Non-Noble Plasmonic Metal-Based Photocatalysts
Solar-to-chemical energy conversion via heterogeneous photocatalysis is one of the sustainable approaches to tackle the growing environmental and energy challenges. Among various promising photocatalytic materials, plasmonic-driven photocatalysts feature prominent solar-driven surface plasmon resona...
Saved in:
Published in | Chemical reviews Vol. 122; no. 11; pp. 10484 - 10537 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
08.06.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Solar-to-chemical energy conversion via heterogeneous photocatalysis is one of the sustainable approaches to tackle the growing environmental and energy challenges. Among various promising photocatalytic materials, plasmonic-driven photocatalysts feature prominent solar-driven surface plasmon resonance (SPR). Non-noble plasmonic metals (NNPMs)-based photocatalysts have been identified as a unique alternative to noble metal-based ones due to their advantages like earth-abundance, cost-effectiveness, and large-scale application capability. This review comprehensively summarizes the most recent advances in the synthesis, characterization, and properties of NNPMs-based photocatalysts. After introducing the fundamental principles of SPR, the attributes and functionalities of NNPMs in governing surface/interfacial photocatalytic processes are presented. Next, the utilization of NNPMs-based photocatalytic materials for the removal of pollutants, water splitting, CO2 reduction, and organic transformations is discussed. The review concludes with current challenges and perspectives in advancing the NNPMs-based photocatalysts, which are timely and important to plasmon-based photocatalysis, a truly interdisciplinary field across materials science, chemistry, and physics. |
---|---|
AbstractList | Solar-to-chemical energy conversion via heterogeneous photocatalysis is one of the sustainable approaches to tackle the growing environmental and energy challenges. Among various promising photocatalytic materials, plasmonic-driven photocatalysts feature prominent solar-driven surface plasmon resonance (SPR). Non-noble plasmonic metals (NNPMs)-based photocatalysts have been identified as a unique alternative to noble metal-based ones due to their advantages like earth-abundance, cost-effectiveness, and large-scale application capability. This review comprehensively summarizes the most recent advances in the synthesis, characterization, and properties of NNPMs-based photocatalysts. After introducing the fundamental principles of SPR, the attributes and functionalities of NNPMs in governing surface/interfacial photocatalytic processes are presented. Next, the utilization of NNPMs-based photocatalytic materials for the removal of pollutants, water splitting, CO2 reduction, and organic transformations is discussed. The review concludes with current challenges and perspectives in advancing the NNPMs-based photocatalysts, which are timely and important to plasmon-based photocatalysis, a truly interdisciplinary field across materials science, chemistry, and physics. Solar-to-chemical energy conversion via heterogeneous photocatalysis is one of the sustainable approaches to tackle the growing environmental and energy challenges. Among various promising photocatalytic materials, plasmonic-driven photocatalysts feature prominent solar-driven surface plasmon resonance (SPR). Non-noble plasmonic metals (NNPMs)-based photocatalysts have been identified as a unique alternative to noble metal-based ones due to their advantages like earth-abundance, cost-effectiveness, and large-scale application capability. This review comprehensively summarizes the most recent advances in the synthesis, characterization, and properties of NNPMs-based photocatalysts. After introducing the fundamental principles of SPR, the attributes and functionalities of NNPMs in governing surface/interfacial photocatalytic processes are presented. Next, the utilization of NNPMs-based photocatalytic materials for the removal of pollutants, water splitting, CO₂ reduction, and organic transformations is discussed. The review concludes with current challenges and perspectives in advancing the NNPMs-based photocatalysts, which are timely and important to plasmon-based photocatalysis, a truly interdisciplinary field across materials science, chemistry, and physics. Solar-to-chemical energy conversion via heterogeneous photocatalysis is one of the sustainable approaches to tackle the growing environmental and energy challenges. Among various promising photocatalytic materials, plasmonic-driven photocatalysts feature prominent solar-driven surface plasmon resonance (SPR). Non-noble plasmonic metals (NNPMs)-based photocatalysts have been identified as a unique alternative to noble metal-based ones due to their advantages like earth-abundance, cost-effectiveness, and large-scale application capability. This review comprehensively summarizes the most recent advances in the synthesis, characterization, and properties of NNPMs-based photocatalysts. After introducing the fundamental principles of SPR, the attributes and functionalities of NNPMs in governing surface/interfacial photocatalytic processes are presented. Next, the utilization of NNPMs-based photocatalytic materials for the removal of pollutants, water splitting, CO2 reduction, and organic transformations is discussed. The review concludes with current challenges and perspectives in advancing the NNPMs-based photocatalysts, which are timely and important to plasmon-based photocatalysis, a truly interdisciplinary field across materials science, chemistry, and physics.Solar-to-chemical energy conversion via heterogeneous photocatalysis is one of the sustainable approaches to tackle the growing environmental and energy challenges. Among various promising photocatalytic materials, plasmonic-driven photocatalysts feature prominent solar-driven surface plasmon resonance (SPR). Non-noble plasmonic metals (NNPMs)-based photocatalysts have been identified as a unique alternative to noble metal-based ones due to their advantages like earth-abundance, cost-effectiveness, and large-scale application capability. This review comprehensively summarizes the most recent advances in the synthesis, characterization, and properties of NNPMs-based photocatalysts. After introducing the fundamental principles of SPR, the attributes and functionalities of NNPMs in governing surface/interfacial photocatalytic processes are presented. Next, the utilization of NNPMs-based photocatalytic materials for the removal of pollutants, water splitting, CO2 reduction, and organic transformations is discussed. The review concludes with current challenges and perspectives in advancing the NNPMs-based photocatalysts, which are timely and important to plasmon-based photocatalysis, a truly interdisciplinary field across materials science, chemistry, and physics. Solar-to-chemical energy conversion via heterogeneous photocatalysis is one of the sustainable approaches to tackle the growing environmental and energy challenges. Among various promising photocatalytic materials, plasmonic-driven photocatalysts feature prominent solar-driven surface plasmon resonance (SPR). Non-noble plasmonic metals (NNPMs)-based photocatalysts have been identified as a unique alternative to noble metal-based ones due to their advantages like earth-abundance, cost-effectiveness, and large-scale application capability. This review comprehensively summarizes the most recent advances in the synthesis, characterization, and properties of NNPMs-based photocatalysts. After introducing the fundamental principles of SPR, the attributes and functionalities of NNPMs in governing surface/interfacial photocatalytic processes are presented. Next, the utilization of NNPMs-based photocatalytic materials for the removal of pollutants, water splitting, CO reduction, and organic transformations is discussed. The review concludes with current challenges and perspectives in advancing the NNPMs-based photocatalysts, which are timely and important to plasmon-based photocatalysis, a truly interdisciplinary field across materials science, chemistry, and physics. |
Author | Liu, Gang Yu, Jiaguo Jaroniec, Mietek Sayed, Mahmoud |
AuthorAffiliation | CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry National Center for Nanoscience and Technology Wuhan University of Technology Department of Chemistry and Biochemistry State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Chemistry Department, Faculty of Science College of Chemistry and Chemical Engineering Jishou University |
