Nanomechanical Resonators: Toward Atomic Scale
The quest for realizing and manipulating ever smaller man-made movable structures and dynamical machines has spurred tremendous endeavors, led to important discoveries, and inspired researchers to venture to previously unexplored grounds. Scientific feats and technological milestones of miniaturizat...
Saved in:
Published in | ACS nano Vol. 16; no. 10; pp. 15545 - 15585 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
25.10.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The quest for realizing and manipulating ever smaller man-made movable structures and dynamical machines has spurred tremendous endeavors, led to important discoveries, and inspired researchers to venture to previously unexplored grounds. Scientific feats and technological milestones of miniaturization of mechanical structures have been widely accomplished by advances in machining and sculpturing ever shrinking features out of bulk materials such as silicon. With the flourishing multidisciplinary field of low-dimensional nanomaterials, including one-dimensional (1D) nanowires/nanotubes and two-dimensional (2D) atomic layers such as graphene/phosphorene, growing interests and sustained effort have been devoted to creating mechanical devices toward the ultimate limit of miniaturizationgenuinely down to the molecular or even atomic scale. These ultrasmall movable structures, particularly nanomechanical resonators that exploit the vibratory motion in these 1D and 2D nano-to-atomic-scale structures, offer exceptional device-level attributes, such as ultralow mass, ultrawide frequency tuning range, broad dynamic range, and ultralow power consumption, thus holding strong promises for both fundamental studies and engineering applications. In this Review, we offer a comprehensive overview and summary of this vibrant field, present the state-of-the-art devices and evaluate their specifications and performance, outline important achievements, and postulate future directions for studying these miniscule yet intriguing molecular-scale machines. |
---|---|
AbstractList | The quest for realizing and manipulating ever smaller man-made movable structures and dynamical machines has spurred tremendous endeavors, led to important discoveries, and inspired researchers to venture to previously unexplored grounds. Scientific feats and technological milestones of miniaturization of mechanical structures have been widely accomplished by advances in machining and sculpturing ever shrinking features out of bulk materials such as silicon. With the flourishing multidisciplinary field of low-dimensional nanomaterials, including one-dimensional (1D) nanowires/nanotubes and two-dimensional (2D) atomic layers such as graphene/phosphorene, growing interests and sustained effort have been devoted to creating mechanical devices toward the ultimate limit of miniaturizationgenuinely down to the molecular or even atomic scale. These ultrasmall movable structures, particularly nanomechanical resonators that exploit the vibratory motion in these 1D and 2D nano-to-atomic-scale structures, offer exceptional device-level attributes, such as ultralow mass, ultrawide frequency tuning range, broad dynamic range, and ultralow power consumption, thus holding strong promises for both fundamental studies and engineering applications. In this Review, we offer a comprehensive overview and summary of this vibrant field, present the state-of-the-art devices and evaluate their specifications and performance, outline important achievements, and postulate future directions for studying these miniscule yet intriguing molecular-scale machines. The quest for realizing and manipulating ever smaller man-made movable structures and dynamical machines has spurred tremendous endeavors, led to important discoveries, and inspired researchers to venture to previously unexplored grounds. Scientific feats and technological milestones of miniaturization of mechanical structures have been widely accomplished by advances in machining and sculpturing ever shrinking features out of bulk materials such as silicon. With the flourishing multidisciplinary field of low-dimensional nanomaterials, including one-dimensional (1D) nanowires/nanotubes and two-dimensional (2D) atomic layers such as graphene/phosphorene, growing interests and sustained effort have been devoted to creating mechanical devices toward the ultimate limit of miniaturization─genuinely down to the molecular or even atomic scale. These ultrasmall movable structures, particularly nanomechanical resonators that exploit the vibratory motion in these 1D and 2D nano-to-atomic-scale structures, offer exceptional device-level attributes, such as ultralow mass, ultrawide frequency tuning range, broad dynamic range, and ultralow power consumption, thus holding strong promises for both fundamental studies and engineering applications. In this Review, we offer a comprehensive overview and summary of this vibrant field, present the state-of-the-art devices and evaluate their specifications and performance, outline important achievements, and postulate future directions for studying these miniscule yet intriguing molecular-scale machines.The quest for realizing and manipulating ever smaller man-made movable structures and dynamical machines has spurred tremendous endeavors, led to important discoveries, and inspired researchers to venture to previously unexplored grounds. Scientific feats and technological milestones of miniaturization of mechanical structures have been widely accomplished by advances in machining and sculpturing ever shrinking features out of bulk materials such as silicon. With the flourishing multidisciplinary field of low-dimensional nanomaterials, including one-dimensional (1D) nanowires/nanotubes and two-dimensional (2D) atomic layers such as graphene/phosphorene, growing interests and sustained effort have been devoted to creating mechanical devices toward the ultimate limit of miniaturization─genuinely down to the molecular or even atomic scale. These ultrasmall movable structures, particularly nanomechanical resonators that exploit the vibratory motion in these 1D and 2D nano-to-atomic-scale structures, offer exceptional device-level attributes, such as ultralow mass, ultrawide frequency tuning range, broad dynamic range, and ultralow power consumption, thus holding strong promises for both fundamental studies and engineering applications. In this Review, we offer a comprehensive overview and summary of this vibrant field, present the state-of-the-art devices and evaluate their specifications and performance, outline important achievements, and postulate future directions for studying these miniscule yet intriguing molecular-scale machines. The quest for