossref_primary_10_1541_ieejjournal_142_346 crossref_primary_10_1002_idm2_12240 crossref_primary_10_1002_adfm_202112198 crossref_primary_10_1021_acs_jpcc_3c04681 crossref_primary_10_12677_JAPC_2021_103006 crossref_primary_10_1007_s11426_024_2260_2 crossref_primary_10_1021_jacs_1c06657 crossref_primary_10_1140_epjb_s10051_022_00467_x crossref_primary_10_1002_ece2_82 crossref_primary_10_1021_acs_inorgchem_3c00859 crossref_primary_10_1103_PhysRevB_110_144523 crossref_primary_10_1103_PhysRevMaterials_5_044203 crossref_primary_10_1016_j_jechem_2024_07_013 crossref_primary_10_1063_5_0092516 crossref_primary_10_1073_pnas_2322107121 crossref_primary_10_1039_D3NH90015K |
Cites_doi | 10.1038/s41567-020-0906-9 10.1021/acs.chemmater.8b02526 10.1021/ja504185m 10.1103/PhysRevX.8.031067 10.1166/jnn.2009.1747 10.1080/14786435.2012.685770 10.1038/s41567-020-0958-x 10.1007/s11244-016-0653-4 10.1016/S0920-5861(99)00115-7 10.1016/0038-1101(70)90056-0 10.1039/C6GC02782B 10.1038/s41560-018-0268-z 10.1021/jacs.8b06187 10.1039/C7SC05343F 10.1039/C9SC01539F 10.1021/jacs.5b12668 10.1016/j.cep.2015.02.004 10.1021/jacs.7b10338 10.1038/ncomms4515 10.1098/rspa.2010.0560 10.1021/acs.jpcc.8b11866 10.1002/adma.201606202 10.1016/S0926-860X(01)00626-3 10.1021/acscatal.7b00284 10.1038/nchem.626 10.7567/APEX.11.066201 10.1109/TPS.2003.818761 10.1103/PhysRevB.95.165430 10.1103/PhysRevB.40.1546 10.1016/j.jcat.2014.12.033 10.1007/s10562-009-0177-7 10.1021/ar9000857 10.1016/0021-9517(68)90088-2 10.1002/zaac.200900421 10.1016/S0021-9517(02)00182-3 10.1103/PhysRev.109.1909 10.1002/anie.198801591 10.1016/0022-2860(69)85023-4 10.1016/S1872-2067(14)60118-2 10.1103/PhysRevB.79.125304 10.1016/j.cattod.2016.08.012 10.1021/cr60323a001 10.1002/anie.201410773 10.1021/acs.jpcc.6b11919 10.1021/jacs.5b00242 10.1016/S0926-860X(01)00676-7 10.1006/jcat.1996.0268 10.1038/nature12435 10.1002/anie.201712398 10.1021/acscatal.7b01624 10.1016/0038-1098(79)91010-X 10.1021/ja410925g 10.1021/ja00377a066 10.1126/science.1207837 10.1021/ja066177w 10.1021/nn102839k 10.1016/j.energy.2004.12.004 10.1021/jacs.7b08891 10.1039/C5SC00933B 10.1021/acs.jpcc.7b07268 10.1080/01614949808007106 10.1088/0022-3719/11/5/016 10.1103/PhysRevB.92.201109 10.1016/j.cattod.2013.07.006 10.1039/C5SC00205B 10.1103/PhysRevMaterials.3.024205 10.1002/9783527610044 10.1080/00986445.2014.923995 10.1063/1.1674186 10.1063/1.118344 10.1016/j.elecom.2012.01.024 10.1002/anie.201305812 10.1038/s41586-020-2464-9 10.1016/j.vacuum.2018.09.055 10.1039/b002930k 10.1021/acs.jpcc.8b10379 10.1038/s41929-018-0045-1 10.1021/acscatal.6b01940 10.1002/anie.196404711 10.1246/cl.1973.161 10.1002/cctc.201501269 10.1016/j.apcatb.2017.12.039 10.1021/ja0724644 10.1126/science.1104168 10.1002/anie.200301669 10.1246/cl.2000.514 10.1002/anie.200800480 10.1016/0021-9517(72)90179-0 10.1021/nl062717b 10.1103/PhysRevB.80.075201 10.1109/JDT.2015.2496588 10.1038/s41535-017-0053-4 10.1038/s41586-019-0954-4 10.1038/ncomms3378 10.1038/ncomms5881 10.1039/C7TC02488F 10.1088/1674-1056/ab3f95 10.1021/acs.jpcc.5b06811 10.1016/S0166-9834(00)82492-6 10.1080/00107517708231483 10.1126/science.1211906 10.1038/s41929-017-0022-0 10.1038/365039a0 10.1016/j.ccr.2013.02.010 10.1021/jacs.7b06279 10.1039/C6CY01962E 10.1016/j.ijhydene.2015.10.064 10.1021/acscatal.5b00278 10.1098/rsta.2014.0450 10.1126/science.1261747 10.1021/ar700140m 10.1063/1.2149989 10.1038/nphys119 10.1002/anie.201806936 10.1021/acs.joc.8b02094 10.1016/0021-9517(92)90112-U 10.1038/nchem.906 10.1016/0009-2614(90)87265-S 10.1021/jacs.0c01227 10.1103/PhysRevB.73.205108 10.1021/ja01643a067 10.1021/jp065793b 10.1039/f19848001595 10.1103/PhysRevB.95.165436 10.1021/ic00345a030 10.1063/1.3463653 10.1021/acscatal.8b03650 10.1016/j.cattod.2016.06.035 10.1016/j.jechem.2019.10.014 10.1002/aenm.202003723 10.1039/C6TA09561E 10.1016/j.jcat.2004.03.046 10.1021/cr00039a007 10.1021/ol701885p 10.1103/PhysRevB.85.045204 10.7567/JJAP.52.090001 10.1038/s41578-019-0101-8 10.1016/j.jallcom.2005.01.052 10.1126/science.1064399 10.1016/j.apcatb.2017.04.073 10.1021/acs.inorgchem.9b03046 10.1002/adma.200304925 10.1002/adsc.200390000 10.1039/C1CP22271F 10.1021/acs.langmuir.6b04152 10.1038/444427a 10.1021/acs.chemmater.8b01819 10.1126/science.1143078 10.1002/anie.200301553 10.1021/acscatal.6b03357 10.1016/j.molcata.2008.08.006 10.1021/jacs.7b08252 10.1016/0021-9517(65)90016-3 10.1016/j.ccr.2012.10.005 10.1038/s41467-020-15868-8 10.1016/j.apcata.2004.09.020 10.1002/cssc.201501498 10.1021/ic501362b 10.1038/nature01053 10.1021/j100095a010 10.1038/scientificamerican0777-92 10.1038/ncomms7731 10.1038/nchem.2595 10.1038/nature07786 10.1002/adma.200306484 10.1016/0021-9517(89)90304-7 10.1038/nchem.121 10.1039/C7TC04989G 10.1016/0926-860X(96)00047-6 10.1002/1521-3773(20010316)40:6<1061::AID-ANIE10610>3.0.CO;2-B 10.1021/jacs.6b05586 10.1002/cctc.201301061 10.1039/C7EE02220D 10.1103/PhysRevB.96.125131 10.1103/PhysRevMaterials.2.053604 10.1021/ar400203e 10.1088/1367-2630/aa8a2d 10.1016/S0926-860X(01)00826-2 10.1103/PhysRevB.98.125128 10.1126/science.1088103 10.1007/s41614-019-0026-0 10.1006/jcat.1996.0314 10.1002/9783527693153 10.1103/PhysRevLett.53.850 10.1039/C4CS00085D 10.1038/s41586-019-1260-x 10.1016/j.elecom.2014.04.012 10.1021/cs400336z 10.1039/C8CP04216K 10.1016/0021-9517(67)90293-X 10.1021/ja109397k 10.1103/PhysRevB.48.12253 10.1021/cg0600290 10.1021/acs.inorgchem.6b01369 10.1103/PhysRevLett.112.136403 10.1021/jacs.0c11047 10.1038/332525a0 10.1021/acsami.8b18676 10.1246/bcsj.44.3216 10.1016/j.cpc.2012.05.008 10.1103/PhysRevB.93.205125 10.1021/j100304a034 10.1016/j.apcata.2004.01.002 10.1016/0021-9517(85)90265-9 10.1016/0021-9517(77)90237-8 10.1021/ja010963d 10.1002/anie.200905380 10.1002/chem.201800467 10.1038/s41565-018-0167-2 10.1021/jacs.0c02345 10.1103/PhysRevB.96.245303 10.1016/j.joule.2018.04.017 10.1038/s41467-020-15253-5 10.1021/ar4002922 10.1021/jp711631j 10.1021/cm051662w 10.1002/advs.201800666 10.1016/j.jcrysgro.2016.08.048 10.1038/nchem.2716 10.1103/PhysRevX.7.011017 10.1126/science.1254234 10.1126/science.1083842 10.1021/acsnano.7b06277 10.1016/j.ijhydene.2018.12.024 10.1021/ja9943445 10.1063/1.1829151 10.1002/anie.199107891 10.1039/C6SC01864E 10.1016/j.mseb.2009.12.018 10.1021/ja016112n 10.1103/PhysRevLett.107.087201 10.1038/srep10366 10.1088/0256-307X/31/11/118501 10.1063/1.2735280 10.1021/ja00464a015 10.1002/anie.197101951 10.1021/acscatal.0c03416 10.1016/S0926-860X(00)00713-4 10.1021/cs401044a 10.1103/PhysRevLett.68.3789 10.1002/anie.201409885 10.1016/S0926-860X(96)00304-3 10.1021/acs.nanolett.6b05199 10.1103/PhysRevLett.91.126401 10.1109/JDT.2005.858942 10.1016/0021-9517(86)90316-7 10.1038/s41467-019-10492-7 10.1134/S0021364019060043 10.1246/bcsj.20140395 10.1103/PhysRevB.17.2575 10.1103/PhysRevLett.83.1814 10.1039/C4CC00802B 10.1021/jz502588x 10.1103/PhysRevB.96.035421 10.1021/jacs.6b09067 10.1002/anie.198810211 10.1038/nature02274 10.1021/ja5042836 10.1039/C8DT02548G 10.1016/S0021-9517(03)00156-8 10.1021/acs.chemmater.8b02907 10.1016/S0022-0248(01)02038-3 10.1002/cctc.201700353 10.1038/nature01210 10.1021/jacs.7b05492 10.1039/C6SC02382G 10.1016/j.apcata.2005.05.045 10.1021/jacs.8b08334 10.1021/acs.jpcc.6b00983 10.1016/0167-5729(91)90014-O 10.1088/0022-3719/19/9/008 10.1038/nature11812 10.1021/ja5065125 10.1016/S0022-3093(99)00415-9 10.1021/acs.chemmater.8b03021 10.1002/adma.200700663 10.1021/ic00255a003 10.1021/jacs.9b03472 10.1021/jacs.6b00124 10.1038/s41598-019-55207-6 10.1021/jacs.9b10726 10.1038/nmat3696 10.1016/S0920-5861(97)81502-5 10.1021/ic4031624 10.1103/PhysRevLett.120.026401 10.1021/cm503512h 10.1002/aenm.201801772 10.1021/ja00272a073 10.1126/science.1238663 10.1038/s41467-019-13679-0 10.1103/PhysRevLett.122.097002 10.1002/anie.201701681 10.1039/dt9960000001 10.1002/anie.201201726 10.1103/PhysRevB.2.1 10.1021/jp2076885 10.1021/jp036808y 10.1126/science.282.5386.98 10.1002/anie.201703695 10.1021/acs.jpcc.5b11768 10.1038/s41586-019-1134-2 10.1039/C6SC00767H 10.1021/cm9007987 10.1021/acs.jpcc.7b12364 10.1021/acs.nanolett.7b05386 10.1103/PhysRevB.94.060502 10.1021/acs.accounts.6b00523 10.1021/j100390a004 10.1021/jacs.8b12784 10.1021/acs.chemmater.8b03202 10.1246/bcsj.80.872 10.1021/acs.jpcc.9b10850 10.1039/c3sc50794g 10.1039/cs9760500337 10.1016/j.jcat.2018.04.029 10.1126/science.1085326 10.1680/cc.25929 10.1021/acscatal.8b02839 10.1039/C5CC04645A 10.1021/jacs.0c06624 10.1021/acs.jpcc.9b03878 10.1016/0009-2614(79)80595-3 10.1103/PhysRevB.77.092505 10.3938/jkps.63.477 10.1073/pnas.1606891113 10.1021/acsaem.0c00754 10.1039/C2EE02865D 10.1021/jacs.9b03155 10.1002/adma.201700924 10.1021/acs.jpcc.6b04748 10.1039/c2jm14966d 10.1021/jo900904f 10.1063/1.323539 10.1039/C5FD00179J 10.1016/j.jallcom.2014.08.079 10.1021/cr100355b 10.1021/ja067140e 10.1103/PhysRevLett.123.206402 10.1016/S1381-1169(00)00396-4 10.1038/nmat2796 10.1021/jacs.5b10145 10.1143/JPSJ.79.103704 10.1039/c39910001544 10.1038/nchem.1476 10.1016/j.mseb.2008.11.042 10.1023/A:1021028718491 10.1021/jp072635r 10.1038/s41467-019-14216-9 10.1021/acssuschemeng.9b06299 10.1016/0021-9517(87)90109-6 10.1006/jcat.1997.1447 10.1016/j.physc.2009.03.014 10.1021/ja901105a 10.1021/acs.jpcc.9b06089 10.1142/8199 10.1088/1468-6996/12/3/034410 10.1021/ja043990n 10.1021/acscatal.8b03743 10.1038/331599a0 10.1002/wcms.1330 10.1002/anie.201810409 10.1126/science.247.4943.663 10.1021/ja01951a001 10.1021/acssuschemeng.8b04683 10.1006/jcat.2000.2858 10.1016/0021-9517(82)90016-1 10.1073/pnas.1617186114 10.1038/nmat4757 10.1126/science.1204394 10.1103/PhysRevLett.108.246404 10.1002/anie.201812131 10.1021/acs.jpcc.5b02342 |
ContentType | Journal Article |
Copyright | 2021 American Chemical Society Copyright American Chemical Society Mar 10, 2021 |
Copyright_xml | – notice: 2021 American Chemical Society – notice: Copyright American Chemical Society Mar 10, 2021 |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 7S9 L.6 |
DOI | 10.1021/acs.chemrev.0c01071 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Materials Research Database AGRICOLA PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-6890 |
EndPage | 3185 |
ExternalDocumentID | 33606511 10_1021_acs_chemrev_0c01071 c26143890 |
Genre | Journal Article |
GroupedDBID | - .K2 02 1AW 29B 4.4 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 D0L DU5 DZ EBS ED ED~ F5P GNL IH9 IHE JG JG~ K2 LG6 P2P PQEST PQQKQ ROL RWL TAE TN5 UI2 UKR UPT VF5 VG9 VQA W1F WH7 X YZZ ZHY --- -DZ -~X .DC 53G 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACGFO ADHLV AFXLT AGXLV AHGAQ CITATION CUPRZ GGK XSW ~02 NPM 7SR 8BQ 8FD JG9 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a472t-83d99c2fdecea2dbfc633f44d524d72cc98223823967129dee693db30e68e863 |
IEDL.DBID | ACS |
ISSN | 0009-2665 1520-6890 |
IngestDate | Fri Jul 11 12:25:18 EDT 2025 Thu Jul 10 22:51:27 EDT 2025 Mon Jun 30 07:48:13 EDT 2025 Thu Jan 02 22:56:50 EST 2025 Thu Apr 24 23:01:51 EDT 2025 Tue Jul 01 03:16:20 EDT 2025 Fri Mar 12 03:12:11 EST 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a472t-83d99c2fdecea2dbfc633f44d524d72cc98223823967129dee693db30e68e863 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9260-6728 0000-0003-4466-7387 |
PMID | 33606511 |
PQID | 2507174427 |
PQPubID | 45407 |
PageCount | 65 |
ParticipantIDs | proquest_miscellaneous_2574344944 proquest_miscellaneous_2491941021 proquest_journals_2507174427 pubmed_primary_33606511 crossref_citationtrail_10_1021_acs_chemrev_0c01071 crossref_primary_10_1021_acs_chemrev_0c01071 acs_journals_10_1021_acs_chemrev_0c01071 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-10 |
PublicationDateYYYYMMDD | 2021-03-10 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Easton |
PublicationTitle | Chemical reviews |
PublicationTitleAlternate | Chem. Rev |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref99/cit99 ref3/cit3 ref81/cit81 ref330/cit330 ref332/cit332 ref16/cit16 Oganov A. R. (ref50/cit50) 2011 ref185/cit185 ref23/cit23 ref115/cit115 ref259/cit259 ref187/cit187 ref181/cit181 ref327/cit327 ref111/cit111 ref255/cit255 ref329/cit329 ref113/cit113 ref183/cit183 ref257/cit257 ref117/cit117 ref48/cit48 ref74/cit74 ref189/cit189 ref119/cit119 ref10/cit10 ref35/cit35 ref93/cit93 ref251/cit251 ref325/cit325 ref253/cit253 ref42/cit42 ref321/cit321 ref323/cit323 ref120/cit120 ref178/cit178 ref122/cit122 ref248/cit248 ref61/cit61 ref176/cit176 ref67/cit67 ref128/cit128 ref124/cit124 ref126/cit126 Haber F. (ref209/cit209) 1913; 19 ref54/cit54 ref240/cit240 ref137/cit137 ref380/cit380 ref310/cit310 ref318/cit318 ref11/cit11 ref102/cit102 ref29/cit29 Rylander P. N. (ref336/cit336) 1979 ref314/cit314 ref86/cit86 ref170/cit170 ref244/cit244 ref271/cit271 ref345/cit345 ref5/cit5 ref341/cit341 ref43/cit43 ref80/cit80 ref133/cit133 ref207/cit207 ref28/cit28 ref279/cit279 ref203/cit203 ref275/cit275 ref349/cit349 ref233/cit233 ref148/cit148 ref307/cit307 ref55/cit55 ref144/cit144 ref303/cit303 ref218/cit218 ref167/cit167 ref163/cit163 ref237/cit237 ref66/cit66 Ken-Ichi A. (ref213/cit213) 1995 ref264/cit264 ref22/cit22 ref260/cit260 ref334/cit334 ref87/cit87 ref106/cit106 ref190/cit190 ref140/cit140 ref198/cit198 ref214/cit214 ref194/cit194 ref98/cit98 ref268/cit268 ref369/cit369 ref153/cit153 ref297/cit297 ref227/cit227 Taylor H. F. W. (ref129/cit129) 1997 ref222/cit222 ref366/cit366 ref150/cit150 ref294/cit294 ref368/cit368 ref63/cit63 ref224/cit224 ref295/cit295 ref155/cit155 ref229/cit229 ref156/cit156 ref158/cit158 ref8/cit8 ref59/cit59 ref85/cit85 ref34/cit34 ref363/cit363 ref37/cit37 ref221/cit221 ref292/cit292 ref360/cit360 ref60/cit60 ref361/cit361 ref17/cit17 ref219/cit219 ref82/cit82 ref147/cit147 ref232/cit232 ref306/cit306 ref377/cit377 Thomas J. M. (ref169/cit169) 2014 ref230/cit230 ref145/cit145 ref304/cit304 ref238/cit238 ref21/cit21 ref166/cit166 ref379/cit379 ref164/cit164 ref350/cit350 ref352/cit352 Ando Y. (ref41/cit41) 2013 ref284/cit284 ref358/cit358 ref286/cit286 ref371/cit371 ref78/cit78 ref211/cit211 ref382/cit382 ref312/cit312 ref36/cit36 Ertl G. (ref210/cit210) 2008 ref83/cit83 ref79/cit79 ref139/cit139 ref172/cit172 ref246/cit246 ref243/cit243 Sheldon R. A. (ref338/cit338) 2001 ref317/cit317 ref270/cit270 ref200/cit200 ref344/cit344 ref14/cit14 ref57/cit57 ref278/cit278 ref134/cit134 ref208/cit208 ref40/cit40 ref273/cit273 ref347/cit347 ref131/cit131 ref205/cit205 ref161/cit161 ref320/cit320 ref142/cit142 ref216/cit216 ref301/cit301 ref374/cit374 ref289/cit289 Surburg H. (ref342/cit342) 2016 ref15/cit15 ref180/cit180 ref235/cit235 ref309/cit309 ref62/cit62 ref58/cit58 ref104/cit104 ref262/cit262 ref177/cit177 ref84/cit84 ref1/cit1 ref123/cit123 ref196/cit196 ref281/cit281 ref355/cit355 ref7/cit7 ref45/cit45 ref331/cit331 ref333/cit333 ref52/cit52 ref184/cit184 ref114/cit114 ref258/cit258 ref186/cit186 ref116/cit116 ref110/cit110 ref254/cit254 ref182/cit182 ref328/cit328 ref2/cit2 ref112/cit112 ref256/cit256 ref77/cit77 ref71/cit71 ref188/cit188 ref20/cit20 ref118/cit118 ref89/cit89 ref19/cit19 ref96/cit96 Zhang L. (ref56/cit56) 2017; 2 ref107/cit107 ref191/cit191 ref265/cit265 ref109/cit109 ref339/cit339 ref13/cit13 ref193/cit193 ref105/cit105 ref261/cit261 ref335/cit335 ref263/cit263 ref197/cit197 ref38/cit38 ref199/cit199 ref90/cit90 ref267/cit267 ref195/cit195 ref269/cit269 ref64/cit64 ref311/cit311 ref6/cit6 ref18/cit18 ref136/cit136 ref65/cit65 ref171/cit171 ref97/cit97 ref101/cit101 ref245/cit245 ref319/cit319 ref241/cit241 ref315/cit315 ref76/cit76 ref32/cit32 ref39/cit39 ref272/cit272 ref202/cit202 ref346/cit346 ref168/cit168 ref206/cit206 ref132/cit132 ref276/cit276 ref91/cit91 ref376/cit376 ref372/cit372 ref287/cit287 ref252/cit252 ref12/cit12 ref326/cit326 ref322/cit322 ref179/cit179 ref121/cit121 ref175/cit175 ref33/cit33 ref249/cit249 ref283/cit283 ref357/cit357 ref44/cit44 ref353/cit353 ref70/cit70 ref125/cit125 ref9/cit9 ref152/cit152 ref225/cit225 ref296/cit296 ref226/cit226 ref154/cit154 ref298/cit298 ref27/cit27 ref228/cit228 ref299/cit299 ref293/cit293 ref223/cit223 ref367/cit367 ref151/cit151 ref159/cit159 Nishimura S. (ref337/cit337) 2001 ref92/cit92 ref157/cit157 ref31/cit31 ref290/cit290 ref220/cit220 ref291/cit291 ref364/cit364 ref365/cit365 ref88/cit88 ref362/cit362 ref160/cit160 ref234/cit234 ref143/cit143 ref302/cit302 ref373/cit373 ref217/cit217 ref288/cit288 ref53/cit53 ref375/cit375 ref149/cit149 ref162/cit162 ref308/cit308 ref46/cit46 ref236/cit236 ref49/cit49 ref75/cit75 ref356/cit356 ref141/cit141 ref300/cit300 ref215/cit215 ref280/cit280 ref354/cit354 ref282/cit282 ref313/cit313 ref138/cit138 ref381/cit381 ref100/cit100 ref25/cit25 ref173/cit173 ref103/cit103 ref247/cit247 ref72/cit72 ref242/cit242 ref316/cit316 ref343/cit343 ref201/cit201 ref340/cit340 ref51/cit51 ref277/cit277 ref135/cit135 ref68/cit68 ref94/cit94 ref130/cit130 ref274/cit274 ref204/cit204 ref348/cit348 ref146/cit146 ref305/cit305 ref26/cit26 ref378/cit378 ref73/cit73 ref231/cit231 ref69/cit69 ref165/cit165 ref324/cit324 ref239/cit239 Liu H. (ref174/cit174) 2013 ref250/cit250 ref95/cit95 ref108/cit108 ref192/cit192 ref351/cit351 ref266/cit266 ref4/cit4 ref30/cit30 ref212/cit212 ref47/cit47 ref127/cit127 ref370/cit370 ref285/cit285 Inoshita T. (ref24/cit24) 2014; 4 ref359/cit359 |
References_xml | – ident: ref101/cit101 doi: 10.1038/s41567-020-0906-9 – ident: ref63/cit63 doi: 10.1021/acs.chemmater.8b02526 – ident: ref135/cit135 doi: 10.1021/ja504185m – ident: ref46/cit46 doi: 10.1103/PhysRevX.8.031067 – ident: ref146/cit146 doi: 10.1166/jnn.2009.1747 – ident: ref128/cit128 doi: 10.1080/14786435.2012.685770 – ident: ref380/cit380 doi: 10.1038/s41567-020-0958-x – ident: ref172/cit172 doi: 10.1007/s11244-016-0653-4 – ident: ref221/cit221 doi: 10.1016/S0920-5861(99)00115-7 – ident: ref168/cit168 doi: 10.1016/0038-1101(70)90056-0 – ident: ref350/cit350 doi: 10.1039/C6GC02782B – ident: ref262/cit262 doi: 10.1038/s41560-018-0268-z – ident: ref265/cit265 doi: 10.1021/jacs.8b06187 – ident: ref295/cit295 doi: 10.1039/C7SC05343F – ident: ref253/cit253 doi: 10.1039/C9SC01539F – ident: ref23/cit23 doi: 10.1021/jacs.5b12668 – ident: ref179/cit179 doi: 10.1016/j.cep.2015.02.004 – ident: ref106/cit106 doi: 10.1021/jacs.7b10338 – ident: ref134/cit134 doi: 10.1038/ncomms4515 – ident: ref157/cit157 doi: 10.1098/rspa.2010.0560 – ident: ref158/cit158 doi: 10.1021/acs.jpcc.8b11866 – ident: ref382/cit382 doi: 10.1002/adma.201606202 – ident: ref235/cit235 doi: 10.1016/S0926-860X(01)00626-3 – ident: ref259/cit259 doi: 10.1021/acscatal.7b00284 – ident: ref321/cit321 doi: 10.1038/nchem.626 – ident: ref87/cit87 doi: 10.7567/APEX.11.066201 – ident: ref191/cit191 doi: 10.1109/TPS.2003.818761 – ident: ref27/cit27 doi: 10.1103/PhysRevB.95.165430 – ident: ref86/cit86 doi: 10.1103/PhysRevB.40.1546 – ident: ref231/cit231 doi: 10.1016/j.jcat.2014.12.033 – ident: ref299/cit299 doi: 10.1007/s10562-009-0177-7 – ident: ref4/cit4 doi: 10.1021/ar9000857 – ident: ref268/cit268 doi: 10.1016/0021-9517(68)90088-2 – ident: ref113/cit113 doi: 10.1002/zaac.200900421 – ident: ref275/cit275 doi: 10.1016/S0021-9517(02)00182-3 – ident: ref71/cit71 doi: 10.1103/PhysRev.109.1909 – ident: ref78/cit78 doi: 10.1002/anie.198801591 – ident: ref283/cit283 doi: 10.1016/0022-2860(69)85023-4 – ident: ref200/cit200 doi: 10.1016/S1872-2067(14)60118-2 – ident: ref302/cit302 doi: 10.1103/PhysRevB.79.125304 – ident: ref214/cit214 doi: 10.1016/j.cattod.2016.08.012 – ident: ref2/cit2 doi: 10.1021/cr60323a001 – ident: ref328/cit328 doi: 10.1002/anie.201410773 – ident: ref114/cit114 doi: 10.1021/acs.jpcc.6b11919 – ident: ref40/cit40 doi: 10.1021/jacs.5b00242 – volume: 19 start-page: 53 year: 1913 ident: ref209/cit209 publication-title: Z. Elktrochem Angew. P – ident: ref310/cit310 doi: 10.1016/S0926-860X(01)00676-7 – volume-title: Catalytic hydrogenation in organic syntheses year: 1979 ident: ref336/cit336 – ident: ref226/cit226 doi: 10.1006/jcat.1996.0268 – ident: ref183/cit183 doi: 10.1038/nature12435 – ident: ref250/cit250 doi: 10.1002/anie.201712398 – ident: ref193/cit193 doi: 10.1021/acscatal.7b01624 – ident: ref25/cit25 doi: 10.1016/0038-1098(79)91010-X – ident: ref273/cit273 doi: 10.1021/ja410925g – ident: ref378/cit378 doi: 10.1021/ja00377a066 – ident: ref3/cit3 doi: 10.1126/science.1207837 – ident: ref139/cit139 doi: 10.1021/ja066177w – ident: ref153/cit153 doi: 10.1021/nn102839k – ident: ref170/cit170 doi: 10.1016/j.energy.2004.12.004 – ident: ref263/cit263 doi: 10.1021/jacs.7b08891 – ident: ref373/cit373 doi: 10.1039/C5SC00933B – ident: ref247/cit247 doi: 10.1021/acs.jpcc.7b07268 – ident: ref343/cit343 doi: 10.1080/01614949808007106 – ident: ref77/cit77 doi: 10.1088/0022-3719/11/5/016 – ident: ref104/cit104 doi: 10.1103/PhysRevB.92.201109 – ident: ref229/cit229 doi: 10.1016/j.cattod.2013.07.006 – ident: ref330/cit330 doi: 10.1039/C5SC00205B – ident: ref48/cit48 doi: 10.1103/PhysRevMaterials.3.024205 – volume-title: Handbook of heterogeneous catalysis year: 2008 ident: ref210/cit210 doi: 10.1002/9783527610044 – ident: ref224/cit224 doi: 10.1080/00986445.2014.923995 – ident: ref80/cit80 doi: 10.1063/1.1674186 – ident: ref117/cit117 doi: 10.1063/1.118344 – ident: ref365/cit365 doi: 10.1016/j.elecom.2012.01.024 – ident: ref171/cit171 doi: 10.1002/anie.201305812 – ident: ref255/cit255 doi: 10.1038/s41586-020-2464-9 – ident: ref147/cit147 doi: 10.1016/j.vacuum.2018.09.055 – ident: ref234/cit234 doi: 10.1039/b002930k – ident: ref103/cit103 doi: 10.1021/acs.jpcc.8b10379 – ident: ref194/cit194 doi: 10.1038/s41929-018-0045-1 – ident: ref248/cit248 doi: 10.1021/acscatal.6b01940 – ident: ref282/cit282 doi: 10.1002/anie.196404711 – ident: ref314/cit314 doi: 10.1246/cl.1973.161 – ident: ref345/cit345 doi: 10.1002/cctc.201501269 – ident: ref320/cit320 doi: 10.1016/j.apcatb.2017.12.039 – ident: ref19/cit19 doi: 10.1021/ja0724644 – ident: ref363/cit363 doi: 10.1126/science.1104168 – ident: ref176/cit176 doi: 10.1002/anie.200301669 – ident: ref233/cit233 doi: 10.1246/cl.2000.514 – ident: ref207/cit207 doi: 10.1002/anie.200800480 – ident: ref212/cit212 doi: 10.1016/0021-9517(72)90179-0 – ident: ref18/cit18 doi: 10.1021/nl062717b – ident: ref143/cit143 doi: 10.1103/PhysRevB.80.075201 – ident: ref83/cit83 doi: 10.1109/JDT.2015.2496588 – ident: ref94/cit94 doi: 10.1038/s41535-017-0053-4 – ident: ref42/cit42 doi: 10.1038/s41586-019-0954-4 – ident: ref155/cit155 doi: 10.1038/ncomms3378 – ident: ref372/cit372 doi: 10.1038/ncomms5881 – ident: ref29/cit29 doi: 10.1039/C7TC02488F – ident: ref38/cit38 doi: 10.1088/1674-1056/ab3f95 – ident: ref279/cit279 doi: 10.1021/acs.jpcc.5b06811 – ident: ref274/cit274 doi: 10.1016/S0166-9834(00)82492-6 – ident: ref69/cit69 doi: 10.1080/00107517708231483 – ident: ref182/cit182 doi: 10.1126/science.1211906 – ident: ref249/cit249 doi: 10.1038/s41929-017-0022-0 – ident: ref12/cit12 doi: 10.1038/365039a0 – ident: ref186/cit186 doi: 10.1016/j.ccr.2013.02.010 – ident: ref55/cit55 doi: 10.1021/jacs.7b06279 – ident: ref243/cit243 doi: 10.1039/C6CY01962E – ident: ref166/cit166 doi: 10.1016/j.ijhydene.2015.10.064 – ident: ref327/cit327 doi: 10.1021/acscatal.5b00278 – ident: ref20/cit20 doi: 10.1098/rsta.2014.0450 – ident: ref364/cit364 doi: 10.1126/science.1261747 – ident: ref341/cit341 doi: 10.1021/ar700140m – ident: ref82/cit82 doi: 10.1063/1.2149989 – ident: ref76/cit76 doi: 10.1038/nphys119 – ident: ref357/cit357 doi: 10.1002/anie.201806936 – ident: ref377/cit377 doi: 10.1021/acs.joc.8b02094 – ident: ref225/cit225 doi: 10.1016/0021-9517(92)90112-U – ident: ref184/cit184 doi: 10.1038/nchem.906 – ident: ref79/cit79 doi: 10.1016/0009-2614(90)87265-S – ident: ref43/cit43 doi: 10.1021/jacs.0c01227 – ident: ref137/cit137 doi: 10.1103/PhysRevB.73.205108 – ident: ref347/cit347 doi: 10.1021/ja01643a067 – ident: ref131/cit131 doi: 10.1021/jp065793b – ident: ref323/cit323 doi: 10.1039/f19848001595 – ident: ref116/cit116 doi: 10.1103/PhysRevB.95.165436 – ident: ref61/cit61 doi: 10.1021/ic00345a030 – ident: ref152/cit152 doi: 10.1063/1.3463653 – ident: ref245/cit245 doi: 10.1021/acscatal.8b03650 – ident: ref306/cit306 doi: 10.1016/j.cattod.2016.06.035 – ident: ref335/cit335 doi: 10.1016/j.jechem.2019.10.014 – ident: ref257/cit257 doi: 10.1002/aenm.202003723 – ident: ref167/cit167 doi: 10.1039/C6TA09561E – ident: ref267/cit267 doi: 10.1016/j.jcat.2004.03.046 – ident: ref353/cit353 doi: 10.1021/cr00039a007 – ident: ref370/cit370 doi: 10.1021/ol701885p – ident: ref141/cit141 doi: 10.1103/PhysRevB.85.045204 – ident: ref144/cit144 doi: 10.7567/JJAP.52.090001 – ident: ref51/cit51 doi: 10.1038/s41578-019-0101-8 – ident: ref285/cit285 doi: 10.1016/j.jallcom.2005.01.052 – ident: ref217/cit217 doi: 10.1126/science.1064399 – ident: ref307/cit307 doi: 10.1016/j.apcatb.2017.04.073 – ident: ref57/cit57 doi: 10.1021/acs.inorgchem.9b03046 – ident: ref126/cit126 doi: 10.1002/adma.200304925 – ident: ref339/cit339 doi: 10.1002/adsc.200390000 – ident: ref199/cit199 doi: 10.1039/C1CP22271F – ident: ref375/cit375 doi: 10.1021/acs.langmuir.6b04152 – ident: ref91/cit91 doi: 10.1038/444427a – ident: ref242/cit242 doi: 10.1021/acs.chemmater.8b01819 – ident: ref300/cit300 doi: 10.1126/science.1143078 – volume-title: Fine chemicals through heterogeneous catalysis year: 2001 ident: ref338/cit338 – ident: ref178/cit178 doi: 10.1002/anie.200301553 – ident: ref241/cit241 doi: 10.1021/acscatal.6b03357 – ident: ref308/cit308 doi: 10.1016/j.molcata.2008.08.006 – ident: ref346/cit346 doi: 10.1021/jacs.7b08252 – ident: ref312/cit312 doi: 10.1016/0021-9517(65)90016-3 – ident: ref313/cit313 doi: 10.1016/j.ccr.2012.10.005 – ident: ref73/cit73 doi: 10.1038/s41467-020-15868-8 – ident: ref318/cit318 doi: 10.1016/j.apcata.2004.09.020 – ident: ref331/cit331 doi: 10.1002/cssc.201501498 – ident: ref96/cit96 doi: 10.1021/ic501362b – ident: ref17/cit17 doi: 10.1038/nature01053 – ident: ref216/cit216 doi: 10.1021/j100095a010 – ident: ref5/cit5 doi: 10.1038/scientificamerican0777-92 – ident: ref238/cit238 doi: 10.1038/ncomms7731 – ident: ref258/cit258 doi: 10.1038/nchem.2595 – ident: ref31/cit31 doi: 10.1038/nature07786 – ident: ref84/cit84 doi: 10.1002/adma.200306484 – ident: ref208/cit208 doi: 10.1016/0021-9517(89)90304-7 – ident: ref232/cit232 doi: 10.1038/nchem.121 – ident: ref44/cit44 doi: 10.1039/C7TC04989G – volume: 2 start-page: 1 year: 2017 ident: ref56/cit56 publication-title: Nat. Rev. Mater. – ident: ref289/cit289 doi: 10.1016/0926-860X(96)00047-6 – ident: ref223/cit223 doi: 10.1002/1521-3773(20010316)40:6<1061::AID-ANIE10610>3.0.CO;2-B – ident: ref287/cit287 doi: 10.1021/jacs.6b05586 – ident: ref240/cit240 doi: 10.1002/cctc.201301061 – ident: ref190/cit190 doi: 10.1039/C7EE02220D – ident: ref115/cit115 doi: 10.1103/PhysRevB.96.125131 – ident: ref32/cit32 doi: 10.1103/PhysRevMaterials.2.053604 – ident: ref362/cit362 doi: 10.1021/ar400203e – ident: ref95/cit95 doi: 10.1088/1367-2630/aa8a2d – ident: ref271/cit271 doi: 10.1016/S0926-860X(01)00826-2 – ident: ref161/cit161 doi: 10.1103/PhysRevB.98.125128 – ident: ref368/cit368 doi: 10.1126/science.1088103 – ident: ref88/cit88 doi: 10.1007/s41614-019-0026-0 – ident: ref228/cit228 doi: 10.1006/jcat.1996.0314 – volume-title: Common fragrance and flavor materials: preparation, properties and uses year: 2016 ident: ref342/cit342 doi: 10.1002/9783527693153 – volume-title: Ammonia: catalysis and manufacture year: 1995 ident: ref213/cit213 – ident: ref201/cit201 doi: 10.1103/PhysRevLett.53.850 – ident: ref196/cit196 doi: 10.1039/C4CS00085D – ident: ref198/cit198 doi: 10.1038/s41586-019-1260-x – ident: ref366/cit366 doi: 10.1016/j.elecom.2014.04.012 – ident: ref305/cit305 doi: 10.1021/cs400336z – ident: ref304/cit304 doi: 10.1039/C8CP04216K – ident: ref316/cit316 doi: 10.1016/0021-9517(67)90293-X – ident: ref36/cit36 doi: 10.1021/ja109397k – ident: ref110/cit110 doi: 10.1103/PhysRevB.48.12253 – ident: ref15/cit15 doi: 10.1021/cg0600290 – ident: ref72/cit72 doi: 10.1021/acs.inorgchem.6b01369 – ident: ref74/cit74 doi: 10.1103/PhysRevLett.112.136403 – ident: ref379/cit379 doi: 10.1021/jacs.0c11047 – ident: ref130/cit130 doi: 10.1038/332525a0 – ident: ref59/cit59 doi: 10.1021/acsami.8b18676 – ident: ref211/cit211 doi: 10.1246/bcsj.44.3216 – ident: ref53/cit53 doi: 10.1016/j.cpc.2012.05.008 – ident: ref30/cit30 doi: 10.1103/PhysRevB.93.205125 – ident: ref322/cit322 doi: 10.1021/j100304a034 – ident: ref192/cit192 doi: 10.1016/j.apcata.2004.01.002 – ident: ref288/cit288 doi: 10.1016/0021-9517(85)90265-9 – ident: ref204/cit204 doi: 10.1016/0021-9517(77)90237-8 – ident: ref230/cit230 doi: 10.1021/ja010963d – ident: ref348/cit348 doi: 10.1002/anie.200905380 – ident: ref325/cit325 doi: 10.1002/chem.201800467 – ident: ref356/cit356 doi: 10.1038/s41565-018-0167-2 – ident: ref277/cit277 doi: 10.1021/jacs.0c02345 – ident: ref100/cit100 doi: 10.1103/PhysRevB.96.245303 – ident: ref180/cit180 doi: 10.1016/j.joule.2018.04.017 – ident: ref102/cit102 doi: 10.1038/s41467-020-15253-5 – ident: ref39/cit39 doi: 10.1021/ar4002922 – ident: ref67/cit67 doi: 10.1021/jp711631j – ident: ref138/cit138 doi: 10.1021/cm051662w – ident: ref89/cit89 doi: 10.1002/advs.201800666 – ident: ref16/cit16 doi: 10.1016/j.jcrysgro.2016.08.048 – ident: ref35/cit35 doi: 10.1038/nchem.2716 – ident: ref52/cit52 doi: 10.1103/PhysRevX.7.011017 – ident: ref197/cit197 doi: 10.1126/science.1254234 – ident: ref14/cit14 doi: 10.1126/science.1083842 – ident: ref148/cit148 doi: 10.1021/acsnano.7b06277 – ident: ref173/cit173 doi: 10.1016/j.ijhydene.2018.12.024 – ident: ref81/cit81 doi: 10.1021/ja9943445 – ident: ref127/cit127 doi: 10.1063/1.1829151 – ident: ref159/cit159 doi: 10.1002/anie.199107891 – ident: ref340/cit340 doi: 10.1039/C6SC01864E – ident: ref123/cit123 doi: 10.1016/j.mseb.2009.12.018 – ident: ref133/cit133 doi: 10.1021/ja016112n – ident: ref108/cit108 doi: 10.1103/PhysRevLett.107.087201 – ident: ref374/cit374 doi: 10.1038/srep10366 – ident: ref118/cit118 doi: 10.1088/0256-307X/31/11/118501 – ident: ref125/cit125 doi: 10.1063/1.2735280 – ident: ref187/cit187 doi: 10.1021/ja00464a015 – ident: ref311/cit311 doi: 10.1002/anie.197101951 – ident: ref359/cit359 doi: 10.1021/acscatal.0c03416 – ident: ref227/cit227 doi: 10.1016/S0926-860X(00)00713-4 – ident: ref239/cit239 doi: 10.1021/cs401044a – ident: ref109/cit109 doi: 10.1103/PhysRevLett.68.3789 – ident: ref175/cit175 doi: 10.1002/anie.201409885 – ident: ref222/cit222 doi: 10.1016/S0926-860X(96)00304-3 – ident: ref99/cit99 doi: 10.1021/acs.nanolett.6b05199 – ident: ref140/cit140 doi: 10.1103/PhysRevLett.91.126401 – ident: ref122/cit122 doi: 10.1109/JDT.2005.858942 – ident: ref309/cit309 doi: 10.1016/0021-9517(86)90316-7 – ident: ref292/cit292 doi: 10.1038/s41467-019-10492-7 – ident: ref33/cit33 doi: 10.1134/S0021364019060043 – ident: ref315/cit315 doi: 10.1246/bcsj.20140395 – ident: ref151/cit151 doi: 10.1103/PhysRevB.17.2575 – ident: ref218/cit218 doi: 10.1103/PhysRevLett.83.1814 – ident: ref371/cit371 doi: 10.1039/C4CC00802B – ident: ref112/cit112 doi: 10.1021/jz502588x – ident: ref49/cit49 doi: 10.1103/PhysRevB.96.035421 – ident: ref58/cit58 doi: 10.1021/jacs.6b09067 – ident: ref9/cit9 doi: 10.1002/anie.198810211 – ident: ref177/cit177 doi: 10.1038/nature02274 – ident: ref326/cit326 doi: 10.1021/ja5042836 – ident: ref150/cit150 doi: 10.1039/C8DT02548G – ident: ref270/cit270 doi: 10.1016/S0021-9517(03)00156-8 – ident: ref60/cit60 doi: 10.1021/acs.chemmater.8b02907 – ident: ref145/cit145 doi: 10.1016/S0022-0248(01)02038-3 – ident: ref244/cit244 doi: 10.1002/cctc.201700353 – ident: ref286/cit286 doi: 10.1038/nature01210 – ident: ref298/cit298 doi: 10.1021/jacs.7b05492 – ident: ref294/cit294 doi: 10.1039/C6SC02382G – ident: ref344/cit344 doi: 10.1016/j.apcata.2005.05.045 – ident: ref260/cit260 doi: 10.1021/jacs.8b08334 – ident: ref360/cit360 doi: 10.1021/acs.jpcc.6b00983 – ident: ref203/cit203 doi: 10.1016/0167-5729(91)90014-O – ident: ref381/cit381 doi: 10.1088/0022-3719/19/9/008 – ident: ref22/cit22 doi: 10.1038/nature11812 – ident: ref26/cit26 doi: 10.1021/ja5065125 – ident: ref154/cit154 doi: 10.1016/S0022-3093(99)00415-9 – ident: ref54/cit54 doi: 10.1021/acs.chemmater.8b03021 – ident: ref21/cit21 doi: 10.1002/adma.200700663 – ident: ref132/cit132 doi: 10.1021/ic00255a003 – ident: ref64/cit64 doi: 10.1021/jacs.9b03472 – ident: ref160/cit160 doi: 10.1021/jacs.6b00124 – ident: ref367/cit367 doi: 10.1038/s41598-019-55207-6 – ident: ref254/cit254 doi: 10.1021/jacs.9b10726 – ident: ref188/cit188 doi: 10.1038/nmat3696 – ident: ref284/cit284 doi: 10.1016/S0920-5861(97)81502-5 – ident: ref164/cit164 doi: 10.1021/ic4031624 – ident: ref47/cit47 doi: 10.1103/PhysRevLett.120.026401 – ident: ref105/cit105 doi: 10.1021/cm503512h – ident: ref264/cit264 doi: 10.1002/aenm.201801772 – ident: ref11/cit11 doi: 10.1021/ja00272a073 – ident: ref301/cit301 doi: 10.1126/science.1238663 – ident: ref358/cit358 doi: 10.1038/s41467-019-13679-0 – volume: 4 start-page: 031023 year: 2014 ident: ref24/cit24 publication-title: Phys. Rev. X – ident: ref37/cit37 doi: 10.1103/PhysRevLett.122.097002 – ident: ref70/cit70 doi: 10.1002/anie.201701681 – ident: ref62/cit62 doi: 10.1039/dt9960000001 – volume-title: Principles and practice of heterogeneous catalysis year: 2014 ident: ref169/cit169 – ident: ref352/cit352 doi: 10.1002/anie.201201726 – ident: ref290/cit290 doi: 10.1103/PhysRevB.2.1 – ident: ref349/cit349 doi: 10.1021/jp2076885 – ident: ref111/cit111 doi: 10.1021/jp036808y – ident: ref195/cit195 doi: 10.1126/science.282.5386.98 – ident: ref261/cit261 doi: 10.1002/anie.201703695 – ident: ref333/cit333 doi: 10.1021/acs.jpcc.5b11768 – ident: ref185/cit185 doi: 10.1038/s41586-019-1134-2 – ident: ref246/cit246 doi: 10.1039/C6SC00767H – ident: ref149/cit149 doi: 10.1021/cm9007987 – ident: ref280/cit280 doi: 10.1021/acs.jpcc.7b12364 – start-page: 82 year: 2013 ident: ref41/cit41 publication-title: J. Phys. Soc. Jpn. – ident: ref45/cit45 doi: 10.1021/acs.nanolett.7b05386 – ident: ref98/cit98 doi: 10.1103/PhysRevB.94.060502 – ident: ref189/cit189 doi: 10.1021/acs.accounts.6b00523 – ident: ref10/cit10 doi: 10.1021/j100390a004 – ident: ref256/cit256 doi: 10.1021/jacs.8b12784 – ident: ref376/cit376 doi: 10.1021/acs.chemmater.8b03202 – ident: ref276/cit276 doi: 10.1246/bcsj.80.872 – ident: ref281/cit281 doi: 10.1021/acs.jpcc.9b10850 – ident: ref324/cit324 doi: 10.1039/c3sc50794g – ident: ref6/cit6 doi: 10.1039/cs9760500337 – ident: ref278/cit278 doi: 10.1016/j.jcat.2018.04.029 – ident: ref181/cit181 doi: 10.1126/science.1085326 – volume-title: Cement chemistry year: 1997 ident: ref129/cit129 doi: 10.1680/cc.25929 – ident: ref251/cit251 doi: 10.1021/acscatal.8b02839 – ident: ref329/cit329 doi: 10.1039/C5CC04645A – ident: ref317/cit317 doi: 10.1021/jacs.0c06624 – ident: ref334/cit334 doi: 10.1021/acs.jpcc.9b03878 – ident: ref202/cit202 doi: 10.1016/0009-2614(79)80595-3 – ident: ref92/cit92 doi: 10.1103/PhysRevB.77.092505 – ident: ref93/cit93 doi: 10.3938/jkps.63.477 – ident: ref68/cit68 doi: 10.1073/pnas.1606891113 – ident: ref293/cit293 doi: 10.1021/acsaem.0c00754 – ident: ref319/cit319 doi: 10.1039/C2EE02865D – ident: ref28/cit28 doi: 10.1021/jacs.9b03155 – ident: ref163/cit163 doi: 10.1002/adma.201700924 – ident: ref303/cit303 doi: 10.1021/acs.jpcc.6b04748 – ident: ref120/cit120 doi: 10.1039/c2jm14966d – ident: ref7/cit7 doi: 10.1021/jo900904f – ident: ref291/cit291 doi: 10.1063/1.323539 – ident: ref332/cit332 doi: 10.1039/C5FD00179J – ident: ref162/cit162 doi: 10.1016/j.jallcom.2014.08.079 – ident: ref354/cit354 doi: 10.1021/cr100355b – ident: ref369/cit369 doi: 10.1021/ja067140e – ident: ref65/cit65 doi: 10.1103/PhysRevLett.123.206402 – ident: ref220/cit220 doi: 10.1016/S1381-1169(00)00396-4 – volume-title: Handbook of heterogeneous catalytic hydrogenation for organic synthesis year: 2001 ident: ref337/cit337 – ident: ref34/cit34 doi: 10.1038/nmat2796 – ident: ref237/cit237 doi: 10.1021/jacs.5b10145 – ident: ref142/cit142 doi: 10.1143/JPSJ.79.103704 – ident: ref215/cit215 doi: 10.1039/c39910001544 – ident: ref236/cit236 doi: 10.1038/nchem.1476 – ident: ref124/cit124 doi: 10.1016/j.mseb.2008.11.042 – ident: ref219/cit219 doi: 10.1023/A:1021028718491 – ident: ref119/cit119 doi: 10.1021/jp072635r – ident: ref156/cit156 doi: 10.1038/s41467-019-14216-9 – ident: ref297/cit297 doi: 10.1021/acssuschemeng.9b06299 – ident: ref206/cit206 doi: 10.1016/0021-9517(87)90109-6 – ident: ref269/cit269 doi: 10.1006/jcat.1997.1447 – volume-title: Modern methods of crystal structure prediction year: 2011 ident: ref50/cit50 – ident: ref90/cit90 doi: 10.1016/j.physc.2009.03.014 – ident: ref355/cit355 doi: 10.1021/ja901105a – ident: ref107/cit107 doi: 10.1021/acs.jpcc.9b06089 – volume-title: Ammonia synthesis catalysts: innovation and practice year: 2013 ident: ref174/cit174 doi: 10.1142/8199 – ident: ref85/cit85 doi: 10.1088/1468-6996/12/3/034410 – ident: ref136/cit136 doi: 10.1021/ja043990n – ident: ref252/cit252 doi: 10.1021/acscatal.8b03743 – ident: ref13/cit13 doi: 10.1038/331599a0 – ident: ref97/cit97 doi: 10.1002/wcms.1330 – ident: ref266/cit266 doi: 10.1002/anie.201810409 – ident: ref8/cit8 doi: 10.1126/science.247.4943.663 – ident: ref1/cit1 doi: 10.1021/ja01951a001 – ident: ref296/cit296 doi: 10.1021/acssuschemeng.8b04683 – ident: ref272/cit272 doi: 10.1006/jcat.2000.2858 – ident: ref205/cit205 doi: 10.1016/0021-9517(82)90016-1 – ident: ref121/cit121 doi: 10.1073/pnas.1617186114 – ident: ref351/cit351 doi: 10.1038/nmat4757 – ident: ref66/cit66 doi: 10.1126/science.1204394 – ident: ref75/cit75 doi: 10.1103/PhysRevLett.108.246404 – ident: ref165/cit165 doi: 10.1002/anie.201812131 – ident: ref361/cit361 doi: 10.1021/acs.jpcc.5b02342 |
SSID | ssj0005527 |
Score | 2.665203 |
SecondaryResourceType | review_article |
Snippet | Electrides are materials in which electrons serve as anions. Here, the concept of inorganic electrides is extended in several respects: from ionic crystals to... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3121 |
SubjectTerms | Ammonia Amorphous materials Anions Carbon Chemical reactions Chemical synthesis Confined spaces Crystallography Crystals Electron gas Electron mobility Electrons High pressure hydrogen hydrogenation Intermetallic compounds Ionic crystals Renewable energy sources topology |
Title | Advances in Materials and Applications of Inorganic Electrides |
URI | http://dx.doi.org/10.1021/acs.chemrev.0c01071 https://www.ncbi.nlm.nih.gov/pubmed/33606511 https://www.proquest.com/docview/2507174427 https://www.proquest.com/docview/2491941021 https://www.proquest.com/docview/2574344944 |
Volume | 121 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JSwMxFA5SD3pxX6pVInjw4NSZJJNMLkIpLVVoL1bobZhsWNSp2OnFX28yS1u34nXmJSQvL-R7vOUD4NLHIkq04B5WSnpEhNzjWgmPhhYu-5hhljee7w9o75Hcj8LRUrH6twg-Cm4SaZX_pF8dJYsvrfvgKsbXEbXX2CGh9sMio6NiaHVBA0rDqsnQ75O450hOvz5Hf2DM_K3pboNBVbFTpJg8N2eZaMqPnw0c_7eNHbBVok7YKsxkF6zpdA9stCuyt31w2ypyAaZwnMJ-khV2CZNUwdZSiBtODLxLCyYoCTs5hc5Y6ekBGHY7w3bPK6kVvIQwlHkRVpxLZJSWOkFKGEkxNoSoEBHFkJSurZ8LEXLKLCJQWlOOlcC-ppGOKD4EtXSS6mMApaScG6ZlYCiJjImYsX6vCAwOZRJRUgdXdutxeTOmcR70RkHsPpb6iEt91AGqziKWZYdyR5TxsnrQ9XzQW9GgY7V4ozrkxZqQA8WMEMTq4GL-256AC54kqZ7MrAzhASdu2hUyocVjhHBid31UGNB8TRhbV9Gi25P_6-MUbCKXQZNnDzZALXuf6TMLgTJxnhv-J6pSAS0 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYQDLDwfhQKGImBgUBjO3a8IFVVqxYoC63ULYpfUgWkiKQLvx47jxYQVLAmtnVnn-XPuvP3AXDewCKMteAeVkp6RATc41oJjwYWLjcwwywnnu8_0O6Q3I6CUfkozL2FsUakdqQ0T-LP2QX8a_fNuvHilFka0t4i3MPxFQtHkIvrZutxXthRCbW63AGlQcU19PMg7lSS6ddT6ReomR85nQ0wnBmbV5o8XU0zcSXfv_E4_tebTbBeYlDYLIJmCyzpZBustirptx1w0ywqA1I4TmA_zooohXGiYPNTwhtODOwlhS6UhO1cUGesdLoLBp32oNX1SqEFLyYMZV6IFecSGaWljpESRlKMDSEqQEQxJKUj-XMJQ06ZxQdKa8qxErihaahDivfAcjJJ9AGAUlLODdPSN5SExoTM2Fuw8A0OZBxSUgMX1vWo3CdplKfAkR-5j-V8ROV81ACqliSSJV-5k814XtzpctbptaDrWNy8Xq313CbkIDIjBLEaOJv9tivgUilxoidT24ZwnxM37II2gUVnhHBivd4v4mhmE8b24mix7uHf5-MUrHYH_fvovvdwdwTWkKutyesK62A5e5vqYwuOMnGS74UPwtMJjg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NbxMxEB1FQSpcCi3QBkLrShw4sGnW9trrC1IUEiVtEyERpHBarb-kCNhE7ObCr8fejwQQRKjXXduascfys974DcDrPpFxaqQIiNYqoDISgTBaBixycLlPOOGl8Pxsziaf6M0yWrYgbt7COCNyN1Jekvh-V2-0rRUGwmv_3bnyzVdn6St3k_CPxx944s7H9mD4cZ_c0RRr9fwBY1GjN_T3QfzJpPLfT6Z_wM3y2Bk_hs87g8tsky-9bSF76scfWo738egJHNdYFA2q4DmBlslO4eGwKQH3FN4NqgyBHK0yNEuLKlpRmmk0-IX4RmuLpllVH0qhUVlYZ6VN_gwW49FiOAnqggtBSjkugphoIRS22iiTYi2tYoRYSnWEqeZYKS_254lDwbjDCdoYJoiWpG9YbGJGnkM7W2fmHJBSTAjLjQoto7G1MbfuNixDSyKVxox24I1zPan3S56UVDgOE_-xno-kno8O4GZZElXrlvvyGV8Pd3q767SpZDsON-826723CXuozCnFvANXu99uBTylkmZmvXVtqAgF9cMeaBM5lEapoM7rsyqWdjYR4i6QDvO--P_5uISjD-_Hyd10fvsSHmGfYlOmF3ahXXzfmlcOIxXyotwOPwFXowwR |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advances+in+Materials+and+Applications+of+Inorganic+Electrides&rft.jtitle=Chemical+reviews&rft.au=Hosono%2C+Hideo&rft.au=Kitano%2C+Masaaki&rft.date=2021-03-10&rft.issn=1520-6890&rft.eissn=1520-6890&rft.volume=121&rft.issue=5&rft.spage=3121&rft_id=info:doi/10.1021%2Facs.chemrev.0c01071&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2665&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2665&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2665&client=summon |