AuthorAffiliation_xml | – name: Jishou University – name: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing – name: Chemistry Department, Faculty of Science – name: CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience – name: Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry – name: College of Chemistry and Chemical Engineering – name: National Center for Nanoscience and Technology – name: Wuhan University of Technology – name: Department of Chemistry and Biochemistry |
Author_xml | – sequence: 1 givenname: Mahmoud surname: Sayed fullname: Sayed, Mahmoud organization: Wuhan University of Technology – sequence: 2 givenname: Jiaguo orcidid: 0000-0002-0612-8633 surname: Yu fullname: Yu, Jiaguo email: yujiaguo93@cug.edu.cn organization: Jishou University – sequence: 3 givenname: Gang surname: Liu fullname: Liu, Gang email: liug@nanoctr.cn organization: National Center for Nanoscience and Technology – sequence: 4 givenname: Mietek orcidid: 0000-0002-1178-5611 surname: Jaroniec fullname: Jaroniec, Mietek email: jaroniec@kent.edu organization: Department of Chemistry and Biochemistry |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35438967$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctOwzAQRS1URB_wBUioEhs2Sf2IHWcJFS-plC5gbTmOo6ZK4mK7SP17HDVlwaIsbGs8545m5o7BoDWtBuAawRhBjGZSuVitdWP1d4wUhElKzsAIUQwjxjM4ACMIYRZhxugQjJ3bhJBSnF6AIaEJ4RlLRyBemjZamrzW01UtXWPaSk3ftJd19CCdLqartfFGyfCxd95dgvNS1k5f9e8EfD49fsxfosX78-v8fhHJJMU-SrjGBeRlXkhcKhluyrlSLEEwz6kqFWFFhksuSwKLDOUkKSginCgmES0LSCbg7lB3a83XTjsvmsopXdey1WbnBE4Rx2FgmPyPMop5dzr09g-6MTvbhkEClVKWdQ0G6qandnmjC7G1VSPtXhyXFoDsAChrnLO6FKry0lem9VZWtUBQdAaJYJDoDRK9QUFL_miP5U-rZgdVl_zt-ZTiB-OYpdg |
CitedBy_id | crossref_primary_10_1039_D4NR05471G crossref_primary_10_1016_j_gee_2023_12_004 crossref_primary_10_1016_j_apsusc_2023_157760 crossref_primary_10_1021_acsanm_3c03050 crossref_primary_10_1002_ange_202213927 crossref_primary_10_1016_j_apsusc_2022_156036 crossref_primary_10_1021_acs_iecr_3c02738 crossref_primary_10_1021_acsami_3c03156 crossref_primary_10_1039_D2CC02658A crossref_primary_10_1016_j_ccr_2024_216113 crossref_primary_10_1021_jacs_3c04927 crossref_primary_10_1002_ejoc_202400001 crossref_primary_10_1021_acsaem_2c00689 crossref_primary_10_1016_j_cej_2022_137803 crossref_primary_10_1016_j_inoche_2022_110035 crossref_primary_10_1016_j_matlet_2023_134049 crossref_primary_10_1016_j_colsurfa_2024_134900 crossref_primary_10_1039_D4SC05190D crossref_primary_10_1021_acs_chemrev_2c00460 crossref_primary_10_1016_j_jmst_2023_11_081 crossref_primary_10_1016_j_ijhydene_2023_03_152 crossref_primary_10_1016_j_cej_2023_146908 crossref_primary_10_26599_POM_2023_9140020 crossref_primary_10_1016_j_jece_2024_114986 crossref_primary_10_1039_D3CY01097J crossref_primary_10_1021_acs_inorgchem_4c03410 crossref_primary_10_1016_j_mattod_2023_06_022 crossref_primary_10_1002_adsu_202200397 crossref_primary_10_1002_smll_202401335 crossref_primary_10_1002_cssc_202301539 crossref_primary_10_1007_s44251_023_00026_1 crossref_primary_10_1002_solr_202300669 crossref_primary_10_1016_j_nantod_2023_101885 crossref_primary_10_1016_j_solmat_2022_111970 crossref_primary_10_1002_advs_202302568 crossref_primary_10_1021_acscatal_4c04644 crossref_primary_10_1016_j_apcatb_2024_124983 crossref_primary_10_2139_ssrn_4167595 crossref_primary_10_1016_j_coche_2024_101000 crossref_primary_10_1021_acsnano_4c17316 crossref_primary_10_1088_1361_6528_ad26d8 crossref_primary_10_1016_j_cej_2024_156091 crossref_primary_10_1039_D5SC00330J crossref_primary_10_3390_coatings13010028 crossref_primary_10_1002_adfm_202424527 crossref_primary_10_1016_j_cej_2023_141557 crossref_primary_10_1002_adma_202406460 crossref_primary_10_1016_j_carbpol_2024_122454 crossref_primary_10_1002_er_8254 crossref_primary_10_1016_j_jmst_2023_02_044 crossref_primary_10_1002_adsu_202200394 crossref_primary_10_1007_s40843_023_2724_0 crossref_primary_10_1016_j_apsusc_2022_154174 crossref_primary_10_1016_j_cej_2024_150536 crossref_primary_10_1016_j_optlastec_2025_112844 crossref_primary_10_1007_s11468_023_02095_2 crossref_primary_10_1016_j_jmst_2023_03_039 crossref_primary_10_3390_photonics11020183 crossref_primary_10_1002_solr_202200759 crossref_primary_10_1016_j_apcatb_2023_122461 crossref_primary_10_1021_acscatal_4c02285 crossref_primary_10_1016_j_inoche_2023_110877 crossref_primary_10_3390_molecules30020269 crossref_primary_10_1016_j_matchemphys_2023_127925 crossref_primary_10_1016_j_chempr_2023_11_009 crossref_primary_10_1007_s12274_022_4700_0 crossref_primary_10_1007_s12633_025_03223_9 crossref_primary_10_1021_acsomega_4c08896 crossref_primary_10_3390_molecules28196831 crossref_primary_10_1039_D4QI03103B crossref_primary_10_1016_j_jmst_2024_11_056 crossref_primary_10_1021_acs_jpclett_3c02742 crossref_primary_10_1016_j_ccr_2024_216331 crossref_primary_10_1016_j_jiec_2024_08_037 crossref_primary_10_3390_photonics11020162 crossref_primary_10_1016_j_apcatb_2024_124703 crossref_primary_10_1002_solr_202200657 crossref_primary_10_1002_ejic_202200420 crossref_primary_10_2139_ssrn_4181422 crossref_primary_10_1021_acsami_3c17101 crossref_primary_10_1016_j_cis_2024_103298 crossref_primary_10_1016_j_jcis_2025_02_215 crossref_primary_10_1002_smll_202310310 crossref_primary_10_1002_adsu_202200189 crossref_primary_10_1007_s12633_024_02867_3 crossref_primary_10_1063_5_0109806 crossref_primary_10_1016_j_jmst_2024_12_088 crossref_primary_10_1016_j_ijbiomac_2024_135490 crossref_primary_10_1016_j_inoche_2022_110228 crossref_primary_10_1039_D2CC06300J crossref_primary_10_1016_j_cej_2023_146516 crossref_primary_10_1007_s10854_024_14117_8 crossref_primary_10_1016_j_fuel_2024_133746 crossref_primary_10_1039_D2NR02551E crossref_primary_10_1021_acsanm_5c00808 crossref_primary_10_1007_s10853_024_09351_8 crossref_primary_10_1016_j_cej_2024_155514 crossref_primary_10_1016_j_colsurfa_2022_130707 crossref_primary_10_1039_D4TA07768G crossref_primary_10_1007_s40843_023_2755_2 crossref_primary_10_1016_j_scitotenv_2024_172028 crossref_primary_10_1021_acs_inorgchem_4c02376 crossref_primary_10_2139_ssrn_4194488 crossref_primary_10_1039_D4TA06207H crossref_primary_10_1039_D2NR02671F crossref_primary_10_1039_D3CP01118F crossref_primary_10_1149_1945_7111_ad39aa crossref_primary_10_1002_cptc_202200240 crossref_primary_10_1039_D3NR05385G crossref_primary_10_1016_j_saa_2024_124817 crossref_primary_10_1016_j_colsurfa_2023_132945 crossref_primary_10_3788_PI_2023_R08 crossref_primary_10_1016_j_seppur_2025_132195 crossref_primary_10_1080_09593330_2023_2238131 crossref_primary_10_1016_j_jcis_2024_04_183 crossref_primary_10_1016_j_jssc_2022_123514 crossref_primary_10_1039_D3DT01443F crossref_primary_10_1039_D2GC01684B crossref_primary_10_1002_ange_202304559 crossref_primary_10_1016_j_ijhydene_2023_04_259 crossref_primary_10_1038_s43246_024_00510_7 crossref_primary_10_1021_acsaem_2c01837 crossref_primary_10_3390_catal15020105 crossref_primary_10_1016_j_seppur_2023_123276 crossref_primary_10_1016_j_snb_2024_136675 crossref_primary_10_1002_smll_202308032 crossref_primary_10_1007_s11814_024_00087_4 crossref_primary_10_1016_j_cej_2023_144424 crossref_primary_10_1007_s11356_023_30183_7 crossref_primary_10_1016_j_mssp_2023_107392 crossref_primary_10_1038_s41467_024_45516_4 crossref_primary_10_1021_acsnano_2c12314 crossref_primary_10_1039_D3NA00835E crossref_primary_10_26599_NR_2025_94907157 crossref_primary_10_1021_acs_langmuir_4c02912 crossref_primary_10_1016_j_jallcom_2024_173735 crossref_primary_10_1038_s41598_024_56059_5 crossref_primary_10_1016_j_ijhydene_2023_03_449 crossref_primary_10_1016_j_watres_2022_119134 crossref_primary_10_1007_s12274_023_6357_8 crossref_primary_10_1016_j_apsusc_2023_157564 crossref_primary_10_1021_acs_jpcc_3c08508 crossref_primary_10_1016_j_molstruc_2024_139406 crossref_primary_10_1002_chem_202303401 crossref_primary_10_1002_smll_202407863 crossref_primary_10_1021_acs_jpcc_2c05394 crossref_primary_10_1021_acs_inorgchem_2c01909 crossref_primary_10_1016_j_apcatb_2022_122349 crossref_primary_10_1016_j_cej_2024_149027 crossref_primary_10_1016_j_jmst_2023_04_007 crossref_primary_10_1016_j_colsurfa_2022_129881 crossref_primary_10_1016_j_apcata_2022_118920 crossref_primary_10_1016_j_jcis_2023_01_116 crossref_primary_10_1016_j_jcis_2024_06_065 crossref_primary_10_1007_s42114_023_00787_1 crossref_primary_10_1039_D4JA00261J crossref_primary_10_1016_j_cej_2024_154979 crossref_primary_10_1039_D5CC00019J crossref_primary_10_1016_j_jphotochem_2024_115606 crossref_primary_10_1016_j_jece_2024_112150 crossref_primary_10_1016_j_cej_2023_144511 crossref_primary_10_1002_adfm_202503186 crossref_primary_10_1016_S1872_2067_23_64462_6 crossref_primary_10_1016_j_jiec_2023_09_042 crossref_primary_10_1002_solr_202300588 crossref_primary_10_1093_nsr_nwae189 crossref_primary_10_1016_j_jcis_2023_02_137 crossref_primary_10_1002_adom_202301180 crossref_primary_10_1016_j_jphotochem_2023_114553 crossref_primary_10_1016_j_optmat_2023_114596 crossref_primary_10_1039_D3QI00472D crossref_primary_10_1039_D4NH00197D crossref_primary_10_1016_j_coche_2024_101042 crossref_primary_10_1016_j_rechem_2022_100664 crossref_primary_10_1016_j_ijbiomac_2024_134430 crossref_primary_10_1002_adfm_202214470 crossref_primary_10_1039_D3CS00213F crossref_primary_10_1002_aic_18686 crossref_primary_10_1039_D3NJ00622K crossref_primary_10_1002_smll_202304781 crossref_primary_10_1016_j_ces_2024_120012 crossref_primary_10_1016_j_jmst_2023_05_009 crossref_primary_10_1016_j_jece_2023_109567 crossref_primary_10_1016_j_susmat_2024_e01142 crossref_primary_10_3866_PKU_WHXB202310013 crossref_primary_10_1039_D3QI00484H crossref_primary_10_1063_5_0202991 crossref_primary_10_1002_ange_202411871 crossref_primary_10_1016_j_apcatb_2024_124167 crossref_primary_10_1002_adfm_202307903 crossref_primary_10_1016_j_mcat_2024_114166 crossref_primary_10_1016_j_trac_2024_117890 crossref_primary_10_1016_j_apcatb_2022_122304 crossref_primary_10_1016_j_mseb_2023_116406 crossref_primary_10_1016_j_apcatb_2022_122301 crossref_primary_10_1016_j_jclepro_2022_134673 crossref_primary_10_1016_j_surfin_2023_103199 crossref_primary_10_1016_j_pecs_2023_101074 crossref_primary_10_1016_j_scp_2023_101077 crossref_primary_10_1016_j_jenvman_2022_116236 crossref_primary_10_1016_j_jmst_2023_06_052 crossref_primary_10_1039_D2CP05150H crossref_primary_10_1039_D3NJ02559D crossref_primary_10_1016_j_seppur_2024_129587 crossref_primary_10_1016_j_jcis_2022_07_102 crossref_primary_10_1016_j_jhazmat_2024_136951 crossref_primary_10_1016_j_jece_2024_114181 crossref_primary_10_1515_ntrev_2024_0104 crossref_primary_10_1016_j_apcatb_2024_124155 crossref_primary_10_1002_cssc_202400513 crossref_primary_10_1016_j_jcis_2022_08_115 crossref_primary_10_1080_01496395_2023_2252585 crossref_primary_10_1002_smll_202312020 crossref_primary_10_1016_j_materresbull_2023_112553 crossref_primary_10_1021_acs_langmuir_4c00210 crossref_primary_10_1016_j_aca_2023_341472 crossref_primary_10_1021_acs_inorgchem_3c01220 crossref_primary_10_1063_5_0134993 crossref_primary_10_1007_s10854_023_10050_4 crossref_primary_10_1016_j_ijhydene_2022_12_330 crossref_primary_10_1016_j_apcata_2023_119421 crossref_primary_10_1016_j_jallcom_2023_170312 crossref_primary_10_1016_j_mtchem_2023_101633 crossref_primary_10_1002_admi_202201400 crossref_primary_10_1016_j_jcis_2022_08_001 crossref_primary_10_1021_acs_chemrev_3c00459 crossref_primary_10_1039_D4CS01005A crossref_primary_10_1515_revic_2024_0107 crossref_primary_10_1021_acsanm_3c02534 crossref_primary_10_1021_acs_chemrev_4c00165 crossref_primary_10_1002_cptc_202300049 crossref_primary_10_1021_acs_jpcc_4c06136 crossref_primary_10_1002_adma_202207765 crossref_primary_10_1007_s10853_023_08524_1 crossref_primary_10_1016_j_mattod_2024_12_019 crossref_primary_10_1021_acs_cgd_4c01056 crossref_primary_10_1016_j_inoche_2024_113456 crossref_primary_10_1016_j_apsusc_2022_154973 crossref_primary_10_1016_j_seppur_2022_123058 crossref_primary_10_1016_j_jphotochem_2022_114219 crossref_primary_10_1021_acsnano_2c08191 crossref_primary_10_1016_j_jmat_2024_100989 crossref_primary_10_1016_S1872_2067_23_64444_4 crossref_primary_10_1039_D3RE00226H crossref_primary_10_1002_solr_202201054 crossref_primary_10_1021_acs_chemmater_4c01090 crossref_primary_10_1016_j_jallcom_2023_172312 crossref_primary_10_1007_s40820_024_01555_6 crossref_primary_10_1007_s12598_022_02183_y crossref_primary_10_1088_2053_1583_acc414 crossref_primary_10_1016_j_seppur_2023_123229 crossref_primary_10_1039_D2TA06752H crossref_primary_10_1021_acs_jpclett_2c01332 crossref_primary_10_1016_S1872_2067_23_64479_1 crossref_primary_10_1021_acs_jpcc_3c01267 crossref_primary_10_1002_adma_202301307 crossref_primary_10_1021_acs_jpcc_3c03686 crossref_primary_10_1021_acs_inorgchem_3c04566 crossref_primary_10_1016_j_seppur_2024_129785 crossref_primary_10_1039_D3DT03809B crossref_primary_10_1002_adfm_202419802 crossref_primary_10_1039_D2DT02900F crossref_primary_10_1002_smll_202205097 crossref_primary_10_3390_photonics11050444 crossref_primary_10_1002_adpr_202200065 crossref_primary_10_1002_anie_202408020 crossref_primary_10_1016_j_surfin_2025_105846 crossref_primary_10_1002_anie_202411871 crossref_primary_10_1016_j_ccr_2024_215803 crossref_primary_10_1016_j_surfin_2024_104434 crossref_primary_10_1016_j_jallcom_2023_170107 crossref_primary_10_1016_S1872_2067_23_64466_3 crossref_primary_10_1021_acs_langmuir_3c00955 crossref_primary_10_1038_s41467_023_39791_w crossref_primary_10_1002_smll_202411624 crossref_primary_10_1021_acs_chemmater_4c03170 crossref_primary_10_3390_en17205043 crossref_primary_10_1016_j_mtener_2022_101164 crossref_primary_10_1021_acs_langmuir_2c02334 crossref_primary_10_1021_acs_inorgchem_3c01037 crossref_primary_10_1016_j_ccr_2023_215612 crossref_primary_10_1021_acs_energyfuels_4c01608 crossref_primary_10_1002_ange_202408020 crossref_primary_10_1039_D3TA06724F crossref_primary_10_1007_s10562_024_04670_6 crossref_primary_10_1002_cnma_202200408 crossref_primary_10_1016_j_nanoms_2024_10_009 crossref_primary_10_1016_j_jece_2023_109996 crossref_primary_10_1002_admi_202400273 crossref_primary_10_1016_j_cej_2022_140123 crossref_primary_10_1021_acsanm_2c03031 crossref_primary_10_1016_j_cej_2023_145430 crossref_primary_10_1021_acsaem_3c00360 crossref_primary_10_1039_D5GC00299K crossref_primary_10_1016_j_colsurfa_2023_131077 crossref_primary_10_1016_j_jssc_2023_124100 crossref_primary_10_1016_j_cej_2023_143924 crossref_primary_10_1016_j_jallcom_2023_170605 crossref_primary_10_1021_acsami_3c12827 crossref_primary_10_1021_acsnano_4c06954 crossref_primary_10_1021_acssuschemeng_3c06046 crossref_primary_10_1016_j_jmst_2023_07_019 crossref_primary_10_1016_j_ijhydene_2024_03_271 crossref_primary_10_1039_D4EN00181H crossref_primary_10_1002_cctc_202301295 crossref_primary_10_1002_tcr_202300334 crossref_primary_10_1016_j_apcatb_2023_123196 crossref_primary_10_1016_j_apsusc_2022_156305 crossref_primary_10_1002_adma_202313209 crossref_primary_10_1016_j_jallcom_2024_174493 crossref_primary_10_1021_acs_jpcc_2c09039 crossref_primary_10_1016_j_ceramint_2023_11_181 crossref_primary_10_1007_s42247_022_00425_4 crossref_primary_10_1016_j_optmat_2022_112695 crossref_primary_10_1016_j_jece_2024_111990 crossref_primary_10_1021_acscatal_3c02550 crossref_primary_10_1039_D2TA05181H crossref_primary_10_1039_D3DT01737K crossref_primary_10_1039_D2TC00922F crossref_primary_10_1016_j_nanoen_2023_108684 crossref_primary_10_1016_j_jes_2023_02_051 crossref_primary_10_1016_j_matt_2022_09_009 crossref_primary_10_1039_D4DT01251H crossref_primary_10_1016_j_apcatb_2022_121945 crossref_primary_10_1016_j_mtphys_2024_101352 crossref_primary_10_1016_j_jmst_2024_02_050 crossref_primary_10_1088_1361_6528_acda3c crossref_primary_10_1021_acsomega_3c08939 crossref_primary_10_1016_j_apmt_2023_101811 crossref_primary_10_1016_j_renene_2022_08_014 crossref_primary_10_1016_j_jcis_2022_11_042 crossref_primary_10_1002_adsu_202300098 crossref_primary_10_1063_5_0192366 crossref_primary_10_1039_D3CP01911J crossref_primary_10_1016_j_ijhydene_2022_07_124 crossref_primary_10_1039_D3TC01246H crossref_primary_10_1002_anie_202304559 crossref_primary_10_1016_j_apcatb_2024_124452 crossref_primary_10_1016_j_jpcs_2023_111672 crossref_primary_10_1016_j_apcatb_2023_123069 crossref_primary_10_3390_catal12101210 crossref_primary_10_1039_D4EN00715H crossref_primary_10_3390_s23084065 crossref_primary_10_1021_acsanm_4c00598 crossref_primary_10_1016_j_jallcom_2022_167078 crossref_primary_10_1016_j_ijhydene_2022_09_245 crossref_primary_10_1039_D4NR01013B crossref_primary_10_1080_08940886_2024_2312048 crossref_primary_10_1016_j_optlastec_2025_112564 crossref_primary_10_1039_D4MH00515E crossref_primary_10_1016_j_jclepro_2023_136017 crossref_primary_10_1021_acscatal_4c00024 crossref_primary_10_1021_acs_jpcc_2c03411 crossref_primary_10_1039_D4TA03912B crossref_primary_10_1002_adfm_202312056 crossref_primary_10_1002_adsu_202200381 crossref_primary_10_1016_j_apmt_2022_101637 crossref_primary_10_1016_j_seppur_2025_131514 crossref_primary_10_1016_j_cej_2024_156118 crossref_primary_10_1016_j_cej_2023_145173 crossref_primary_10_1016_j_ijhydene_2023_01_355 crossref_primary_10_1016_j_ijhydene_2024_04_161 crossref_primary_10_1038_s41467_024_49862_1 crossref_primary_10_1002_ece2_16 crossref_primary_10_1039_D4TC05056H crossref_primary_10_1016_j_cej_2023_148313 crossref_primary_10_1039_D3TC02776G crossref_primary_10_1007_s11705_022_2233_4 crossref_primary_10_1016_j_apcatb_2023_123491 crossref_primary_10_1016_j_ijhydene_2023_01_120 crossref_primary_10_1002_cctc_202301595 crossref_primary_10_1016_j_physb_2023_414789 crossref_primary_10_1021_acs_jpclett_2c02125 crossref_primary_10_1016_j_mcat_2025_114823 crossref_primary_10_3866_PKU_WHXB202405016 crossref_primary_10_1039_D4DT00628C crossref_primary_10_1002_adsu_202200344 crossref_primary_10_1039_D3NR02263C crossref_primary_10_1016_j_jece_2022_109056 crossref_primary_10_1016_j_apsusc_2024_160205 crossref_primary_10_1007_s40843_023_2760_1 crossref_primary_10_1016_j_apcatb_2024_124656 crossref_primary_10_1002_anie_202213927 crossref_primary_10_1038_s41598_022_20689_4 crossref_primary_10_1016_j_nanoen_2023_108666 crossref_primary_10_34133_research_0347 crossref_primary_10_1021_acsestengg_3c00249 crossref_primary_10_1021_acsomega_4c05327 |
Cites_doi | 10.1039/C9CS00102F 10.1063/1.1636817 10.1016/j.apcatb.2018.02.042 10.1038/s41467-019-10634-x 10.1021/acssuschemeng.6b02351 10.1021/la802678y 10.1021/ja042758e 10.1038/nmat3004 10.1016/j.physrep.2017.01.003 10.1016/j.mser.2017.11.001 10.1021/nl902711n 10.1002/ange.201203585 10.1073/pnas.1609769113 10.1126/science.aac5443 10.1038/nphoton.2016.75 10.1021/acssuschemeng.6b01852 10.1002/adfm.201800136 10.1063/1.2712508 10.1039/c2cy90039d 10.1002/lpor.200900055 10.1126/science.aba9168 10.1002/adfm.201702295 10.1016/j.cej.2020.125390 10.1021/acs.chemrev.5b00482 10.1021/acs.chemrev.8b00288 10.1038/nmat1734 10.1016/j.jmmm.2005.07.022 10.1016/j.apcatb.2016.08.049 10.1021/ac2007762 10.1016/j.mattod.2013.09.003 10.1002/adma.201400203 10.1016/S1872-2067(14)60075-9 10.1021/jacs.8b00174 10.3390/ijerph7052337 10.1007/s00339-018-1830-z 10.1016/j.apcatb.2016.05.074 10.1007/s40820-017-0176-y 10.1021/acs.nanolett.6b01171 10.1021/acsami.8b03713 10.1016/j.apcatb.2012.02.035 10.1021/acs.chemrev.7b00613 10.1103/PhysRevLett.92.145702 10.1021/acs.nanolett.8b02260 10.1016/j.jcat.2018.03.009 10.1002/smll.201301174 10.1021/acs.jpcc.8b00651 10.1021/am5077364 10.1021/cs400993w 10.1021/ja211363w 10.1016/S1872-2067(17)62849-3 10.1021/acscatal.5b02643 10.1039/D0RA01111H 10.1021/nl202597n 10.1002/smll.201100640 10.1021/acssuschemeng.8b04150 10.1364/OE.17.010155 10.1016/j.apcatb.2018.03.015 10.1021/acs.chemrev.9b00226 10.1016/j.cclet.2017.09.003 10.1021/ja502541z 10.1016/j.jmat.2020.10.010 10.1016/j.apcatb.2019.01.019 10.1364/OL.34.000839 10.1039/C6NR05954F 10.1039/C8NR04103B 10.1039/C7NR01966A 10.1016/j.nanoen.2018.06.083 10.1002/adma.201400087 10.1021/acscatal.6b02089 10.1002/adma.201802981 10.1007/0-387-37825-1 10.1038/nphoton.2013.238 10.1038/s41467-017-00055-z 10.1016/j.jphotochem.2017.04.014 10.1038/440295a 10.1155/2018/3250932 10.1016/j.apcatb.2016.11.001 10.1021/acssuschemeng.8b02710 10.1021/jp0601567 10.3390/nano9010001 10.1021/jp4065505 10.1021/nl901431t 10.1063/1.1702400 10.1016/j.apsusc.2016.09.093 10.1021/jacs.6b05393 10.1021/jp5014187 10.1039/C8NH00062J 10.1038/srep15288 10.1021/nl403510u 10.1039/C4TA04461D 10.1002/adma.201704528 10.1021/la5008704 10.1002/anie.201901987 10.1039/C6EE00383D 10.1021/acsnano.6b08010 10.3390/app8010064 10.1016/j.apsusc.2018.09.091 10.1002/cctc.201700512 10.1021/acsami.5b09994 10.1016/j.renene.2021.09.050 10.1038/srep06415 10.1016/j.apenergy.2012.10.029 10.1021/nl0515753 10.1016/j.jcat.2016.10.005 10.1002/adma.201802227 10.1016/j.apcatb.2016.11.057 10.1021/acs.nanolett.5b05149 10.3390/nano10071411 10.1016/j.jcat.2017.08.007 10.1016/j.apcatb.2017.09.046 10.1039/C7TA00818J 10.1038/s41563-018-0033-5 10.1021/acs.chemrev.8b00400 10.1016/j.apsusc.2017.07.139 10.1039/C7NH00095B 10.1021/nl070648a 10.1016/j.jcis.2016.09.018 10.1021/acs.nanolett.5b03029 10.1016/j.apsusc.2015.12.238 10.1021/acscatal.9b01582 10.1021/acs.nanolett.5b00372 10.1002/cssc.201800249 10.3390/nano8121003 10.1016/j.jcou.2020.101373 10.1021/acsami.6b11413 10.1002/adom.201600428 10.1021/acssensors.5b00275 10.1021/nl080453i 10.1016/j.cej.2018.08.131 10.1016/j.apcatb.2016.04.053 10.1039/C7CP04359G 10.1038/srep06246 10.1016/j.apcatb.2017.11.079 10.1021/jp503323u 10.1016/j.apcatb.2017.01.051 10.1021/acsnano.6b04004 10.1039/C7NR05149B 10.1016/j.jcat.2017.10.004 10.1126/science.aat6967 10.1103/PhysRevLett.98.153905 10.1016/j.materresbull.2015.03.064 10.1038/s41563-019-0325-4 10.1088/1361-6463/aa73f6 10.1016/j.jcat.2017.04.025 10.1039/C8CS00542G 10.1021/jp405773p 10.1002/smll.201800762 10.1039/c3cs60043b 10.1021/acs.nanolett.6b03582 10.1021/acs.nanolett.8b00955 10.1038/nnano.2017.171x 10.1038/nchem.1032 10.1039/C7CP07762A 10.1016/j.mcat.2017.01.008 10.1016/j.jcis.2017.11.011 10.1039/C5NR01592H 10.1364/OME.1.001090 10.1021/ja2016284 10.1016/j.jpowsour.2014.12.108 10.1016/j.apcatb.2015.03.045 10.1021/nl062061m 10.1016/j.apcatb.2018.09.032 10.1021/acs.chemrev.5b00370 10.1016/j.ijhydene.2014.10.122 10.1002/anie.201309482 10.1016/S0038-1101(03)00316-2 10.1002/adfm.201804055 10.1002/adma.202000014 10.1016/j.apcatb.2017.11.076 10.1002/anie.201210277 10.1002/adfm.201504217 10.1021/ph500118y 10.1039/C3CS60265F 10.1038/nphoton.2015.142 10.1021/nl0499239 10.1016/j.cej.2017.05.171 10.1039/C6NR01295G 10.1016/j.jallcom.2018.07.297 10.1002/adem.201700781 10.1088/0957-4484/15/12/036 10.1021/jp002435e 10.1016/j.jmst.2020.02.062 10.1364/OE.27.00A197 10.1021/acsnano.8b08445 10.1039/C1CS15172J 10.1002/aenm.201701503 10.1063/1.4818263 10.1016/j.apcatb.2018.10.020 10.1016/j.apcata.2015.11.001 10.1364/OME.6.002434 10.1021/acsnano.6b01846 10.1007/s00339-018-1600-y 10.1021/ja502890c 10.1063/1.4864395 10.1063/1.323539 10.1021/acsnano.5b01541 10.1016/j.mineng.2003.08.003 10.1088/1361-6528/aa8505 10.1007/s12274-011-0103-3 10.1002/adma.201505187 10.1063/1.2358860 10.3390/catal8100426 10.1021/acs.iecr.7b02497 10.1126/science.1200488 10.1039/C6TA09169E 10.1021/ja903321z 10.1007/s12274-020-3031-2 10.1016/j.ijhydene.2017.07.144 10.1021/ph500096q 10.1088/0957-4484/26/32/322001 10.1039/C6EE02265K 10.1021/jp104366r 10.1016/j.apcatb.2017.02.080 10.1021/acs.chemrev.7b00252 10.1016/j.apcatb.2017.01.047 10.1039/C7CS00043J 10.1021/ja805655b 10.1002/adma.201802551 10.1016/j.ensm.2015.12.003 10.1021/nl0722370 10.1088/0268-1242/14/7/305 10.1002/ppsc.201600357 10.1021/acsnano.9b02924 10.1038/nmat3151 10.1021/jacs.8b11544 10.1016/j.mattod.2018.04.008 10.1002/andp.19003060312 10.1364/OME.7.002880 10.1021/nl202255g 10.1016/j.materresbull.2013.07.047 10.1016/j.apcatb.2018.10.019 10.1016/j.chempr.2020.06.010 10.1021/cs501038q 10.1002/adom.201500360 10.1016/j.apcatb.2017.03.024 10.1016/j.seppur.2017.11.011 10.1016/j.rser.2014.09.002 10.1039/C7QM00569E 10.1021/nl303940z 10.1016/j.apcatb.2017.07.002 10.1039/D0CP00672F 10.1039/C6CS00094K 10.1002/adma.201601694 10.1039/c3cs60176e 10.1021/jp3065882 10.1039/C8NR05322G 10.1039/C4CC02724H 10.1088/0022-3727/48/18/184007 10.1063/1.1477935 10.1016/j.trac.2015.08.013 10.1021/jp053863t 10.1016/j.apcatb.2018.11.011 10.1016/j.apcatb.2018.10.055 10.1039/C8CS00607E 10.1021/ja300901e 10.1166/jnn.2017.12658 10.1039/C4CP06045H 10.1021/acs.nanolett.6b05420 10.1002/cphc.201700563 10.1021/acs.accounts.9b00157 10.1021/ja305603t 10.1016/j.apcatb.2017.01.009 10.1016/j.ijhydene.2017.04.234 10.1021/acs.jpcc.7b01934 10.1039/C8CY01386A 10.1016/j.cej.2012.08.021 10.1016/j.materresbull.2011.01.014 10.1007/s12274-018-2028-6 10.1016/j.apcatb.2018.03.036 10.1039/C7NR09362D 10.1063/1.3533260 10.1039/C8CC04211J 10.7567/JJAP.57.07MA04 10.1021/acs.jpcc.6b01188 10.1039/c3cs60341e 10.1021/acs.bioconjchem.6b00156 10.1021/ja5044787 10.1021/acs.jpcc.5b09294 10.1016/j.jcou.2016.02.008 10.1021/nn901144d 10.1016/S0038-1101(97)00168-8 10.1016/j.jcou.2016.10.009 10.1039/c3nr02001k 10.1063/1.2760174 10.1088/1361-6463/aadbd2 10.1088/1361-6641/aa972c 10.1039/c3cp44651d 10.1063/1.1630840 10.1038/nmat3454 10.1063/1.4958804 10.1021/nl501541s 10.1038/s41467-021-25007-6 10.1016/j.gexplo.2014.08.003 10.1016/j.molcata.2016.07.030 10.1039/D0CY01162B 10.1021/am403327g 10.1016/j.jallcom.2018.04.336 10.1088/0370-1328/90/4/325 10.1002/adfm.201202061 10.1002/adfm.201304064 10.1002/slct.201802880 10.1021/ja9064415 10.1016/j.apcatb.2016.06.050 10.1016/j.apcatb.2018.06.018 10.1021/jacs.8b04711 10.1039/C6NR00926C 10.1039/C6CC06800F 10.1021/am506030p 10.1021/cm5044792 10.1039/C4CP02201G 10.1039/FT9918703881 10.1016/j.apcatb.2018.06.028 10.1016/j.nantod.2014.12.004 10.1073/pnas.1121517109 10.1039/C6PP00116E 10.1063/1.2077834 10.1021/nn5072254 10.1002/anie.201406911 10.1038/238037a0 10.1002/ppsc.201500059 10.1039/C6EN00341A 10.1021/acs.chemrev.6b00211 10.1021/ja0733639 10.1103/PhysRevB.9.5056 10.1126/science.1231631 10.1021/acsami.8b12183 10.1021/acssuschemeng.0c05595 10.1039/c2dt31528a 10.1038/ncomms10545 10.1073/pnas.2232479100 10.1021/acs.langmuir.7b01052 10.1016/j.fuproc.2018.09.014 10.1039/C4CC02553A 10.1088/0305-4608/4/11/032 10.1016/j.cej.2020.126068 10.1016/j.jallcom.2015.08.119 10.1021/acs.chemrev.7b00430 10.1016/j.nanoen.2018.02.052 10.1039/C5NJ03307A 10.1515/nanoph-2018-0073 10.1039/C3CS60425J 10.1016/j.apcatb.2013.06.009 10.1021/acsami.8b17194 10.1016/j.mattod.2014.10.039 10.1021/acsnano.6b02911 10.1039/C3CP53820F 10.1021/jacs.8b08720 10.1126/sciadv.aao4710 10.1039/C7TA06625B 10.1088/0022-3727/48/18/184001 10.1103/PhysRevB.11.3617 10.1016/j.ijhydene.2018.10.240 10.1039/c2cp23461k 10.1002/smll.201600382 10.1016/j.jhazmat.2018.08.099 10.1007/s12274-018-2178-6 10.1021/ph4000339 10.1039/C8CY00674A 10.1016/j.jpowsour.2017.03.089 10.1002/adma.201807660 10.1016/j.jcat.2005.10.019 10.1039/C5CS00838G 10.1021/jacs.8b08937 10.1002/aenm.201903802 10.1016/j.carbon.2018.11.029 10.1002/chem.201501968 10.1021/acs.nanolett.8b04950 10.1016/j.electacta.2017.10.030 10.1016/j.apcatb.2017.12.057 10.1016/j.apsusc.2016.08.002 10.1021/acscatal.9b03971 10.1021/acs.jpcc.6b08519 10.1016/j.apsusc.2016.07.028 10.1038/s41467-020-18350-7 10.1021/acsnano.8b03617 10.1016/j.apcatb.2017.07.030 10.1016/j.snb.2016.03.068 10.1039/C6NR02055K 10.1039/C6RA27594J 10.1016/j.cplett.2016.12.008 10.1016/j.apcatb.2019.02.012 10.1021/ja2089876 10.1016/j.apcatb.2017.05.040 10.1021/acsami.6b03728 10.1021/acssuschemeng.7b03032 10.1021/acs.nanolett.7b04776 10.1039/C3CP43856B 10.1016/j.jcat.2018.11.003 10.1021/acs.est.5b03758 10.1016/j.cej.2020.124558 10.1021/nl303517v 10.1007/s10853-018-2624-6 10.1002/adma.201500033 10.1063/1.2830005 10.1021/acssuschemeng.5b01416 10.1039/C5CS00769K 10.1039/C8DT04408B 10.1039/C9NR00901A 10.1039/C8CY01466C 10.1016/S1872-2067(20)63637-3 10.1021/nn405495q 10.1016/j.apsusc.2016.07.104 10.1021/jp5114812 10.1039/c3ta14493c 10.1088/1361-6463/aadca2 10.1039/C2CS35355E 10.1021/nn403954p 10.1016/j.nanoen.2016.11.026 10.1002/anie.201301669 10.1021/la702876h 10.1021/acsphotonics.8b00214 10.1039/C8EE02096E 10.1007/s12596-014-0215-8 |
ContentType | Journal Article |
Copyright | 2022 American Chemical Society Copyright American Chemical Society Jun 8, 2022 |
Copyright_xml | – notice: 2022 American Chemical Society – notice: Copyright American Chemical Society Jun 8, 2022 |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 7S9 L.6 |
DOI | 10.1021/acs.chemrev.1c00473 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Materials Research Database AGRICOLA MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-6890 |
EndPage | 10537 |
ExternalDocumentID | 35438967 10_1021_acs_chemrev_1c00473 b60185133 |
Genre | Journal Article Review |
GroupedDBID | - 02 29B 4.4 55A 5GY 5RE 5VS 6J9 7~N 85S AABXI ABFLS ABFRP ABMVS ABPPZ ABPTK ABUCX ACGFO ACGFS ACGOD ACIWK ACJ ACNCT ACS AEESW AENEX AFEFF AFXLT AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 D0L DC DU5 DZ EBS ED F5P GGK GNL IH9 IHE JG K2 LG6 P2P PQEST PQQKQ ROL RWL TAE TN5 UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XSW YZZ --- -DZ -~X .DC .K2 53G AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AGXLV CITATION CUPRZ ED~ JG~ ~02 NPM 7SR 8BQ 8FD JG9 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a472t-48e2d08fbda2fcada2588cc6410bb5cfc36d92f8af30d91b34d51383c6a15fd03 |
IEDL.DBID | ACS |
ISSN | 0009-2665 1520-6890 |
IngestDate | Fri Jul 11 02:40:51 EDT 2025 Thu Jul 10 18:23:13 EDT 2025 Mon Jun 30 10:36:58 EDT 2025 Thu Apr 03 07:03:35 EDT 2025 Tue Jul 01 03:16:22 EDT 2025 Thu Apr 24 22:51:18 EDT 2025 Fri Jun 10 11:01:41 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a472t-48e2d08fbda2fcada2588cc6410bb5cfc36d92f8af30d91b34d51383c6a15fd03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-0612-8633 0000-0002-1178-5611 |
PMID | 35438967 |
PQID | 2675696410 |
PQPubID | 45407 |
PageCount | 54 |
ParticipantIDs | proquest_miscellaneous_2718247304 proquest_miscellaneous_2652865284 proquest_journals_2675696410 pubmed_primary_35438967 crossref_citationtrail_10_1021_acs_chemrev_1c00473 crossref_primary_10_1021_acs_chemrev_1c00473 acs_journals_10_1021_acs_chemrev_1c00473 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-08 |
PublicationDateYYYYMMDD | 2022-06-08 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-08 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Easton |
PublicationTitle | Chemical reviews |
PublicationTitleAlternate | Chem. Rev |
PublicationYear | 2022 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref3/cit3 ref332/cit332 ref406/cit406 ref402/cit402 ref185/cit185 ref23/cit23 ref115/cit115 ref259/cit259 ref181/cit181 ref111/cit111 ref255/cit255 ref399/cit399 ref329/cit329 ref74/cit74 ref189/cit189 ref119/cit119 ref10/cit10 ref93/cit93 ref251/cit251 ref325/cit325 ref42/cit42 ref321/cit321 ref178/cit178 ref122/cit122 ref248/cit248 ref61/cit61 ref126/cit126 ref240/cit240 ref384/cit384 ref137/cit137 ref380/cit380 ref310/cit310 ref318/cit318 ref174/cit174 ref314/cit314 ref170/cit170 ref244/cit244 ref388/cit388 ref80/cit80 ref133/cit133 ref207/cit207 ref28/cit28 ref203/cit203 ref233/cit233 ref148/cit148 ref307/cit307 ref391/cit391 ref55/cit55 ref144/cit144 ref303/cit303 ref218/cit218 ref395/cit395 ref167/cit167 ref163/cit163 ref237/cit237 ref66/cit66 ref87/cit87 ref140/cit140 ref214/cit214 ref98/cit98 ref210/cit210 ref369/cit369 ref222/cit222 ref366/cit366 ref63/cit63 ref295/cit295 ref155/cit155 ref229/cit229 ref156/cit156 ref85/cit85 ref34/cit34 ref221/cit221 ref292/cit292 ref361/cit361 ref17/cit17 ref219/cit219 ref82/cit82 ref232/cit232 ref306/cit306 ref377/cit377 ref145/cit145 ref21/cit21 ref166/cit166 ref350/cit350 ref284/cit284 ref358/cit358 ref211/cit211 ref36/cit36 ref79/cit79 ref243/cit243 ref317/cit317 ref270/cit270 ref200/cit200 ref344/cit344 ref418/cit418 ref57/cit57 ref413/cit413 ref278/cit278 ref134/cit134 ref208/cit208 ref40/cit40 ref273/cit273 ref347/cit347 ref320/cit320 ref289/cit289 ref15/cit15 ref180/cit180 ref58/cit58 ref104/cit104 ref262/cit262 ref421/cit421 ref177/cit177 ref336/cit336 ref123/cit123 ref196/cit196 ref281/cit281 ref355/cit355 ref7/cit7 ref45/cit45 ref405/cit405 ref401/cit401 ref52/cit52 ref258/cit258 ref186/cit186 ref116/cit116 ref110/cit110 ref182/cit182 ref328/cit328 ref2/cit2 ref112/cit112 ref390/cit390 ref89/cit89 ref412/cit412 ref96/cit96 ref394/cit394 ref191/cit191 ref339/cit339 ref13/cit13 ref193/cit193 ref407/cit407 ref105/cit105 ref335/cit335 ref263/cit263 ref197/cit197 ref38/cit38 ref90/cit90 ref269/cit269 ref383/cit383 ref6/cit6 ref171/cit171 ref97/cit97 ref101/cit101 ref319/cit319 ref241/cit241 ref39/cit39 ref346/cit346 ref416/cit416 ref132/cit132 ref91/cit91 ref372/cit372 ref252/cit252 ref12/cit12 ref121/cit121 ref175/cit175 ref357/cit357 ref44/cit44 ref9/cit9 ref225/cit225 ref296/cit296 ref226/cit226 ref154/cit154 ref367/cit367 ref159/cit159 ref290/cit290 ref220/cit220 ref291/cit291 ref88/cit88 ref362/cit362 ref160/cit160 ref143/cit143 ref302/cit302 ref373/cit373 ref53/cit53 ref149/cit149 ref308/cit308 ref46/cit46 ref236/cit236 ref49/cit49 ref356/cit356 ref215/cit215 ref280/cit280 ref50/cit50 ref313/cit313 ref209/cit209 ref138/cit138 ref100/cit100 ref389/cit389 ref247/cit247 ref242/cit242 ref417/cit417 ref340/cit340 ref51/cit51 ref94/cit94 ref274/cit274 ref204/cit204 ref378/cit378 ref231/cit231 ref165/cit165 ref324/cit324 ref95/cit95 ref192/cit192 ref351/cit351 ref4/cit4 ref47/cit47 ref127/cit127 ref285/cit285 ref99/cit99 ref81/cit81 ref330/cit330 ref404/cit404 ref16/cit16 ref400/cit400 ref187/cit187 ref327/cit327 ref113/cit113 ref183/cit183 ref257/cit257 ref117/cit117 ref48/cit48 ref35/cit35 ref253/cit253 ref323/cit323 ref120/cit120 ref176/cit176 ref67/cit67 ref128/cit128 ref124/cit124 ref54/cit54 ref11/cit11 ref102/cit102 ref29/cit29 ref86/cit86 ref271/cit271 ref345/cit345 ref419/cit419 ref5/cit5 ref341/cit341 ref415/cit415 ref43/cit43 ref279/cit279 ref275/cit275 ref349/cit349 ref411/cit411 ref264/cit264 ref338/cit338 ref22/cit22 ref260/cit260 ref334/cit334 ref408/cit408 ref106/cit106 ref190/cit190 ref198/cit198 ref194/cit194 ref268/cit268 ref153/cit153 ref297/cit297 ref227/cit227 ref150/cit150 ref294/cit294 ref368/cit368 ref224/cit224 ref56/cit56 ref158/cit158 ref8/cit8 ref59/cit59 ref363/cit363 ref37/cit37 ref360/cit360 ref60/cit60 ref147/cit147 ref230/cit230 ref304/cit304 ref238/cit238 ref379/cit379 ref164/cit164 ref352/cit352 ref213/cit213 ref286/cit286 ref371/cit371 ref78/cit78 ref382/cit382 ref312/cit312 ref83/cit83 ref139/cit139 ref172/cit172 ref246/cit246 ref385/cit385 ref14/cit14 ref169/cit169 ref131/cit131 ref205/cit205 ref161/cit161 ref142/cit142 ref216/cit216 ref301/cit301 ref374/cit374 ref235/cit235 ref309/cit309 ref62/cit62 ref393/cit393 ref41/cit41 ref84/cit84 ref1/cit1 ref331/cit331 ref333/cit333 ref403/cit403 ref184/cit184 ref114/cit114 ref254/cit254 ref398/cit398 ref256/cit256 ref77/cit77 ref71/cit71 ref188/cit188 ref20/cit20 ref118/cit118 ref19/cit19 ref410/cit410 ref396/cit396 ref392/cit392 ref107/cit107 ref337/cit337 ref265/cit265 ref109/cit109 ref261/cit261 ref409/cit409 ref199/cit199 ref267/cit267 ref195/cit195 ref64/cit64 ref311/cit311 ref18/cit18 ref136/cit136 ref65/cit65 ref245/cit245 ref315/cit315 ref76/cit76 ref387/cit387 ref32/cit32 ref272/cit272 ref202/cit202 ref168/cit168 ref342/cit342 ref206/cit206 ref276/cit276 ref376/cit376 ref287/cit287 ref326/cit326 ref322/cit322 ref179/cit179 ref33/cit33 ref249/cit249 ref283/cit283 ref129/cit129 ref353/cit353 ref70/cit70 ref125/cit125 ref152/cit152 ref298/cit298 ref27/cit27 ref228/cit228 ref299/cit299 ref293/cit293 ref223/cit223 ref151/cit151 ref157/cit157 ref31/cit31 ref364/cit364 ref365/cit365 ref234/cit234 ref217/cit217 ref288/cit288 ref375/cit375 ref162/cit162 ref420/cit420 ref75/cit75 ref24/cit24 ref141/cit141 ref300/cit300 ref354/cit354 ref282/cit282 ref381/cit381 ref25/cit25 ref173/cit173 ref103/cit103 ref72/cit72 ref386/cit386 ref316/cit316 Maier S. A. (ref92/cit92) 2007 ref343/cit343 ref201/cit201 ref414/cit414 ref277/cit277 ref135/cit135 ref68/cit68 ref130/cit130 ref348/cit348 ref146/cit146 ref305/cit305 ref26/cit26 ref73/cit73 ref69/cit69 ref239/cit239 ref397/cit397 ref250/cit250 ref108/cit108 ref266/cit266 ref30/cit30 ref212/cit212 ref370/cit370 ref359/cit359 |
References_xml | – ident: ref220/cit220 doi: 10.1039/C9CS00102F – ident: ref383/cit383 doi: 10.1063/1.1636817 – ident: ref35/cit35 doi: 10.1016/j.apcatb.2018.02.042 – ident: ref314/cit314 doi: 10.1038/s41467-019-10634-x – ident: ref318/cit318 doi: 10.1021/acssuschemeng.6b02351 – ident: ref410/cit410 doi: 10.1021/la802678y – ident: ref227/cit227 doi: 10.1021/ja042758e – ident: ref96/cit96 doi: 10.1038/nmat3004 – ident: ref89/cit89 doi: 10.1016/j.physrep.2017.01.003 – ident: ref109/cit109 doi: 10.1016/j.mser.2017.11.001 – ident: ref208/cit208 doi: 10.1021/nl902711n – ident: ref396/cit396 doi: 10.1002/ange.201203585 – ident: ref165/cit165 doi: 10.1073/pnas.1609769113 – ident: ref184/cit184 doi: 10.1126/science.aac5443 – ident: ref205/cit205 doi: 10.1038/nphoton.2016.75 – ident: ref289/cit289 doi: 10.1021/acssuschemeng.6b01852 – ident: ref19/cit19 doi: 10.1002/adfm.201800136 – ident: ref146/cit146 doi: 10.1063/1.2712508 – ident: ref365/cit365 doi: 10.1039/c2cy90039d – ident: ref357/cit357 doi: 10.1002/lpor.200900055 – ident: ref375/cit375 doi: 10.1126/science.aba9168 – ident: ref418/cit418 doi: 10.1002/adfm.201702295 – ident: ref185/cit185 doi: 10.1016/j.cej.2020.125390 – ident: ref229/cit229 doi: 10.1021/acs.chemrev.5b00482 – ident: ref249/cit249 doi: 10.1021/acs.chemrev.8b00288 – ident: ref246/cit246 doi: 10.1038/nmat1734 – ident: ref374/cit374 doi: 10.1016/j.jmmm.2005.07.022 – ident: ref278/cit278 doi: 10.1016/j.apcatb.2016.08.049 – ident: ref64/cit64 doi: 10.1021/ac2007762 – ident: ref94/cit94 doi: 10.1016/j.mattod.2013.09.003 – ident: ref138/cit138 doi: 10.1002/adma.201400203 – ident: ref305/cit305 doi: 10.1016/S1872-2067(14)60075-9 – ident: ref353/cit353 doi: 10.1021/jacs.8b00174 – ident: ref408/cit408 doi: 10.3390/ijerph7052337 – ident: ref297/cit297 doi: 10.1007/s00339-018-1830-z – ident: ref32/cit32 doi: 10.1016/j.apcatb.2016.05.074 – ident: ref254/cit254 doi: 10.1007/s40820-017-0176-y – ident: ref106/cit106 doi: 10.1021/acs.nanolett.6b01171 – ident: ref328/cit328 doi: 10.1021/acsami.8b03713 – ident: ref235/cit235 doi: 10.1016/j.apcatb.2012.02.035 – ident: ref83/cit83 doi: 10.1021/acs.chemrev.7b00613 – ident: ref415/cit415 doi: 10.1103/PhysRevLett.92.145702 – ident: ref405/cit405 doi: 10.1021/acs.nanolett.8b02260 – ident: ref41/cit41 doi: 10.1016/j.jcat.2018.03.009 – ident: ref71/cit71 doi: 10.1002/smll.201301174 – ident: ref134/cit134 doi: 10.1021/acs.jpcc.8b00651 – ident: ref304/cit304 doi: 10.1021/am5077364 – ident: ref49/cit49 doi: 10.1021/cs400993w – ident: ref421/cit421 doi: 10.1021/ja211363w – ident: ref294/cit294 doi: 10.1016/S1872-2067(17)62849-3 – ident: ref194/cit194 doi: 10.1021/acscatal.5b02643 – ident: ref397/cit397 doi: 10.1039/D0RA01111H – ident: ref105/cit105 doi: 10.1021/nl202597n – ident: ref57/cit57 doi: 10.1002/smll.201100640 – ident: ref40/cit40 doi: 10.1021/acssuschemeng.8b04150 – ident: ref349/cit349 doi: 10.1364/OE.17.010155 – ident: ref298/cit298 doi: 10.1016/j.apcatb.2018.03.015 – ident: ref1/cit1 doi: 10.1021/acs.chemrev.9b00226 – ident: ref87/cit87 doi: 10.1016/j.cclet.2017.09.003 – ident: ref107/cit107 doi: 10.1021/ja502541z – ident: ref36/cit36 doi: 10.1016/j.jmat.2020.10.010 – ident: ref313/cit313 doi: 10.1016/j.apcatb.2019.01.019 – ident: ref350/cit350 doi: 10.1364/OL.34.000839 – ident: ref355/cit355 doi: 10.1039/C6NR05954F – ident: ref67/cit67 doi: 10.1039/C8NR04103B – ident: ref99/cit99 doi: 10.1039/C7NR01966A – ident: ref155/cit155 doi: 10.1016/j.nanoen.2018.06.083 – ident: ref136/cit136 doi: 10.1002/adma.201400087 – ident: ref13/cit13 doi: 10.1021/acscatal.6b02089 – ident: ref321/cit321 doi: 10.1002/adma.201802981 – volume-title: Fundamentals and Appliations of Plasmonics year: 2007 ident: ref92/cit92 doi: 10.1007/0-387-37825-1 – ident: ref137/cit137 doi: 10.1038/nphoton.2013.238 – ident: ref196/cit196 doi: 10.1038/s41467-017-00055-z – ident: ref237/cit237 doi: 10.1016/j.jphotochem.2017.04.014 – ident: ref4/cit4 doi: 10.1038/440295a – ident: ref311/cit311 doi: 10.1155/2018/3250932 – ident: ref44/cit44 doi: 10.1016/j.apcatb.2016.11.001 – ident: ref20/cit20 doi: 10.1021/acssuschemeng.8b02710 – ident: ref148/cit148 doi: 10.1021/jp0601567 – ident: ref168/cit168 doi: 10.3390/nano9010001 – ident: ref144/cit144 doi: 10.1021/jp4065505 – ident: ref60/cit60 doi: 10.1021/nl901431t – ident: ref180/cit180 doi: 10.1063/1.1702400 – ident: ref26/cit26 doi: 10.1016/j.apsusc.2016.09.093 – ident: ref380/cit380 doi: 10.1021/jacs.6b05393 – ident: ref147/cit147 doi: 10.1021/jp5014187 – ident: ref8/cit8 doi: 10.1039/C8NH00062J – ident: ref59/cit59 doi: 10.1038/srep15288 – ident: ref390/cit390 doi: 10.1021/nl403510u – ident: ref21/cit21 doi: 10.1039/C4TA04461D – ident: ref81/cit81 doi: 10.1002/adma.201704528 – ident: ref157/cit157 doi: 10.1021/la5008704 – ident: ref300/cit300 doi: 10.1002/anie.201901987 – ident: ref317/cit317 doi: 10.1039/C6EE00383D – ident: ref192/cit192 doi: 10.1021/acsnano.6b08010 – ident: ref131/cit131 doi: 10.3390/app8010064 – ident: ref206/cit206 doi: 10.1016/j.apsusc.2018.09.091 – ident: ref39/cit39 doi: 10.1002/cctc.201700512 – ident: ref171/cit171 doi: 10.1021/acsami.5b09994 – ident: ref420/cit420 doi: 10.1016/j.renene.2021.09.050 – ident: ref359/cit359 doi: 10.1038/srep06415 – ident: ref343/cit343 doi: 10.1016/j.apenergy.2012.10.029 – ident: ref158/cit158 doi: 10.1021/nl0515753 – ident: ref277/cit277 doi: 10.1016/j.jcat.2016.10.005 – ident: ref201/cit201 doi: 10.1002/adma.201802227 – ident: ref332/cit332 doi: 10.1016/j.apcatb.2016.11.057 – ident: ref122/cit122 doi: 10.1021/acs.nanolett.5b05149 – ident: ref117/cit117 doi: 10.3390/nano10071411 – ident: ref334/cit334 doi: 10.1016/j.jcat.2017.08.007 – ident: ref74/cit74 doi: 10.1016/j.apcatb.2017.09.046 – ident: ref58/cit58 doi: 10.1039/C7TA00818J – ident: ref259/cit259 doi: 10.1038/s41563-018-0033-5 – ident: ref18/cit18 doi: 10.1021/acs.chemrev.8b00400 – ident: ref284/cit284 doi: 10.1016/j.apsusc.2017.07.139 – ident: ref386/cit386 doi: 10.1039/C7NH00095B – ident: ref100/cit100 doi: 10.1021/nl070648a – ident: ref268/cit268 doi: 10.1016/j.jcis.2016.09.018 – ident: ref141/cit141 doi: 10.1021/acs.nanolett.5b03029 – ident: ref244/cit244 doi: 10.1016/j.apsusc.2015.12.238 – ident: ref393/cit393 doi: 10.1021/acscatal.9b01582 – ident: ref123/cit123 doi: 10.1021/acs.nanolett.5b00372 – ident: ref187/cit187 doi: 10.1002/cssc.201800249 – ident: ref400/cit400 doi: 10.3390/nano8121003 – ident: ref262/cit262 doi: 10.1016/j.jcou.2020.101373 – ident: ref130/cit130 doi: 10.1021/acsami.6b11413 – ident: ref200/cit200 doi: 10.1002/adom.201600428 – ident: ref63/cit63 doi: 10.1021/acssensors.5b00275 – ident: ref101/cit101 doi: 10.1021/nl080453i – ident: ref398/cit398 doi: 10.1016/j.cej.2018.08.131 – ident: ref238/cit238 doi: 10.1016/j.apcatb.2016.04.053 – ident: ref224/cit224 doi: 10.1039/C7CP04359G – ident: ref389/cit389 doi: 10.1038/srep06246 – ident: ref172/cit172 doi: 10.1016/j.apcatb.2017.11.079 – ident: ref112/cit112 doi: 10.1021/jp503323u – ident: ref232/cit232 doi: 10.1016/j.apcatb.2017.01.051 – ident: ref188/cit188 doi: 10.1021/acsnano.6b04004 – ident: ref207/cit207 doi: 10.1039/C7NR05149B – ident: ref279/cit279 doi: 10.1016/j.jcat.2017.10.004 – ident: ref211/cit211 doi: 10.1126/science.aat6967 – ident: ref149/cit149 doi: 10.1002/smll.201100640 – ident: ref413/cit413 doi: 10.1103/PhysRevLett.98.153905 – ident: ref54/cit54 doi: 10.1016/j.materresbull.2015.03.064 – ident: ref373/cit373 doi: 10.1038/s41563-019-0325-4 – ident: ref91/cit91 doi: 10.1088/1361-6463/aa73f6 – ident: ref154/cit154 doi: 10.1016/j.jcat.2017.04.025 – ident: ref219/cit219 doi: 10.1039/C8CS00542G – ident: ref98/cit98 doi: 10.1021/jp405773p – ident: ref264/cit264 doi: 10.1002/smll.201800762 – ident: ref215/cit215 doi: 10.1039/c3cs60043b – ident: ref164/cit164 doi: 10.1021/acs.nanolett.6b03582 – ident: ref52/cit52 doi: 10.1021/acs.nanolett.8b00955 – ident: ref5/cit5 doi: 10.1038/nnano.2017.171x – ident: ref387/cit387 doi: 10.1038/nchem.1032 – ident: ref79/cit79 doi: 10.1039/C7CP07762A – ident: ref247/cit247 doi: 10.1016/j.mcat.2017.01.008 – ident: ref273/cit273 doi: 10.1016/j.jcis.2017.11.011 – ident: ref163/cit163 doi: 10.1039/C5NR01592H – ident: ref351/cit351 doi: 10.1364/OME.1.001090 – ident: ref354/cit354 doi: 10.1021/ja2016284 – ident: ref394/cit394 doi: 10.1016/j.jpowsour.2014.12.108 – ident: ref29/cit29 doi: 10.1016/j.apcatb.2015.03.045 – ident: ref204/cit204 doi: 10.1021/nl062061m – ident: ref283/cit283 doi: 10.1016/j.apcatb.2018.09.032 – ident: ref10/cit10 doi: 10.1021/acs.chemrev.5b00370 – ident: ref80/cit80 doi: 10.1016/j.ijhydene.2014.10.122 – ident: ref190/cit190 doi: 10.1002/anie.201309482 – ident: ref182/cit182 doi: 10.1016/S0038-1101(03)00316-2 – ident: ref253/cit253 doi: 10.1002/adfm.201804055 – ident: ref378/cit378 doi: 10.1002/adma.202000014 – ident: ref252/cit252 doi: 10.1016/j.apcatb.2017.11.076 – ident: ref75/cit75 doi: 10.1002/anie.201210277 – ident: ref55/cit55 doi: 10.1002/adfm.201504217 – ident: ref347/cit347 doi: 10.1021/ph500118y – ident: ref82/cit82 doi: 10.1039/C3CS60265F – ident: ref198/cit198 doi: 10.1038/nphoton.2015.142 – ident: ref124/cit124 doi: 10.1021/nl0499239 – ident: ref310/cit310 doi: 10.1016/j.cej.2017.05.171 – ident: ref385/cit385 doi: 10.1039/C6NR01295G – ident: ref230/cit230 doi: 10.1016/j.jallcom.2018.07.297 – ident: ref406/cit406 doi: 10.1002/adem.201700781 – ident: ref307/cit307 doi: 10.1039/C8NH00062J – ident: ref160/cit160 doi: 10.1088/0957-4484/15/12/036 – ident: ref119/cit119 doi: 10.1021/jp002435e – ident: ref38/cit38 doi: 10.1016/j.jmst.2020.02.062 – ident: ref370/cit370 doi: 10.1364/OE.27.00A197 – ident: ref151/cit151 doi: 10.1021/acsnano.8b08445 – ident: ref45/cit45 doi: 10.1039/C1CS15172J – ident: ref319/cit319 doi: 10.1002/aenm.201701503 – ident: ref72/cit72 doi: 10.1063/1.4818263 – ident: ref256/cit256 doi: 10.1016/j.apcatb.2018.10.020 – ident: ref226/cit226 doi: 10.1016/j.apcata.2015.11.001 – ident: ref121/cit121 doi: 10.1364/OME.6.002434 – ident: ref193/cit193 doi: 10.1021/acsnano.6b01846 – ident: ref358/cit358 doi: 10.1007/s00339-018-1600-y – ident: ref327/cit327 doi: 10.1021/ja502890c – ident: ref296/cit296 doi: 10.1063/1.4864395 – ident: ref118/cit118 doi: 10.1063/1.323539 – ident: ref53/cit53 doi: 10.1021/acsnano.5b01541 – ident: ref62/cit62 doi: 10.1016/j.mineng.2003.08.003 – ident: ref128/cit128 – ident: ref132/cit132 doi: 10.1088/1361-6528/aa8505 – ident: ref272/cit272 doi: 10.1007/s12274-011-0103-3 – ident: ref129/cit129 doi: 10.1002/adma.201505187 – ident: ref371/cit371 doi: 10.1063/1.2358860 – ident: ref288/cit288 doi: 10.3390/catal8100426 – ident: ref275/cit275 doi: 10.1021/acs.iecr.7b02497 – ident: ref344/cit344 doi: 10.1126/science.1200488 – ident: ref125/cit125 doi: 10.1039/C6TA09169E – ident: ref416/cit416 doi: 10.1021/ja903321z – ident: ref174/cit174 doi: 10.1007/s12274-020-3031-2 – ident: ref176/cit176 doi: 10.1016/j.ijhydene.2017.07.144 – ident: ref341/cit341 doi: 10.1021/ph500096q – ident: ref65/cit65 doi: 10.1088/0957-4484/26/32/322001 – ident: ref150/cit150 doi: 10.1039/C6EE02265K – ident: ref161/cit161 doi: 10.1021/jp104366r – ident: ref77/cit77 doi: 10.1016/j.apcatb.2017.02.080 – ident: ref110/cit110 doi: 10.1021/acs.chemrev.7b00252 – ident: ref293/cit293 doi: 10.1016/j.apcatb.2017.01.047 – ident: ref417/cit417 doi: 10.1039/C7CS00043J – ident: ref76/cit76 doi: 10.1021/ja805655b – ident: ref126/cit126 – ident: ref404/cit404 doi: 10.1002/adma.201802551 – ident: ref14/cit14 doi: 10.1016/j.ensm.2015.12.003 – ident: ref203/cit203 doi: 10.1021/nl0722370 – ident: ref178/cit178 doi: 10.1088/0268-1242/14/7/305 – ident: ref84/cit84 doi: 10.1002/ppsc.201600357 – ident: ref166/cit166 doi: 10.1021/acsnano.9b02924 – ident: ref3/cit3 doi: 10.1038/nmat3151 – ident: ref337/cit337 – ident: ref352/cit352 doi: 10.1021/jacs.8b11544 – ident: ref6/cit6 doi: 10.1016/j.mattod.2018.04.008 – ident: ref88/cit88 doi: 10.1002/andp.19003060312 – ident: ref409/cit409 doi: 10.1364/OME.7.002880 – ident: ref338/cit338 doi: 10.1021/nl202255g – ident: ref276/cit276 doi: 10.1016/j.materresbull.2013.07.047 – ident: ref242/cit242 doi: 10.1016/j.apcatb.2018.10.019 – ident: ref46/cit46 doi: 10.1016/j.chempr.2020.06.010 – ident: ref266/cit266 doi: 10.1021/cs501038q – ident: ref186/cit186 doi: 10.1002/adom.201500360 – ident: ref290/cit290 doi: 10.1016/j.apcatb.2017.03.024 – ident: ref270/cit270 doi: 10.1016/j.seppur.2017.11.011 – ident: ref342/cit342 doi: 10.1016/j.rser.2014.09.002 – ident: ref299/cit299 doi: 10.1039/C7QM00569E – ident: ref197/cit197 doi: 10.1021/nl303940z – ident: ref17/cit17 doi: 10.1016/j.apcatb.2017.07.002 – ident: ref302/cit302 doi: 10.1039/D0CP00672F – ident: ref30/cit30 doi: 10.1039/C6CS00094K – ident: ref11/cit11 doi: 10.1002/adma.201601694 – ident: ref27/cit27 doi: 10.1039/c3cs60176e – ident: ref162/cit162 doi: 10.1021/jp3065882 – ident: ref189/cit189 doi: 10.1039/C8NR05322G – ident: ref223/cit223 doi: 10.1039/C4CC02724H – ident: ref368/cit368 doi: 10.1088/0022-3727/48/18/184007 – ident: ref103/cit103 doi: 10.1063/1.1477935 – ident: ref86/cit86 doi: 10.1016/j.trac.2015.08.013 – ident: ref120/cit120 doi: 10.1021/jp053863t – ident: ref216/cit216 doi: 10.1016/j.apcatb.2018.11.011 – ident: ref286/cit286 doi: 10.1016/j.apcatb.2018.10.055 – ident: ref221/cit221 doi: 10.1039/C8CS00607E – ident: ref159/cit159 doi: 10.1021/ja300901e – ident: ref240/cit240 doi: 10.1166/jnn.2017.12658 – ident: ref267/cit267 doi: 10.1039/C4CP06045H – ident: ref95/cit95 doi: 10.1021/acs.nanolett.6b05420 – ident: ref241/cit241 doi: 10.1002/cphc.201700563 – ident: ref369/cit369 doi: 10.1021/acs.accounts.9b00157 – ident: ref50/cit50 doi: 10.1021/ja305603t – ident: ref167/cit167 doi: 10.1016/j.apcatb.2017.01.009 – ident: ref231/cit231 doi: 10.1016/j.ijhydene.2017.04.234 – ident: ref367/cit367 doi: 10.1021/acs.jpcc.7b01934 – ident: ref292/cit292 doi: 10.1039/C8CY01386A – ident: ref225/cit225 doi: 10.1016/j.cej.2012.08.021 – ident: ref377/cit377 doi: 10.1016/j.materresbull.2011.01.014 – ident: ref366/cit366 doi: 10.1007/s12274-018-2028-6 – ident: ref42/cit42 doi: 10.1016/j.apcatb.2018.03.036 – ident: ref115/cit115 – ident: ref363/cit363 doi: 10.1039/C7NR09362D – ident: ref382/cit382 doi: 10.1063/1.3533260 – ident: ref108/cit108 doi: 10.1039/C8CC04211J – ident: ref181/cit181 doi: 10.7567/JJAP.57.07MA04 – ident: ref281/cit281 doi: 10.1021/acs.jpcc.6b01188 – ident: ref345/cit345 doi: 10.1039/c3cs60341e – ident: ref70/cit70 doi: 10.1021/acs.bioconjchem.6b00156 – ident: ref31/cit31 doi: 10.1021/ja5044787 – ident: ref111/cit111 doi: 10.1021/acs.jpcc.5b09294 – ident: ref361/cit361 doi: 10.1016/j.jcou.2016.02.008 – ident: ref212/cit212 doi: 10.1021/nn901144d – ident: ref183/cit183 doi: 10.1016/S0038-1101(97)00168-8 – ident: ref316/cit316 doi: 10.1016/j.jcou.2016.10.009 – ident: ref210/cit210 doi: 10.1039/c3nr02001k – ident: ref414/cit414 doi: 10.1063/1.2760174 – ident: ref177/cit177 doi: 10.1088/1361-6463/aadbd2 – ident: ref179/cit179 doi: 10.1088/1361-6641/aa972c – ident: ref9/cit9 doi: 10.1039/c3cs60176e – ident: ref28/cit28 doi: 10.1039/c3cp44651d – ident: ref381/cit381 doi: 10.1063/1.1630840 – ident: ref360/cit360 doi: 10.1038/nmat3454 – ident: ref362/cit362 doi: 10.1063/1.4958804 – ident: ref90/cit90 doi: 10.1021/nl501541s – ident: ref12/cit12 doi: 10.1038/s41467-021-25007-6 – ident: ref133/cit133 doi: 10.1016/j.gexplo.2014.08.003 – ident: ref306/cit306 doi: 10.1016/j.molcata.2016.07.030 – ident: ref265/cit265 doi: 10.1039/D0CY01162B – ident: ref322/cit322 doi: 10.1021/am403327g – ident: ref392/cit392 doi: 10.1016/j.jallcom.2018.04.336 – ident: ref399/cit399 doi: 10.1088/0370-1328/90/4/325 – ident: ref61/cit61 doi: 10.1002/adfm.201202061 – ident: ref303/cit303 doi: 10.1002/adfm.201304064 – ident: ref245/cit245 doi: 10.1002/slct.201802880 – ident: ref401/cit401 doi: 10.1021/ja9064415 – ident: ref239/cit239 doi: 10.1016/j.apcatb.2016.06.050 – ident: ref271/cit271 doi: 10.1016/j.apcatb.2018.06.018 – ident: ref419/cit419 doi: 10.1021/jacs.8b04711 – ident: ref407/cit407 doi: 10.1039/C6NR00926C – ident: ref66/cit66 doi: 10.1039/C6CC06800F – ident: ref295/cit295 doi: 10.1021/am506030p – ident: ref356/cit356 doi: 10.1021/cm5044792 – ident: ref236/cit236 doi: 10.1039/C4CP02201G – ident: ref395/cit395 doi: 10.1039/FT9918703881 – ident: ref331/cit331 doi: 10.1016/j.apcatb.2018.06.028 – ident: ref48/cit48 doi: 10.1016/j.nantod.2014.12.004 – ident: ref93/cit93 doi: 10.1073/pnas.1121517109 – ident: ref233/cit233 doi: 10.1039/C6PP00116E – ident: ref116/cit116 doi: 10.1063/1.2077834 – ident: ref411/cit411 doi: 10.1021/nn5072254 – ident: ref372/cit372 doi: 10.1002/anie.201406911 – ident: ref22/cit22 doi: 10.1038/238037a0 – ident: ref234/cit234 doi: 10.1002/ppsc.201500059 – ident: ref56/cit56 doi: 10.1039/C6EN00341A – ident: ref330/cit330 doi: 10.1021/acs.chemrev.6b00211 – ident: ref152/cit152 doi: 10.1021/ja0733639 – ident: ref376/cit376 doi: 10.1103/PhysRevB.9.5056 – ident: ref222/cit222 doi: 10.1126/science.1231631 – ident: ref336/cit336 doi: 10.1021/acsami.8b12183 – ident: ref257/cit257 doi: 10.1021/acssuschemeng.0c05595 – ident: ref34/cit34 doi: 10.1039/c2dt31528a – ident: ref135/cit135 doi: 10.1038/ncomms10545 – ident: ref202/cit202 doi: 10.1073/pnas.2232479100 – ident: ref156/cit156 doi: 10.1021/acs.langmuir.7b01052 – ident: ref384/cit384 doi: 10.1016/j.fuproc.2018.09.014 – ident: ref255/cit255 doi: 10.1039/C4CC02553A – ident: ref412/cit412 doi: 10.1088/0305-4608/4/11/032 – ident: ref258/cit258 doi: 10.1016/j.cej.2020.126068 – ident: ref287/cit287 doi: 10.1016/j.jallcom.2015.08.119 – ident: ref191/cit191 doi: 10.1021/acs.chemrev.7b00430 – ident: ref323/cit323 doi: 10.1016/j.nanoen.2018.02.052 – ident: ref324/cit324 doi: 10.1039/C5NJ03307A – ident: ref199/cit199 doi: 10.1515/nanoph-2018-0073 – ident: ref218/cit218 doi: 10.1039/C3CS60425J – ident: ref104/cit104 doi: 10.1021/jp3065882 – ident: ref33/cit33 doi: 10.1016/j.apcatb.2013.06.009 – ident: ref68/cit68 doi: 10.1021/acsami.8b17194 – ident: ref85/cit85 doi: 10.1016/j.mattod.2014.10.039 – ident: ref391/cit391 doi: 10.1021/acsnano.6b02911 – ident: ref37/cit37 doi: 10.1039/C3CP53820F – ident: ref315/cit315 doi: 10.1021/jacs.8b08720 – ident: ref364/cit364 doi: 10.1126/sciadv.aao4710 – ident: ref251/cit251 doi: 10.1039/C7TA06625B – ident: ref114/cit114 doi: 10.1088/0022-3727/48/18/184001 – ident: ref127/cit127 doi: 10.1103/PhysRevB.11.3617 – ident: ref78/cit78 doi: 10.1016/j.ijhydene.2018.10.240 – ident: ref23/cit23 doi: 10.1039/c2cp23461k – ident: ref248/cit248 doi: 10.1002/smll.201600382 – ident: ref285/cit285 doi: 10.1016/j.jhazmat.2018.08.099 – ident: ref139/cit139 doi: 10.1007/s12274-018-2178-6 – ident: ref145/cit145 doi: 10.1021/ph4000339 – ident: ref113/cit113 doi: 10.1039/C8CY00674A – ident: ref25/cit25 doi: 10.1016/j.jpowsour.2017.03.089 – ident: ref217/cit217 doi: 10.1002/adma.201807660 – ident: ref228/cit228 doi: 10.1016/j.jcat.2005.10.019 – ident: ref7/cit7 doi: 10.1039/C5CS00838G – ident: ref339/cit339 doi: 10.1021/jacs.8b08937 – ident: ref16/cit16 doi: 10.1002/aenm.201903802 – ident: ref169/cit169 doi: 10.1016/j.carbon.2018.11.029 – ident: ref379/cit379 doi: 10.1002/chem.201501968 – ident: ref173/cit173 doi: 10.1021/acs.nanolett.8b04950 – ident: ref309/cit309 doi: 10.1016/j.electacta.2017.10.030 – ident: ref73/cit73 doi: 10.1016/j.apcatb.2017.12.057 – ident: ref320/cit320 doi: 10.1016/j.apsusc.2016.08.002 – ident: ref260/cit260 doi: 10.1021/acscatal.9b03971 – ident: ref195/cit195 doi: 10.1021/acs.jpcc.6b08519 – ident: ref280/cit280 doi: 10.1016/j.apsusc.2016.07.028 – ident: ref47/cit47 doi: 10.1038/s41467-020-18350-7 – ident: ref209/cit209 doi: 10.1021/acsnano.8b03617 – ident: ref274/cit274 doi: 10.1016/j.apcatb.2017.07.030 – ident: ref326/cit326 doi: 10.1016/j.snb.2016.03.068 – ident: ref142/cit142 doi: 10.1039/C6NR02055K – ident: ref340/cit340 doi: 10.1039/C6RA27594J – ident: ref24/cit24 doi: 10.1016/j.cplett.2016.12.008 – ident: ref261/cit261 doi: 10.1016/j.apcatb.2019.02.012 – ident: ref97/cit97 doi: 10.1021/ja2089876 – ident: ref291/cit291 doi: 10.1016/j.apcatb.2017.05.040 – ident: ref329/cit329 doi: 10.1021/acsami.6b03728 – ident: ref282/cit282 doi: 10.1021/acssuschemeng.7b03032 – ident: ref213/cit213 doi: 10.1021/acs.nanolett.7b04776 – ident: ref308/cit308 doi: 10.1039/C3CP43856B – ident: ref250/cit250 doi: 10.1016/j.jcat.2018.11.003 – ident: ref153/cit153 doi: 10.1021/acs.est.5b03758 – ident: ref263/cit263 doi: 10.1016/j.cej.2020.124558 – ident: ref140/cit140 doi: 10.1021/nl303517v – ident: ref403/cit403 doi: 10.1007/s10853-018-2624-6 – ident: ref15/cit15 doi: 10.1002/adma.201500033 – ident: ref214/cit214 doi: 10.1063/1.2830005 – ident: ref269/cit269 doi: 10.1021/acssuschemeng.5b01416 – ident: ref312/cit312 doi: 10.1039/C5CS00769K – ident: ref301/cit301 doi: 10.1039/C8DT04408B – ident: ref388/cit388 doi: 10.1039/C9NR00901A – ident: ref170/cit170 doi: 10.1039/C8CY01466C – ident: ref346/cit346 doi: 10.1016/S1872-2067(20)63637-3 – ident: ref143/cit143 doi: 10.1021/nn405495q – ident: ref43/cit43 doi: 10.1016/j.apsusc.2016.07.104 – ident: ref243/cit243 doi: 10.1021/jp5114812 – ident: ref325/cit325 doi: 10.1039/c3ta14493c – ident: ref69/cit69 doi: 10.1088/1361-6463/aadca2 – ident: ref2/cit2 doi: 10.1039/C2CS35355E – ident: ref335/cit335 doi: 10.1021/nn403954p – ident: ref175/cit175 doi: 10.1016/j.nanoen.2016.11.026 – ident: ref333/cit333 doi: 10.1002/anie.201301669 – ident: ref102/cit102 doi: 10.1021/la702876h – ident: ref402/cit402 doi: 10.1021/acsphotonics.8b00214 – ident: ref51/cit51 doi: 10.1039/C8EE02096E – ident: ref348/cit348 doi: 10.1007/s12596-014-0215-8 |
SSID | ssj0005527 |
Score | 2.7292094 |
SecondaryResourceType | review_article |
Snippet | Solar-to-chemical energy conversion via heterogeneous photocatalysis is one of the sustainable approaches to tackle the growing environmental and energy... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 10484 |
SubjectTerms | Carbon dioxide Chemical energy cost effectiveness Energy conversion Materials science Noble metals Photocatalysis Photocatalysts Plasmonics Pollutant removal Pollutants Solar energy surface plasmon resonance Water pollution Water splitting |
Title | Non-Noble Plasmonic Metal-Based Photocatalysts |
URI | http://dx.doi.org/10.1021/acs.chemrev.1c00473 https://www.ncbi.nlm.nih.gov/pubmed/35438967 https://www.proquest.com/docview/2675696410 https://www.proquest.com/docview/2652865284 https://www.proquest.com/docview/2718247304 |
Volume | 122 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZ4DLDwfhQKChIDAymJEzvOCBWoQmqEBEhskWPHqgRNEE0H-PXc5dHyrLpkSM6xfbb1nX2--wg5DaShgTHC1gA3NpoMdihlCOsqYQnnLDQlJUs_4r1H__aJPX0JVv_hwafuhVSg_EE6REoWV2F2Q2-RLFMuAtxrXXbvpzc6GoZWdBpAPU2Sob9_gnCkRt_h6B8bs8Sam3USNRE71RWT5864SDrq43cCx_m6sUHWaqvTuqymySZZSLMtstJtyN62SSfKMztCbhnrDuzpISbMtfopWOb2FeCctu4GeZGXZz3vo2K0Qx5vrh-6PbumUrClH9DC9kVKtSNMoiU1SsKTCaEU910nSZgyyuM6pEZI4zkaxsnzNXNh86q4dJnRjrdLlrI8S_eJFQqtMes78xzfpzoAEy1QQrppKKmrqWqRM-hrXC-FUVx6uakb48taAXGtgBahjfJjVackR2aMl9mFzieFXquMHLPF282oTttEYZvEQ-x9i5xMPoPK0VsiszQfowzDqF2A7xkygOwUKnFAZq-aMZM2eQyJ5XlwML8-DskqxegKPOQRbbJUvI3TI7B5iuS4nOmflO_7iw |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB6x5dC98NyF8togcdjDpps4ceIcoQKVhVZItBK3yLFjrQRNEEkP8OuZSZNWILZaLjk4Y3tmbGvGHns-gJNQGhYaI2yN5sYml8GOpIxwXSU8CQIemQqSZTAM-mP_zx2_qx-F0VsYZKLAlooqiL_ILuD-pjIUY0LILK6iJIfeF1jFthltuU57t4uLHQ1QK8UOsLsm19DHjZBVUsVbq_QPV7MyORfrMJ4zW900ue9Oy6SrXt7lcfysNBuwVvug1uls0mzCSpptQbvXQL9tQ3eYZ_aQkGasG_SuJ5Q-1xqk6KfbZ2j1tHXzNy_z6uTnuSiLbzC-OB_1-nYNrGBLP2Sl7YuUaUeYREtmlMQvF0KpwHedJOHKKC_QETNCGs_ROGqer7mLW1kVSJcb7XjfoZXlWboLViS0phzw3HN8n-kQHbZQCemmkWSuZqoDP1HWuF4YRVzFvJkbU2GtgLhWQAdYMwaxqhOUE07Gw_JKv-aVHmf5OZaTHzSDu-CJ4aYpiEj6DhzPf6PKKXYiszSfEg2nN7xozJfQoJ1n2ImDNDuziTPnyeMEMx-Ee_-vjx_Q7o8G1_H15fBqH74yendBxz_iAFrl0zQ9RG-oTI6qyf8KF24D-w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwED6VIsFexsbGVuggSDzsgZTEiRPnsXRUZVurSlCpPEWOHQuJLamW9AF-PXdpkgrEqomXPDhn--5s684--z6Ad6E0LDRG2BrNjU0ugx1JGeG6SngSBDwyFSTLdBZMFv7lki87IJq3MMhEgS0VVRCfVvVKmzrDgPuBylGUW0JncRUlOvQewWMK3NG2azj6sr3c0YC1UvwAu2zyDf27EbJMqvjTMt3jblZmZ_wMvrUMV7dNfgzWZTJQv_7K5fg_Eh3Afu2LWsPN5DmETpo9h6ejBgLuCAazPLNnhDhjzdHLvqU0utY0RX_d_ojWT1vz73mZVydAP4uyOIbF-NPX0cSuARZs6YestH2RMu0Ik2jJjJL45UIoFfiukyRcGeUFOmJGSOM5GkfP8zV3cUurAulyox3vBXSzPEtPwYqE1pQLnnuO7zMdouMWKiHdNJLM1Uz14BxljesFUsRV7Ju5MRXWCohrBfSANeMQqzpROeFl3Oyu9L6ttNrk6dhN3m8GeMsTw81TEJH0PXjb_kaVUwxFZmm-JhpOb3nRqO-gQXvPsBMHaU42k6flyeMENx-ELx-ujzfwZH4xjq8_z65ewR6j5xd0CiT60C3v1ukZOkVl8rqa_78BhmAGfg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-Noble+Plasmonic+Metal-Based+Photocatalysts&rft.jtitle=Chemical+reviews&rft.au=Sayed%2C+Mahmoud&rft.au=Yu%2C+Jiaguo&rft.au=Liu%2C+Gang&rft.au=Jaroniec%2C+Mietek&rft.date=2022-06-08&rft.issn=1520-6890&rft.eissn=1520-6890&rft.volume=122&rft.issue=11&rft.spage=10484&rft_id=info:doi/10.1021%2Facs.chemrev.1c00473&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2665&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2665&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2665&client=summon |