realizing and manipulating ever smaller man-made movable structures and dynamical machines has spurred tremendous endeavors, led to important discoveries, and inspired researchers to venture to previously unexplored grounds. Scientific feats and technological milestones of miniaturization of mechanical structures have been widely accomplished by advances in machining and sculpturing ever shrinking features out of bulk materials such as silicon. With the flourishing multidisciplinary field of low-dimensional nanomaterials, including one-dimensional (1D) nanowires/nanotubes and two-dimensional (2D) atomic layers such as graphene/phosphorene, growing interests and sustained effort have been devoted to creating mechanical devices toward the ultimate limit of miniaturization—genuinely down to the molecular or even atomic scale. These ultrasmall movable structures, particularly nanomechanical resonators that exploit the vibratory motion in these 1D and 2D nano-to-atomic-scale structures, offer exceptional device-level attributes, such as ultralow mass, ultrawide frequency tuning range, broad dynamic range, and ultralow power consumption, thus holding strong promises for both fundamental studies and engineering applications. In this Review, we offer a comprehensive overview and summary of this vibrant field, present the state-of-the-art devices and evaluate their specifications and performance, outline important achievements, and postulate future directions for studying these miniscule yet intriguing molecular-scale machines. |
Author | Liu, Zuheng Naik, Akshay Feng, Philip X.-L. Jia, Hao Bachtold, Adrian Eichler, Alexander Zhang, Pengcheng Dash, Aneesh Xu, Bo Wang, Yanan Zhu, Jiankai Yang, Rui Wang, Zenghui Wu, Song Lee, Jaesung Zheng, Xu-Qian More, Swapnil |
AuthorAffiliation | Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University Department of Physics Centre for Nano Science and Engineering The Barcelona Institute of Science and Technology ICFO-Institut de Ciencies Fotoniques Department of Electrical and Computer Engineering, Herbert Wertheim College of Engineering Department of Electrical and Computer Engineering College of Integrated Circuit Science and Engineering State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China University of Michigan−Shanghai Jiao Tong University Joint Institute Nanjing University of Posts and Telecommunications |
AuthorAffiliation_xml | – name: The Barcelona Institute of Science and Technology – name: University of Electronic Science and Technology of China – name: University of Michigan−Shanghai Jiao Tong University Joint Institute – name: Shanghai Jiao Tong University – name: Institute of Fundamental and Frontier Sciences – name: School of Electronic Information and Electrical Engineering – name: ICFO-Institut de Ciencies Fotoniques – name: State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China – name: Department of Physics – name: Department of Electrical and Computer Engineering, Herbert Wertheim College of Engineering – name: Centre for Nano Science and Engineering – name: College of Integrated Circuit Science and Engineering – name: Nanjing University of Posts and Telecommunications – name: Department of Electrical and Computer Engineering |
Author_xml | – sequence: 1 givenname: Bo orcidid: 0000-0003-0262-2017 surname: Xu fullname: Xu, Bo organization: University of Electronic Science and Technology of China – sequence: 2 givenname: Pengcheng orcidid: 0000-0003-4106-6762 surname: Zhang fullname: Zhang, Pengcheng organization: University of Michigan−Shanghai Jiao Tong University Joint Institute – sequence: 3 givenname: Jiankai orcidid: 0000-0002-5495-7612 surname: Zhu fullname: Zhu, Jiankai organization: University of Electronic Science and Technology of China – sequence: 4 givenname: Zuheng orcidid: 0000-0002-1866-2649 surname: Liu fullname: Liu, Zuheng organization: University of Michigan−Shanghai Jiao Tong University Joint Institute – sequence: 5 givenname: Alexander orcidid: 0000-0001-6757-3442 surname: Eichler fullname: Eichler, Alexander organization: Department of Physics – sequence: 6 givenname: Xu-Qian orcidid: 0000-0003-4705-771X surname: Zheng fullname: Zheng, Xu-Qian organization: Nanjing University of Posts and Telecommunications – sequence: 7 givenname: Jaesung orcidid: 0000-0003-0492-2478 surname: Lee fullname: Lee, Jaesung organization: Department of Electrical and Computer Engineering – sequence: 8 givenname: Aneesh orcidid: 0000-0002-6465-6506 surname: Dash fullname: Dash, Aneesh organization: Centre for Nano Science and Engineering – sequence: 9 givenname: Swapnil orcidid: 0000-0001-7906-8902 surname: More fullname: More, Swapnil organization: Centre for Nano Science and Engineering – sequence: 10 givenname: Song orcidid: 0000-0002-3104-1855 surname: Wu fullname: Wu, Song organization: University of Electronic Science and Technology of China – sequence: 11 givenname: Yanan orcidid: 0000-0002-9663-4491 surname: Wang fullname: Wang, Yanan organization: Department of Electrical and Computer Engineering – sequence: 12 givenname: Hao orcidid: 0000-0002-1429-6995 surname: Jia fullname: Jia, Hao – sequence: 13 givenname: Akshay orcidid: 0000-0001-6325-7231 surname: Naik fullname: Naik, Akshay email: anaik@iisc.ac.in organization: Centre for Nano Science and Engineering – sequence: 14 givenname: Adrian orcidid: 0000-0002-6145-2479 surname: Bachtold fullname: Bachtold, Adrian organization: The Barcelona Institute of Science and Technology – sequence: 15 givenname: Rui orcidid: 0000-0002-6163-2904 surname: Yang fullname: Yang, Rui email: rui.yang@sjtu.edu.cn organization: Shanghai Jiao Tong University – sequence: 16 givenname: Philip X.-L. orcidid: 0000-0002-1083-2391 surname: Feng fullname: Feng, Philip X.-L. email: philip.feng@ufl.edu organization: Department of Electrical and Computer Engineering, Herbert Wertheim College of Engineering – sequence: 17 givenname: Zenghui orcidid: 0000-0003-3743-7567 surname: Wang fullname: Wang, Zenghui email: zenghui.wang@uestc.edu.cn organization: State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China |
BookMark | eNp1kEtLAzEUhYNUrK2u3c5SkGnzmDzGhVCKLygKWsFdSNOMTZlJajKj-O-d0lFQ6OpeOOc793IGoOe8MwCcIThCEKOx0tEp50dYQ8Q4OQDHKCcshYK99n53ivpgEOMaQsoFZ0egTxikmRDwGIweWrwyeqWc1apMnkz0TtU-xMtk7j9VWCaT2ldWJ8-tbE7AYaHKaE67OQQvN9fz6V06e7y9n05mqco4rlOO8ZLSQmBOCMKIL9hCiNxoqLKcFiQruKDQYJoLjRiChuUaGyFoTjTBBWVkCK52uZtmUZmlNq4OqpSbYCsVvqRXVv5VnF3JN_8hc4ZhhnAbcN4FBP_emFjLykZtylI545soMYc5J5zB7S26s-rgYwymkNrWqrZ-m2xLiaDcdi27rmXXdcuN_3E_7-0nLnZEK8i1b4JrO9zr_gZy25GI |
CitedBy_id | crossref_primary_10_1021_acssensors_2c02790 crossref_primary_10_1103_PhysRevResearch_5_023117 crossref_primary_10_1109_JMEMS_2023_3282233 crossref_primary_10_1021_acsphotonics_4c01548 crossref_primary_10_1016_j_matdes_2023_112226 crossref_primary_10_1038_s41378_024_00827_w crossref_primary_10_1016_j_carbon_2024_118951 crossref_primary_10_1021_acsaelm_4c01261 crossref_primary_10_1038_s41378_024_00709_1 crossref_primary_10_1088_1402_4896_ad49d8 crossref_primary_10_1021_acsnano_5c00651 crossref_primary_10_1021_acs_nanolett_3c00233 crossref_primary_10_1063_5_0167141 crossref_primary_10_1103_PhysRevB_111_085112 crossref_primary_10_1007_s12274_023_6091_2 crossref_primary_10_1016_j_ijmecsci_2023_108412 crossref_primary_10_1002_advs_202303477 crossref_primary_10_31857_S2686740024030086 crossref_primary_10_1093_nsr_nwae248 crossref_primary_10_1103_PhysRevApplied_21_054029 crossref_primary_10_1021_acs_nanolett_3c02691 crossref_primary_10_1021_acsphotonics_3c01601 crossref_primary_10_1016_j_mne_2024_100282 crossref_primary_10_3389_fmolb_2022_1058441 crossref_primary_10_1021_acs_nanolett_4c03173 crossref_primary_10_1038_s41378_024_00799_x crossref_primary_10_1021_acsanm_3c03642 crossref_primary_10_1039_D4NA00766B crossref_primary_10_1007_s11432_024_4047_2 crossref_primary_10_1063_5_0237524 crossref_primary_10_1109_TMECH_2023_3330761 crossref_primary_10_1088_1402_4896_acab9b crossref_primary_10_1063_5_0241979 crossref_primary_10_3390_mi14101910 crossref_primary_10_1109_JMEMS_2024_3392402 crossref_primary_10_3390_mi13122242 crossref_primary_10_1007_s11071_024_09839_7 crossref_primary_10_1088_2053_1583_ad3133 crossref_primary_10_1021_acsami_3c16291 crossref_primary_10_1021_acs_nanolett_2c02629 crossref_primary_10_34133_adi_0019 crossref_primary_10_1021_acs_nanolett_4c02214 crossref_primary_10_1063_5_0190053 crossref_primary_10_1016_j_isci_2024_109328 crossref_primary_10_1063_5_0170127 crossref_primary_10_1007_s11071_024_09464_4 crossref_primary_10_1038_s41378_024_00763_9 crossref_primary_10_1088_1361_6641_ad0791 crossref_primary_10_1063_5_0220270 crossref_primary_10_1063_5_0159610 crossref_primary_10_1038_s41699_024_00513_5 crossref_primary_10_1002_qute_202400344 crossref_primary_10_1002_inf2_12553 crossref_primary_10_1088_0256_307X_40_3_038102 crossref_primary_10_1016_j_precisioneng_2023_04_009 crossref_primary_10_1021_acsabm_2c01034 crossref_primary_10_1016_j_ijnonlinmec_2024_104933 crossref_primary_10_1038_s41378_024_00844_9 crossref_primary_10_1021_acs_nanolett_3c03164 crossref_primary_10_1021_acsnano_2c05742 crossref_primary_10_1021_acs_nanolett_3c00096 crossref_primary_10_1073_pnas_2220500120 crossref_primary_10_1016_j_rinp_2023_106563 crossref_primary_10_1103_PhysRevE_108_045002 crossref_primary_10_1021_acsnano_4c09014 crossref_primary_10_1038_s41467_024_49145_9 crossref_primary_10_1016_j_chip_2023_100038 crossref_primary_10_1103_PhysRevResearch_6_013284 crossref_primary_10_1016_j_matchemphys_2024_129068 crossref_primary_10_1063_5_0247821 crossref_primary_10_1016_j_device_2025_100708 crossref_primary_10_1016_j_optlastec_2023_109242 crossref_primary_10_1038_s41378_024_00791_5 crossref_primary_10_1002_adfm_202309543 crossref_primary_10_1038_s41378_023_00508_0 crossref_primary_10_1088_1361_6528_ad83d6 crossref_primary_10_3788_gzxb20255402_0219001 crossref_primary_10_1103_PhysRevApplied_22_L061003 crossref_primary_10_1016_j_ijmecsci_2023_108728 crossref_primary_10_1038_s44172_024_00186_4 crossref_primary_10_1063_5_0106731 crossref_primary_10_1088_2631_7990_ace501 crossref_primary_10_1177_10775463241272934 crossref_primary_10_1109_JSEN_2024_3500582 crossref_primary_10_1016_j_ijthermalsci_2024_109421 crossref_primary_10_35848_1347_4065_ad2979 crossref_primary_10_1002_adfm_202303519 crossref_primary_10_1002_smll_202300631 crossref_primary_10_1103_PhysRevB_108_144107 |
Cites_doi | 10.1038/nnano.2008.26 10.1021/acs.nanolett.0c01586 10.1063/1.4868868 10.1016/j.physrep.2013.09.003 10.1021/acs.nanolett.9b01219 10.31438/trf.hh2016.111 10.1021/jp0654011 10.1038/nphoton.2016.68 10.1126/science.1176076 10.1038/s41567-019-0683-5 10.1021/acs.nanolett.1c01866 10.1021/acs.nanolett.6b02038 10.1103/PhysRevLett.108.083603 10.1038/ncomms1813 10.1038/nnano.2013.232 10.1039/C7NR04940D 10.1063/1.2906373 10.1063/1.1601311 10.1103/PhysRevLett.120.246802 10.1038/354056a0 10.1038/nphys2070 10.1126/science.1195596 10.1063/1.2209211 10.1038/s41467-018-02854-4 10.1063/1.4793302 10.1038/421496a 10.1126/science.aao1511 10.1126/science.abf5389 10.1063/1.3663630 10.1002/pssb.2220480206 10.1063/1.5045309 10.1038/nature14417 10.1021/acsnano.0c01478 10.1021/nl302036x 10.1109/MEMSYS.2017.7863341 10.1109/Transducers50396.2021.9495564 10.1038/s41928-021-00566-0 10.1038/nnano.2011.250 10.1021/nl501853w 10.1063/1.4769445 10.1021/acs.nanolett.8b04282 10.1021/acs.nanolett.5b03451 10.1038/nnano.2014.168 10.1021/acs.nanolett.8b02437 10.1103/PhysRevLett.89.276103 10.1021/acs.nanolett.6b01875 10.1021/nl070716t 10.1021/nl050886a 10.1038/ncomms3843 10.1002/adma.201303569 10.1038/nature09933 10.1038/ncomms12153 10.1126/sciadv.1602273 10.1038/nnano.2017.86 10.1103/PhysRevB.92.165419 10.1103/PhysRevLett.127.216101 10.1103/PhysRevLett.105.027205 10.1038/nphys3576 10.1063/1.5006941 10.1103/PhysRevLett.96.156103 10.1143/APEX.5.117201 10.1103/PhysRevA.84.023412 10.1021/acs.nanolett.6b05065 10.1103/PhysRevResearch.4.013149 10.1038/micronano.2017.38 10.1021/nl900612h 10.1021/acsphotonics.9b01094 10.1109/FCS.2015.7138822 10.1126/science.aah4243 10.1038/nature12502 10.1021/nl1022139 10.1109/SENSOR.2009.5285595 10.1021/acs.nanolett.2c01250 10.1038/nmat2936 10.1021/acsami.7b13930 10.1038/nnano.2009.152 10.1021/nn4018872 10.1103/PhysRevLett.88.045503 10.1038/ncomms15785 10.1126/science.1144216 10.1109/MEMSYS.2015.7051096 10.1126/sciadv.aav2372 10.1021/nl2003158 10.1021/nl301922d 10.1021/acs.nanolett.8b02293 10.1038/s41467-019-12795-1 10.1021/nl801982v 10.1063/1.4939685 10.1073/pnas.1916978117 10.1039/C5NR06118K 10.1002/admt.202000794 10.1021/acsnano.1c08380 10.1002/adfm.202104978 10.1103/PhysRevB.86.115454 10.1021/nl200950d 10.1063/5.0045106 10.1039/C6NR00713A 10.1039/C6NR02853E 10.1088/1361-6439/abe20b 10.1038/nnano.2008.125 10.1038/ncomms6819 10.1021/nl802181c 10.1063/1.4890387 10.1088/1361-6528/ab19cf 10.1021/acs.nanolett.7b04685 10.1038/s41928-019-0287-1 10.1109/MAMNA.2013.6557225 10.1299/jmmp.1.18 10.1063/5.0073005 10.1021/nl904260k 10.1021/nl102713c 10.1103/PhysRevLett.110.120503 10.1038/ncomms6850 10.1038/nnano.2009.267 10.1002/adma.202000046 10.1038/s41565-021-00963-8 10.1038/ncomms8165 10.1063/1.4931118 10.1021/acs.nanolett.9b00560 10.1021/acs.nanolett.5b01210 10.1109/NANO.2016.7751567 10.1038/s41570-019-0122-2 10.1126/sciadv.1600236 10.1021/acs.nanolett.5b04251 10.1088/0957-4484/16/10/018 10.1002/pssb.2220680109 10.1021/nl1039549 10.1116/1.4898117 10.1103/PhysRevX.11.031027 10.1038/s41586-019-1226-z 10.1039/c3nr05991j 10.1038/nature09898 10.1007/s11432-021-3432-6 10.1039/D1NR03286K 10.1038/nnano.2016.94 10.1002/smll.200901984 10.1103/PhysRevB.68.155420 10.1021/acs.nanolett.5b04840 10.1021/acs.nanolett.9b00546 10.1109/FCS.2014.6859918 10.1038/s41565-018-0341-6 10.1126/science.275.5308.1922 10.1039/C8NR09963D 10.1063/1.4802746 10.1021/nl203305q 10.1038/35040699 10.3390/mi7090158 10.1126/science.1136836 10.1063/1.1929098 10.1073/pnas.1216407109 10.1038/nchem.2687 10.1038/s41586-018-0861-0 10.1021/acs.nanolett.6b00477 10.1109/TUFFC.2007.240 10.1126/science.1192511 10.1109/LED.2018.2850776 10.1007/s11432-020-3241-9 10.1038/ncomms6158 10.1021/nl203279v 10.1038/s41467-020-19261-3 10.1103/PhysRevLett.122.165301 10.1103/PhysRevLett.90.156401 10.1038/s41467-017-01351-4 10.1021/nl052134m 10.1038/nnano.2012.42 10.7567/1882-0786/ab3b4f 10.1021/nl0706695 10.1038/srep28923 10.1039/C6NR01118G 10.1021/nl500879k 10.1038/s41567-019-0682-6 10.1021/nl080201h 10.1103/PhysRevB.61.5600 10.1021/nl801071w 10.1038/s41586-018-0719-5 10.1126/science.abf2998 10.1063/5.0031503 10.1038/nphoton.2015.282 10.1063/1.5054625 10.1109/MEMS46641.2020.9056366 10.1063/1.117548 10.1103/PhysRevLett.97.087203 10.1126/science.1174290 10.1021/acsnano.1c11498 10.1038/s41563-020-0712-x 10.1038/s41565-021-01061-5 10.1103/PhysRevLett.112.196103 10.1063/5.0050421 10.1038/nnano.2016.86 10.1038/nnano.2012.119 10.1103/RevModPhys.86.1391 10.1088/1367-2630/18/2/023020 10.1021/acs.nanolett.9b04619 10.1063/1.104757 10.1103/PhysRevLett.101.180602 10.1103/RevModPhys.87.1419 10.1038/ncomms12496 10.1038/nature10261 10.1021/acs.nanolett.9b04909 10.1109/IEDM.2018.8614604 10.1063/1.2932254 10.1063/1.2432257 10.1021/acs.nanolett.6b01598 10.1088/1361-6439/aac13d 10.1126/science.1157996 10.1088/1367-2630/7/1/247 10.1126/science.1182507 10.1021/acs.nanolett.1c03010 10.1038/nnano.2013.143 10.1038/nnano.2013.97 10.1063/1.4868129 10.1103/PhysRevLett.109.025503 10.1088/1742-6596/302/1/012001 10.1021/nl0721113 10.1063/5.0031890 10.1063/5.0069561 10.1038/nnano.2011.180 10.1038/s41467-021-21334-w 10.1038/s41467-020-16266-w 10.1038/s41598-017-05730-1 10.1021/nl501413t 10.1021/acs.nanolett.6b04223 10.1103/PhysRevLett.125.187701 10.1038/s41467-022-33440-4 10.1021/acsnano.1c05734 10.1038/srep03919 10.1038/nnano.2011.71 10.1063/1.1821638 10.1063/1.3273372 10.1103/PhysRevLett.108.175502 10.1007/s10909-012-0642-3 10.1038/d41586-019-00793-8 10.1109/MEMSYS.2018.8346606 10.1021/acs.nanolett.1c00610 10.1039/C8NR10452B 10.1038/s41467-020-15433-3 10.1109/MEMS46641.2020.9056243 10.1038/nphys2842 10.1021/nl4040913 10.1063/1.1646213 10.1038/nmat1455 10.1126/science.aay5220 10.1103/RevModPhys.87.703 10.1038/nnano.2014.234 10.1088/1361-6439/ac3466 10.1088/2053-1583/2/2/021001 10.1021/nl062206p 10.1126/science.1081940 10.1038/s41467-020-16430-2 10.1109/MEMSYS.2018.8346740 10.1038/nature02658 10.1063/1.3528341 10.1088/1361-6633/ab3a7e 10.1109/IEDM.2014.7047008 10.1038/s41467-021-26230-x 10.1126/sciadv.aao6653 10.1021/acs.nanolett.2c00494 10.1364/JOSAB.389944 10.1038/s41565-020-00814-y 10.1038/s41467-017-01551-y 10.1109/EFTF-IFC.2013.6702300 10.1038/s41586-022-04523-5 10.1038/s41467-020-16056-4 10.1038/nature02905 10.1063/1.1843289 10.3390/mi9060312 10.1021/ar0101640 10.1021/acsnano.5b03367 10.1021/nl901057c 10.1109/JEDS.2013.2295246 10.1063/1.5026775 10.1063/5.0063079 10.1038/nnano.2013.274 10.1063/1.2012461 10.1038/4341085a 10.1109/MEMSYS.2015.7051099 10.1021/acs.nanolett.8b01926 10.1103/PhysRevX.11.021009 10.1103/PhysRevLett.113.027404 10.1109/TRANSDUCERS.2015.7180922 10.1038/nnano.2006.45 10.1119/1.4878621 10.1109/5.704281 10.1021/nl403268b 10.1063/1.4929507 10.1038/nature10461 10.1038/nature01773 10.1103/PhysRevB.92.235441 10.1126/science.aat6457 10.1088/2053-1583/aa57c6 10.1063/1.3691958 10.1038/s41467-021-23359-7 10.1038/nature08967 10.1021/acs.nanolett.5b02586 10.1109/SENSOR.2007.4300134 10.1109/MEMS51782.2021.9375457 10.1103/PhysRevB.84.165307 10.1103/PhysRevLett.108.136101 10.1038/ncomms9104 10.1063/1.3139750 10.1002/adfm.200900105 10.1116/1.1347040 10.1109/84.825786 10.1002/inf2.12274 10.1109/IEEE-IWS.2013.6616764 10.1063/1.1396318 10.1126/science.aac9439 10.1038/nature10787 10.1021/acs.nanolett.9b03668 10.1088/2053-1583/abc2a7 10.1134/S0021364018190037 10.1063/1.2822406 10.1038/srep21686 10.1016/j.physleta.2011.05.009 10.1103/PhysRevA.69.022902 10.1038/27632 10.1103/PhysRevB.95.104109 10.1021/nl1042227 10.1021/acs.nanolett.9b02351 10.1038/nphys3302 10.1007/s11432-021-3297-x 10.1021/acs.nanolett.1c02056 10.1038/s41467-019-14130-0 10.1021/acs.nanolett.1c02369 10.1103/PhysRevLett.126.175502 10.1103/PhysRevB.69.045403 10.1103/PhysRevB.86.041402 10.1103/PhysRevA.61.063418 10.1109/TRANSDUCERS.2015.7181193 10.1002/adma.200401959 10.1103/PhysRevApplied.11.024024 10.1038/nature23905 10.1063/1.4934708 10.1063/1.3627178 10.1016/j.mattod.2015.10.002 10.1109/MEMSYS.2016.7421557 10.1038/nnano.2010.151 10.1038/nphys2665 10.1080/21663831.2013.824516 10.1103/PhysRevLett.99.085501 10.1103/PhysRevLett.87.096801 10.1103/PhysRevLett.123.083901 10.1021/acs.nanolett.7b01845 10.1063/5.0024583 10.1039/C4NR04829F 10.1021/nl101292b 10.1038/386474a0 10.1038/s41467-018-03097-z 10.1038/32373 |
ContentType | Journal Article |
Copyright | 2022 The Authors. Published by American Chemical Society 2022 The Authors. Published by American Chemical Society 2022 The Authors |
Copyright_xml | – notice: 2022 The Authors. Published by American Chemical Society – notice: 2022 The Authors. Published by American Chemical Society 2022 The Authors |
DBID | AAYXX CITATION 7X8 5PM |
DOI | 10.1021/acsnano.2c01673 |
DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 15585 |
ExternalDocumentID | PMC9620412 10_1021_acsnano_2c01673 e381370 |
GrantInformation_xml | – fundername: ; grantid: ECCS-1454570 – fundername: ; grantid: 2017SGR1664 – fundername: ; grantid: PCI2022-132951 – fundername: ; grantid: ZYGX2020ZB014 – fundername: ; grantid: 21ZR1433800 – fundername: ; grantid: LG-QS-202202-11 – fundername: ; grantid: U21A20505 – fundername: ; grantid: CEX2019-000910-S – fundername: ; grantid: 692876 – fundername: ; grantid: 19YF1424900 |
GroupedDBID | --- .K2 23M 4.4 55A 5GY 5VS 6J9 7~N AABXI ABFRP ABMVS ABQRX ABUCX ACGFO ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED~ F5P GGK GNL IH9 IHE JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ AAHBH AAYXX ABBLG ABJNI ABLBI ACBEA ADHGD BAANH CITATION CUPRZ 7X8 5PM |
ID | FETCH-LOGICAL-a472t-722d55f827331217b6b889ec0a495f34f7850e2598c1610e69c2e88593c32f563 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Thu Aug 21 18:38:34 EDT 2025 Fri Jul 11 16:17:58 EDT 2025 Tue Jul 01 03:37:29 EDT 2025 Thu Apr 24 22:58:00 EDT 2025 Thu Oct 27 05:08:52 EDT 2022 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | one-dimensional materials sensing radio frequency quantum engineering signal processing dynamic range two-dimensional materials nanoelectromechanical systems resonators frequency tuning |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a472t-722d55f827331217b6b889ec0a495f34f7850e2598c1610e69c2e88593c32f563 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-4705-771X 0000-0001-6757-3442 0000-0003-0492-2478 0000-0001-6325-7231 0000-0002-6163-2904 0000-0002-1429-6995 0000-0003-0262-2017 0000-0003-4106-6762 0000-0002-1083-2391 0000-0002-9663-4491 0000-0002-3104-1855 0000-0003-3743-7567 0000-0002-6145-2479 0000-0002-1866-2649 0000-0002-5495-7612 0000-0001-7906-8902 0000-0002-6465-6506 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC9620412 |
PMID | 36054880 |
PQID | 2709737606 |
PQPubID | 23479 |
PageCount | 41 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9620412 proquest_miscellaneous_2709737606 crossref_citationtrail_10_1021_acsnano_2c01673 crossref_primary_10_1021_acsnano_2c01673 acs_journals_10_1021_acsnano_2c01673 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-25 |
PublicationDateYYYYMMDD | 2022-10-25 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-25 day: 25 |
PublicationDecade | 2020 |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2022 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref99/cit99 ref3/cit3 ref81/cit81 ref330/cit330 ref332/cit332 ref16/cit16 ref185/cit185 ref23/cit23 ref115/cit115 ref259/cit259 ref187/cit187 ref181/cit181 ref327/cit327 ref111/cit111 ref255/cit255 ref329/cit329 ref113/cit113 ref183/cit183 ref257/cit257 ref117/cit117 ref48/cit48 ref74/cit74 ref189/cit189 ref119/cit119 ref10/cit10 ref35/cit35 ref93/cit93 ref251/cit251 ref325/cit325 ref253/cit253 ref42/cit42 ref321/cit321 ref323/cit323 ref120/cit120 ref178/cit178 ref122/cit122 ref248/cit248 ref61/cit61 ref176/cit176 ref67/cit67 ref128/cit128 ref124/cit124 ref126/cit126 ref54/cit54 ref240/cit240 ref137/cit137 ref310/cit310 ref318/cit318 ref11/cit11 ref102/cit102 ref29/cit29 ref174/cit174 ref314/cit314 ref86/cit86 ref170/cit170 ref244/cit244 ref271/cit271 ref345/cit345 ref5/cit5 ref341/cit341 ref43/cit43 ref80/cit80 ref133/cit133 ref207/cit207 ref28/cit28 ref279/cit279 ref203/cit203 ref275/cit275 ref349/cit349 ref233/cit233 ref148/cit148 ref307/cit307 ref55/cit55 ref144/cit144 ref303/cit303 ref218/cit218 ref167/cit167 ref163/cit163 ref237/cit237 ref66/cit66 ref264/cit264 ref338/cit338 ref22/cit22 ref260/cit260 ref334/cit334 ref87/cit87 ref106/cit106 ref140/cit140 ref198/cit198 ref214/cit214 ref194/cit194 ref98/cit98 ref210/cit210 ref268/cit268 ref153/cit153 ref297/cit297 ref227/cit227 ref222/cit222 ref150/cit150 ref294/cit294 ref63/cit63 ref224/cit224 ref295/cit295 ref56/cit56 ref155/cit155 ref229/cit229 ref156/cit156 ref158/cit158 ref8/cit8 ref59/cit59 ref85/cit85 ref34/cit34 ref37/cit37 ref221/cit221 ref292/cit292 ref60/cit60 ref17/cit17 ref219/cit219 ref82/cit82 ref147/cit147 ref232/cit232 ref306/cit306 ref230/cit230 ref145/cit145 ref304/cit304 ref238/cit238 ref21/cit21 ref166/cit166 ref164/cit164 ref350/cit350 ref352/cit352 ref213/cit213 ref284/cit284 ref286/cit286 ref78/cit78 ref211/cit211 ref312/cit312 ref36/cit36 ref83/cit83 ref79/cit79 ref139/cit139 ref172/cit172 ref246/cit246 ref243/cit243 ref317/cit317 ref270/cit270 ref200/cit200 ref344/cit344 ref14/cit14 ref57/cit57 ref169/cit169 ref278/cit278 ref134/cit134 ref208/cit208 ref40/cit40 ref273/cit273 ref347/cit347 ref131/cit131 ref205/cit205 Bachtold A. (ref190/cit190) 2022 ref161/cit161 ref320/cit320 ref142/cit142 ref216/cit216 ref301/cit301 ref15/cit15 ref180/cit180 ref235/cit235 ref309/cit309 ref62/cit62 ref41/cit41 ref58/cit58 ref104/cit104 ref262/cit262 ref177/cit177 ref336/cit336 ref84/cit84 ref1/cit1 ref123/cit123 ref196/cit196 ref281/cit281 ref355/cit355 ref7/cit7 ref45/cit45 ref331/cit331 ref333/cit333 ref52/cit52 ref184/cit184 ref114/cit114 ref258/cit258 ref186/cit186 ref116/cit116 ref110/cit110 ref254/cit254 ref182/cit182 ref328/cit328 ref2/cit2 ref112/cit112 ref256/cit256 ref77/cit77 ref71/cit71 ref188/cit188 ref20/cit20 ref118/cit118 ref89/cit89 ref19/cit19 ref96/cit96 ref107/cit107 ref337/cit337 ref191/cit191 ref265/cit265 ref109/cit109 ref339/cit339 ref13/cit13 ref193/cit193 ref105/cit105 ref261/cit261 ref335/cit335 ref263/cit263 ref197/cit197 ref38/cit38 ref199/cit199 ref90/cit90 ref267/cit267 ref195/cit195 ref269/cit269 ref64/cit64 ref311/cit311 ref6/cit6 ref18/cit18 ref136/cit136 ref65/cit65 ref171/cit171 ref97/cit97 ref101/cit101 ref245/cit245 ref319/cit319 ref241/cit241 ref315/cit315 ref76/cit76 ref32/cit32 ref39/cit39 ref272/cit272 ref202/cit202 ref346/cit346 ref168/cit168 ref342/cit342 ref206/cit206 ref132/cit132 ref276/cit276 ref91/cit91 ref287/cit287 ref252/cit252 ref12/cit12 ref326/cit326 ref322/cit322 ref179/cit179 ref121/cit121 ref175/cit175 ref33/cit33 ref249/cit249 ref283/cit283 ref129/cit129 ref44/cit44 ref353/cit353 ref70/cit70 ref125/cit125 ref9/cit9 ref152/cit152 ref225/cit225 ref296/cit296 ref226/cit226 ref154/cit154 ref298/cit298 ref27/cit27 ref228/cit228 ref299/cit299 ref293/cit293 ref223/cit223 ref151/cit151 ref159/cit159 ref92/cit92 ref157/cit157 Lifshitz R. (ref100/cit100) 2008 ref31/cit31 ref290/cit290 ref220/cit220 ref291/cit291 ref88/cit88 ref160/cit160 ref234/cit234 ref143/cit143 ref302/cit302 ref217/cit217 ref288/cit288 ref53/cit53 ref149/cit149 ref162/cit162 ref308/cit308 ref46/cit46 ref236/cit236 ref49/cit49 ref75/cit75 ref24/cit24 ref141/cit141 ref300/cit300 ref215/cit215 ref280/cit280 ref354/cit354 ref50/cit50 ref282/cit282 ref313/cit313 ref209/cit209 ref138/cit138 ref25/cit25 ref173/cit173 ref103/cit103 ref247/cit247 ref72/cit72 ref242/cit242 ref316/cit316 ref343/cit343 ref201/cit201 ref340/cit340 ref51/cit51 ref277/cit277 ref135/cit135 ref68/cit68 ref94/cit94 ref130/cit130 ref274/cit274 ref204/cit204 ref348/cit348 ref146/cit146 ref305/cit305 ref26/cit26 ref73/cit73 ref231/cit231 ref69/cit69 ref165/cit165 ref324/cit324 ref239/cit239 Cohen-Tannoudji C. (ref289/cit289) 2020 ref250/cit250 ref95/cit95 ref108/cit108 ref192/cit192 ref351/cit351 ref266/cit266 ref4/cit4 ref30/cit30 ref212/cit212 ref47/cit47 ref127/cit127 ref285/cit285 |
References_xml | – ident: ref34/cit34 doi: 10.1038/nnano.2008.26 – ident: ref225/cit225 doi: 10.1021/acs.nanolett.0c01586 – ident: ref51/cit51 doi: 10.1063/1.4868868 – ident: ref188/cit188 doi: 10.1016/j.physrep.2013.09.003 – ident: ref231/cit231 doi: 10.1021/acs.nanolett.9b01219 – ident: ref168/cit168 doi: 10.31438/trf.hh2016.111 – ident: ref193/cit193 doi: 10.1021/jp0654011 – ident: ref348/cit348 doi: 10.1038/nphoton.2016.68 – ident: ref96/cit96 doi: 10.1126/science.1176076 – ident: ref276/cit276 doi: 10.1038/s41567-019-0683-5 – ident: ref268/cit268 doi: 10.1021/acs.nanolett.1c01866 – ident: ref65/cit65 doi: 10.1021/acs.nanolett.6b02038 – ident: ref108/cit108 doi: 10.1103/PhysRevLett.108.083603 – ident: ref239/cit239 doi: 10.1038/ncomms1813 – ident: ref59/cit59 doi: 10.1038/nnano.2013.232 – ident: ref157/cit157 doi: 10.1039/C7NR04940D – ident: ref333/cit333 doi: 10.1063/1.2906373 – ident: ref33/cit33 doi: 10.1063/1.1601311 – ident: ref278/cit278 doi: 10.1103/PhysRevLett.120.246802 – ident: ref89/cit89 doi: 10.1038/354056a0 – ident: ref24/cit24 doi: 10.1038/nphys2070 – ident: ref232/cit232 doi: 10.1126/science.1195596 – ident: ref172/cit172 doi: 10.1063/1.2209211 – ident: ref220/cit220 doi: 10.1038/s41467-018-02854-4 – ident: ref58/cit58 doi: 10.1063/1.4793302 – ident: ref265/cit265 doi: 10.1038/421496a – ident: ref284/cit284 doi: 10.1126/science.aao1511 – ident: ref288/cit288 doi: 10.1126/science.abf5389 – ident: ref103/cit103 doi: 10.1063/1.3663630 – ident: ref214/cit214 doi: 10.1002/pssb.2220480206 – ident: ref252/cit252 doi: 10.1063/1.5045309 – ident: ref301/cit301 doi: 10.1038/nature14417 – ident: ref300/cit300 doi: 10.1021/acsnano.0c01478 – ident: ref86/cit86 doi: 10.1021/nl302036x – ident: ref122/cit122 doi: 10.1109/MEMSYS.2017.7863341 – ident: ref270/cit270 doi: 10.1109/Transducers50396.2021.9495564 – ident: ref309/cit309 doi: 10.1038/s41928-021-00566-0 – ident: ref126/cit126 doi: 10.1038/nnano.2011.250 – ident: ref111/cit111 doi: 10.1021/nl501853w – ident: ref118/cit118 doi: 10.1063/1.4769445 – ident: ref200/cit200 doi: 10.1021/acs.nanolett.8b04282 – ident: ref28/cit28 doi: 10.1021/acs.nanolett.5b03451 – ident: ref78/cit78 doi: 10.1038/nnano.2014.168 – ident: ref254/cit254 doi: 10.1021/acs.nanolett.8b02437 – ident: ref54/cit54 doi: 10.1103/PhysRevLett.89.276103 – ident: ref219/cit219 doi: 10.1021/acs.nanolett.6b01875 – ident: ref199/cit199 doi: 10.1021/nl070716t – ident: ref52/cit52 doi: 10.1021/nl050886a – ident: ref97/cit97 doi: 10.1038/ncomms3843 – ident: ref18/cit18 doi: 10.1002/adma.201303569 – ident: ref233/cit233 doi: 10.1038/nature09933 – ident: ref201/cit201 doi: 10.1038/ncomms12153 – ident: ref344/cit344 doi: 10.1126/sciadv.1602273 – ident: ref142/cit142 doi: 10.1038/nnano.2017.86 – ident: ref215/cit215 doi: 10.1103/PhysRevB.92.165419 – ident: ref327/cit327 doi: 10.1103/PhysRevLett.127.216101 – ident: ref106/cit106 doi: 10.1103/PhysRevLett.105.027205 – ident: ref282/cit282 doi: 10.1038/nphys3576 – ident: ref143/cit143 doi: 10.1063/1.5006941 – ident: ref322/cit322 doi: 10.1103/PhysRevLett.96.156103 – ident: ref164/cit164 doi: 10.1143/APEX.5.117201 – ident: ref330/cit330 doi: 10.1103/PhysRevA.84.023412 – ident: ref76/cit76 doi: 10.1021/acs.nanolett.6b05065 – ident: ref352/cit352 doi: 10.1103/PhysRevResearch.4.013149 – ident: ref20/cit20 doi: 10.1038/micronano.2017.38 – ident: ref40/cit40 doi: 10.1021/nl900612h – ident: ref223/cit223 doi: 10.1021/acsphotonics.9b01094 – ident: ref180/cit180 doi: 10.1109/FCS.2015.7138822 – ident: ref349/cit349 doi: 10.1126/science.aah4243 – ident: ref277/cit277 – ident: ref9/cit9 doi: 10.1038/nature12502 – ident: ref139/cit139 doi: 10.1021/nl1022139 – ident: ref117/cit117 doi: 10.1109/SENSOR.2009.5285595 – ident: ref134/cit134 doi: 10.1021/acs.nanolett.2c01250 – ident: ref324/cit324 doi: 10.1038/nmat2936 – ident: ref146/cit146 doi: 10.1021/acsami.7b13930 – ident: ref336/cit336 doi: 10.1038/nnano.2009.152 – ident: ref17/cit17 doi: 10.1021/nn4018872 – ident: ref353/cit353 doi: 10.1103/PhysRevLett.88.045503 – ident: ref346/cit346 doi: 10.1038/ncomms15785 – ident: ref140/cit140 doi: 10.1126/science.1144216 – ident: ref262/cit262 doi: 10.1109/MEMSYS.2015.7051096 – ident: ref351/cit351 doi: 10.1126/sciadv.aav2372 – ident: ref247/cit247 doi: 10.1021/nl2003158 – ident: ref14/cit14 doi: 10.1021/nl301922d – ident: ref224/cit224 doi: 10.1021/acs.nanolett.8b02293 – ident: ref133/cit133 doi: 10.1038/s41467-019-12795-1 – ident: ref249/cit249 doi: 10.1021/nl801982v – ident: ref260/cit260 doi: 10.1063/1.4939685 – ident: ref221/cit221 doi: 10.1073/pnas.1916978117 – ident: ref130/cit130 doi: 10.1039/C5NR06118K – ident: ref183/cit183 doi: 10.1002/admt.202000794 – ident: ref208/cit208 doi: 10.1021/acsnano.1c08380 – ident: ref315/cit315 doi: 10.1002/adfm.202104978 – ident: ref273/cit273 doi: 10.1103/PhysRevB.86.115454 – ident: ref98/cit98 doi: 10.1021/nl200950d – ident: ref137/cit137 doi: 10.1063/5.0045106 – ident: ref112/cit112 doi: 10.1039/C6NR00713A – ident: ref229/cit229 doi: 10.1039/C6NR02853E – ident: ref245/cit245 doi: 10.1088/1361-6439/abe20b – ident: ref115/cit115 doi: 10.1038/nnano.2008.125 – ident: ref216/cit216 doi: 10.1038/ncomms6819 – ident: ref71/cit71 doi: 10.1021/nl802181c – ident: ref189/cit189 doi: 10.1063/1.4890387 – ident: ref253/cit253 doi: 10.1088/1361-6528/ab19cf – ident: ref258/cit258 doi: 10.1021/acs.nanolett.7b04685 – ident: ref261/cit261 doi: 10.1038/s41928-019-0287-1 – ident: ref316/cit316 doi: 10.1109/MAMNA.2013.6557225 – ident: ref194/cit194 doi: 10.1299/jmmp.1.18 – ident: ref144/cit144 doi: 10.1063/5.0073005 – ident: ref49/cit49 doi: 10.1021/nl904260k – ident: ref60/cit60 doi: 10.1021/nl102713c – ident: ref294/cit294 doi: 10.1103/PhysRevLett.110.120503 – ident: ref236/cit236 doi: 10.1038/ncomms6850 – ident: ref57/cit57 doi: 10.1038/nnano.2009.267 – ident: ref302/cit302 doi: 10.1002/adma.202000046 – ident: ref298/cit298 doi: 10.1038/s41565-021-00963-8 – ident: ref53/cit53 doi: 10.1038/ncomms8165 – ident: ref165/cit165 doi: 10.1063/1.4931118 – ident: ref166/cit166 doi: 10.1021/acs.nanolett.9b00560 – ident: ref342/cit342 doi: 10.1021/acs.nanolett.5b01210 – ident: ref30/cit30 doi: 10.1109/NANO.2016.7751567 – ident: ref3/cit3 doi: 10.1038/s41570-019-0122-2 – ident: ref347/cit347 doi: 10.1126/sciadv.1600236 – ident: ref264/cit264 doi: 10.1021/acs.nanolett.5b04251 – ident: ref120/cit120 doi: 10.1088/0957-4484/16/10/018 – ident: ref99/cit99 doi: 10.1002/pssb.2220680109 – ident: ref173/cit173 doi: 10.1021/nl1039549 – ident: ref61/cit61 doi: 10.1116/1.4898117 – ident: ref293/cit293 doi: 10.1103/PhysRevX.11.031027 – ident: ref303/cit303 doi: 10.1038/s41586-019-1226-z – ident: ref129/cit129 doi: 10.1039/c3nr05991j – ident: ref234/cit234 doi: 10.1038/nature09898 – ident: ref152/cit152 doi: 10.1007/s11432-021-3432-6 – ident: ref182/cit182 doi: 10.1039/D1NR03286K – ident: ref227/cit227 doi: 10.1038/nnano.2016.94 – ident: ref70/cit70 doi: 10.1002/smll.200901984 – ident: ref319/cit319 doi: 10.1103/PhysRevB.68.155420 – ident: ref15/cit15 doi: 10.1021/acs.nanolett.5b04840 – ident: ref213/cit213 doi: 10.1021/acs.nanolett.9b00546 – ident: ref263/cit263 doi: 10.1109/FCS.2014.6859918 – ident: ref274/cit274 doi: 10.1038/s41565-018-0341-6 – ident: ref8/cit8 doi: 10.1126/science.275.5308.1922 – ident: ref128/cit128 doi: 10.1039/C8NR09963D – ident: ref81/cit81 doi: 10.1063/1.4802746 – ident: ref176/cit176 doi: 10.1021/nl203305q – volume-title: Quantum Mechanics year: 2020 ident: ref289/cit289 – ident: ref90/cit90 doi: 10.1038/35040699 – ident: ref204/cit204 doi: 10.3390/mi7090158 – ident: ref16/cit16 doi: 10.1126/science.1136836 – ident: ref95/cit95 doi: 10.1063/1.1929098 – ident: ref174/cit174 doi: 10.1073/pnas.1216407109 – ident: ref1/cit1 doi: 10.1038/nchem.2687 – ident: ref217/cit217 doi: 10.1038/s41586-018-0861-0 – ident: ref163/cit163 doi: 10.1021/acs.nanolett.6b00477 – ident: ref186/cit186 doi: 10.1109/TUFFC.2007.240 – ident: ref338/cit338 doi: 10.1126/science.1192511 – ident: ref148/cit148 doi: 10.1109/LED.2018.2850776 – ident: ref341/cit341 doi: 10.1007/s11432-020-3241-9 – ident: ref68/cit68 doi: 10.1038/ncomms6158 – ident: ref102/cit102 doi: 10.1021/nl203279v – ident: ref127/cit127 doi: 10.1038/s41467-020-19261-3 – ident: ref47/cit47 doi: 10.1103/PhysRevLett.122.165301 – year: 2022 ident: ref190/cit190 publication-title: Rev. Mod. Phys. – ident: ref38/cit38 doi: 10.1103/PhysRevLett.90.156401 – ident: ref209/cit209 doi: 10.1038/s41467-017-01351-4 – ident: ref248/cit248 doi: 10.1021/nl052134m – ident: ref250/cit250 doi: 10.1038/nnano.2012.42 – ident: ref66/cit66 doi: 10.7567/1882-0786/ab3b4f – ident: ref10/cit10 doi: 10.1021/nl0706695 – ident: ref67/cit67 doi: 10.1038/srep28923 – ident: ref62/cit62 doi: 10.1039/C6NR01118G – ident: ref125/cit125 doi: 10.1021/nl500879k – ident: ref48/cit48 doi: 10.1038/s41567-019-0682-6 – ident: ref73/cit73 doi: 10.1021/nl080201h – ident: ref197/cit197 doi: 10.1103/PhysRevB.61.5600 – ident: ref72/cit72 doi: 10.1021/nl801071w – ident: ref285/cit285 doi: 10.1038/s41586-018-0719-5 – ident: ref287/cit287 doi: 10.1126/science.abf2998 – ident: ref147/cit147 doi: 10.1063/5.0031503 – ident: ref151/cit151 doi: 10.1038/nphoton.2015.282 – ident: ref149/cit149 doi: 10.1063/1.5054625 – ident: ref259/cit259 doi: 10.1109/MEMS46641.2020.9056366 – ident: ref32/cit32 doi: 10.1063/1.117548 – ident: ref175/cit175 doi: 10.1103/PhysRevLett.97.087203 – ident: ref110/cit110 doi: 10.1126/science.1174290 – ident: ref153/cit153 doi: 10.1021/acsnano.1c11498 – ident: ref21/cit21 doi: 10.1038/s41563-020-0712-x – ident: ref308/cit308 doi: 10.1038/s41565-021-01061-5 – ident: ref46/cit46 doi: 10.1103/PhysRevLett.112.196103 – ident: ref145/cit145 doi: 10.1063/5.0050421 – ident: ref228/cit228 doi: 10.1038/nnano.2016.86 – ident: ref246/cit246 doi: 10.1038/nnano.2012.119 – ident: ref292/cit292 doi: 10.1103/RevModPhys.86.1391 – ident: ref332/cit332 doi: 10.1088/1367-2630/18/2/023020 – ident: ref155/cit155 doi: 10.1021/acs.nanolett.9b04619 – ident: ref256/cit256 doi: 10.1063/1.104757 – ident: ref329/cit329 doi: 10.1103/PhysRevLett.101.180602 – ident: ref331/cit331 doi: 10.1103/RevModPhys.87.1419 – ident: ref77/cit77 doi: 10.1038/ncomms12496 – ident: ref235/cit235 doi: 10.1038/nature10261 – ident: ref82/cit82 doi: 10.1021/acs.nanolett.9b04909 – ident: ref181/cit181 doi: 10.1109/IEDM.2018.8614604 – ident: ref323/cit323 doi: 10.1063/1.2932254 – ident: ref25/cit25 doi: 10.1063/1.2432257 – ident: ref136/cit136 doi: 10.1021/acs.nanolett.6b01598 – ident: ref340/cit340 doi: 10.1088/1361-6439/aac13d – ident: ref13/cit13 doi: 10.1126/science.1157996 – ident: ref119/cit119 doi: 10.1088/1367-2630/7/1/247 – ident: ref42/cit42 doi: 10.1126/science.1182507 – ident: ref226/cit226 doi: 10.1021/acs.nanolett.1c03010 – ident: ref50/cit50 doi: 10.1038/nnano.2013.143 – ident: ref91/cit91 doi: 10.1038/nnano.2013.97 – ident: ref218/cit218 doi: 10.1063/1.4868129 – ident: ref94/cit94 doi: 10.1103/PhysRevLett.109.025503 – ident: ref244/cit244 doi: 10.1088/1742-6596/302/1/012001 – ident: ref55/cit55 doi: 10.1021/nl0721113 – ident: ref212/cit212 doi: 10.1063/5.0031890 – ident: ref295/cit295 doi: 10.1063/5.0069561 – ident: ref237/cit237 doi: 10.1038/nnano.2011.180 – ident: ref240/cit240 doi: 10.1038/s41467-021-21334-w – ident: ref304/cit304 doi: 10.1038/s41467-020-16266-w – ident: ref205/cit205 doi: 10.1038/s41598-017-05730-1 – ident: ref29/cit29 doi: 10.1021/nl501413t – ident: ref230/cit230 doi: 10.1021/acs.nanolett.6b04223 – ident: ref45/cit45 doi: 10.1103/PhysRevLett.125.187701 – ident: ref109/cit109 doi: 10.1038/s41467-022-33440-4 – ident: ref305/cit305 doi: 10.1021/acsnano.1c05734 – ident: ref170/cit170 doi: 10.1038/srep03919 – ident: ref101/cit101 doi: 10.1038/nnano.2011.71 – ident: ref195/cit195 doi: 10.1063/1.1821638 – ident: ref334/cit334 doi: 10.1063/1.3273372 – ident: ref271/cit271 doi: 10.1103/PhysRevLett.108.175502 – ident: ref41/cit41 doi: 10.1007/s10909-012-0642-3 – ident: ref343/cit343 doi: 10.1038/d41586-019-00793-8 – ident: ref64/cit64 doi: 10.1109/MEMSYS.2018.8346606 – ident: ref179/cit179 doi: 10.1021/acs.nanolett.1c00610 – ident: ref211/cit211 doi: 10.1039/C8NR10452B – ident: ref275/cit275 doi: 10.1038/s41467-020-15433-3 – ident: ref31/cit31 doi: 10.1109/MEMS46641.2020.9056243 – ident: ref272/cit272 doi: 10.1038/nphys2842 – ident: ref12/cit12 doi: 10.1021/nl4040913 – ident: ref185/cit185 doi: 10.1063/1.1646213 – ident: ref4/cit4 doi: 10.1038/nmat1455 – ident: ref44/cit44 doi: 10.1126/science.aay5220 – ident: ref93/cit93 doi: 10.1103/RevModPhys.87.703 – ident: ref104/cit104 doi: 10.1038/nnano.2014.234 – ident: ref337/cit337 doi: 10.1088/1361-6439/ac3466 – ident: ref135/cit135 doi: 10.1088/2053-1583/2/2/021001 – ident: ref198/cit198 doi: 10.1021/nl062206p – ident: ref113/cit113 doi: 10.1126/science.1081940 – ident: ref22/cit22 doi: 10.1038/s41467-020-16430-2 – ident: ref167/cit167 doi: 10.1109/MEMSYS.2018.8346740 – ident: ref255/cit255 doi: 10.1038/nature02658 – ident: ref87/cit87 doi: 10.1063/1.3528341 – ident: ref335/cit335 doi: 10.1088/1361-6633/ab3a7e – ident: ref355/cit355 doi: 10.1109/IEDM.2014.7047008 – ident: ref23/cit23 doi: 10.1109/LED.2018.2850776 – ident: ref299/cit299 doi: 10.1038/s41467-021-26230-x – ident: ref63/cit63 doi: 10.1126/sciadv.aao6653 – ident: ref310/cit310 doi: 10.1021/acs.nanolett.2c00494 – ident: ref269/cit269 doi: 10.1364/JOSAB.389944 – ident: ref280/cit280 doi: 10.1038/s41565-020-00814-y – ident: ref312/cit312 doi: 10.1038/s41467-017-01551-y – ident: ref169/cit169 doi: 10.1109/EFTF-IFC.2013.6702300 – ident: ref296/cit296 doi: 10.1038/s41586-022-04523-5 – ident: ref297/cit297 doi: 10.1038/s41467-020-16056-4 – ident: ref11/cit11 doi: 10.1038/nature02905 – ident: ref84/cit84 doi: 10.1063/1.1843289 – ident: ref177/cit177 doi: 10.3390/mi9060312 – ident: ref37/cit37 doi: 10.1021/ar0101640 – ident: ref5/cit5 doi: 10.1021/acsnano.5b03367 – ident: ref114/cit114 doi: 10.1021/nl901057c – ident: ref160/cit160 doi: 10.1109/JEDS.2013.2295246 – ident: ref210/cit210 doi: 10.1063/1.5026775 – ident: ref266/cit266 doi: 10.1063/5.0063079 – ident: ref279/cit279 doi: 10.1038/nnano.2013.274 – ident: ref283/cit283 doi: 10.1063/1.2012461 – ident: ref6/cit6 doi: 10.1038/4341085a – ident: ref178/cit178 doi: 10.1109/MEMSYS.2015.7051099 – ident: ref156/cit156 doi: 10.1021/acs.nanolett.8b01926 – ident: ref281/cit281 doi: 10.1103/PhysRevX.11.021009 – ident: ref79/cit79 doi: 10.1103/PhysRevLett.113.027404 – ident: ref267/cit267 doi: 10.1109/TRANSDUCERS.2015.7180922 – ident: ref2/cit2 doi: 10.1038/nnano.2006.45 – ident: ref242/cit242 doi: 10.1119/1.4878621 – ident: ref187/cit187 doi: 10.1109/5.704281 – ident: ref339/cit339 doi: 10.1021/nl403268b – ident: ref206/cit206 doi: 10.1063/1.4929507 – ident: ref290/cit290 doi: 10.1038/nature10461 – ident: ref69/cit69 doi: 10.1038/nature01773 – ident: ref326/cit326 doi: 10.1103/PhysRevB.92.235441 – ident: ref318/cit318 doi: 10.1126/science.aat6457 – ident: ref124/cit124 doi: 10.1088/2053-1583/aa57c6 – ident: ref203/cit203 doi: 10.1063/1.3691958 – ident: ref354/cit354 doi: 10.1038/s41467-021-23359-7 – volume-title: Reviews of Nonlinear Dynamics and Complexity year: 2008 ident: ref100/cit100 – ident: ref286/cit286 doi: 10.1038/nature08967 – ident: ref171/cit171 doi: 10.1021/acs.nanolett.5b02586 – ident: ref162/cit162 doi: 10.1109/SENSOR.2007.4300134 – ident: ref207/cit207 doi: 10.1109/MEMS51782.2021.9375457 – ident: ref107/cit107 doi: 10.1103/PhysRevB.84.165307 – ident: ref325/cit325 doi: 10.1103/PhysRevLett.108.136101 – ident: ref75/cit75 doi: 10.1038/ncomms9104 – ident: ref36/cit36 doi: 10.1063/1.3139750 – ident: ref116/cit116 doi: 10.1002/adfm.200900105 – ident: ref192/cit192 doi: 10.1116/1.1347040 – ident: ref191/cit191 doi: 10.1109/84.825786 – ident: ref306/cit306 doi: 10.1002/inf2.12274 – ident: ref88/cit88 doi: 10.1109/IEEE-IWS.2013.6616764 – ident: ref92/cit92 doi: 10.1063/1.1396318 – ident: ref150/cit150 doi: 10.1126/science.aac9439 – ident: ref291/cit291 doi: 10.1038/nature10787 – ident: ref26/cit26 doi: 10.1021/acs.nanolett.9b03668 – ident: ref314/cit314 doi: 10.1088/2053-1583/abc2a7 – ident: ref161/cit161 doi: 10.1134/S0021364018190037 – ident: ref105/cit105 doi: 10.1063/1.2822406 – ident: ref345/cit345 doi: 10.1038/srep21686 – ident: ref251/cit251 doi: 10.1016/j.physleta.2011.05.009 – ident: ref317/cit317 – ident: ref321/cit321 doi: 10.1103/PhysRevA.69.022902 – ident: ref39/cit39 doi: 10.1038/27632 – ident: ref313/cit313 doi: 10.1103/PhysRevB.95.104109 – ident: ref123/cit123 doi: 10.1021/nl1042227 – ident: ref56/cit56 doi: 10.1021/acs.nanolett.9b02351 – ident: ref43/cit43 doi: 10.1038/nphys3302 – ident: ref85/cit85 doi: 10.1007/s11432-021-3297-x – ident: ref83/cit83 doi: 10.1021/acs.nanolett.1c02056 – ident: ref121/cit121 doi: 10.1038/s41467-019-14130-0 – ident: ref202/cit202 doi: 10.1021/acs.nanolett.1c02369 – ident: ref257/cit257 doi: 10.1103/PhysRevLett.126.175502 – ident: ref196/cit196 doi: 10.1103/PhysRevB.69.045403 – ident: ref238/cit238 doi: 10.1103/PhysRevB.86.041402 – ident: ref328/cit328 doi: 10.1103/PhysRevA.61.063418 – ident: ref141/cit141 doi: 10.1109/TRANSDUCERS.2015.7181193 – ident: ref35/cit35 doi: 10.1002/adma.200401959 – ident: ref222/cit222 doi: 10.1103/PhysRevApplied.11.024024 – ident: ref307/cit307 doi: 10.1038/nature23905 – ident: ref132/cit132 doi: 10.1063/1.4934708 – ident: ref243/cit243 doi: 10.1063/1.3627178 – ident: ref311/cit311 doi: 10.1016/j.mattod.2015.10.002 – ident: ref131/cit131 doi: 10.1109/MEMSYS.2016.7421557 – ident: ref27/cit27 doi: 10.1038/nnano.2010.151 – ident: ref241/cit241 doi: 10.1038/nphys2665 – ident: ref138/cit138 doi: 10.1080/21663831.2013.824516 – ident: ref74/cit74 doi: 10.1103/PhysRevLett.99.085501 – ident: ref320/cit320 doi: 10.1103/PhysRevLett.87.096801 – ident: ref350/cit350 doi: 10.1103/PhysRevLett.123.083901 – ident: ref154/cit154 doi: 10.1021/acs.nanolett.7b01845 – ident: ref158/cit158 doi: 10.1063/5.0024583 – ident: ref19/cit19 doi: 10.1039/C4NR04829F – ident: ref159/cit159 doi: 10.1021/nl101292b – ident: ref7/cit7 doi: 10.1038/386474a0 – ident: ref80/cit80 doi: 10.1038/s41467-018-03097-z – ident: ref184/cit184 doi: 10.1038/32373 |
SSID | ssj0057876 |
Score | 2.6538565 |
SecondaryResourceType | review_article |
Snippet | The quest for realizing and manipulating ever smaller man-made movable structures and dynamical machines has spurred tremendous endeavors, led to important... The quest for realizing and manipulating ever smaller man-made movable structures and dynamical machines has spurred tremendous endeavors, led to important... |
SourceID | pubmedcentral proquest crossref acs |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 15545 |
SubjectTerms | Review |
Title | Nanomechanical Resonators: Toward Atomic Scale |
URI | http://dx.doi.org/10.1021/acsnano.2c01673 https://www.proquest.com/docview/2709737606 https://pubmed.ncbi.nlm.nih.gov/PMC9620412 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gXODAGzFeKhIHLi1t2rQpt2limpDgsk3arUqzRCAgRbS78Oux2-5RpgnOeUiundhfbX8h5EaoWAdCKBvMAQCKFNxOtWI2hBqhnvB04nrYKPz0HPZHweOYjRdk0b8z-NS7EzI3wmQOlVgx72-SLRryCHFWpzuYXbpod2GVQAaADFHEnMVnZQN0QzJvuqFFbNmsjFxyNb29qkgrLxkKscLkzZkWqSO_V_kb_5Zin-zWAafVqSzkgGwoc0h2lmgIj4gDV2z2obAHGFVm4S99g2A8v7eGZVmt1Smwe9kawLA6JqPew7Dbt-t3FGwRRLSwI0onjGlO8X1GgCBpmHIeK-kKQEfaD3TEmasAB3EJ8Z-rwlhSxZEITfpUs9A_IS2TGXVKrNhNmfZkoCc-9myFsY5xF864qz0lvTZoX-ZJfQ7ypExxUy-pxU9q8dvEmX39RNZc5Pgkxvv6BbfzBZ8VDcf6qdczdSZwVDD_IYzKpnlCI-QmigCytUnU0PN8TyTbbo6Y15eSdDtG4n6Pnv1PwHOyTbFPApwcZRekVXxN1SVEL0V6VdrtD6Bp6xA |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT4NAEJ5UPagH38b6xMSDFxAWFhZvTaOpjzYxtklvBLa70ajUCL34652hUEVjoleWnTCZ2Z352JlvAU5iFWovjpWJ7oAARcbCTLTiJqYavh6JZGQ71Cjc7fmdgXc95MMG2FUvDH5EhpKy4hD_k13AOcNnaZyOLSapcN6dgwVMRRjBrVb7vtp7yf386Tky4mRMJmZkPj8EUDSSWT0afaaY9QLJLxHnchXuZt9aFJo8WZM8seT7NxrH_yizBitl-mm0pv6yDg2VbsDyF1LCTbBwwx2_KOoIJgMa9IM_JWienRv9osjWaOXUy2zc47DagsHlRb_dMctbFczYC1huBoyNONeC0W2NCEgSPxEiVNKOEStp19OB4LZCVCQkZoO28kPJlCBaNOkyzX13G-bTcap2wAjthGtHenrkUgeXH-qQpAgubO0o6TTRF2QWlasii4oDb-ZEpfpRqX4TrMoIkSyZyemCjOffJ5zOJrxOSTl-f_W4smqEC4dOQ-JUjSdZxAJiKgoQwDUhqJl7JpOot-sj6eNDQcEdEo2_w3b_puARLHb63dvo9qp3swdLjDooMPwxvg_z-dtEHWBekyeHhSt_AEgL83E |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT4NAEN5oTYwefBvrExMPXkBYWFi8NdWmvhqTtklvBJbdaFRohF789c5QikVjoleWnbCZ2Z35mJlvCTkLpa-cMJQ6mAMAFBFyPVKS6RBquCrmUWxa2Cj80HO7Q-d2xEZlUxj2wsBHZCApK5L4uKvHsSoZBqwLeJ6ESWpQgcXz9iJZwqQdQq5Wuz87f9EE3WkuGbAyBBQVoc8PAeiRRFb3SF9hZr1Ics7rdNbJsPreotjkxZjkkSE-vlE5_ndBG2StDEO11tRuNsmCTLbI6hw54TYx4OBN3yR2BqMiNfzRnyBEzy61QVFsq7Vy7GnW-jAsd8iwcz1od_XydgU9dDya6x6lMWOKU7y1EYBJ5Eac-1KYIWAmZTvK48yUgI64gKjQlK4vqORIjyZsqphr75JGkiZyj2i-GTFlCUfFNnZyub7yUQpn3FSWFFYTbEJkQbk7sqBIfFMrKJcflMtvEmOmiECUDOV4Ucbr7xPOqwnjKTnH76-ezjQbwAbCrEiYyHSSBdRDxiIPgFyTeDWVVzKRgrs-kjw_FVTcPtL5W3T_bws8IcuPV53g_qZ3d0BWKDZSgBek7JA08veJPILwJo-OC2v-BDaV9fQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanomechanical+Resonators%3A+Toward+Atomic+Scale&rft.jtitle=ACS+nano&rft.au=Xu%2C+Bo&rft.au=Zhang%2C+Pengcheng&rft.au=Zhu%2C+Jiankai&rft.au=Liu%2C+Zuheng&rft.date=2022-10-25&rft.pub=American+Chemical+Society&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=16&rft.issue=10&rft.spage=15545&rft.epage=15585&rft_id=info:doi/10.1021%2Facsnano.2c01673&rft.externalDocID=e381370 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |