Nanomechanical Resonators: Toward Atomic Scale

The quest for realizing and manipulating ever smaller man-made movable structures and dynamical machines has spurred tremendous endeavors, led to important discoveries, and inspired researchers to venture to previously unexplored grounds. Scientific feats and technological milestones of miniaturizat...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 16; no. 10; pp. 15545 - 15585
Main Authors Xu, Bo, Zhang, Pengcheng, Zhu, Jiankai, Liu, Zuheng, Eichler, Alexander, Zheng, Xu-Qian, Lee, Jaesung, Dash, Aneesh, More, Swapnil, Wu, Song, Wang, Yanan, Jia, Hao, Naik, Akshay, Bachtold, Adrian, Yang, Rui, Feng, Philip X.-L., Wang, Zenghui
Format Journal Article
LanguageEnglish
Published American Chemical Society 25.10.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The quest for realizing and manipulating ever smaller man-made movable structures and dynamical machines has spurred tremendous endeavors, led to important discoveries, and inspired researchers to venture to previously unexplored grounds. Scientific feats and technological milestones of miniaturization of mechanical structures have been widely accomplished by advances in machining and sculpturing ever shrinking features out of bulk materials such as silicon. With the flourishing multidisciplinary field of low-dimensional nanomaterials, including one-dimensional (1D) nanowires/nanotubes and two-dimensional (2D) atomic layers such as graphene/phosphorene, growing interests and sustained effort have been devoted to creating mechanical devices toward the ultimate limit of miniaturizationgenuinely down to the molecular or even atomic scale. These ultrasmall movable structures, particularly nanomechanical resonators that exploit the vibratory motion in these 1D and 2D nano-to-atomic-scale structures, offer exceptional device-level attributes, such as ultralow mass, ultrawide frequency tuning range, broad dynamic range, and ultralow power consumption, thus holding strong promises for both fundamental studies and engineering applications. In this Review, we offer a comprehensive overview and summary of this vibrant field, present the state-of-the-art devices and evaluate their specifications and performance, outline important achievements, and postulate future directions for studying these miniscule yet intriguing molecular-scale machines.
AbstractList The quest for realizing and manipulating ever smaller man-made movable structures and dynamical machines has spurred tremendous endeavors, led to important discoveries, and inspired researchers to venture to previously unexplored grounds. Scientific feats and technological milestones of miniaturization of mechanical structures have been widely accomplished by advances in machining and sculpturing ever shrinking features out of bulk materials such as silicon. With the flourishing multidisciplinary field of low-dimensional nanomaterials, including one-dimensional (1D) nanowires/nanotubes and two-dimensional (2D) atomic layers such as graphene/phosphorene, growing interests and sustained effort have been devoted to creating mechanical devices toward the ultimate limit of miniaturizationgenuinely down to the molecular or even atomic scale. These ultrasmall movable structures, particularly nanomechanical resonators that exploit the vibratory motion in these 1D and 2D nano-to-atomic-scale structures, offer exceptional device-level attributes, such as ultralow mass, ultrawide frequency tuning range, broad dynamic range, and ultralow power consumption, thus holding strong promises for both fundamental studies and engineering applications. In this Review, we offer a comprehensive overview and summary of this vibrant field, present the state-of-the-art devices and evaluate their specifications and performance, outline important achievements, and postulate future directions for studying these miniscule yet intriguing molecular-scale machines.
The quest for realizing and manipulating ever smaller man-made movable structures and dynamical machines has spurred tremendous endeavors, led to important discoveries, and inspired researchers to venture to previously unexplored grounds. Scientific feats and technological milestones of miniaturization of mechanical structures have been widely accomplished by advances in machining and sculpturing ever shrinking features out of bulk materials such as silicon. With the flourishing multidisciplinary field of low-dimensional nanomaterials, including one-dimensional (1D) nanowires/nanotubes and two-dimensional (2D) atomic layers such as graphene/phosphorene, growing interests and sustained effort have been devoted to creating mechanical devices toward the ultimate limit of miniaturization─genuinely down to the molecular or even atomic scale. These ultrasmall movable structures, particularly nanomechanical resonators that exploit the vibratory motion in these 1D and 2D nano-to-atomic-scale structures, offer exceptional device-level attributes, such as ultralow mass, ultrawide frequency tuning range, broad dynamic range, and ultralow power consumption, thus holding strong promises for both fundamental studies and engineering applications. In this Review, we offer a comprehensive overview and summary of this vibrant field, present the state-of-the-art devices and evaluate their specifications and performance, outline important achievements, and postulate future directions for studying these miniscule yet intriguing molecular-scale machines.The quest for realizing and manipulating ever smaller man-made movable structures and dynamical machines has spurred tremendous endeavors, led to important discoveries, and inspired researchers to venture to previously unexplored grounds. Scientific feats and technological milestones of miniaturization of mechanical structures have been widely accomplished by advances in machining and sculpturing ever shrinking features out of bulk materials such as silicon. With the flourishing multidisciplinary field of low-dimensional nanomaterials, including one-dimensional (1D) nanowires/nanotubes and two-dimensional (2D) atomic layers such as graphene/phosphorene, growing interests and sustained effort have been devoted to creating mechanical devices toward the ultimate limit of miniaturization─genuinely down to the molecular or even atomic scale. These ultrasmall movable structures, particularly nanomechanical resonators that exploit the vibratory motion in these 1D and 2D nano-to-atomic-scale structures, offer exceptional device-level attributes, such as ultralow mass, ultrawide frequency tuning range, broad dynamic range, and ultralow power consumption, thus holding strong promises for both fundamental studies and engineering applications. In this Review, we offer a comprehensive overview and summary of this vibrant field, present the state-of-the-art devices and evaluate their specifications and performance, outline important achievements, and postulate future directions for studying these miniscule yet intriguing molecular-scale machines.
The quest for realizing and manipulating ever smaller man-made movable structures and dynamical machines has spurred tremendous endeavors, led to important discoveries, and inspired researchers to venture to previously unexplored grounds. Scientific feats and technological milestones of miniaturization of mechanical structures have been widely accomplished by advances in machining and sculpturing ever shrinking features out of bulk materials such as silicon. With the flourishing multidisciplinary field of low-dimensional nanomaterials, including one-dimensional (1D) nanowires/nanotubes and two-dimensional (2D) atomic layers such as graphene/phosphorene, growing interests and sustained effort have been devoted to creating mechanical devices toward the ultimate limit of miniaturization—genuinely down to the molecular or even atomic scale. These ultrasmall movable structures, particularly nanomechanical resonators that exploit the vibratory motion in these 1D and 2D nano-to-atomic-scale structures, offer exceptional device-level attributes, such as ultralow mass, ultrawide frequency tuning range, broad dynamic range, and ultralow power consumption, thus holding strong promises for both fundamental studies and engineering applications. In this Review, we offer a comprehensive overview and summary of this vibrant field, present the state-of-the-art devices and evaluate their specifications and performance, outline important achievements, and postulate future directions for studying these miniscule yet intriguing molecular-scale machines.
Author Liu, Zuheng
Naik, Akshay
Feng, Philip X.-L.
Jia, Hao
Bachtold, Adrian
Eichler, Alexander
Zhang, Pengcheng
Dash, Aneesh
Xu, Bo
Wang, Yanan
Zhu, Jiankai
Yang, Rui
Wang, Zenghui
Wu, Song
Lee, Jaesung
Zheng, Xu-Qian
More, Swapnil
AuthorAffiliation Institute of Fundamental and Frontier Sciences
University of Electronic Science and Technology of China
School of Electronic Information and Electrical Engineering
Shanghai Jiao Tong University
Department of Physics
Centre for Nano Science and Engineering
The Barcelona Institute of Science and Technology
ICFO-Institut de Ciencies Fotoniques
Department of Electrical and Computer Engineering, Herbert Wertheim College of Engineering
Department of Electrical and Computer Engineering
College of Integrated Circuit Science and Engineering
State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China
University of Michigan−Shanghai Jiao Tong University Joint Institute
Nanjing University of Posts and Telecommunications
AuthorAffiliation_xml – name: The Barcelona Institute of Science and Technology
– name: University of Electronic Science and Technology of China
– name: University of Michigan−Shanghai Jiao Tong University Joint Institute
– name: Shanghai Jiao Tong University
– name: Institute of Fundamental and Frontier Sciences
– name: School of Electronic Information and Electrical Engineering
– name: ICFO-Institut de Ciencies Fotoniques
– name: State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China
– name: Department of Physics
– name: Department of Electrical and Computer Engineering, Herbert Wertheim College of Engineering
– name: Centre for Nano Science and Engineering
– name: College of Integrated Circuit Science and Engineering
– name: Nanjing University of Posts and Telecommunications
– name: Department of Electrical and Computer Engineering
Author_xml – sequence: 1
  givenname: Bo
  orcidid: 0000-0003-0262-2017
  surname: Xu
  fullname: Xu, Bo
  organization: University of Electronic Science and Technology of China
– sequence: 2
  givenname: Pengcheng
  orcidid: 0000-0003-4106-6762
  surname: Zhang
  fullname: Zhang, Pengcheng
  organization: University of Michigan−Shanghai Jiao Tong University Joint Institute
– sequence: 3
  givenname: Jiankai
  orcidid: 0000-0002-5495-7612
  surname: Zhu
  fullname: Zhu, Jiankai
  organization: University of Electronic Science and Technology of China
– sequence: 4
  givenname: Zuheng
  orcidid: 0000-0002-1866-2649
  surname: Liu
  fullname: Liu, Zuheng
  organization: University of Michigan−Shanghai Jiao Tong University Joint Institute
– sequence: 5
  givenname: Alexander
  orcidid: 0000-0001-6757-3442
  surname: Eichler
  fullname: Eichler, Alexander
  organization: Department of Physics
– sequence: 6
  givenname: Xu-Qian
  orcidid: 0000-0003-4705-771X
  surname: Zheng
  fullname: Zheng, Xu-Qian
  organization: Nanjing University of Posts and Telecommunications
– sequence: 7
  givenname: Jaesung
  orcidid: 0000-0003-0492-2478
  surname: Lee
  fullname: Lee, Jaesung
  organization: Department of Electrical and Computer Engineering
– sequence: 8
  givenname: Aneesh
  orcidid: 0000-0002-6465-6506
  surname: Dash
  fullname: Dash, Aneesh
  organization: Centre for Nano Science and Engineering
– sequence: 9
  givenname: Swapnil
  orcidid: 0000-0001-7906-8902
  surname: More
  fullname: More, Swapnil
  organization: Centre for Nano Science and Engineering
– sequence: 10
  givenname: Song
  orcidid: 0000-0002-3104-1855
  surname: Wu
  fullname: Wu, Song
  organization: University of Electronic Science and Technology of China
– sequence: 11
  givenname: Yanan
  orcidid: 0000-0002-9663-4491
  surname: Wang
  fullname: Wang, Yanan
  organization: Department of Electrical and Computer Engineering
– sequence: 12
  givenname: Hao
  orcidid: 0000-0002-1429-6995
  surname: Jia
  fullname: Jia, Hao
– sequence: 13
  givenname: Akshay
  orcidid: 0000-0001-6325-7231
  surname: Naik
  fullname: Naik, Akshay
  email: anaik@iisc.ac.in
  organization: Centre for Nano Science and Engineering
– sequence: 14
  givenname: Adrian
  orcidid: 0000-0002-6145-2479
  surname: Bachtold
  fullname: Bachtold, Adrian
  organization: The Barcelona Institute of Science and Technology
– sequence: 15
  givenname: Rui
  orcidid: 0000-0002-6163-2904
  surname: Yang
  fullname: Yang, Rui
  email: rui.yang@sjtu.edu.cn
  organization: Shanghai Jiao Tong University
– sequence: 16
  givenname: Philip X.-L.
  orcidid: 0000-0002-1083-2391
  surname: Feng
  fullname: Feng, Philip X.-L.
  email: philip.feng@ufl.edu
  organization: Department of Electrical and Computer Engineering, Herbert Wertheim College of Engineering
– sequence: 17
  givenname: Zenghui
  orcidid: 0000-0003-3743-7567
  surname: Wang
  fullname: Wang, Zenghui
  email: zenghui.wang@uestc.edu.cn
  organization: State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China
BookMark eNp1kEtLAzEUhYNUrK2u3c5SkGnzmDzGhVCKLygKWsFdSNOMTZlJajKj-O-d0lFQ6OpeOOc793IGoOe8MwCcIThCEKOx0tEp50dYQ8Q4OQDHKCcshYK99n53ivpgEOMaQsoFZ0egTxikmRDwGIweWrwyeqWc1apMnkz0TtU-xMtk7j9VWCaT2ldWJ8-tbE7AYaHKaE67OQQvN9fz6V06e7y9n05mqco4rlOO8ZLSQmBOCMKIL9hCiNxoqLKcFiQruKDQYJoLjRiChuUaGyFoTjTBBWVkCK52uZtmUZmlNq4OqpSbYCsVvqRXVv5VnF3JN_8hc4ZhhnAbcN4FBP_emFjLykZtylI545soMYc5J5zB7S26s-rgYwymkNrWqrZ-m2xLiaDcdi27rmXXdcuN_3E_7-0nLnZEK8i1b4JrO9zr_gZy25GI
CitedBy_id crossref_primary_10_1021_acssensors_2c02790
crossref_primary_10_1103_PhysRevResearch_5_023117
crossref_primary_10_1109_JMEMS_2023_3282233
crossref_primary_10_1021_acsphotonics_4c01548
crossref_primary_10_1016_j_matdes_2023_112226
crossref_primary_10_1038_s41378_024_00827_w
crossref_primary_10_1016_j_carbon_2024_118951
crossref_primary_10_1021_acsaelm_4c01261
crossref_primary_10_1038_s41378_024_00709_1
crossref_primary_10_1088_1402_4896_ad49d8
crossref_primary_10_1021_acsnano_5c00651
crossref_primary_10_1021_acs_nanolett_3c00233
crossref_primary_10_1063_5_0167141
crossref_primary_10_1103_PhysRevB_111_085112
crossref_primary_10_1007_s12274_023_6091_2
crossref_primary_10_1016_j_ijmecsci_2023_108412
crossref_primary_10_1002_advs_202303477
crossref_primary_10_31857_S2686740024030086
crossref_primary_10_1093_nsr_nwae248
crossref_primary_10_1103_PhysRevApplied_21_054029
crossref_primary_10_1021_acs_nanolett_3c02691
crossref_primary_10_1021_acsphotonics_3c01601
crossref_primary_10_1016_j_mne_2024_100282
crossref_primary_10_3389_fmolb_2022_1058441
crossref_primary_10_1021_acs_nanolett_4c03173
crossref_primary_10_1038_s41378_024_00799_x
crossref_primary_10_1021_acsanm_3c03642
crossref_primary_10_1039_D4NA00766B
crossref_primary_10_1007_s11432_024_4047_2
crossref_primary_10_1063_5_0237524
crossref_primary_10_1109_TMECH_2023_3330761
crossref_primary_10_1088_1402_4896_acab9b
crossref_primary_10_1063_5_0241979
crossref_primary_10_3390_mi14101910
crossref_primary_10_1109_JMEMS_2024_3392402
crossref_primary_10_3390_mi13122242
crossref_primary_10_1007_s11071_024_09839_7
crossref_primary_10_1088_2053_1583_ad3133
crossref_primary_10_1021_acsami_3c16291
crossref_primary_10_1021_acs_nanolett_2c02629
crossref_primary_10_34133_adi_0019
crossref_primary_10_1021_acs_nanolett_4c02214
crossref_primary_10_1063_5_0190053
crossref_primary_10_1016_j_isci_2024_109328
crossref_primary_10_1063_5_0170127
crossref_primary_10_1007_s11071_024_09464_4
crossref_primary_10_1038_s41378_024_00763_9
crossref_primary_10_1088_1361_6641_ad0791
crossref_primary_10_1063_5_0220270
crossref_primary_10_1063_5_0159610
crossref_primary_10_1038_s41699_024_00513_5
crossref_primary_10_1002_qute_202400344
crossref_primary_10_1002_inf2_12553
crossref_primary_10_1088_0256_307X_40_3_038102
crossref_primary_10_1016_j_precisioneng_2023_04_009
crossref_primary_10_1021_acsabm_2c01034
crossref_primary_10_1016_j_ijnonlinmec_2024_104933
crossref_primary_10_1038_s41378_024_00844_9
crossref_primary_10_1021_acs_nanolett_3c03164
crossref_primary_10_1021_acsnano_2c05742
crossref_primary_10_1021_acs_nanolett_3c00096
crossref_primary_10_1073_pnas_2220500120
crossref_primary_10_1016_j_rinp_2023_106563
crossref_primary_10_1103_PhysRevE_108_045002
crossref_primary_10_1021_acsnano_4c09014
crossref_primary_10_1038_s41467_024_49145_9
crossref_primary_10_1016_j_chip_2023_100038
crossref_primary_10_1103_PhysRevResearch_6_013284
crossref_primary_10_1016_j_matchemphys_2024_129068
crossref_primary_10_1063_5_0247821
crossref_primary_10_1016_j_device_2025_100708
crossref_primary_10_1016_j_optlastec_2023_109242
crossref_primary_10_1038_s41378_024_00791_5
crossref_primary_10_1002_adfm_202309543
crossref_primary_10_1038_s41378_023_00508_0
crossref_primary_10_1088_1361_6528_ad83d6
crossref_primary_10_3788_gzxb20255402_0219001
crossref_primary_10_1103_PhysRevApplied_22_L061003
crossref_primary_10_1016_j_ijmecsci_2023_108728
crossref_primary_10_1038_s44172_024_00186_4
crossref_primary_10_1063_5_0106731
crossref_primary_10_1088_2631_7990_ace501
crossref_primary_10_1177_10775463241272934
crossref_primary_10_1109_JSEN_2024_3500582
crossref_primary_10_1016_j_ijthermalsci_2024_109421
crossref_primary_10_35848_1347_4065_ad2979
crossref_primary_10_1002_adfm_202303519
crossref_primary_10_1002_smll_202300631
crossref_primary_10_1103_PhysRevB_108_144107
Cites_doi 10.1038/nnano.2008.26
10.1021/acs.nanolett.0c01586
10.1063/1.4868868
10.1016/j.physrep.2013.09.003
10.1021/acs.nanolett.9b01219
10.31438/trf.hh2016.111
10.1021/jp0654011
10.1038/nphoton.2016.68
10.1126/science.1176076
10.1038/s41567-019-0683-5
10.1021/acs.nanolett.1c01866
10.1021/acs.nanolett.6b02038
10.1103/PhysRevLett.108.083603
10.1038/ncomms1813
10.1038/nnano.2013.232
10.1039/C7NR04940D
10.1063/1.2906373
10.1063/1.1601311
10.1103/PhysRevLett.120.246802
10.1038/354056a0
10.1038/nphys2070
10.1126/science.1195596
10.1063/1.2209211
10.1038/s41467-018-02854-4
10.1063/1.4793302
10.1038/421496a
10.1126/science.aao1511
10.1126/science.abf5389
10.1063/1.3663630
10.1002/pssb.2220480206
10.1063/1.5045309
10.1038/nature14417
10.1021/acsnano.0c01478
10.1021/nl302036x
10.1109/MEMSYS.2017.7863341
10.1109/Transducers50396.2021.9495564
10.1038/s41928-021-00566-0
10.1038/nnano.2011.250
10.1021/nl501853w
10.1063/1.4769445
10.1021/acs.nanolett.8b04282
10.1021/acs.nanolett.5b03451
10.1038/nnano.2014.168
10.1021/acs.nanolett.8b02437
10.1103/PhysRevLett.89.276103
10.1021/acs.nanolett.6b01875
10.1021/nl070716t
10.1021/nl050886a
10.1038/ncomms3843
10.1002/adma.201303569
10.1038/nature09933
10.1038/ncomms12153
10.1126/sciadv.1602273
10.1038/nnano.2017.86
10.1103/PhysRevB.92.165419
10.1103/PhysRevLett.127.216101
10.1103/PhysRevLett.105.027205
10.1038/nphys3576
10.1063/1.5006941
10.1103/PhysRevLett.96.156103
10.1143/APEX.5.117201
10.1103/PhysRevA.84.023412
10.1021/acs.nanolett.6b05065
10.1103/PhysRevResearch.4.013149
10.1038/micronano.2017.38
10.1021/nl900612h
10.1021/acsphotonics.9b01094
10.1109/FCS.2015.7138822
10.1126/science.aah4243
10.1038/nature12502
10.1021/nl1022139
10.1109/SENSOR.2009.5285595
10.1021/acs.nanolett.2c01250
10.1038/nmat2936
10.1021/acsami.7b13930
10.1038/nnano.2009.152
10.1021/nn4018872
10.1103/PhysRevLett.88.045503
10.1038/ncomms15785
10.1126/science.1144216
10.1109/MEMSYS.2015.7051096
10.1126/sciadv.aav2372
10.1021/nl2003158
10.1021/nl301922d
10.1021/acs.nanolett.8b02293
10.1038/s41467-019-12795-1
10.1021/nl801982v
10.1063/1.4939685
10.1073/pnas.1916978117
10.1039/C5NR06118K
10.1002/admt.202000794
10.1021/acsnano.1c08380
10.1002/adfm.202104978
10.1103/PhysRevB.86.115454
10.1021/nl200950d
10.1063/5.0045106
10.1039/C6NR00713A
10.1039/C6NR02853E
10.1088/1361-6439/abe20b
10.1038/nnano.2008.125
10.1038/ncomms6819
10.1021/nl802181c
10.1063/1.4890387
10.1088/1361-6528/ab19cf
10.1021/acs.nanolett.7b04685
10.1038/s41928-019-0287-1
10.1109/MAMNA.2013.6557225
10.1299/jmmp.1.18
10.1063/5.0073005
10.1021/nl904260k
10.1021/nl102713c
10.1103/PhysRevLett.110.120503
10.1038/ncomms6850
10.1038/nnano.2009.267
10.1002/adma.202000046
10.1038/s41565-021-00963-8
10.1038/ncomms8165
10.1063/1.4931118
10.1021/acs.nanolett.9b00560
10.1021/acs.nanolett.5b01210
10.1109/NANO.2016.7751567
10.1038/s41570-019-0122-2
10.1126/sciadv.1600236
10.1021/acs.nanolett.5b04251
10.1088/0957-4484/16/10/018
10.1002/pssb.2220680109
10.1021/nl1039549
10.1116/1.4898117
10.1103/PhysRevX.11.031027
10.1038/s41586-019-1226-z
10.1039/c3nr05991j
10.1038/nature09898
10.1007/s11432-021-3432-6
10.1039/D1NR03286K
10.1038/nnano.2016.94
10.1002/smll.200901984
10.1103/PhysRevB.68.155420
10.1021/acs.nanolett.5b04840
10.1021/acs.nanolett.9b00546
10.1109/FCS.2014.6859918
10.1038/s41565-018-0341-6
10.1126/science.275.5308.1922
10.1039/C8NR09963D
10.1063/1.4802746
10.1021/nl203305q
10.1038/35040699
10.3390/mi7090158
10.1126/science.1136836
10.1063/1.1929098
10.1073/pnas.1216407109
10.1038/nchem.2687
10.1038/s41586-018-0861-0
10.1021/acs.nanolett.6b00477
10.1109/TUFFC.2007.240
10.1126/science.1192511
10.1109/LED.2018.2850776
10.1007/s11432-020-3241-9
10.1038/ncomms6158
10.1021/nl203279v
10.1038/s41467-020-19261-3
10.1103/PhysRevLett.122.165301
10.1103/PhysRevLett.90.156401
10.1038/s41467-017-01351-4
10.1021/nl052134m
10.1038/nnano.2012.42
10.7567/1882-0786/ab3b4f
10.1021/nl0706695
10.1038/srep28923
10.1039/C6NR01118G
10.1021/nl500879k
10.1038/s41567-019-0682-6
10.1021/nl080201h
10.1103/PhysRevB.61.5600
10.1021/nl801071w
10.1038/s41586-018-0719-5
10.1126/science.abf2998
10.1063/5.0031503
10.1038/nphoton.2015.282
10.1063/1.5054625
10.1109/MEMS46641.2020.9056366
10.1063/1.117548
10.1103/PhysRevLett.97.087203
10.1126/science.1174290
10.1021/acsnano.1c11498
10.1038/s41563-020-0712-x
10.1038/s41565-021-01061-5
10.1103/PhysRevLett.112.196103
10.1063/5.0050421
10.1038/nnano.2016.86
10.1038/nnano.2012.119
10.1103/RevModPhys.86.1391
10.1088/1367-2630/18/2/023020
10.1021/acs.nanolett.9b04619
10.1063/1.104757
10.1103/PhysRevLett.101.180602
10.1103/RevModPhys.87.1419
10.1038/ncomms12496
10.1038/nature10261
10.1021/acs.nanolett.9b04909
10.1109/IEDM.2018.8614604
10.1063/1.2932254
10.1063/1.2432257
10.1021/acs.nanolett.6b01598
10.1088/1361-6439/aac13d
10.1126/science.1157996
10.1088/1367-2630/7/1/247
10.1126/science.1182507
10.1021/acs.nanolett.1c03010
10.1038/nnano.2013.143
10.1038/nnano.2013.97
10.1063/1.4868129
10.1103/PhysRevLett.109.025503
10.1088/1742-6596/302/1/012001
10.1021/nl0721113
10.1063/5.0031890
10.1063/5.0069561
10.1038/nnano.2011.180
10.1038/s41467-021-21334-w
10.1038/s41467-020-16266-w
10.1038/s41598-017-05730-1
10.1021/nl501413t
10.1021/acs.nanolett.6b04223
10.1103/PhysRevLett.125.187701
10.1038/s41467-022-33440-4
10.1021/acsnano.1c05734
10.1038/srep03919
10.1038/nnano.2011.71
10.1063/1.1821638
10.1063/1.3273372
10.1103/PhysRevLett.108.175502
10.1007/s10909-012-0642-3
10.1038/d41586-019-00793-8
10.1109/MEMSYS.2018.8346606
10.1021/acs.nanolett.1c00610
10.1039/C8NR10452B
10.1038/s41467-020-15433-3
10.1109/MEMS46641.2020.9056243
10.1038/nphys2842
10.1021/nl4040913
10.1063/1.1646213
10.1038/nmat1455
10.1126/science.aay5220
10.1103/RevModPhys.87.703
10.1038/nnano.2014.234
10.1088/1361-6439/ac3466
10.1088/2053-1583/2/2/021001
10.1021/nl062206p
10.1126/science.1081940
10.1038/s41467-020-16430-2
10.1109/MEMSYS.2018.8346740
10.1038/nature02658
10.1063/1.3528341
10.1088/1361-6633/ab3a7e
10.1109/IEDM.2014.7047008
10.1038/s41467-021-26230-x
10.1126/sciadv.aao6653
10.1021/acs.nanolett.2c00494
10.1364/JOSAB.389944
10.1038/s41565-020-00814-y
10.1038/s41467-017-01551-y
10.1109/EFTF-IFC.2013.6702300
10.1038/s41586-022-04523-5
10.1038/s41467-020-16056-4
10.1038/nature02905
10.1063/1.1843289
10.3390/mi9060312
10.1021/ar0101640
10.1021/acsnano.5b03367
10.1021/nl901057c
10.1109/JEDS.2013.2295246
10.1063/1.5026775
10.1063/5.0063079
10.1038/nnano.2013.274
10.1063/1.2012461
10.1038/4341085a
10.1109/MEMSYS.2015.7051099
10.1021/acs.nanolett.8b01926
10.1103/PhysRevX.11.021009
10.1103/PhysRevLett.113.027404
10.1109/TRANSDUCERS.2015.7180922
10.1038/nnano.2006.45
10.1119/1.4878621
10.1109/5.704281
10.1021/nl403268b
10.1063/1.4929507
10.1038/nature10461
10.1038/nature01773
10.1103/PhysRevB.92.235441
10.1126/science.aat6457
10.1088/2053-1583/aa57c6
10.1063/1.3691958
10.1038/s41467-021-23359-7
10.1038/nature08967
10.1021/acs.nanolett.5b02586
10.1109/SENSOR.2007.4300134
10.1109/MEMS51782.2021.9375457
10.1103/PhysRevB.84.165307
10.1103/PhysRevLett.108.136101
10.1038/ncomms9104
10.1063/1.3139750
10.1002/adfm.200900105
10.1116/1.1347040
10.1109/84.825786
10.1002/inf2.12274
10.1109/IEEE-IWS.2013.6616764
10.1063/1.1396318
10.1126/science.aac9439
10.1038/nature10787
10.1021/acs.nanolett.9b03668
10.1088/2053-1583/abc2a7
10.1134/S0021364018190037
10.1063/1.2822406
10.1038/srep21686
10.1016/j.physleta.2011.05.009
10.1103/PhysRevA.69.022902
10.1038/27632
10.1103/PhysRevB.95.104109
10.1021/nl1042227
10.1021/acs.nanolett.9b02351
10.1038/nphys3302
10.1007/s11432-021-3297-x
10.1021/acs.nanolett.1c02056
10.1038/s41467-019-14130-0
10.1021/acs.nanolett.1c02369
10.1103/PhysRevLett.126.175502
10.1103/PhysRevB.69.045403
10.1103/PhysRevB.86.041402
10.1103/PhysRevA.61.063418
10.1109/TRANSDUCERS.2015.7181193
10.1002/adma.200401959
10.1103/PhysRevApplied.11.024024
10.1038/nature23905
10.1063/1.4934708
10.1063/1.3627178
10.1016/j.mattod.2015.10.002
10.1109/MEMSYS.2016.7421557
10.1038/nnano.2010.151
10.1038/nphys2665
10.1080/21663831.2013.824516
10.1103/PhysRevLett.99.085501
10.1103/PhysRevLett.87.096801
10.1103/PhysRevLett.123.083901
10.1021/acs.nanolett.7b01845
10.1063/5.0024583
10.1039/C4NR04829F
10.1021/nl101292b
10.1038/386474a0
10.1038/s41467-018-03097-z
10.1038/32373
ContentType Journal Article
Copyright 2022 The Authors. Published by American Chemical Society
2022 The Authors. Published by American Chemical Society 2022 The Authors
Copyright_xml – notice: 2022 The Authors. Published by American Chemical Society
– notice: 2022 The Authors. Published by American Chemical Society 2022 The Authors
DBID AAYXX
CITATION
7X8
5PM
DOI 10.1021/acsnano.2c01673
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 15585
ExternalDocumentID PMC9620412
10_1021_acsnano_2c01673
e381370
GrantInformation_xml – fundername: ;
  grantid: ECCS-1454570
– fundername: ;
  grantid: 2017SGR1664
– fundername: ;
  grantid: PCI2022-132951
– fundername: ;
  grantid: ZYGX2020ZB014
– fundername: ;
  grantid: 21ZR1433800
– fundername: ;
  grantid: LG-QS-202202-11
– fundername: ;
  grantid: U21A20505
– fundername: ;
  grantid: CEX2019-000910-S
– fundername: ;
  grantid: 692876
– fundername: ;
  grantid: 19YF1424900
GroupedDBID ---
.K2
23M
4.4
55A
5GY
5VS
6J9
7~N
AABXI
ABFRP
ABMVS
ABQRX
ABUCX
ACGFO
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED~
F5P
GGK
GNL
IH9
IHE
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ACBEA
ADHGD
BAANH
CITATION
CUPRZ
7X8
5PM
ID FETCH-LOGICAL-a472t-722d55f827331217b6b889ec0a495f34f7850e2598c1610e69c2e88593c32f563
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Thu Aug 21 18:38:34 EDT 2025
Fri Jul 11 16:17:58 EDT 2025
Tue Jul 01 03:37:29 EDT 2025
Thu Apr 24 22:58:00 EDT 2025
Thu Oct 27 05:08:52 EDT 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords one-dimensional materials
sensing
radio frequency
quantum engineering
signal processing
dynamic range
two-dimensional materials
nanoelectromechanical systems
resonators
frequency tuning
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a472t-722d55f827331217b6b889ec0a495f34f7850e2598c1610e69c2e88593c32f563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0003-4705-771X
0000-0001-6757-3442
0000-0003-0492-2478
0000-0001-6325-7231
0000-0002-6163-2904
0000-0002-1429-6995
0000-0003-0262-2017
0000-0003-4106-6762
0000-0002-1083-2391
0000-0002-9663-4491
0000-0002-3104-1855
0000-0003-3743-7567
0000-0002-6145-2479
0000-0002-1866-2649
0000-0002-5495-7612
0000-0001-7906-8902
0000-0002-6465-6506
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC9620412
PMID 36054880
PQID 2709737606
PQPubID 23479
PageCount 41
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9620412
proquest_miscellaneous_2709737606
crossref_citationtrail_10_1021_acsnano_2c01673
crossref_primary_10_1021_acsnano_2c01673
acs_journals_10_1021_acsnano_2c01673
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-25
PublicationDateYYYYMMDD 2022-10-25
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-25
  day: 25
PublicationDecade 2020
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2022
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref99/cit99
ref3/cit3
ref81/cit81
ref330/cit330
ref332/cit332
ref16/cit16
ref185/cit185
ref23/cit23
ref115/cit115
ref259/cit259
ref187/cit187
ref181/cit181
ref327/cit327
ref111/cit111
ref255/cit255
ref329/cit329
ref113/cit113
ref183/cit183
ref257/cit257
ref117/cit117
ref48/cit48
ref74/cit74
ref189/cit189
ref119/cit119
ref10/cit10
ref35/cit35
ref93/cit93
ref251/cit251
ref325/cit325
ref253/cit253
ref42/cit42
ref321/cit321
ref323/cit323
ref120/cit120
ref178/cit178
ref122/cit122
ref248/cit248
ref61/cit61
ref176/cit176
ref67/cit67
ref128/cit128
ref124/cit124
ref126/cit126
ref54/cit54
ref240/cit240
ref137/cit137
ref310/cit310
ref318/cit318
ref11/cit11
ref102/cit102
ref29/cit29
ref174/cit174
ref314/cit314
ref86/cit86
ref170/cit170
ref244/cit244
ref271/cit271
ref345/cit345
ref5/cit5
ref341/cit341
ref43/cit43
ref80/cit80
ref133/cit133
ref207/cit207
ref28/cit28
ref279/cit279
ref203/cit203
ref275/cit275
ref349/cit349
ref233/cit233
ref148/cit148
ref307/cit307
ref55/cit55
ref144/cit144
ref303/cit303
ref218/cit218
ref167/cit167
ref163/cit163
ref237/cit237
ref66/cit66
ref264/cit264
ref338/cit338
ref22/cit22
ref260/cit260
ref334/cit334
ref87/cit87
ref106/cit106
ref140/cit140
ref198/cit198
ref214/cit214
ref194/cit194
ref98/cit98
ref210/cit210
ref268/cit268
ref153/cit153
ref297/cit297
ref227/cit227
ref222/cit222
ref150/cit150
ref294/cit294
ref63/cit63
ref224/cit224
ref295/cit295
ref56/cit56
ref155/cit155
ref229/cit229
ref156/cit156
ref158/cit158
ref8/cit8
ref59/cit59
ref85/cit85
ref34/cit34
ref37/cit37
ref221/cit221
ref292/cit292
ref60/cit60
ref17/cit17
ref219/cit219
ref82/cit82
ref147/cit147
ref232/cit232
ref306/cit306
ref230/cit230
ref145/cit145
ref304/cit304
ref238/cit238
ref21/cit21
ref166/cit166
ref164/cit164
ref350/cit350
ref352/cit352
ref213/cit213
ref284/cit284
ref286/cit286
ref78/cit78
ref211/cit211
ref312/cit312
ref36/cit36
ref83/cit83
ref79/cit79
ref139/cit139
ref172/cit172
ref246/cit246
ref243/cit243
ref317/cit317
ref270/cit270
ref200/cit200
ref344/cit344
ref14/cit14
ref57/cit57
ref169/cit169
ref278/cit278
ref134/cit134
ref208/cit208
ref40/cit40
ref273/cit273
ref347/cit347
ref131/cit131
ref205/cit205
Bachtold A. (ref190/cit190) 2022
ref161/cit161
ref320/cit320
ref142/cit142
ref216/cit216
ref301/cit301
ref15/cit15
ref180/cit180
ref235/cit235
ref309/cit309
ref62/cit62
ref41/cit41
ref58/cit58
ref104/cit104
ref262/cit262
ref177/cit177
ref336/cit336
ref84/cit84
ref1/cit1
ref123/cit123
ref196/cit196
ref281/cit281
ref355/cit355
ref7/cit7
ref45/cit45
ref331/cit331
ref333/cit333
ref52/cit52
ref184/cit184
ref114/cit114
ref258/cit258
ref186/cit186
ref116/cit116
ref110/cit110
ref254/cit254
ref182/cit182
ref328/cit328
ref2/cit2
ref112/cit112
ref256/cit256
ref77/cit77
ref71/cit71
ref188/cit188
ref20/cit20
ref118/cit118
ref89/cit89
ref19/cit19
ref96/cit96
ref107/cit107
ref337/cit337
ref191/cit191
ref265/cit265
ref109/cit109
ref339/cit339
ref13/cit13
ref193/cit193
ref105/cit105
ref261/cit261
ref335/cit335
ref263/cit263
ref197/cit197
ref38/cit38
ref199/cit199
ref90/cit90
ref267/cit267
ref195/cit195
ref269/cit269
ref64/cit64
ref311/cit311
ref6/cit6
ref18/cit18
ref136/cit136
ref65/cit65
ref171/cit171
ref97/cit97
ref101/cit101
ref245/cit245
ref319/cit319
ref241/cit241
ref315/cit315
ref76/cit76
ref32/cit32
ref39/cit39
ref272/cit272
ref202/cit202
ref346/cit346
ref168/cit168
ref342/cit342
ref206/cit206
ref132/cit132
ref276/cit276
ref91/cit91
ref287/cit287
ref252/cit252
ref12/cit12
ref326/cit326
ref322/cit322
ref179/cit179
ref121/cit121
ref175/cit175
ref33/cit33
ref249/cit249
ref283/cit283
ref129/cit129
ref44/cit44
ref353/cit353
ref70/cit70
ref125/cit125
ref9/cit9
ref152/cit152
ref225/cit225
ref296/cit296
ref226/cit226
ref154/cit154
ref298/cit298
ref27/cit27
ref228/cit228
ref299/cit299
ref293/cit293
ref223/cit223
ref151/cit151
ref159/cit159
ref92/cit92
ref157/cit157
Lifshitz R. (ref100/cit100) 2008
ref31/cit31
ref290/cit290
ref220/cit220
ref291/cit291
ref88/cit88
ref160/cit160
ref234/cit234
ref143/cit143
ref302/cit302
ref217/cit217
ref288/cit288
ref53/cit53
ref149/cit149
ref162/cit162
ref308/cit308
ref46/cit46
ref236/cit236
ref49/cit49
ref75/cit75
ref24/cit24
ref141/cit141
ref300/cit300
ref215/cit215
ref280/cit280
ref354/cit354
ref50/cit50
ref282/cit282
ref313/cit313
ref209/cit209
ref138/cit138
ref25/cit25
ref173/cit173
ref103/cit103
ref247/cit247
ref72/cit72
ref242/cit242
ref316/cit316
ref343/cit343
ref201/cit201
ref340/cit340
ref51/cit51
ref277/cit277
ref135/cit135
ref68/cit68
ref94/cit94
ref130/cit130
ref274/cit274
ref204/cit204
ref348/cit348
ref146/cit146
ref305/cit305
ref26/cit26
ref73/cit73
ref231/cit231
ref69/cit69
ref165/cit165
ref324/cit324
ref239/cit239
Cohen-Tannoudji C. (ref289/cit289) 2020
ref250/cit250
ref95/cit95
ref108/cit108
ref192/cit192
ref351/cit351
ref266/cit266
ref4/cit4
ref30/cit30
ref212/cit212
ref47/cit47
ref127/cit127
ref285/cit285
References_xml – ident: ref34/cit34
  doi: 10.1038/nnano.2008.26
– ident: ref225/cit225
  doi: 10.1021/acs.nanolett.0c01586
– ident: ref51/cit51
  doi: 10.1063/1.4868868
– ident: ref188/cit188
  doi: 10.1016/j.physrep.2013.09.003
– ident: ref231/cit231
  doi: 10.1021/acs.nanolett.9b01219
– ident: ref168/cit168
  doi: 10.31438/trf.hh2016.111
– ident: ref193/cit193
  doi: 10.1021/jp0654011
– ident: ref348/cit348
  doi: 10.1038/nphoton.2016.68
– ident: ref96/cit96
  doi: 10.1126/science.1176076
– ident: ref276/cit276
  doi: 10.1038/s41567-019-0683-5
– ident: ref268/cit268
  doi: 10.1021/acs.nanolett.1c01866
– ident: ref65/cit65
  doi: 10.1021/acs.nanolett.6b02038
– ident: ref108/cit108
  doi: 10.1103/PhysRevLett.108.083603
– ident: ref239/cit239
  doi: 10.1038/ncomms1813
– ident: ref59/cit59
  doi: 10.1038/nnano.2013.232
– ident: ref157/cit157
  doi: 10.1039/C7NR04940D
– ident: ref333/cit333
  doi: 10.1063/1.2906373
– ident: ref33/cit33
  doi: 10.1063/1.1601311
– ident: ref278/cit278
  doi: 10.1103/PhysRevLett.120.246802
– ident: ref89/cit89
  doi: 10.1038/354056a0
– ident: ref24/cit24
  doi: 10.1038/nphys2070
– ident: ref232/cit232
  doi: 10.1126/science.1195596
– ident: ref172/cit172
  doi: 10.1063/1.2209211
– ident: ref220/cit220
  doi: 10.1038/s41467-018-02854-4
– ident: ref58/cit58
  doi: 10.1063/1.4793302
– ident: ref265/cit265
  doi: 10.1038/421496a
– ident: ref284/cit284
  doi: 10.1126/science.aao1511
– ident: ref288/cit288
  doi: 10.1126/science.abf5389
– ident: ref103/cit103
  doi: 10.1063/1.3663630
– ident: ref214/cit214
  doi: 10.1002/pssb.2220480206
– ident: ref252/cit252
  doi: 10.1063/1.5045309
– ident: ref301/cit301
  doi: 10.1038/nature14417
– ident: ref300/cit300
  doi: 10.1021/acsnano.0c01478
– ident: ref86/cit86
  doi: 10.1021/nl302036x
– ident: ref122/cit122
  doi: 10.1109/MEMSYS.2017.7863341
– ident: ref270/cit270
  doi: 10.1109/Transducers50396.2021.9495564
– ident: ref309/cit309
  doi: 10.1038/s41928-021-00566-0
– ident: ref126/cit126
  doi: 10.1038/nnano.2011.250
– ident: ref111/cit111
  doi: 10.1021/nl501853w
– ident: ref118/cit118
  doi: 10.1063/1.4769445
– ident: ref200/cit200
  doi: 10.1021/acs.nanolett.8b04282
– ident: ref28/cit28
  doi: 10.1021/acs.nanolett.5b03451
– ident: ref78/cit78
  doi: 10.1038/nnano.2014.168
– ident: ref254/cit254
  doi: 10.1021/acs.nanolett.8b02437
– ident: ref54/cit54
  doi: 10.1103/PhysRevLett.89.276103
– ident: ref219/cit219
  doi: 10.1021/acs.nanolett.6b01875
– ident: ref199/cit199
  doi: 10.1021/nl070716t
– ident: ref52/cit52
  doi: 10.1021/nl050886a
– ident: ref97/cit97
  doi: 10.1038/ncomms3843
– ident: ref18/cit18
  doi: 10.1002/adma.201303569
– ident: ref233/cit233
  doi: 10.1038/nature09933
– ident: ref201/cit201
  doi: 10.1038/ncomms12153
– ident: ref344/cit344
  doi: 10.1126/sciadv.1602273
– ident: ref142/cit142
  doi: 10.1038/nnano.2017.86
– ident: ref215/cit215
  doi: 10.1103/PhysRevB.92.165419
– ident: ref327/cit327
  doi: 10.1103/PhysRevLett.127.216101
– ident: ref106/cit106
  doi: 10.1103/PhysRevLett.105.027205
– ident: ref282/cit282
  doi: 10.1038/nphys3576
– ident: ref143/cit143
  doi: 10.1063/1.5006941
– ident: ref322/cit322
  doi: 10.1103/PhysRevLett.96.156103
– ident: ref164/cit164
  doi: 10.1143/APEX.5.117201
– ident: ref330/cit330
  doi: 10.1103/PhysRevA.84.023412
– ident: ref76/cit76
  doi: 10.1021/acs.nanolett.6b05065
– ident: ref352/cit352
  doi: 10.1103/PhysRevResearch.4.013149
– ident: ref20/cit20
  doi: 10.1038/micronano.2017.38
– ident: ref40/cit40
  doi: 10.1021/nl900612h
– ident: ref223/cit223
  doi: 10.1021/acsphotonics.9b01094
– ident: ref180/cit180
  doi: 10.1109/FCS.2015.7138822
– ident: ref349/cit349
  doi: 10.1126/science.aah4243
– ident: ref277/cit277
– ident: ref9/cit9
  doi: 10.1038/nature12502
– ident: ref139/cit139
  doi: 10.1021/nl1022139
– ident: ref117/cit117
  doi: 10.1109/SENSOR.2009.5285595
– ident: ref134/cit134
  doi: 10.1021/acs.nanolett.2c01250
– ident: ref324/cit324
  doi: 10.1038/nmat2936
– ident: ref146/cit146
  doi: 10.1021/acsami.7b13930
– ident: ref336/cit336
  doi: 10.1038/nnano.2009.152
– ident: ref17/cit17
  doi: 10.1021/nn4018872
– ident: ref353/cit353
  doi: 10.1103/PhysRevLett.88.045503
– ident: ref346/cit346
  doi: 10.1038/ncomms15785
– ident: ref140/cit140
  doi: 10.1126/science.1144216
– ident: ref262/cit262
  doi: 10.1109/MEMSYS.2015.7051096
– ident: ref351/cit351
  doi: 10.1126/sciadv.aav2372
– ident: ref247/cit247
  doi: 10.1021/nl2003158
– ident: ref14/cit14
  doi: 10.1021/nl301922d
– ident: ref224/cit224
  doi: 10.1021/acs.nanolett.8b02293
– ident: ref133/cit133
  doi: 10.1038/s41467-019-12795-1
– ident: ref249/cit249
  doi: 10.1021/nl801982v
– ident: ref260/cit260
  doi: 10.1063/1.4939685
– ident: ref221/cit221
  doi: 10.1073/pnas.1916978117
– ident: ref130/cit130
  doi: 10.1039/C5NR06118K
– ident: ref183/cit183
  doi: 10.1002/admt.202000794
– ident: ref208/cit208
  doi: 10.1021/acsnano.1c08380
– ident: ref315/cit315
  doi: 10.1002/adfm.202104978
– ident: ref273/cit273
  doi: 10.1103/PhysRevB.86.115454
– ident: ref98/cit98
  doi: 10.1021/nl200950d
– ident: ref137/cit137
  doi: 10.1063/5.0045106
– ident: ref112/cit112
  doi: 10.1039/C6NR00713A
– ident: ref229/cit229
  doi: 10.1039/C6NR02853E
– ident: ref245/cit245
  doi: 10.1088/1361-6439/abe20b
– ident: ref115/cit115
  doi: 10.1038/nnano.2008.125
– ident: ref216/cit216
  doi: 10.1038/ncomms6819
– ident: ref71/cit71
  doi: 10.1021/nl802181c
– ident: ref189/cit189
  doi: 10.1063/1.4890387
– ident: ref253/cit253
  doi: 10.1088/1361-6528/ab19cf
– ident: ref258/cit258
  doi: 10.1021/acs.nanolett.7b04685
– ident: ref261/cit261
  doi: 10.1038/s41928-019-0287-1
– ident: ref316/cit316
  doi: 10.1109/MAMNA.2013.6557225
– ident: ref194/cit194
  doi: 10.1299/jmmp.1.18
– ident: ref144/cit144
  doi: 10.1063/5.0073005
– ident: ref49/cit49
  doi: 10.1021/nl904260k
– ident: ref60/cit60
  doi: 10.1021/nl102713c
– ident: ref294/cit294
  doi: 10.1103/PhysRevLett.110.120503
– ident: ref236/cit236
  doi: 10.1038/ncomms6850
– ident: ref57/cit57
  doi: 10.1038/nnano.2009.267
– ident: ref302/cit302
  doi: 10.1002/adma.202000046
– ident: ref298/cit298
  doi: 10.1038/s41565-021-00963-8
– ident: ref53/cit53
  doi: 10.1038/ncomms8165
– ident: ref165/cit165
  doi: 10.1063/1.4931118
– ident: ref166/cit166
  doi: 10.1021/acs.nanolett.9b00560
– ident: ref342/cit342
  doi: 10.1021/acs.nanolett.5b01210
– ident: ref30/cit30
  doi: 10.1109/NANO.2016.7751567
– ident: ref3/cit3
  doi: 10.1038/s41570-019-0122-2
– ident: ref347/cit347
  doi: 10.1126/sciadv.1600236
– ident: ref264/cit264
  doi: 10.1021/acs.nanolett.5b04251
– ident: ref120/cit120
  doi: 10.1088/0957-4484/16/10/018
– ident: ref99/cit99
  doi: 10.1002/pssb.2220680109
– ident: ref173/cit173
  doi: 10.1021/nl1039549
– ident: ref61/cit61
  doi: 10.1116/1.4898117
– ident: ref293/cit293
  doi: 10.1103/PhysRevX.11.031027
– ident: ref303/cit303
  doi: 10.1038/s41586-019-1226-z
– ident: ref129/cit129
  doi: 10.1039/c3nr05991j
– ident: ref234/cit234
  doi: 10.1038/nature09898
– ident: ref152/cit152
  doi: 10.1007/s11432-021-3432-6
– ident: ref182/cit182
  doi: 10.1039/D1NR03286K
– ident: ref227/cit227
  doi: 10.1038/nnano.2016.94
– ident: ref70/cit70
  doi: 10.1002/smll.200901984
– ident: ref319/cit319
  doi: 10.1103/PhysRevB.68.155420
– ident: ref15/cit15
  doi: 10.1021/acs.nanolett.5b04840
– ident: ref213/cit213
  doi: 10.1021/acs.nanolett.9b00546
– ident: ref263/cit263
  doi: 10.1109/FCS.2014.6859918
– ident: ref274/cit274
  doi: 10.1038/s41565-018-0341-6
– ident: ref8/cit8
  doi: 10.1126/science.275.5308.1922
– ident: ref128/cit128
  doi: 10.1039/C8NR09963D
– ident: ref81/cit81
  doi: 10.1063/1.4802746
– ident: ref176/cit176
  doi: 10.1021/nl203305q
– volume-title: Quantum Mechanics
  year: 2020
  ident: ref289/cit289
– ident: ref90/cit90
  doi: 10.1038/35040699
– ident: ref204/cit204
  doi: 10.3390/mi7090158
– ident: ref16/cit16
  doi: 10.1126/science.1136836
– ident: ref95/cit95
  doi: 10.1063/1.1929098
– ident: ref174/cit174
  doi: 10.1073/pnas.1216407109
– ident: ref1/cit1
  doi: 10.1038/nchem.2687
– ident: ref217/cit217
  doi: 10.1038/s41586-018-0861-0
– ident: ref163/cit163
  doi: 10.1021/acs.nanolett.6b00477
– ident: ref186/cit186
  doi: 10.1109/TUFFC.2007.240
– ident: ref338/cit338
  doi: 10.1126/science.1192511
– ident: ref148/cit148
  doi: 10.1109/LED.2018.2850776
– ident: ref341/cit341
  doi: 10.1007/s11432-020-3241-9
– ident: ref68/cit68
  doi: 10.1038/ncomms6158
– ident: ref102/cit102
  doi: 10.1021/nl203279v
– ident: ref127/cit127
  doi: 10.1038/s41467-020-19261-3
– ident: ref47/cit47
  doi: 10.1103/PhysRevLett.122.165301
– year: 2022
  ident: ref190/cit190
  publication-title: Rev. Mod. Phys.
– ident: ref38/cit38
  doi: 10.1103/PhysRevLett.90.156401
– ident: ref209/cit209
  doi: 10.1038/s41467-017-01351-4
– ident: ref248/cit248
  doi: 10.1021/nl052134m
– ident: ref250/cit250
  doi: 10.1038/nnano.2012.42
– ident: ref66/cit66
  doi: 10.7567/1882-0786/ab3b4f
– ident: ref10/cit10
  doi: 10.1021/nl0706695
– ident: ref67/cit67
  doi: 10.1038/srep28923
– ident: ref62/cit62
  doi: 10.1039/C6NR01118G
– ident: ref125/cit125
  doi: 10.1021/nl500879k
– ident: ref48/cit48
  doi: 10.1038/s41567-019-0682-6
– ident: ref73/cit73
  doi: 10.1021/nl080201h
– ident: ref197/cit197
  doi: 10.1103/PhysRevB.61.5600
– ident: ref72/cit72
  doi: 10.1021/nl801071w
– ident: ref285/cit285
  doi: 10.1038/s41586-018-0719-5
– ident: ref287/cit287
  doi: 10.1126/science.abf2998
– ident: ref147/cit147
  doi: 10.1063/5.0031503
– ident: ref151/cit151
  doi: 10.1038/nphoton.2015.282
– ident: ref149/cit149
  doi: 10.1063/1.5054625
– ident: ref259/cit259
  doi: 10.1109/MEMS46641.2020.9056366
– ident: ref32/cit32
  doi: 10.1063/1.117548
– ident: ref175/cit175
  doi: 10.1103/PhysRevLett.97.087203
– ident: ref110/cit110
  doi: 10.1126/science.1174290
– ident: ref153/cit153
  doi: 10.1021/acsnano.1c11498
– ident: ref21/cit21
  doi: 10.1038/s41563-020-0712-x
– ident: ref308/cit308
  doi: 10.1038/s41565-021-01061-5
– ident: ref46/cit46
  doi: 10.1103/PhysRevLett.112.196103
– ident: ref145/cit145
  doi: 10.1063/5.0050421
– ident: ref228/cit228
  doi: 10.1038/nnano.2016.86
– ident: ref246/cit246
  doi: 10.1038/nnano.2012.119
– ident: ref292/cit292
  doi: 10.1103/RevModPhys.86.1391
– ident: ref332/cit332
  doi: 10.1088/1367-2630/18/2/023020
– ident: ref155/cit155
  doi: 10.1021/acs.nanolett.9b04619
– ident: ref256/cit256
  doi: 10.1063/1.104757
– ident: ref329/cit329
  doi: 10.1103/PhysRevLett.101.180602
– ident: ref331/cit331
  doi: 10.1103/RevModPhys.87.1419
– ident: ref77/cit77
  doi: 10.1038/ncomms12496
– ident: ref235/cit235
  doi: 10.1038/nature10261
– ident: ref82/cit82
  doi: 10.1021/acs.nanolett.9b04909
– ident: ref181/cit181
  doi: 10.1109/IEDM.2018.8614604
– ident: ref323/cit323
  doi: 10.1063/1.2932254
– ident: ref25/cit25
  doi: 10.1063/1.2432257
– ident: ref136/cit136
  doi: 10.1021/acs.nanolett.6b01598
– ident: ref340/cit340
  doi: 10.1088/1361-6439/aac13d
– ident: ref13/cit13
  doi: 10.1126/science.1157996
– ident: ref119/cit119
  doi: 10.1088/1367-2630/7/1/247
– ident: ref42/cit42
  doi: 10.1126/science.1182507
– ident: ref226/cit226
  doi: 10.1021/acs.nanolett.1c03010
– ident: ref50/cit50
  doi: 10.1038/nnano.2013.143
– ident: ref91/cit91
  doi: 10.1038/nnano.2013.97
– ident: ref218/cit218
  doi: 10.1063/1.4868129
– ident: ref94/cit94
  doi: 10.1103/PhysRevLett.109.025503
– ident: ref244/cit244
  doi: 10.1088/1742-6596/302/1/012001
– ident: ref55/cit55
  doi: 10.1021/nl0721113
– ident: ref212/cit212
  doi: 10.1063/5.0031890
– ident: ref295/cit295
  doi: 10.1063/5.0069561
– ident: ref237/cit237
  doi: 10.1038/nnano.2011.180
– ident: ref240/cit240
  doi: 10.1038/s41467-021-21334-w
– ident: ref304/cit304
  doi: 10.1038/s41467-020-16266-w
– ident: ref205/cit205
  doi: 10.1038/s41598-017-05730-1
– ident: ref29/cit29
  doi: 10.1021/nl501413t
– ident: ref230/cit230
  doi: 10.1021/acs.nanolett.6b04223
– ident: ref45/cit45
  doi: 10.1103/PhysRevLett.125.187701
– ident: ref109/cit109
  doi: 10.1038/s41467-022-33440-4
– ident: ref305/cit305
  doi: 10.1021/acsnano.1c05734
– ident: ref170/cit170
  doi: 10.1038/srep03919
– ident: ref101/cit101
  doi: 10.1038/nnano.2011.71
– ident: ref195/cit195
  doi: 10.1063/1.1821638
– ident: ref334/cit334
  doi: 10.1063/1.3273372
– ident: ref271/cit271
  doi: 10.1103/PhysRevLett.108.175502
– ident: ref41/cit41
  doi: 10.1007/s10909-012-0642-3
– ident: ref343/cit343
  doi: 10.1038/d41586-019-00793-8
– ident: ref64/cit64
  doi: 10.1109/MEMSYS.2018.8346606
– ident: ref179/cit179
  doi: 10.1021/acs.nanolett.1c00610
– ident: ref211/cit211
  doi: 10.1039/C8NR10452B
– ident: ref275/cit275
  doi: 10.1038/s41467-020-15433-3
– ident: ref31/cit31
  doi: 10.1109/MEMS46641.2020.9056243
– ident: ref272/cit272
  doi: 10.1038/nphys2842
– ident: ref12/cit12
  doi: 10.1021/nl4040913
– ident: ref185/cit185
  doi: 10.1063/1.1646213
– ident: ref4/cit4
  doi: 10.1038/nmat1455
– ident: ref44/cit44
  doi: 10.1126/science.aay5220
– ident: ref93/cit93
  doi: 10.1103/RevModPhys.87.703
– ident: ref104/cit104
  doi: 10.1038/nnano.2014.234
– ident: ref337/cit337
  doi: 10.1088/1361-6439/ac3466
– ident: ref135/cit135
  doi: 10.1088/2053-1583/2/2/021001
– ident: ref198/cit198
  doi: 10.1021/nl062206p
– ident: ref113/cit113
  doi: 10.1126/science.1081940
– ident: ref22/cit22
  doi: 10.1038/s41467-020-16430-2
– ident: ref167/cit167
  doi: 10.1109/MEMSYS.2018.8346740
– ident: ref255/cit255
  doi: 10.1038/nature02658
– ident: ref87/cit87
  doi: 10.1063/1.3528341
– ident: ref335/cit335
  doi: 10.1088/1361-6633/ab3a7e
– ident: ref355/cit355
  doi: 10.1109/IEDM.2014.7047008
– ident: ref23/cit23
  doi: 10.1109/LED.2018.2850776
– ident: ref299/cit299
  doi: 10.1038/s41467-021-26230-x
– ident: ref63/cit63
  doi: 10.1126/sciadv.aao6653
– ident: ref310/cit310
  doi: 10.1021/acs.nanolett.2c00494
– ident: ref269/cit269
  doi: 10.1364/JOSAB.389944
– ident: ref280/cit280
  doi: 10.1038/s41565-020-00814-y
– ident: ref312/cit312
  doi: 10.1038/s41467-017-01551-y
– ident: ref169/cit169
  doi: 10.1109/EFTF-IFC.2013.6702300
– ident: ref296/cit296
  doi: 10.1038/s41586-022-04523-5
– ident: ref297/cit297
  doi: 10.1038/s41467-020-16056-4
– ident: ref11/cit11
  doi: 10.1038/nature02905
– ident: ref84/cit84
  doi: 10.1063/1.1843289
– ident: ref177/cit177
  doi: 10.3390/mi9060312
– ident: ref37/cit37
  doi: 10.1021/ar0101640
– ident: ref5/cit5
  doi: 10.1021/acsnano.5b03367
– ident: ref114/cit114
  doi: 10.1021/nl901057c
– ident: ref160/cit160
  doi: 10.1109/JEDS.2013.2295246
– ident: ref210/cit210
  doi: 10.1063/1.5026775
– ident: ref266/cit266
  doi: 10.1063/5.0063079
– ident: ref279/cit279
  doi: 10.1038/nnano.2013.274
– ident: ref283/cit283
  doi: 10.1063/1.2012461
– ident: ref6/cit6
  doi: 10.1038/4341085a
– ident: ref178/cit178
  doi: 10.1109/MEMSYS.2015.7051099
– ident: ref156/cit156
  doi: 10.1021/acs.nanolett.8b01926
– ident: ref281/cit281
  doi: 10.1103/PhysRevX.11.021009
– ident: ref79/cit79
  doi: 10.1103/PhysRevLett.113.027404
– ident: ref267/cit267
  doi: 10.1109/TRANSDUCERS.2015.7180922
– ident: ref2/cit2
  doi: 10.1038/nnano.2006.45
– ident: ref242/cit242
  doi: 10.1119/1.4878621
– ident: ref187/cit187
  doi: 10.1109/5.704281
– ident: ref339/cit339
  doi: 10.1021/nl403268b
– ident: ref206/cit206
  doi: 10.1063/1.4929507
– ident: ref290/cit290
  doi: 10.1038/nature10461
– ident: ref69/cit69
  doi: 10.1038/nature01773
– ident: ref326/cit326
  doi: 10.1103/PhysRevB.92.235441
– ident: ref318/cit318
  doi: 10.1126/science.aat6457
– ident: ref124/cit124
  doi: 10.1088/2053-1583/aa57c6
– ident: ref203/cit203
  doi: 10.1063/1.3691958
– ident: ref354/cit354
  doi: 10.1038/s41467-021-23359-7
– volume-title: Reviews of Nonlinear Dynamics and Complexity
  year: 2008
  ident: ref100/cit100
– ident: ref286/cit286
  doi: 10.1038/nature08967
– ident: ref171/cit171
  doi: 10.1021/acs.nanolett.5b02586
– ident: ref162/cit162
  doi: 10.1109/SENSOR.2007.4300134
– ident: ref207/cit207
  doi: 10.1109/MEMS51782.2021.9375457
– ident: ref107/cit107
  doi: 10.1103/PhysRevB.84.165307
– ident: ref325/cit325
  doi: 10.1103/PhysRevLett.108.136101
– ident: ref75/cit75
  doi: 10.1038/ncomms9104
– ident: ref36/cit36
  doi: 10.1063/1.3139750
– ident: ref116/cit116
  doi: 10.1002/adfm.200900105
– ident: ref192/cit192
  doi: 10.1116/1.1347040
– ident: ref191/cit191
  doi: 10.1109/84.825786
– ident: ref306/cit306
  doi: 10.1002/inf2.12274
– ident: ref88/cit88
  doi: 10.1109/IEEE-IWS.2013.6616764
– ident: ref92/cit92
  doi: 10.1063/1.1396318
– ident: ref150/cit150
  doi: 10.1126/science.aac9439
– ident: ref291/cit291
  doi: 10.1038/nature10787
– ident: ref26/cit26
  doi: 10.1021/acs.nanolett.9b03668
– ident: ref314/cit314
  doi: 10.1088/2053-1583/abc2a7
– ident: ref161/cit161
  doi: 10.1134/S0021364018190037
– ident: ref105/cit105
  doi: 10.1063/1.2822406
– ident: ref345/cit345
  doi: 10.1038/srep21686
– ident: ref251/cit251
  doi: 10.1016/j.physleta.2011.05.009
– ident: ref317/cit317
– ident: ref321/cit321
  doi: 10.1103/PhysRevA.69.022902
– ident: ref39/cit39
  doi: 10.1038/27632
– ident: ref313/cit313
  doi: 10.1103/PhysRevB.95.104109
– ident: ref123/cit123
  doi: 10.1021/nl1042227
– ident: ref56/cit56
  doi: 10.1021/acs.nanolett.9b02351
– ident: ref43/cit43
  doi: 10.1038/nphys3302
– ident: ref85/cit85
  doi: 10.1007/s11432-021-3297-x
– ident: ref83/cit83
  doi: 10.1021/acs.nanolett.1c02056
– ident: ref121/cit121
  doi: 10.1038/s41467-019-14130-0
– ident: ref202/cit202
  doi: 10.1021/acs.nanolett.1c02369
– ident: ref257/cit257
  doi: 10.1103/PhysRevLett.126.175502
– ident: ref196/cit196
  doi: 10.1103/PhysRevB.69.045403
– ident: ref238/cit238
  doi: 10.1103/PhysRevB.86.041402
– ident: ref328/cit328
  doi: 10.1103/PhysRevA.61.063418
– ident: ref141/cit141
  doi: 10.1109/TRANSDUCERS.2015.7181193
– ident: ref35/cit35
  doi: 10.1002/adma.200401959
– ident: ref222/cit222
  doi: 10.1103/PhysRevApplied.11.024024
– ident: ref307/cit307
  doi: 10.1038/nature23905
– ident: ref132/cit132
  doi: 10.1063/1.4934708
– ident: ref243/cit243
  doi: 10.1063/1.3627178
– ident: ref311/cit311
  doi: 10.1016/j.mattod.2015.10.002
– ident: ref131/cit131
  doi: 10.1109/MEMSYS.2016.7421557
– ident: ref27/cit27
  doi: 10.1038/nnano.2010.151
– ident: ref241/cit241
  doi: 10.1038/nphys2665
– ident: ref138/cit138
  doi: 10.1080/21663831.2013.824516
– ident: ref74/cit74
  doi: 10.1103/PhysRevLett.99.085501
– ident: ref320/cit320
  doi: 10.1103/PhysRevLett.87.096801
– ident: ref350/cit350
  doi: 10.1103/PhysRevLett.123.083901
– ident: ref154/cit154
  doi: 10.1021/acs.nanolett.7b01845
– ident: ref158/cit158
  doi: 10.1063/5.0024583
– ident: ref19/cit19
  doi: 10.1039/C4NR04829F
– ident: ref159/cit159
  doi: 10.1021/nl101292b
– ident: ref7/cit7
  doi: 10.1038/386474a0
– ident: ref80/cit80
  doi: 10.1038/s41467-018-03097-z
– ident: ref184/cit184
  doi: 10.1038/32373
SSID ssj0057876
Score 2.6538565
SecondaryResourceType review_article
Snippet The quest for realizing and manipulating ever smaller man-made movable structures and dynamical machines has spurred tremendous endeavors, led to important...
The quest for realizing and manipulating ever smaller man-made movable structures and dynamical machines has spurred tremendous endeavors, led to important...
SourceID pubmedcentral
proquest
crossref
acs
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 15545
SubjectTerms Review
Title Nanomechanical Resonators: Toward Atomic Scale
URI http://dx.doi.org/10.1021/acsnano.2c01673
https://www.proquest.com/docview/2709737606
https://pubmed.ncbi.nlm.nih.gov/PMC9620412
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gXODAGzFeKhIHLi1t2rQpt2limpDgsk3arUqzRCAgRbS78Oux2-5RpgnOeUiundhfbX8h5EaoWAdCKBvMAQCKFNxOtWI2hBqhnvB04nrYKPz0HPZHweOYjRdk0b8z-NS7EzI3wmQOlVgx72-SLRryCHFWpzuYXbpod2GVQAaADFHEnMVnZQN0QzJvuqFFbNmsjFxyNb29qkgrLxkKscLkzZkWqSO_V_kb_5Zin-zWAafVqSzkgGwoc0h2lmgIj4gDV2z2obAHGFVm4S99g2A8v7eGZVmt1Smwe9kawLA6JqPew7Dbt-t3FGwRRLSwI0onjGlO8X1GgCBpmHIeK-kKQEfaD3TEmasAB3EJ8Z-rwlhSxZEITfpUs9A_IS2TGXVKrNhNmfZkoCc-9myFsY5xF864qz0lvTZoX-ZJfQ7ypExxUy-pxU9q8dvEmX39RNZc5Pgkxvv6BbfzBZ8VDcf6qdczdSZwVDD_IYzKpnlCI-QmigCytUnU0PN8TyTbbo6Y15eSdDtG4n6Pnv1PwHOyTbFPApwcZRekVXxN1SVEL0V6VdrtD6Bp6xA
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT4NAEJ5UPagH38b6xMSDFxAWFhZvTaOpjzYxtklvBLa70ajUCL34652hUEVjoleWnTCZ2Z352JlvAU5iFWovjpWJ7oAARcbCTLTiJqYavh6JZGQ71Cjc7fmdgXc95MMG2FUvDH5EhpKy4hD_k13AOcNnaZyOLSapcN6dgwVMRRjBrVb7vtp7yf386Tky4mRMJmZkPj8EUDSSWT0afaaY9QLJLxHnchXuZt9aFJo8WZM8seT7NxrH_yizBitl-mm0pv6yDg2VbsDyF1LCTbBwwx2_KOoIJgMa9IM_JWienRv9osjWaOXUy2zc47DagsHlRb_dMctbFczYC1huBoyNONeC0W2NCEgSPxEiVNKOEStp19OB4LZCVCQkZoO28kPJlCBaNOkyzX13G-bTcap2wAjthGtHenrkUgeXH-qQpAgubO0o6TTRF2QWlasii4oDb-ZEpfpRqX4TrMoIkSyZyemCjOffJ5zOJrxOSTl-f_W4smqEC4dOQ-JUjSdZxAJiKgoQwDUhqJl7JpOot-sj6eNDQcEdEo2_w3b_puARLHb63dvo9qp3swdLjDooMPwxvg_z-dtEHWBekyeHhSt_AEgL83E
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT4NAEN5oTYwefBvrExMPXkBYWFi8NdWmvhqTtklvBJbdaFRohF789c5QikVjoleWnbCZ2Z35mJlvCTkLpa-cMJQ6mAMAFBFyPVKS6RBquCrmUWxa2Cj80HO7Q-d2xEZlUxj2wsBHZCApK5L4uKvHsSoZBqwLeJ6ESWpQgcXz9iJZwqQdQq5Wuz87f9EE3WkuGbAyBBQVoc8PAeiRRFb3SF9hZr1Ics7rdNbJsPreotjkxZjkkSE-vlE5_ndBG2StDEO11tRuNsmCTLbI6hw54TYx4OBN3yR2BqMiNfzRnyBEzy61QVFsq7Vy7GnW-jAsd8iwcz1od_XydgU9dDya6x6lMWOKU7y1EYBJ5Eac-1KYIWAmZTvK48yUgI64gKjQlK4vqORIjyZsqphr75JGkiZyj2i-GTFlCUfFNnZyub7yUQpn3FSWFFYTbEJkQbk7sqBIfFMrKJcflMtvEmOmiECUDOV4Ucbr7xPOqwnjKTnH76-ezjQbwAbCrEiYyHSSBdRDxiIPgFyTeDWVVzKRgrs-kjw_FVTcPtL5W3T_bws8IcuPV53g_qZ3d0BWKDZSgBek7JA08veJPILwJo-OC2v-BDaV9fQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanomechanical+Resonators%3A+Toward+Atomic+Scale&rft.jtitle=ACS+nano&rft.au=Xu%2C+Bo&rft.au=Zhang%2C+Pengcheng&rft.au=Zhu%2C+Jiankai&rft.au=Liu%2C+Zuheng&rft.date=2022-10-25&rft.pub=American+Chemical+Society&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=16&rft.issue=10&rft.spage=15545&rft.epage=15585&rft_id=info:doi/10.1021%2Facsnano.2c01673&rft.externalDocID=e381370
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon