Non-Noble Plasmonic Metal-Based Photocatalysts

Solar-to-chemical energy conversion via heterogeneous photocatalysis is one of the sustainable approaches to tackle the growing environmental and energy challenges. Among various promising photocatalytic materials, plasmonic-driven photocatalysts feature prominent solar-driven surface plasmon resona...

Full description

Saved in:
Bibliographic Details
Published inChemical reviews Vol. 122; no. 11; pp. 10484 - 10537
Main Authors Sayed, Mahmoud, Yu, Jiaguo, Liu, Gang, Jaroniec, Mietek
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 08.06.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Solar-to-chemical energy conversion via heterogeneous photocatalysis is one of the sustainable approaches to tackle the growing environmental and energy challenges. Among various promising photocatalytic materials, plasmonic-driven photocatalysts feature prominent solar-driven surface plasmon resonance (SPR). Non-noble plasmonic metals (NNPMs)-based photocatalysts have been identified as a unique alternative to noble metal-based ones due to their advantages like earth-abundance, cost-effectiveness, and large-scale application capability. This review comprehensively summarizes the most recent advances in the synthesis, characterization, and properties of NNPMs-based photocatalysts. After introducing the fundamental principles of SPR, the attributes and functionalities of NNPMs in governing surface/interfacial photocatalytic processes are presented. Next, the utilization of NNPMs-based photocatalytic materials for the removal of pollutants, water splitting, CO2 reduction, and organic transformations is discussed. The review concludes with current challenges and perspectives in advancing the NNPMs-based photocatalysts, which are timely and important to plasmon-based photocatalysis, a truly interdisciplinary field across materials science, chemistry, and physics.
AbstractList Solar-to-chemical energy conversion via heterogeneous photocatalysis is one of the sustainable approaches to tackle the growing environmental and energy challenges. Among various promising photocatalytic materials, plasmonic-driven photocatalysts feature prominent solar-driven surface plasmon resonance (SPR). Non-noble plasmonic metals (NNPMs)-based photocatalysts have been identified as a unique alternative to noble metal-based ones due to their advantages like earth-abundance, cost-effectiveness, and large-scale application capability. This review comprehensively summarizes the most recent advances in the synthesis, characterization, and properties of NNPMs-based photocatalysts. After introducing the fundamental principles of SPR, the attributes and functionalities of NNPMs in governing surface/interfacial photocatalytic processes are presented. Next, the utilization of NNPMs-based photocatalytic materials for the removal of pollutants, water splitting, CO2 reduction, and organic transformations is discussed. The review concludes with current challenges and perspectives in advancing the NNPMs-based photocatalysts, which are timely and important to plasmon-based photocatalysis, a truly interdisciplinary field across materials science, chemistry, and physics.
Solar-to-chemical energy conversion via heterogeneous photocatalysis is one of the sustainable approaches to tackle the growing environmental and energy challenges. Among various promising photocatalytic materials, plasmonic-driven photocatalysts feature prominent solar-driven surface plasmon resonance (SPR). Non-noble plasmonic metals (NNPMs)-based photocatalysts have been identified as a unique alternative to noble metal-based ones due to their advantages like earth-abundance, cost-effectiveness, and large-scale application capability. This review comprehensively summarizes the most recent advances in the synthesis, characterization, and properties of NNPMs-based photocatalysts. After introducing the fundamental principles of SPR, the attributes and functionalities of NNPMs in governing surface/interfacial photocatalytic processes are presented. Next, the utilization of NNPMs-based photocatalytic materials for the removal of pollutants, water splitting, CO₂ reduction, and organic transformations is discussed. The review concludes with current challenges and perspectives in advancing the NNPMs-based photocatalysts, which are timely and important to plasmon-based photocatalysis, a truly interdisciplinary field across materials science, chemistry, and physics.
Solar-to-chemical energy conversion via heterogeneous photocatalysis is one of the sustainable approaches to tackle the growing environmental and energy challenges. Among various promising photocatalytic materials, plasmonic-driven photocatalysts feature prominent solar-driven surface plasmon resonance (SPR). Non-noble plasmonic metals (NNPMs)-based photocatalysts have been identified as a unique alternative to noble metal-based ones due to their advantages like earth-abundance, cost-effectiveness, and large-scale application capability. This review comprehensively summarizes the most recent advances in the synthesis, characterization, and properties of NNPMs-based photocatalysts. After introducing the fundamental principles of SPR, the attributes and functionalities of NNPMs in governing surface/interfacial photocatalytic processes are presented. Next, the utilization of NNPMs-based photocatalytic materials for the removal of pollutants, water splitting, CO2 reduction, and organic transformations is discussed. The review concludes with current challenges and perspectives in advancing the NNPMs-based photocatalysts, which are timely and important to plasmon-based photocatalysis, a truly interdisciplinary field across materials science, chemistry, and physics.Solar-to-chemical energy conversion via heterogeneous photocatalysis is one of the sustainable approaches to tackle the growing environmental and energy challenges. Among various promising photocatalytic materials, plasmonic-driven photocatalysts feature prominent solar-driven surface plasmon resonance (SPR). Non-noble plasmonic metals (NNPMs)-based photocatalysts have been identified as a unique alternative to noble metal-based ones due to their advantages like earth-abundance, cost-effectiveness, and large-scale application capability. This review comprehensively summarizes the most recent advances in the synthesis, characterization, and properties of NNPMs-based photocatalysts. After introducing the fundamental principles of SPR, the attributes and functionalities of NNPMs in governing surface/interfacial photocatalytic processes are presented. Next, the utilization of NNPMs-based photocatalytic materials for the removal of pollutants, water splitting, CO2 reduction, and organic transformations is discussed. The review concludes with current challenges and perspectives in advancing the NNPMs-based photocatalysts, which are timely and important to plasmon-based photocatalysis, a truly interdisciplinary field across materials science, chemistry, and physics.
Solar-to-chemical energy conversion via heterogeneous photocatalysis is one of the sustainable approaches to tackle the growing environmental and energy challenges. Among various promising photocatalytic materials, plasmonic-driven photocatalysts feature prominent solar-driven surface plasmon resonance (SPR). Non-noble plasmonic metals (NNPMs)-based photocatalysts have been identified as a unique alternative to noble metal-based ones due to their advantages like earth-abundance, cost-effectiveness, and large-scale application capability. This review comprehensively summarizes the most recent advances in the synthesis, characterization, and properties of NNPMs-based photocatalysts. After introducing the fundamental principles of SPR, the attributes and functionalities of NNPMs in governing surface/interfacial photocatalytic processes are presented. Next, the utilization of NNPMs-based photocatalytic materials for the removal of pollutants, water splitting, CO reduction, and organic transformations is discussed. The review concludes with current challenges and perspectives in advancing the NNPMs-based photocatalysts, which are timely and important to plasmon-based photocatalysis, a truly interdisciplinary field across materials science, chemistry, and physics.
Author Liu, Gang
Yu, Jiaguo
Jaroniec, Mietek
Sayed, Mahmoud
AuthorAffiliation CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience
Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry
National Center for Nanoscience and Technology
Wuhan University of Technology
Department of Chemistry and Biochemistry
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
Chemistry Department, Faculty of Science
College of Chemistry and Chemical Engineering
Jishou University
AuthorAffiliation_xml – name: Jishou University
– name: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
– name: Chemistry Department, Faculty of Science
– name: CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience
– name: Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry
– name: College of Chemistry and Chemical Engineering
– name: National Center for Nanoscience and Technology
– name: Wuhan University of Technology
– name: Department of Chemistry and Biochemistry
Author_xml – sequence: 1
  givenname: Mahmoud
  surname: Sayed
  fullname: Sayed, Mahmoud
  organization: Wuhan University of Technology
– sequence: 2
  givenname: Jiaguo
  orcidid: 0000-0002-0612-8633
  surname: Yu
  fullname: Yu, Jiaguo
  email: yujiaguo93@cug.edu.cn
  organization: Jishou University
– sequence: 3
  givenname: Gang
  surname: Liu
  fullname: Liu, Gang
  email: liug@nanoctr.cn
  organization: National Center for Nanoscience and Technology
– sequence: 4
  givenname: Mietek
  orcidid: 0000-0002-1178-5611
  surname: Jaroniec
  fullname: Jaroniec, Mietek
  email: jaroniec@kent.edu
  organization: Department of Chemistry and Biochemistry
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35438967$$D View this record in MEDLINE/PubMed
BookMark eNqFkctOwzAQRS1URB_wBUioEhs2Sf2IHWcJFS-plC5gbTmOo6ZK4mK7SP17HDVlwaIsbGs8545m5o7BoDWtBuAawRhBjGZSuVitdWP1d4wUhElKzsAIUQwjxjM4ACMIYRZhxugQjJ3bhJBSnF6AIaEJ4RlLRyBemjZamrzW01UtXWPaSk3ftJd19CCdLqartfFGyfCxd95dgvNS1k5f9e8EfD49fsxfosX78-v8fhHJJMU-SrjGBeRlXkhcKhluyrlSLEEwz6kqFWFFhksuSwKLDOUkKSginCgmES0LSCbg7lB3a83XTjsvmsopXdey1WbnBE4Rx2FgmPyPMop5dzr09g-6MTvbhkEClVKWdQ0G6qandnmjC7G1VSPtXhyXFoDsAChrnLO6FKry0lem9VZWtUBQdAaJYJDoDRK9QUFL_miP5U-rZgdVl_zt-ZTiB-OYpdg
CitedBy_id crossref_primary_10_1039_D4NR05471G
crossref_primary_10_1016_j_gee_2023_12_004
crossref_primary_10_1016_j_apsusc_2023_157760
crossref_primary_10_1021_acsanm_3c03050
crossref_primary_10_1002_ange_202213927
crossref_primary_10_1016_j_apsusc_2022_156036
crossref_primary_10_1021_acs_iecr_3c02738
crossref_primary_10_1021_acsami_3c03156
crossref_primary_10_1039_D2CC02658A
crossref_primary_10_1016_j_ccr_2024_216113
crossref_primary_10_1021_jacs_3c04927
crossref_primary_10_1002_ejoc_202400001
crossref_primary_10_1021_acsaem_2c00689
crossref_primary_10_1016_j_cej_2022_137803
crossref_primary_10_1016_j_inoche_2022_110035
crossref_primary_10_1016_j_matlet_2023_134049
crossref_primary_10_1016_j_colsurfa_2024_134900
crossref_primary_10_1039_D4SC05190D
crossref_primary_10_1021_acs_chemrev_2c00460
crossref_primary_10_1016_j_jmst_2023_11_081
crossref_primary_10_1016_j_ijhydene_2023_03_152
crossref_primary_10_1016_j_cej_2023_146908
crossref_primary_10_26599_POM_2023_9140020
crossref_primary_10_1016_j_jece_2024_114986
crossref_primary_10_1039_D3CY01097J
crossref_primary_10_1021_acs_inorgchem_4c03410
crossref_primary_10_1016_j_mattod_2023_06_022
crossref_primary_10_1002_adsu_202200397
crossref_primary_10_1002_smll_202401335
crossref_primary_10_1002_cssc_202301539
crossref_primary_10_1007_s44251_023_00026_1
crossref_primary_10_1002_solr_202300669
crossref_primary_10_1016_j_nantod_2023_101885
crossref_primary_10_1016_j_solmat_2022_111970
crossref_primary_10_1002_advs_202302568
crossref_primary_10_1021_acscatal_4c04644
crossref_primary_10_1016_j_apcatb_2024_124983
crossref_primary_10_2139_ssrn_4167595
crossref_primary_10_1016_j_coche_2024_101000
crossref_primary_10_1021_acsnano_4c17316
crossref_primary_10_1088_1361_6528_ad26d8
crossref_primary_10_1016_j_cej_2024_156091
crossref_primary_10_1039_D5SC00330J
crossref_primary_10_3390_coatings13010028
crossref_primary_10_1002_adfm_202424527
crossref_primary_10_1016_j_cej_2023_141557
crossref_primary_10_1002_adma_202406460
crossref_primary_10_1016_j_carbpol_2024_122454
crossref_primary_10_1002_er_8254
crossref_primary_10_1016_j_jmst_2023_02_044
crossref_primary_10_1002_adsu_202200394
crossref_primary_10_1007_s40843_023_2724_0
crossref_primary_10_1016_j_apsusc_2022_154174
crossref_primary_10_1016_j_cej_2024_150536
crossref_primary_10_1016_j_optlastec_2025_112844
crossref_primary_10_1007_s11468_023_02095_2
crossref_primary_10_1016_j_jmst_2023_03_039
crossref_primary_10_3390_photonics11020183
crossref_primary_10_1002_solr_202200759
crossref_primary_10_1016_j_apcatb_2023_122461
crossref_primary_10_1021_acscatal_4c02285
crossref_primary_10_1016_j_inoche_2023_110877
crossref_primary_10_3390_molecules30020269
crossref_primary_10_1016_j_matchemphys_2023_127925
crossref_primary_10_1016_j_chempr_2023_11_009
crossref_primary_10_1007_s12274_022_4700_0
crossref_primary_10_1007_s12633_025_03223_9
crossref_primary_10_1021_acsomega_4c08896
crossref_primary_10_3390_molecules28196831
crossref_primary_10_1039_D4QI03103B
crossref_primary_10_1016_j_jmst_2024_11_056
crossref_primary_10_1021_acs_jpclett_3c02742
crossref_primary_10_1016_j_ccr_2024_216331
crossref_primary_10_1016_j_jiec_2024_08_037
crossref_primary_10_3390_photonics11020162
crossref_primary_10_1016_j_apcatb_2024_124703
crossref_primary_10_1002_solr_202200657
crossref_primary_10_1002_ejic_202200420
crossref_primary_10_2139_ssrn_4181422
crossref_primary_10_1021_acsami_3c17101
crossref_primary_10_1016_j_cis_2024_103298
crossref_primary_10_1016_j_jcis_2025_02_215
crossref_primary_10_1002_smll_202310310
crossref_primary_10_1002_adsu_202200189
crossref_primary_10_1007_s12633_024_02867_3
crossref_primary_10_1063_5_0109806
crossref_primary_10_1016_j_jmst_2024_12_088
crossref_primary_10_1016_j_ijbiomac_2024_135490
crossref_primary_10_1016_j_inoche_2022_110228
crossref_primary_10_1039_D2CC06300J
crossref_primary_10_1016_j_cej_2023_146516
crossref_primary_10_1007_s10854_024_14117_8
crossref_primary_10_1016_j_fuel_2024_133746
crossref_primary_10_1039_D2NR02551E
crossref_primary_10_1021_acsanm_5c00808
crossref_primary_10_1007_s10853_024_09351_8
crossref_primary_10_1016_j_cej_2024_155514
crossref_primary_10_1016_j_colsurfa_2022_130707
crossref_primary_10_1039_D4TA07768G
crossref_primary_10_1007_s40843_023_2755_2
crossref_primary_10_1016_j_scitotenv_2024_172028
crossref_primary_10_1021_acs_inorgchem_4c02376
crossref_primary_10_2139_ssrn_4194488
crossref_primary_10_1039_D4TA06207H
crossref_primary_10_1039_D2NR02671F
crossref_primary_10_1039_D3CP01118F
crossref_primary_10_1149_1945_7111_ad39aa
crossref_primary_10_1002_cptc_202200240
crossref_primary_10_1039_D3NR05385G
crossref_primary_10_1016_j_saa_2024_124817
crossref_primary_10_1016_j_colsurfa_2023_132945
crossref_primary_10_3788_PI_2023_R08
crossref_primary_10_1016_j_seppur_2025_132195
crossref_primary_10_1080_09593330_2023_2238131
crossref_primary_10_1016_j_jcis_2024_04_183
crossref_primary_10_1016_j_jssc_2022_123514
crossref_primary_10_1039_D3DT01443F
crossref_primary_10_1039_D2GC01684B
crossref_primary_10_1002_ange_202304559
crossref_primary_10_1016_j_ijhydene_2023_04_259
crossref_primary_10_1038_s43246_024_00510_7
crossref_primary_10_1021_acsaem_2c01837
crossref_primary_10_3390_catal15020105
crossref_primary_10_1016_j_seppur_2023_123276
crossref_primary_10_1016_j_snb_2024_136675
crossref_primary_10_1002_smll_202308032
crossref_primary_10_1007_s11814_024_00087_4
crossref_primary_10_1016_j_cej_2023_144424
crossref_primary_10_1007_s11356_023_30183_7
crossref_primary_10_1016_j_mssp_2023_107392
crossref_primary_10_1038_s41467_024_45516_4
crossref_primary_10_1021_acsnano_2c12314
crossref_primary_10_1039_D3NA00835E
crossref_primary_10_26599_NR_2025_94907157
crossref_primary_10_1021_acs_langmuir_4c02912
crossref_primary_10_1016_j_jallcom_2024_173735
crossref_primary_10_1038_s41598_024_56059_5
crossref_primary_10_1016_j_ijhydene_2023_03_449
crossref_primary_10_1016_j_watres_2022_119134
crossref_primary_10_1007_s12274_023_6357_8
crossref_primary_10_1016_j_apsusc_2023_157564
crossref_primary_10_1021_acs_jpcc_3c08508
crossref_primary_10_1016_j_molstruc_2024_139406
crossref_primary_10_1002_chem_202303401
crossref_primary_10_1002_smll_202407863
crossref_primary_10_1021_acs_jpcc_2c05394
crossref_primary_10_1021_acs_inorgchem_2c01909
crossref_primary_10_1016_j_apcatb_2022_122349
crossref_primary_10_1016_j_cej_2024_149027
crossref_primary_10_1016_j_jmst_2023_04_007
crossref_primary_10_1016_j_colsurfa_2022_129881
crossref_primary_10_1016_j_apcata_2022_118920
crossref_primary_10_1016_j_jcis_2023_01_116
crossref_primary_10_1016_j_jcis_2024_06_065
crossref_primary_10_1007_s42114_023_00787_1
crossref_primary_10_1039_D4JA00261J
crossref_primary_10_1016_j_cej_2024_154979
crossref_primary_10_1039_D5CC00019J
crossref_primary_10_1016_j_jphotochem_2024_115606
crossref_primary_10_1016_j_jece_2024_112150
crossref_primary_10_1016_j_cej_2023_144511
crossref_primary_10_1002_adfm_202503186
crossref_primary_10_1016_S1872_2067_23_64462_6
crossref_primary_10_1016_j_jiec_2023_09_042
crossref_primary_10_1002_solr_202300588
crossref_primary_10_1093_nsr_nwae189
crossref_primary_10_1016_j_jcis_2023_02_137
crossref_primary_10_1002_adom_202301180
crossref_primary_10_1016_j_jphotochem_2023_114553
crossref_primary_10_1016_j_optmat_2023_114596
crossref_primary_10_1039_D3QI00472D
crossref_primary_10_1039_D4NH00197D
crossref_primary_10_1016_j_coche_2024_101042
crossref_primary_10_1016_j_rechem_2022_100664
crossref_primary_10_1016_j_ijbiomac_2024_134430
crossref_primary_10_1002_adfm_202214470
crossref_primary_10_1039_D3CS00213F
crossref_primary_10_1002_aic_18686
crossref_primary_10_1039_D3NJ00622K
crossref_primary_10_1002_smll_202304781
crossref_primary_10_1016_j_ces_2024_120012
crossref_primary_10_1016_j_jmst_2023_05_009
crossref_primary_10_1016_j_jece_2023_109567
crossref_primary_10_1016_j_susmat_2024_e01142
crossref_primary_10_3866_PKU_WHXB202310013
crossref_primary_10_1039_D3QI00484H
crossref_primary_10_1063_5_0202991
crossref_primary_10_1002_ange_202411871
crossref_primary_10_1016_j_apcatb_2024_124167
crossref_primary_10_1002_adfm_202307903
crossref_primary_10_1016_j_mcat_2024_114166
crossref_primary_10_1016_j_trac_2024_117890
crossref_primary_10_1016_j_apcatb_2022_122304
crossref_primary_10_1016_j_mseb_2023_116406
crossref_primary_10_1016_j_apcatb_2022_122301
crossref_primary_10_1016_j_jclepro_2022_134673
crossref_primary_10_1016_j_surfin_2023_103199
crossref_primary_10_1016_j_pecs_2023_101074
crossref_primary_10_1016_j_scp_2023_101077
crossref_primary_10_1016_j_jenvman_2022_116236
crossref_primary_10_1016_j_jmst_2023_06_052
crossref_primary_10_1039_D2CP05150H
crossref_primary_10_1039_D3NJ02559D
crossref_primary_10_1016_j_seppur_2024_129587
crossref_primary_10_1016_j_jcis_2022_07_102
crossref_primary_10_1016_j_jhazmat_2024_136951
crossref_primary_10_1016_j_jece_2024_114181
crossref_primary_10_1515_ntrev_2024_0104
crossref_primary_10_1016_j_apcatb_2024_124155
crossref_primary_10_1002_cssc_202400513
crossref_primary_10_1016_j_jcis_2022_08_115
crossref_primary_10_1080_01496395_2023_2252585
crossref_primary_10_1002_smll_202312020
crossref_primary_10_1016_j_materresbull_2023_112553
crossref_primary_10_1021_acs_langmuir_4c00210
crossref_primary_10_1016_j_aca_2023_341472
crossref_primary_10_1021_acs_inorgchem_3c01220
crossref_primary_10_1063_5_0134993
crossref_primary_10_1007_s10854_023_10050_4
crossref_primary_10_1016_j_ijhydene_2022_12_330
crossref_primary_10_1016_j_apcata_2023_119421
crossref_primary_10_1016_j_jallcom_2023_170312
crossref_primary_10_1016_j_mtchem_2023_101633
crossref_primary_10_1002_admi_202201400
crossref_primary_10_1016_j_jcis_2022_08_001
crossref_primary_10_1021_acs_chemrev_3c00459
crossref_primary_10_1039_D4CS01005A
crossref_primary_10_1515_revic_2024_0107
crossref_primary_10_1021_acsanm_3c02534
crossref_primary_10_1021_acs_chemrev_4c00165
crossref_primary_10_1002_cptc_202300049
crossref_primary_10_1021_acs_jpcc_4c06136
crossref_primary_10_1002_adma_202207765
crossref_primary_10_1007_s10853_023_08524_1
crossref_primary_10_1016_j_mattod_2024_12_019
crossref_primary_10_1021_acs_cgd_4c01056
crossref_primary_10_1016_j_inoche_2024_113456
crossref_primary_10_1016_j_apsusc_2022_154973
crossref_primary_10_1016_j_seppur_2022_123058
crossref_primary_10_1016_j_jphotochem_2022_114219
crossref_primary_10_1021_acsnano_2c08191
crossref_primary_10_1016_j_jmat_2024_100989
crossref_primary_10_1016_S1872_2067_23_64444_4
crossref_primary_10_1039_D3RE00226H
crossref_primary_10_1002_solr_202201054
crossref_primary_10_1021_acs_chemmater_4c01090
crossref_primary_10_1016_j_jallcom_2023_172312
crossref_primary_10_1007_s40820_024_01555_6
crossref_primary_10_1007_s12598_022_02183_y
crossref_primary_10_1088_2053_1583_acc414
crossref_primary_10_1016_j_seppur_2023_123229
crossref_primary_10_1039_D2TA06752H
crossref_primary_10_1021_acs_jpclett_2c01332
crossref_primary_10_1016_S1872_2067_23_64479_1
crossref_primary_10_1021_acs_jpcc_3c01267
crossref_primary_10_1002_adma_202301307
crossref_primary_10_1021_acs_jpcc_3c03686
crossref_primary_10_1021_acs_inorgchem_3c04566
crossref_primary_10_1016_j_seppur_2024_129785
crossref_primary_10_1039_D3DT03809B
crossref_primary_10_1002_adfm_202419802
crossref_primary_10_1039_D2DT02900F
crossref_primary_10_1002_smll_202205097
crossref_primary_10_3390_photonics11050444
crossref_primary_10_1002_adpr_202200065
crossref_primary_10_1002_anie_202408020
crossref_primary_10_1016_j_surfin_2025_105846
crossref_primary_10_1002_anie_202411871
crossref_primary_10_1016_j_ccr_2024_215803
crossref_primary_10_1016_j_surfin_2024_104434
crossref_primary_10_1016_j_jallcom_2023_170107
crossref_primary_10_1016_S1872_2067_23_64466_3
crossref_primary_10_1021_acs_langmuir_3c00955
crossref_primary_10_1038_s41467_023_39791_w
crossref_primary_10_1002_smll_202411624
crossref_primary_10_1021_acs_chemmater_4c03170
crossref_primary_10_3390_en17205043
crossref_primary_10_1016_j_mtener_2022_101164
crossref_primary_10_1021_acs_langmuir_2c02334
crossref_primary_10_1021_acs_inorgchem_3c01037
crossref_primary_10_1016_j_ccr_2023_215612
crossref_primary_10_1021_acs_energyfuels_4c01608
crossref_primary_10_1002_ange_202408020
crossref_primary_10_1039_D3TA06724F
crossref_primary_10_1007_s10562_024_04670_6
crossref_primary_10_1002_cnma_202200408
crossref_primary_10_1016_j_nanoms_2024_10_009
crossref_primary_10_1016_j_jece_2023_109996
crossref_primary_10_1002_admi_202400273
crossref_primary_10_1016_j_cej_2022_140123
crossref_primary_10_1021_acsanm_2c03031
crossref_primary_10_1016_j_cej_2023_145430
crossref_primary_10_1021_acsaem_3c00360
crossref_primary_10_1039_D5GC00299K
crossref_primary_10_1016_j_colsurfa_2023_131077
crossref_primary_10_1016_j_jssc_2023_124100
crossref_primary_10_1016_j_cej_2023_143924
crossref_primary_10_1016_j_jallcom_2023_170605
crossref_primary_10_1021_acsami_3c12827
crossref_primary_10_1021_acsnano_4c06954
crossref_primary_10_1021_acssuschemeng_3c06046
crossref_primary_10_1016_j_jmst_2023_07_019
crossref_primary_10_1016_j_ijhydene_2024_03_271
crossref_primary_10_1039_D4EN00181H
crossref_primary_10_1002_cctc_202301295
crossref_primary_10_1002_tcr_202300334
crossref_primary_10_1016_j_apcatb_2023_123196
crossref_primary_10_1016_j_apsusc_2022_156305
crossref_primary_10_1002_adma_202313209
crossref_primary_10_1016_j_jallcom_2024_174493
crossref_primary_10_1021_acs_jpcc_2c09039
crossref_primary_10_1016_j_ceramint_2023_11_181
crossref_primary_10_1007_s42247_022_00425_4
crossref_primary_10_1016_j_optmat_2022_112695
crossref_primary_10_1016_j_jece_2024_111990
crossref_primary_10_1021_acscatal_3c02550
crossref_primary_10_1039_D2TA05181H
crossref_primary_10_1039_D3DT01737K
crossref_primary_10_1039_D2TC00922F
crossref_primary_10_1016_j_nanoen_2023_108684
crossref_primary_10_1016_j_jes_2023_02_051
crossref_primary_10_1016_j_matt_2022_09_009
crossref_primary_10_1039_D4DT01251H
crossref_primary_10_1016_j_apcatb_2022_121945
crossref_primary_10_1016_j_mtphys_2024_101352
crossref_primary_10_1016_j_jmst_2024_02_050
crossref_primary_10_1088_1361_6528_acda3c
crossref_primary_10_1021_acsomega_3c08939
crossref_primary_10_1016_j_apmt_2023_101811
crossref_primary_10_1016_j_renene_2022_08_014
crossref_primary_10_1016_j_jcis_2022_11_042
crossref_primary_10_1002_adsu_202300098
crossref_primary_10_1063_5_0192366
crossref_primary_10_1039_D3CP01911J
crossref_primary_10_1016_j_ijhydene_2022_07_124
crossref_primary_10_1039_D3TC01246H
crossref_primary_10_1002_anie_202304559
crossref_primary_10_1016_j_apcatb_2024_124452
crossref_primary_10_1016_j_jpcs_2023_111672
crossref_primary_10_1016_j_apcatb_2023_123069
crossref_primary_10_3390_catal12101210
crossref_primary_10_1039_D4EN00715H
crossref_primary_10_3390_s23084065
crossref_primary_10_1021_acsanm_4c00598
crossref_primary_10_1016_j_jallcom_2022_167078
crossref_primary_10_1016_j_ijhydene_2022_09_245
crossref_primary_10_1039_D4NR01013B
crossref_primary_10_1080_08940886_2024_2312048
crossref_primary_10_1016_j_optlastec_2025_112564
crossref_primary_10_1039_D4MH00515E
crossref_primary_10_1016_j_jclepro_2023_136017
crossref_primary_10_1021_acscatal_4c00024
crossref_primary_10_1021_acs_jpcc_2c03411
crossref_primary_10_1039_D4TA03912B
crossref_primary_10_1002_adfm_202312056
crossref_primary_10_1002_adsu_202200381
crossref_primary_10_1016_j_apmt_2022_101637
crossref_primary_10_1016_j_seppur_2025_131514
crossref_primary_10_1016_j_cej_2024_156118
crossref_primary_10_1016_j_cej_2023_145173
crossref_primary_10_1016_j_ijhydene_2023_01_355
crossref_primary_10_1016_j_ijhydene_2024_04_161
crossref_primary_10_1038_s41467_024_49862_1
crossref_primary_10_1002_ece2_16
crossref_primary_10_1039_D4TC05056H
crossref_primary_10_1016_j_cej_2023_148313
crossref_primary_10_1039_D3TC02776G
crossref_primary_10_1007_s11705_022_2233_4
crossref_primary_10_1016_j_apcatb_2023_123491
crossref_primary_10_1016_j_ijhydene_2023_01_120
crossref_primary_10_1002_cctc_202301595
crossref_primary_10_1016_j_physb_2023_414789
crossref_primary_10_1021_acs_jpclett_2c02125
crossref_primary_10_1016_j_mcat_2025_114823
crossref_primary_10_3866_PKU_WHXB202405016
crossref_primary_10_1039_D4DT00628C
crossref_primary_10_1002_adsu_202200344
crossref_primary_10_1039_D3NR02263C
crossref_primary_10_1016_j_jece_2022_109056
crossref_primary_10_1016_j_apsusc_2024_160205
crossref_primary_10_1007_s40843_023_2760_1
crossref_primary_10_1016_j_apcatb_2024_124656
crossref_primary_10_1002_anie_202213927
crossref_primary_10_1038_s41598_022_20689_4
crossref_primary_10_1016_j_nanoen_2023_108666
crossref_primary_10_34133_research_0347
crossref_primary_10_1021_acsestengg_3c00249
crossref_primary_10_1021_acsomega_4c05327
Cites_doi 10.1039/C9CS00102F
10.1063/1.1636817
10.1016/j.apcatb.2018.02.042
10.1038/s41467-019-10634-x
10.1021/acssuschemeng.6b02351
10.1021/la802678y
10.1021/ja042758e
10.1038/nmat3004
10.1016/j.physrep.2017.01.003
10.1016/j.mser.2017.11.001
10.1021/nl902711n
10.1002/ange.201203585
10.1073/pnas.1609769113
10.1126/science.aac5443
10.1038/nphoton.2016.75
10.1021/acssuschemeng.6b01852
10.1002/adfm.201800136
10.1063/1.2712508
10.1039/c2cy90039d
10.1002/lpor.200900055
10.1126/science.aba9168
10.1002/adfm.201702295
10.1016/j.cej.2020.125390
10.1021/acs.chemrev.5b00482
10.1021/acs.chemrev.8b00288
10.1038/nmat1734
10.1016/j.jmmm.2005.07.022
10.1016/j.apcatb.2016.08.049
10.1021/ac2007762
10.1016/j.mattod.2013.09.003
10.1002/adma.201400203
10.1016/S1872-2067(14)60075-9
10.1021/jacs.8b00174
10.3390/ijerph7052337
10.1007/s00339-018-1830-z
10.1016/j.apcatb.2016.05.074
10.1007/s40820-017-0176-y
10.1021/acs.nanolett.6b01171
10.1021/acsami.8b03713
10.1016/j.apcatb.2012.02.035
10.1021/acs.chemrev.7b00613
10.1103/PhysRevLett.92.145702
10.1021/acs.nanolett.8b02260
10.1016/j.jcat.2018.03.009
10.1002/smll.201301174
10.1021/acs.jpcc.8b00651
10.1021/am5077364
10.1021/cs400993w
10.1021/ja211363w
10.1016/S1872-2067(17)62849-3
10.1021/acscatal.5b02643
10.1039/D0RA01111H
10.1021/nl202597n
10.1002/smll.201100640
10.1021/acssuschemeng.8b04150
10.1364/OE.17.010155
10.1016/j.apcatb.2018.03.015
10.1021/acs.chemrev.9b00226
10.1016/j.cclet.2017.09.003
10.1021/ja502541z
10.1016/j.jmat.2020.10.010
10.1016/j.apcatb.2019.01.019
10.1364/OL.34.000839
10.1039/C6NR05954F
10.1039/C8NR04103B
10.1039/C7NR01966A
10.1016/j.nanoen.2018.06.083
10.1002/adma.201400087
10.1021/acscatal.6b02089
10.1002/adma.201802981
10.1007/0-387-37825-1
10.1038/nphoton.2013.238
10.1038/s41467-017-00055-z
10.1016/j.jphotochem.2017.04.014
10.1038/440295a
10.1155/2018/3250932
10.1016/j.apcatb.2016.11.001
10.1021/acssuschemeng.8b02710
10.1021/jp0601567
10.3390/nano9010001
10.1021/jp4065505
10.1021/nl901431t
10.1063/1.1702400
10.1016/j.apsusc.2016.09.093
10.1021/jacs.6b05393
10.1021/jp5014187
10.1039/C8NH00062J
10.1038/srep15288
10.1021/nl403510u
10.1039/C4TA04461D
10.1002/adma.201704528
10.1021/la5008704
10.1002/anie.201901987
10.1039/C6EE00383D
10.1021/acsnano.6b08010
10.3390/app8010064
10.1016/j.apsusc.2018.09.091
10.1002/cctc.201700512
10.1021/acsami.5b09994
10.1016/j.renene.2021.09.050
10.1038/srep06415
10.1016/j.apenergy.2012.10.029
10.1021/nl0515753
10.1016/j.jcat.2016.10.005
10.1002/adma.201802227
10.1016/j.apcatb.2016.11.057
10.1021/acs.nanolett.5b05149
10.3390/nano10071411
10.1016/j.jcat.2017.08.007
10.1016/j.apcatb.2017.09.046
10.1039/C7TA00818J
10.1038/s41563-018-0033-5
10.1021/acs.chemrev.8b00400
10.1016/j.apsusc.2017.07.139
10.1039/C7NH00095B
10.1021/nl070648a
10.1016/j.jcis.2016.09.018
10.1021/acs.nanolett.5b03029
10.1016/j.apsusc.2015.12.238
10.1021/acscatal.9b01582
10.1021/acs.nanolett.5b00372
10.1002/cssc.201800249
10.3390/nano8121003
10.1016/j.jcou.2020.101373
10.1021/acsami.6b11413
10.1002/adom.201600428
10.1021/acssensors.5b00275
10.1021/nl080453i
10.1016/j.cej.2018.08.131
10.1016/j.apcatb.2016.04.053
10.1039/C7CP04359G
10.1038/srep06246
10.1016/j.apcatb.2017.11.079
10.1021/jp503323u
10.1016/j.apcatb.2017.01.051
10.1021/acsnano.6b04004
10.1039/C7NR05149B
10.1016/j.jcat.2017.10.004
10.1126/science.aat6967
10.1103/PhysRevLett.98.153905
10.1016/j.materresbull.2015.03.064
10.1038/s41563-019-0325-4
10.1088/1361-6463/aa73f6
10.1016/j.jcat.2017.04.025
10.1039/C8CS00542G
10.1021/jp405773p
10.1002/smll.201800762
10.1039/c3cs60043b
10.1021/acs.nanolett.6b03582
10.1021/acs.nanolett.8b00955
10.1038/nnano.2017.171x
10.1038/nchem.1032
10.1039/C7CP07762A
10.1016/j.mcat.2017.01.008
10.1016/j.jcis.2017.11.011
10.1039/C5NR01592H
10.1364/OME.1.001090
10.1021/ja2016284
10.1016/j.jpowsour.2014.12.108
10.1016/j.apcatb.2015.03.045
10.1021/nl062061m
10.1016/j.apcatb.2018.09.032
10.1021/acs.chemrev.5b00370
10.1016/j.ijhydene.2014.10.122
10.1002/anie.201309482
10.1016/S0038-1101(03)00316-2
10.1002/adfm.201804055
10.1002/adma.202000014
10.1016/j.apcatb.2017.11.076
10.1002/anie.201210277
10.1002/adfm.201504217
10.1021/ph500118y
10.1039/C3CS60265F
10.1038/nphoton.2015.142
10.1021/nl0499239
10.1016/j.cej.2017.05.171
10.1039/C6NR01295G
10.1016/j.jallcom.2018.07.297
10.1002/adem.201700781
10.1088/0957-4484/15/12/036
10.1021/jp002435e
10.1016/j.jmst.2020.02.062
10.1364/OE.27.00A197
10.1021/acsnano.8b08445
10.1039/C1CS15172J
10.1002/aenm.201701503
10.1063/1.4818263
10.1016/j.apcatb.2018.10.020
10.1016/j.apcata.2015.11.001
10.1364/OME.6.002434
10.1021/acsnano.6b01846
10.1007/s00339-018-1600-y
10.1021/ja502890c
10.1063/1.4864395
10.1063/1.323539
10.1021/acsnano.5b01541
10.1016/j.mineng.2003.08.003
10.1088/1361-6528/aa8505
10.1007/s12274-011-0103-3
10.1002/adma.201505187
10.1063/1.2358860
10.3390/catal8100426
10.1021/acs.iecr.7b02497
10.1126/science.1200488
10.1039/C6TA09169E
10.1021/ja903321z
10.1007/s12274-020-3031-2
10.1016/j.ijhydene.2017.07.144
10.1021/ph500096q
10.1088/0957-4484/26/32/322001
10.1039/C6EE02265K
10.1021/jp104366r
10.1016/j.apcatb.2017.02.080
10.1021/acs.chemrev.7b00252
10.1016/j.apcatb.2017.01.047
10.1039/C7CS00043J
10.1021/ja805655b
10.1002/adma.201802551
10.1016/j.ensm.2015.12.003
10.1021/nl0722370
10.1088/0268-1242/14/7/305
10.1002/ppsc.201600357
10.1021/acsnano.9b02924
10.1038/nmat3151
10.1021/jacs.8b11544
10.1016/j.mattod.2018.04.008
10.1002/andp.19003060312
10.1364/OME.7.002880
10.1021/nl202255g
10.1016/j.materresbull.2013.07.047
10.1016/j.apcatb.2018.10.019
10.1016/j.chempr.2020.06.010
10.1021/cs501038q
10.1002/adom.201500360
10.1016/j.apcatb.2017.03.024
10.1016/j.seppur.2017.11.011
10.1016/j.rser.2014.09.002
10.1039/C7QM00569E
10.1021/nl303940z
10.1016/j.apcatb.2017.07.002
10.1039/D0CP00672F
10.1039/C6CS00094K
10.1002/adma.201601694
10.1039/c3cs60176e
10.1021/jp3065882
10.1039/C8NR05322G
10.1039/C4CC02724H
10.1088/0022-3727/48/18/184007
10.1063/1.1477935
10.1016/j.trac.2015.08.013
10.1021/jp053863t
10.1016/j.apcatb.2018.11.011
10.1016/j.apcatb.2018.10.055
10.1039/C8CS00607E
10.1021/ja300901e
10.1166/jnn.2017.12658
10.1039/C4CP06045H
10.1021/acs.nanolett.6b05420
10.1002/cphc.201700563
10.1021/acs.accounts.9b00157
10.1021/ja305603t
10.1016/j.apcatb.2017.01.009
10.1016/j.ijhydene.2017.04.234
10.1021/acs.jpcc.7b01934
10.1039/C8CY01386A
10.1016/j.cej.2012.08.021
10.1016/j.materresbull.2011.01.014
10.1007/s12274-018-2028-6
10.1016/j.apcatb.2018.03.036
10.1039/C7NR09362D
10.1063/1.3533260
10.1039/C8CC04211J
10.7567/JJAP.57.07MA04
10.1021/acs.jpcc.6b01188
10.1039/c3cs60341e
10.1021/acs.bioconjchem.6b00156
10.1021/ja5044787
10.1021/acs.jpcc.5b09294
10.1016/j.jcou.2016.02.008
10.1021/nn901144d
10.1016/S0038-1101(97)00168-8
10.1016/j.jcou.2016.10.009
10.1039/c3nr02001k
10.1063/1.2760174
10.1088/1361-6463/aadbd2
10.1088/1361-6641/aa972c
10.1039/c3cp44651d
10.1063/1.1630840
10.1038/nmat3454
10.1063/1.4958804
10.1021/nl501541s
10.1038/s41467-021-25007-6
10.1016/j.gexplo.2014.08.003
10.1016/j.molcata.2016.07.030
10.1039/D0CY01162B
10.1021/am403327g
10.1016/j.jallcom.2018.04.336
10.1088/0370-1328/90/4/325
10.1002/adfm.201202061
10.1002/adfm.201304064
10.1002/slct.201802880
10.1021/ja9064415
10.1016/j.apcatb.2016.06.050
10.1016/j.apcatb.2018.06.018
10.1021/jacs.8b04711
10.1039/C6NR00926C
10.1039/C6CC06800F
10.1021/am506030p
10.1021/cm5044792
10.1039/C4CP02201G
10.1039/FT9918703881
10.1016/j.apcatb.2018.06.028
10.1016/j.nantod.2014.12.004
10.1073/pnas.1121517109
10.1039/C6PP00116E
10.1063/1.2077834
10.1021/nn5072254
10.1002/anie.201406911
10.1038/238037a0
10.1002/ppsc.201500059
10.1039/C6EN00341A
10.1021/acs.chemrev.6b00211
10.1021/ja0733639
10.1103/PhysRevB.9.5056
10.1126/science.1231631
10.1021/acsami.8b12183
10.1021/acssuschemeng.0c05595
10.1039/c2dt31528a
10.1038/ncomms10545
10.1073/pnas.2232479100
10.1021/acs.langmuir.7b01052
10.1016/j.fuproc.2018.09.014
10.1039/C4CC02553A
10.1088/0305-4608/4/11/032
10.1016/j.cej.2020.126068
10.1016/j.jallcom.2015.08.119
10.1021/acs.chemrev.7b00430
10.1016/j.nanoen.2018.02.052
10.1039/C5NJ03307A
10.1515/nanoph-2018-0073
10.1039/C3CS60425J
10.1016/j.apcatb.2013.06.009
10.1021/acsami.8b17194
10.1016/j.mattod.2014.10.039
10.1021/acsnano.6b02911
10.1039/C3CP53820F
10.1021/jacs.8b08720
10.1126/sciadv.aao4710
10.1039/C7TA06625B
10.1088/0022-3727/48/18/184001
10.1103/PhysRevB.11.3617
10.1016/j.ijhydene.2018.10.240
10.1039/c2cp23461k
10.1002/smll.201600382
10.1016/j.jhazmat.2018.08.099
10.1007/s12274-018-2178-6
10.1021/ph4000339
10.1039/C8CY00674A
10.1016/j.jpowsour.2017.03.089
10.1002/adma.201807660
10.1016/j.jcat.2005.10.019
10.1039/C5CS00838G
10.1021/jacs.8b08937
10.1002/aenm.201903802
10.1016/j.carbon.2018.11.029
10.1002/chem.201501968
10.1021/acs.nanolett.8b04950
10.1016/j.electacta.2017.10.030
10.1016/j.apcatb.2017.12.057
10.1016/j.apsusc.2016.08.002
10.1021/acscatal.9b03971
10.1021/acs.jpcc.6b08519
10.1016/j.apsusc.2016.07.028
10.1038/s41467-020-18350-7
10.1021/acsnano.8b03617
10.1016/j.apcatb.2017.07.030
10.1016/j.snb.2016.03.068
10.1039/C6NR02055K
10.1039/C6RA27594J
10.1016/j.cplett.2016.12.008
10.1016/j.apcatb.2019.02.012
10.1021/ja2089876
10.1016/j.apcatb.2017.05.040
10.1021/acsami.6b03728
10.1021/acssuschemeng.7b03032
10.1021/acs.nanolett.7b04776
10.1039/C3CP43856B
10.1016/j.jcat.2018.11.003
10.1021/acs.est.5b03758
10.1016/j.cej.2020.124558
10.1021/nl303517v
10.1007/s10853-018-2624-6
10.1002/adma.201500033
10.1063/1.2830005
10.1021/acssuschemeng.5b01416
10.1039/C5CS00769K
10.1039/C8DT04408B
10.1039/C9NR00901A
10.1039/C8CY01466C
10.1016/S1872-2067(20)63637-3
10.1021/nn405495q
10.1016/j.apsusc.2016.07.104
10.1021/jp5114812
10.1039/c3ta14493c
10.1088/1361-6463/aadca2
10.1039/C2CS35355E
10.1021/nn403954p
10.1016/j.nanoen.2016.11.026
10.1002/anie.201301669
10.1021/la702876h
10.1021/acsphotonics.8b00214
10.1039/C8EE02096E
10.1007/s12596-014-0215-8
ContentType Journal Article
Copyright 2022 American Chemical Society
Copyright American Chemical Society Jun 8, 2022
Copyright_xml – notice: 2022 American Chemical Society
– notice: Copyright American Chemical Society Jun 8, 2022
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
7S9
L.6
DOI 10.1021/acs.chemrev.1c00473
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Materials Research Database
AGRICOLA
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-6890
EndPage 10537
ExternalDocumentID 35438967
10_1021_acs_chemrev_1c00473
b60185133
Genre Journal Article
Review
GroupedDBID -
02
29B
4.4
55A
5GY
5RE
5VS
6J9
7~N
85S
AABXI
ABFLS
ABFRP
ABMVS
ABPPZ
ABPTK
ABUCX
ACGFO
ACGFS
ACGOD
ACIWK
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
AFXLT
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
D0L
DC
DU5
DZ
EBS
ED
F5P
GGK
GNL
IH9
IHE
JG
K2
LG6
P2P
PQEST
PQQKQ
ROL
RWL
TAE
TN5
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XSW
YZZ
---
-DZ
-~X
.DC
.K2
53G
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AGXLV
CITATION
CUPRZ
ED~
JG~
~02
NPM
7SR
8BQ
8FD
JG9
7X8
7S9
L.6
ID FETCH-LOGICAL-a472t-48e2d08fbda2fcada2588cc6410bb5cfc36d92f8af30d91b34d51383c6a15fd03
IEDL.DBID ACS
ISSN 0009-2665
1520-6890
IngestDate Fri Jul 11 02:40:51 EDT 2025
Thu Jul 10 18:23:13 EDT 2025
Mon Jun 30 10:36:58 EDT 2025
Thu Apr 03 07:03:35 EDT 2025
Tue Jul 01 03:16:22 EDT 2025
Thu Apr 24 22:51:18 EDT 2025
Fri Jun 10 11:01:41 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a472t-48e2d08fbda2fcada2588cc6410bb5cfc36d92f8af30d91b34d51383c6a15fd03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-0612-8633
0000-0002-1178-5611
PMID 35438967
PQID 2675696410
PQPubID 45407
PageCount 54
ParticipantIDs proquest_miscellaneous_2718247304
proquest_miscellaneous_2652865284
proquest_journals_2675696410
pubmed_primary_35438967
crossref_citationtrail_10_1021_acs_chemrev_1c00473
crossref_primary_10_1021_acs_chemrev_1c00473
acs_journals_10_1021_acs_chemrev_1c00473
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-08
PublicationDateYYYYMMDD 2022-06-08
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-08
  day: 08
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Easton
PublicationTitle Chemical reviews
PublicationTitleAlternate Chem. Rev
PublicationYear 2022
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref3/cit3
ref332/cit332
ref406/cit406
ref402/cit402
ref185/cit185
ref23/cit23
ref115/cit115
ref259/cit259
ref181/cit181
ref111/cit111
ref255/cit255
ref399/cit399
ref329/cit329
ref74/cit74
ref189/cit189
ref119/cit119
ref10/cit10
ref93/cit93
ref251/cit251
ref325/cit325
ref42/cit42
ref321/cit321
ref178/cit178
ref122/cit122
ref248/cit248
ref61/cit61
ref126/cit126
ref240/cit240
ref384/cit384
ref137/cit137
ref380/cit380
ref310/cit310
ref318/cit318
ref174/cit174
ref314/cit314
ref170/cit170
ref244/cit244
ref388/cit388
ref80/cit80
ref133/cit133
ref207/cit207
ref28/cit28
ref203/cit203
ref233/cit233
ref148/cit148
ref307/cit307
ref391/cit391
ref55/cit55
ref144/cit144
ref303/cit303
ref218/cit218
ref395/cit395
ref167/cit167
ref163/cit163
ref237/cit237
ref66/cit66
ref87/cit87
ref140/cit140
ref214/cit214
ref98/cit98
ref210/cit210
ref369/cit369
ref222/cit222
ref366/cit366
ref63/cit63
ref295/cit295
ref155/cit155
ref229/cit229
ref156/cit156
ref85/cit85
ref34/cit34
ref221/cit221
ref292/cit292
ref361/cit361
ref17/cit17
ref219/cit219
ref82/cit82
ref232/cit232
ref306/cit306
ref377/cit377
ref145/cit145
ref21/cit21
ref166/cit166
ref350/cit350
ref284/cit284
ref358/cit358
ref211/cit211
ref36/cit36
ref79/cit79
ref243/cit243
ref317/cit317
ref270/cit270
ref200/cit200
ref344/cit344
ref418/cit418
ref57/cit57
ref413/cit413
ref278/cit278
ref134/cit134
ref208/cit208
ref40/cit40
ref273/cit273
ref347/cit347
ref320/cit320
ref289/cit289
ref15/cit15
ref180/cit180
ref58/cit58
ref104/cit104
ref262/cit262
ref421/cit421
ref177/cit177
ref336/cit336
ref123/cit123
ref196/cit196
ref281/cit281
ref355/cit355
ref7/cit7
ref45/cit45
ref405/cit405
ref401/cit401
ref52/cit52
ref258/cit258
ref186/cit186
ref116/cit116
ref110/cit110
ref182/cit182
ref328/cit328
ref2/cit2
ref112/cit112
ref390/cit390
ref89/cit89
ref412/cit412
ref96/cit96
ref394/cit394
ref191/cit191
ref339/cit339
ref13/cit13
ref193/cit193
ref407/cit407
ref105/cit105
ref335/cit335
ref263/cit263
ref197/cit197
ref38/cit38
ref90/cit90
ref269/cit269
ref383/cit383
ref6/cit6
ref171/cit171
ref97/cit97
ref101/cit101
ref319/cit319
ref241/cit241
ref39/cit39
ref346/cit346
ref416/cit416
ref132/cit132
ref91/cit91
ref372/cit372
ref252/cit252
ref12/cit12
ref121/cit121
ref175/cit175
ref357/cit357
ref44/cit44
ref9/cit9
ref225/cit225
ref296/cit296
ref226/cit226
ref154/cit154
ref367/cit367
ref159/cit159
ref290/cit290
ref220/cit220
ref291/cit291
ref88/cit88
ref362/cit362
ref160/cit160
ref143/cit143
ref302/cit302
ref373/cit373
ref53/cit53
ref149/cit149
ref308/cit308
ref46/cit46
ref236/cit236
ref49/cit49
ref356/cit356
ref215/cit215
ref280/cit280
ref50/cit50
ref313/cit313
ref209/cit209
ref138/cit138
ref100/cit100
ref389/cit389
ref247/cit247
ref242/cit242
ref417/cit417
ref340/cit340
ref51/cit51
ref94/cit94
ref274/cit274
ref204/cit204
ref378/cit378
ref231/cit231
ref165/cit165
ref324/cit324
ref95/cit95
ref192/cit192
ref351/cit351
ref4/cit4
ref47/cit47
ref127/cit127
ref285/cit285
ref99/cit99
ref81/cit81
ref330/cit330
ref404/cit404
ref16/cit16
ref400/cit400
ref187/cit187
ref327/cit327
ref113/cit113
ref183/cit183
ref257/cit257
ref117/cit117
ref48/cit48
ref35/cit35
ref253/cit253
ref323/cit323
ref120/cit120
ref176/cit176
ref67/cit67
ref128/cit128
ref124/cit124
ref54/cit54
ref11/cit11
ref102/cit102
ref29/cit29
ref86/cit86
ref271/cit271
ref345/cit345
ref419/cit419
ref5/cit5
ref341/cit341
ref415/cit415
ref43/cit43
ref279/cit279
ref275/cit275
ref349/cit349
ref411/cit411
ref264/cit264
ref338/cit338
ref22/cit22
ref260/cit260
ref334/cit334
ref408/cit408
ref106/cit106
ref190/cit190
ref198/cit198
ref194/cit194
ref268/cit268
ref153/cit153
ref297/cit297
ref227/cit227
ref150/cit150
ref294/cit294
ref368/cit368
ref224/cit224
ref56/cit56
ref158/cit158
ref8/cit8
ref59/cit59
ref363/cit363
ref37/cit37
ref360/cit360
ref60/cit60
ref147/cit147
ref230/cit230
ref304/cit304
ref238/cit238
ref379/cit379
ref164/cit164
ref352/cit352
ref213/cit213
ref286/cit286
ref371/cit371
ref78/cit78
ref382/cit382
ref312/cit312
ref83/cit83
ref139/cit139
ref172/cit172
ref246/cit246
ref385/cit385
ref14/cit14
ref169/cit169
ref131/cit131
ref205/cit205
ref161/cit161
ref142/cit142
ref216/cit216
ref301/cit301
ref374/cit374
ref235/cit235
ref309/cit309
ref62/cit62
ref393/cit393
ref41/cit41
ref84/cit84
ref1/cit1
ref331/cit331
ref333/cit333
ref403/cit403
ref184/cit184
ref114/cit114
ref254/cit254
ref398/cit398
ref256/cit256
ref77/cit77
ref71/cit71
ref188/cit188
ref20/cit20
ref118/cit118
ref19/cit19
ref410/cit410
ref396/cit396
ref392/cit392
ref107/cit107
ref337/cit337
ref265/cit265
ref109/cit109
ref261/cit261
ref409/cit409
ref199/cit199
ref267/cit267
ref195/cit195
ref64/cit64
ref311/cit311
ref18/cit18
ref136/cit136
ref65/cit65
ref245/cit245
ref315/cit315
ref76/cit76
ref387/cit387
ref32/cit32
ref272/cit272
ref202/cit202
ref168/cit168
ref342/cit342
ref206/cit206
ref276/cit276
ref376/cit376
ref287/cit287
ref326/cit326
ref322/cit322
ref179/cit179
ref33/cit33
ref249/cit249
ref283/cit283
ref129/cit129
ref353/cit353
ref70/cit70
ref125/cit125
ref152/cit152
ref298/cit298
ref27/cit27
ref228/cit228
ref299/cit299
ref293/cit293
ref223/cit223
ref151/cit151
ref157/cit157
ref31/cit31
ref364/cit364
ref365/cit365
ref234/cit234
ref217/cit217
ref288/cit288
ref375/cit375
ref162/cit162
ref420/cit420
ref75/cit75
ref24/cit24
ref141/cit141
ref300/cit300
ref354/cit354
ref282/cit282
ref381/cit381
ref25/cit25
ref173/cit173
ref103/cit103
ref72/cit72
ref386/cit386
ref316/cit316
Maier S. A. (ref92/cit92) 2007
ref343/cit343
ref201/cit201
ref414/cit414
ref277/cit277
ref135/cit135
ref68/cit68
ref130/cit130
ref348/cit348
ref146/cit146
ref305/cit305
ref26/cit26
ref73/cit73
ref69/cit69
ref239/cit239
ref397/cit397
ref250/cit250
ref108/cit108
ref266/cit266
ref30/cit30
ref212/cit212
ref370/cit370
ref359/cit359
References_xml – ident: ref220/cit220
  doi: 10.1039/C9CS00102F
– ident: ref383/cit383
  doi: 10.1063/1.1636817
– ident: ref35/cit35
  doi: 10.1016/j.apcatb.2018.02.042
– ident: ref314/cit314
  doi: 10.1038/s41467-019-10634-x
– ident: ref318/cit318
  doi: 10.1021/acssuschemeng.6b02351
– ident: ref410/cit410
  doi: 10.1021/la802678y
– ident: ref227/cit227
  doi: 10.1021/ja042758e
– ident: ref96/cit96
  doi: 10.1038/nmat3004
– ident: ref89/cit89
  doi: 10.1016/j.physrep.2017.01.003
– ident: ref109/cit109
  doi: 10.1016/j.mser.2017.11.001
– ident: ref208/cit208
  doi: 10.1021/nl902711n
– ident: ref396/cit396
  doi: 10.1002/ange.201203585
– ident: ref165/cit165
  doi: 10.1073/pnas.1609769113
– ident: ref184/cit184
  doi: 10.1126/science.aac5443
– ident: ref205/cit205
  doi: 10.1038/nphoton.2016.75
– ident: ref289/cit289
  doi: 10.1021/acssuschemeng.6b01852
– ident: ref19/cit19
  doi: 10.1002/adfm.201800136
– ident: ref146/cit146
  doi: 10.1063/1.2712508
– ident: ref365/cit365
  doi: 10.1039/c2cy90039d
– ident: ref357/cit357
  doi: 10.1002/lpor.200900055
– ident: ref375/cit375
  doi: 10.1126/science.aba9168
– ident: ref418/cit418
  doi: 10.1002/adfm.201702295
– ident: ref185/cit185
  doi: 10.1016/j.cej.2020.125390
– ident: ref229/cit229
  doi: 10.1021/acs.chemrev.5b00482
– ident: ref249/cit249
  doi: 10.1021/acs.chemrev.8b00288
– ident: ref246/cit246
  doi: 10.1038/nmat1734
– ident: ref374/cit374
  doi: 10.1016/j.jmmm.2005.07.022
– ident: ref278/cit278
  doi: 10.1016/j.apcatb.2016.08.049
– ident: ref64/cit64
  doi: 10.1021/ac2007762
– ident: ref94/cit94
  doi: 10.1016/j.mattod.2013.09.003
– ident: ref138/cit138
  doi: 10.1002/adma.201400203
– ident: ref305/cit305
  doi: 10.1016/S1872-2067(14)60075-9
– ident: ref353/cit353
  doi: 10.1021/jacs.8b00174
– ident: ref408/cit408
  doi: 10.3390/ijerph7052337
– ident: ref297/cit297
  doi: 10.1007/s00339-018-1830-z
– ident: ref32/cit32
  doi: 10.1016/j.apcatb.2016.05.074
– ident: ref254/cit254
  doi: 10.1007/s40820-017-0176-y
– ident: ref106/cit106
  doi: 10.1021/acs.nanolett.6b01171
– ident: ref328/cit328
  doi: 10.1021/acsami.8b03713
– ident: ref235/cit235
  doi: 10.1016/j.apcatb.2012.02.035
– ident: ref83/cit83
  doi: 10.1021/acs.chemrev.7b00613
– ident: ref415/cit415
  doi: 10.1103/PhysRevLett.92.145702
– ident: ref405/cit405
  doi: 10.1021/acs.nanolett.8b02260
– ident: ref41/cit41
  doi: 10.1016/j.jcat.2018.03.009
– ident: ref71/cit71
  doi: 10.1002/smll.201301174
– ident: ref134/cit134
  doi: 10.1021/acs.jpcc.8b00651
– ident: ref304/cit304
  doi: 10.1021/am5077364
– ident: ref49/cit49
  doi: 10.1021/cs400993w
– ident: ref421/cit421
  doi: 10.1021/ja211363w
– ident: ref294/cit294
  doi: 10.1016/S1872-2067(17)62849-3
– ident: ref194/cit194
  doi: 10.1021/acscatal.5b02643
– ident: ref397/cit397
  doi: 10.1039/D0RA01111H
– ident: ref105/cit105
  doi: 10.1021/nl202597n
– ident: ref57/cit57
  doi: 10.1002/smll.201100640
– ident: ref40/cit40
  doi: 10.1021/acssuschemeng.8b04150
– ident: ref349/cit349
  doi: 10.1364/OE.17.010155
– ident: ref298/cit298
  doi: 10.1016/j.apcatb.2018.03.015
– ident: ref1/cit1
  doi: 10.1021/acs.chemrev.9b00226
– ident: ref87/cit87
  doi: 10.1016/j.cclet.2017.09.003
– ident: ref107/cit107
  doi: 10.1021/ja502541z
– ident: ref36/cit36
  doi: 10.1016/j.jmat.2020.10.010
– ident: ref313/cit313
  doi: 10.1016/j.apcatb.2019.01.019
– ident: ref350/cit350
  doi: 10.1364/OL.34.000839
– ident: ref355/cit355
  doi: 10.1039/C6NR05954F
– ident: ref67/cit67
  doi: 10.1039/C8NR04103B
– ident: ref99/cit99
  doi: 10.1039/C7NR01966A
– ident: ref155/cit155
  doi: 10.1016/j.nanoen.2018.06.083
– ident: ref136/cit136
  doi: 10.1002/adma.201400087
– ident: ref13/cit13
  doi: 10.1021/acscatal.6b02089
– ident: ref321/cit321
  doi: 10.1002/adma.201802981
– volume-title: Fundamentals and Appliations of Plasmonics
  year: 2007
  ident: ref92/cit92
  doi: 10.1007/0-387-37825-1
– ident: ref137/cit137
  doi: 10.1038/nphoton.2013.238
– ident: ref196/cit196
  doi: 10.1038/s41467-017-00055-z
– ident: ref237/cit237
  doi: 10.1016/j.jphotochem.2017.04.014
– ident: ref4/cit4
  doi: 10.1038/440295a
– ident: ref311/cit311
  doi: 10.1155/2018/3250932
– ident: ref44/cit44
  doi: 10.1016/j.apcatb.2016.11.001
– ident: ref20/cit20
  doi: 10.1021/acssuschemeng.8b02710
– ident: ref148/cit148
  doi: 10.1021/jp0601567
– ident: ref168/cit168
  doi: 10.3390/nano9010001
– ident: ref144/cit144
  doi: 10.1021/jp4065505
– ident: ref60/cit60
  doi: 10.1021/nl901431t
– ident: ref180/cit180
  doi: 10.1063/1.1702400
– ident: ref26/cit26
  doi: 10.1016/j.apsusc.2016.09.093
– ident: ref380/cit380
  doi: 10.1021/jacs.6b05393
– ident: ref147/cit147
  doi: 10.1021/jp5014187
– ident: ref8/cit8
  doi: 10.1039/C8NH00062J
– ident: ref59/cit59
  doi: 10.1038/srep15288
– ident: ref390/cit390
  doi: 10.1021/nl403510u
– ident: ref21/cit21
  doi: 10.1039/C4TA04461D
– ident: ref81/cit81
  doi: 10.1002/adma.201704528
– ident: ref157/cit157
  doi: 10.1021/la5008704
– ident: ref300/cit300
  doi: 10.1002/anie.201901987
– ident: ref317/cit317
  doi: 10.1039/C6EE00383D
– ident: ref192/cit192
  doi: 10.1021/acsnano.6b08010
– ident: ref131/cit131
  doi: 10.3390/app8010064
– ident: ref206/cit206
  doi: 10.1016/j.apsusc.2018.09.091
– ident: ref39/cit39
  doi: 10.1002/cctc.201700512
– ident: ref171/cit171
  doi: 10.1021/acsami.5b09994
– ident: ref420/cit420
  doi: 10.1016/j.renene.2021.09.050
– ident: ref359/cit359
  doi: 10.1038/srep06415
– ident: ref343/cit343
  doi: 10.1016/j.apenergy.2012.10.029
– ident: ref158/cit158
  doi: 10.1021/nl0515753
– ident: ref277/cit277
  doi: 10.1016/j.jcat.2016.10.005
– ident: ref201/cit201
  doi: 10.1002/adma.201802227
– ident: ref332/cit332
  doi: 10.1016/j.apcatb.2016.11.057
– ident: ref122/cit122
  doi: 10.1021/acs.nanolett.5b05149
– ident: ref117/cit117
  doi: 10.3390/nano10071411
– ident: ref334/cit334
  doi: 10.1016/j.jcat.2017.08.007
– ident: ref74/cit74
  doi: 10.1016/j.apcatb.2017.09.046
– ident: ref58/cit58
  doi: 10.1039/C7TA00818J
– ident: ref259/cit259
  doi: 10.1038/s41563-018-0033-5
– ident: ref18/cit18
  doi: 10.1021/acs.chemrev.8b00400
– ident: ref284/cit284
  doi: 10.1016/j.apsusc.2017.07.139
– ident: ref386/cit386
  doi: 10.1039/C7NH00095B
– ident: ref100/cit100
  doi: 10.1021/nl070648a
– ident: ref268/cit268
  doi: 10.1016/j.jcis.2016.09.018
– ident: ref141/cit141
  doi: 10.1021/acs.nanolett.5b03029
– ident: ref244/cit244
  doi: 10.1016/j.apsusc.2015.12.238
– ident: ref393/cit393
  doi: 10.1021/acscatal.9b01582
– ident: ref123/cit123
  doi: 10.1021/acs.nanolett.5b00372
– ident: ref187/cit187
  doi: 10.1002/cssc.201800249
– ident: ref400/cit400
  doi: 10.3390/nano8121003
– ident: ref262/cit262
  doi: 10.1016/j.jcou.2020.101373
– ident: ref130/cit130
  doi: 10.1021/acsami.6b11413
– ident: ref200/cit200
  doi: 10.1002/adom.201600428
– ident: ref63/cit63
  doi: 10.1021/acssensors.5b00275
– ident: ref101/cit101
  doi: 10.1021/nl080453i
– ident: ref398/cit398
  doi: 10.1016/j.cej.2018.08.131
– ident: ref238/cit238
  doi: 10.1016/j.apcatb.2016.04.053
– ident: ref224/cit224
  doi: 10.1039/C7CP04359G
– ident: ref389/cit389
  doi: 10.1038/srep06246
– ident: ref172/cit172
  doi: 10.1016/j.apcatb.2017.11.079
– ident: ref112/cit112
  doi: 10.1021/jp503323u
– ident: ref232/cit232
  doi: 10.1016/j.apcatb.2017.01.051
– ident: ref188/cit188
  doi: 10.1021/acsnano.6b04004
– ident: ref207/cit207
  doi: 10.1039/C7NR05149B
– ident: ref279/cit279
  doi: 10.1016/j.jcat.2017.10.004
– ident: ref211/cit211
  doi: 10.1126/science.aat6967
– ident: ref149/cit149
  doi: 10.1002/smll.201100640
– ident: ref413/cit413
  doi: 10.1103/PhysRevLett.98.153905
– ident: ref54/cit54
  doi: 10.1016/j.materresbull.2015.03.064
– ident: ref373/cit373
  doi: 10.1038/s41563-019-0325-4
– ident: ref91/cit91
  doi: 10.1088/1361-6463/aa73f6
– ident: ref154/cit154
  doi: 10.1016/j.jcat.2017.04.025
– ident: ref219/cit219
  doi: 10.1039/C8CS00542G
– ident: ref98/cit98
  doi: 10.1021/jp405773p
– ident: ref264/cit264
  doi: 10.1002/smll.201800762
– ident: ref215/cit215
  doi: 10.1039/c3cs60043b
– ident: ref164/cit164
  doi: 10.1021/acs.nanolett.6b03582
– ident: ref52/cit52
  doi: 10.1021/acs.nanolett.8b00955
– ident: ref5/cit5
  doi: 10.1038/nnano.2017.171x
– ident: ref387/cit387
  doi: 10.1038/nchem.1032
– ident: ref79/cit79
  doi: 10.1039/C7CP07762A
– ident: ref247/cit247
  doi: 10.1016/j.mcat.2017.01.008
– ident: ref273/cit273
  doi: 10.1016/j.jcis.2017.11.011
– ident: ref163/cit163
  doi: 10.1039/C5NR01592H
– ident: ref351/cit351
  doi: 10.1364/OME.1.001090
– ident: ref354/cit354
  doi: 10.1021/ja2016284
– ident: ref394/cit394
  doi: 10.1016/j.jpowsour.2014.12.108
– ident: ref29/cit29
  doi: 10.1016/j.apcatb.2015.03.045
– ident: ref204/cit204
  doi: 10.1021/nl062061m
– ident: ref283/cit283
  doi: 10.1016/j.apcatb.2018.09.032
– ident: ref10/cit10
  doi: 10.1021/acs.chemrev.5b00370
– ident: ref80/cit80
  doi: 10.1016/j.ijhydene.2014.10.122
– ident: ref190/cit190
  doi: 10.1002/anie.201309482
– ident: ref182/cit182
  doi: 10.1016/S0038-1101(03)00316-2
– ident: ref253/cit253
  doi: 10.1002/adfm.201804055
– ident: ref378/cit378
  doi: 10.1002/adma.202000014
– ident: ref252/cit252
  doi: 10.1016/j.apcatb.2017.11.076
– ident: ref75/cit75
  doi: 10.1002/anie.201210277
– ident: ref55/cit55
  doi: 10.1002/adfm.201504217
– ident: ref347/cit347
  doi: 10.1021/ph500118y
– ident: ref82/cit82
  doi: 10.1039/C3CS60265F
– ident: ref198/cit198
  doi: 10.1038/nphoton.2015.142
– ident: ref124/cit124
  doi: 10.1021/nl0499239
– ident: ref310/cit310
  doi: 10.1016/j.cej.2017.05.171
– ident: ref385/cit385
  doi: 10.1039/C6NR01295G
– ident: ref230/cit230
  doi: 10.1016/j.jallcom.2018.07.297
– ident: ref406/cit406
  doi: 10.1002/adem.201700781
– ident: ref307/cit307
  doi: 10.1039/C8NH00062J
– ident: ref160/cit160
  doi: 10.1088/0957-4484/15/12/036
– ident: ref119/cit119
  doi: 10.1021/jp002435e
– ident: ref38/cit38
  doi: 10.1016/j.jmst.2020.02.062
– ident: ref370/cit370
  doi: 10.1364/OE.27.00A197
– ident: ref151/cit151
  doi: 10.1021/acsnano.8b08445
– ident: ref45/cit45
  doi: 10.1039/C1CS15172J
– ident: ref319/cit319
  doi: 10.1002/aenm.201701503
– ident: ref72/cit72
  doi: 10.1063/1.4818263
– ident: ref256/cit256
  doi: 10.1016/j.apcatb.2018.10.020
– ident: ref226/cit226
  doi: 10.1016/j.apcata.2015.11.001
– ident: ref121/cit121
  doi: 10.1364/OME.6.002434
– ident: ref193/cit193
  doi: 10.1021/acsnano.6b01846
– ident: ref358/cit358
  doi: 10.1007/s00339-018-1600-y
– ident: ref327/cit327
  doi: 10.1021/ja502890c
– ident: ref296/cit296
  doi: 10.1063/1.4864395
– ident: ref118/cit118
  doi: 10.1063/1.323539
– ident: ref53/cit53
  doi: 10.1021/acsnano.5b01541
– ident: ref62/cit62
  doi: 10.1016/j.mineng.2003.08.003
– ident: ref128/cit128
– ident: ref132/cit132
  doi: 10.1088/1361-6528/aa8505
– ident: ref272/cit272
  doi: 10.1007/s12274-011-0103-3
– ident: ref129/cit129
  doi: 10.1002/adma.201505187
– ident: ref371/cit371
  doi: 10.1063/1.2358860
– ident: ref288/cit288
  doi: 10.3390/catal8100426
– ident: ref275/cit275
  doi: 10.1021/acs.iecr.7b02497
– ident: ref344/cit344
  doi: 10.1126/science.1200488
– ident: ref125/cit125
  doi: 10.1039/C6TA09169E
– ident: ref416/cit416
  doi: 10.1021/ja903321z
– ident: ref174/cit174
  doi: 10.1007/s12274-020-3031-2
– ident: ref176/cit176
  doi: 10.1016/j.ijhydene.2017.07.144
– ident: ref341/cit341
  doi: 10.1021/ph500096q
– ident: ref65/cit65
  doi: 10.1088/0957-4484/26/32/322001
– ident: ref150/cit150
  doi: 10.1039/C6EE02265K
– ident: ref161/cit161
  doi: 10.1021/jp104366r
– ident: ref77/cit77
  doi: 10.1016/j.apcatb.2017.02.080
– ident: ref110/cit110
  doi: 10.1021/acs.chemrev.7b00252
– ident: ref293/cit293
  doi: 10.1016/j.apcatb.2017.01.047
– ident: ref417/cit417
  doi: 10.1039/C7CS00043J
– ident: ref76/cit76
  doi: 10.1021/ja805655b
– ident: ref126/cit126
– ident: ref404/cit404
  doi: 10.1002/adma.201802551
– ident: ref14/cit14
  doi: 10.1016/j.ensm.2015.12.003
– ident: ref203/cit203
  doi: 10.1021/nl0722370
– ident: ref178/cit178
  doi: 10.1088/0268-1242/14/7/305
– ident: ref84/cit84
  doi: 10.1002/ppsc.201600357
– ident: ref166/cit166
  doi: 10.1021/acsnano.9b02924
– ident: ref3/cit3
  doi: 10.1038/nmat3151
– ident: ref337/cit337
– ident: ref352/cit352
  doi: 10.1021/jacs.8b11544
– ident: ref6/cit6
  doi: 10.1016/j.mattod.2018.04.008
– ident: ref88/cit88
  doi: 10.1002/andp.19003060312
– ident: ref409/cit409
  doi: 10.1364/OME.7.002880
– ident: ref338/cit338
  doi: 10.1021/nl202255g
– ident: ref276/cit276
  doi: 10.1016/j.materresbull.2013.07.047
– ident: ref242/cit242
  doi: 10.1016/j.apcatb.2018.10.019
– ident: ref46/cit46
  doi: 10.1016/j.chempr.2020.06.010
– ident: ref266/cit266
  doi: 10.1021/cs501038q
– ident: ref186/cit186
  doi: 10.1002/adom.201500360
– ident: ref290/cit290
  doi: 10.1016/j.apcatb.2017.03.024
– ident: ref270/cit270
  doi: 10.1016/j.seppur.2017.11.011
– ident: ref342/cit342
  doi: 10.1016/j.rser.2014.09.002
– ident: ref299/cit299
  doi: 10.1039/C7QM00569E
– ident: ref197/cit197
  doi: 10.1021/nl303940z
– ident: ref17/cit17
  doi: 10.1016/j.apcatb.2017.07.002
– ident: ref302/cit302
  doi: 10.1039/D0CP00672F
– ident: ref30/cit30
  doi: 10.1039/C6CS00094K
– ident: ref11/cit11
  doi: 10.1002/adma.201601694
– ident: ref27/cit27
  doi: 10.1039/c3cs60176e
– ident: ref162/cit162
  doi: 10.1021/jp3065882
– ident: ref189/cit189
  doi: 10.1039/C8NR05322G
– ident: ref223/cit223
  doi: 10.1039/C4CC02724H
– ident: ref368/cit368
  doi: 10.1088/0022-3727/48/18/184007
– ident: ref103/cit103
  doi: 10.1063/1.1477935
– ident: ref86/cit86
  doi: 10.1016/j.trac.2015.08.013
– ident: ref120/cit120
  doi: 10.1021/jp053863t
– ident: ref216/cit216
  doi: 10.1016/j.apcatb.2018.11.011
– ident: ref286/cit286
  doi: 10.1016/j.apcatb.2018.10.055
– ident: ref221/cit221
  doi: 10.1039/C8CS00607E
– ident: ref159/cit159
  doi: 10.1021/ja300901e
– ident: ref240/cit240
  doi: 10.1166/jnn.2017.12658
– ident: ref267/cit267
  doi: 10.1039/C4CP06045H
– ident: ref95/cit95
  doi: 10.1021/acs.nanolett.6b05420
– ident: ref241/cit241
  doi: 10.1002/cphc.201700563
– ident: ref369/cit369
  doi: 10.1021/acs.accounts.9b00157
– ident: ref50/cit50
  doi: 10.1021/ja305603t
– ident: ref167/cit167
  doi: 10.1016/j.apcatb.2017.01.009
– ident: ref231/cit231
  doi: 10.1016/j.ijhydene.2017.04.234
– ident: ref367/cit367
  doi: 10.1021/acs.jpcc.7b01934
– ident: ref292/cit292
  doi: 10.1039/C8CY01386A
– ident: ref225/cit225
  doi: 10.1016/j.cej.2012.08.021
– ident: ref377/cit377
  doi: 10.1016/j.materresbull.2011.01.014
– ident: ref366/cit366
  doi: 10.1007/s12274-018-2028-6
– ident: ref42/cit42
  doi: 10.1016/j.apcatb.2018.03.036
– ident: ref115/cit115
– ident: ref363/cit363
  doi: 10.1039/C7NR09362D
– ident: ref382/cit382
  doi: 10.1063/1.3533260
– ident: ref108/cit108
  doi: 10.1039/C8CC04211J
– ident: ref181/cit181
  doi: 10.7567/JJAP.57.07MA04
– ident: ref281/cit281
  doi: 10.1021/acs.jpcc.6b01188
– ident: ref345/cit345
  doi: 10.1039/c3cs60341e
– ident: ref70/cit70
  doi: 10.1021/acs.bioconjchem.6b00156
– ident: ref31/cit31
  doi: 10.1021/ja5044787
– ident: ref111/cit111
  doi: 10.1021/acs.jpcc.5b09294
– ident: ref361/cit361
  doi: 10.1016/j.jcou.2016.02.008
– ident: ref212/cit212
  doi: 10.1021/nn901144d
– ident: ref183/cit183
  doi: 10.1016/S0038-1101(97)00168-8
– ident: ref316/cit316
  doi: 10.1016/j.jcou.2016.10.009
– ident: ref210/cit210
  doi: 10.1039/c3nr02001k
– ident: ref414/cit414
  doi: 10.1063/1.2760174
– ident: ref177/cit177
  doi: 10.1088/1361-6463/aadbd2
– ident: ref179/cit179
  doi: 10.1088/1361-6641/aa972c
– ident: ref9/cit9
  doi: 10.1039/c3cs60176e
– ident: ref28/cit28
  doi: 10.1039/c3cp44651d
– ident: ref381/cit381
  doi: 10.1063/1.1630840
– ident: ref360/cit360
  doi: 10.1038/nmat3454
– ident: ref362/cit362
  doi: 10.1063/1.4958804
– ident: ref90/cit90
  doi: 10.1021/nl501541s
– ident: ref12/cit12
  doi: 10.1038/s41467-021-25007-6
– ident: ref133/cit133
  doi: 10.1016/j.gexplo.2014.08.003
– ident: ref306/cit306
  doi: 10.1016/j.molcata.2016.07.030
– ident: ref265/cit265
  doi: 10.1039/D0CY01162B
– ident: ref322/cit322
  doi: 10.1021/am403327g
– ident: ref392/cit392
  doi: 10.1016/j.jallcom.2018.04.336
– ident: ref399/cit399
  doi: 10.1088/0370-1328/90/4/325
– ident: ref61/cit61
  doi: 10.1002/adfm.201202061
– ident: ref303/cit303
  doi: 10.1002/adfm.201304064
– ident: ref245/cit245
  doi: 10.1002/slct.201802880
– ident: ref401/cit401
  doi: 10.1021/ja9064415
– ident: ref239/cit239
  doi: 10.1016/j.apcatb.2016.06.050
– ident: ref271/cit271
  doi: 10.1016/j.apcatb.2018.06.018
– ident: ref419/cit419
  doi: 10.1021/jacs.8b04711
– ident: ref407/cit407
  doi: 10.1039/C6NR00926C
– ident: ref66/cit66
  doi: 10.1039/C6CC06800F
– ident: ref295/cit295
  doi: 10.1021/am506030p
– ident: ref356/cit356
  doi: 10.1021/cm5044792
– ident: ref236/cit236
  doi: 10.1039/C4CP02201G
– ident: ref395/cit395
  doi: 10.1039/FT9918703881
– ident: ref331/cit331
  doi: 10.1016/j.apcatb.2018.06.028
– ident: ref48/cit48
  doi: 10.1016/j.nantod.2014.12.004
– ident: ref93/cit93
  doi: 10.1073/pnas.1121517109
– ident: ref233/cit233
  doi: 10.1039/C6PP00116E
– ident: ref116/cit116
  doi: 10.1063/1.2077834
– ident: ref411/cit411
  doi: 10.1021/nn5072254
– ident: ref372/cit372
  doi: 10.1002/anie.201406911
– ident: ref22/cit22
  doi: 10.1038/238037a0
– ident: ref234/cit234
  doi: 10.1002/ppsc.201500059
– ident: ref56/cit56
  doi: 10.1039/C6EN00341A
– ident: ref330/cit330
  doi: 10.1021/acs.chemrev.6b00211
– ident: ref152/cit152
  doi: 10.1021/ja0733639
– ident: ref376/cit376
  doi: 10.1103/PhysRevB.9.5056
– ident: ref222/cit222
  doi: 10.1126/science.1231631
– ident: ref336/cit336
  doi: 10.1021/acsami.8b12183
– ident: ref257/cit257
  doi: 10.1021/acssuschemeng.0c05595
– ident: ref34/cit34
  doi: 10.1039/c2dt31528a
– ident: ref135/cit135
  doi: 10.1038/ncomms10545
– ident: ref202/cit202
  doi: 10.1073/pnas.2232479100
– ident: ref156/cit156
  doi: 10.1021/acs.langmuir.7b01052
– ident: ref384/cit384
  doi: 10.1016/j.fuproc.2018.09.014
– ident: ref255/cit255
  doi: 10.1039/C4CC02553A
– ident: ref412/cit412
  doi: 10.1088/0305-4608/4/11/032
– ident: ref258/cit258
  doi: 10.1016/j.cej.2020.126068
– ident: ref287/cit287
  doi: 10.1016/j.jallcom.2015.08.119
– ident: ref191/cit191
  doi: 10.1021/acs.chemrev.7b00430
– ident: ref323/cit323
  doi: 10.1016/j.nanoen.2018.02.052
– ident: ref324/cit324
  doi: 10.1039/C5NJ03307A
– ident: ref199/cit199
  doi: 10.1515/nanoph-2018-0073
– ident: ref218/cit218
  doi: 10.1039/C3CS60425J
– ident: ref104/cit104
  doi: 10.1021/jp3065882
– ident: ref33/cit33
  doi: 10.1016/j.apcatb.2013.06.009
– ident: ref68/cit68
  doi: 10.1021/acsami.8b17194
– ident: ref85/cit85
  doi: 10.1016/j.mattod.2014.10.039
– ident: ref391/cit391
  doi: 10.1021/acsnano.6b02911
– ident: ref37/cit37
  doi: 10.1039/C3CP53820F
– ident: ref315/cit315
  doi: 10.1021/jacs.8b08720
– ident: ref364/cit364
  doi: 10.1126/sciadv.aao4710
– ident: ref251/cit251
  doi: 10.1039/C7TA06625B
– ident: ref114/cit114
  doi: 10.1088/0022-3727/48/18/184001
– ident: ref127/cit127
  doi: 10.1103/PhysRevB.11.3617
– ident: ref78/cit78
  doi: 10.1016/j.ijhydene.2018.10.240
– ident: ref23/cit23
  doi: 10.1039/c2cp23461k
– ident: ref248/cit248
  doi: 10.1002/smll.201600382
– ident: ref285/cit285
  doi: 10.1016/j.jhazmat.2018.08.099
– ident: ref139/cit139
  doi: 10.1007/s12274-018-2178-6
– ident: ref145/cit145
  doi: 10.1021/ph4000339
– ident: ref113/cit113
  doi: 10.1039/C8CY00674A
– ident: ref25/cit25
  doi: 10.1016/j.jpowsour.2017.03.089
– ident: ref217/cit217
  doi: 10.1002/adma.201807660
– ident: ref228/cit228
  doi: 10.1016/j.jcat.2005.10.019
– ident: ref7/cit7
  doi: 10.1039/C5CS00838G
– ident: ref339/cit339
  doi: 10.1021/jacs.8b08937
– ident: ref16/cit16
  doi: 10.1002/aenm.201903802
– ident: ref169/cit169
  doi: 10.1016/j.carbon.2018.11.029
– ident: ref379/cit379
  doi: 10.1002/chem.201501968
– ident: ref173/cit173
  doi: 10.1021/acs.nanolett.8b04950
– ident: ref309/cit309
  doi: 10.1016/j.electacta.2017.10.030
– ident: ref73/cit73
  doi: 10.1016/j.apcatb.2017.12.057
– ident: ref320/cit320
  doi: 10.1016/j.apsusc.2016.08.002
– ident: ref260/cit260
  doi: 10.1021/acscatal.9b03971
– ident: ref195/cit195
  doi: 10.1021/acs.jpcc.6b08519
– ident: ref280/cit280
  doi: 10.1016/j.apsusc.2016.07.028
– ident: ref47/cit47
  doi: 10.1038/s41467-020-18350-7
– ident: ref209/cit209
  doi: 10.1021/acsnano.8b03617
– ident: ref274/cit274
  doi: 10.1016/j.apcatb.2017.07.030
– ident: ref326/cit326
  doi: 10.1016/j.snb.2016.03.068
– ident: ref142/cit142
  doi: 10.1039/C6NR02055K
– ident: ref340/cit340
  doi: 10.1039/C6RA27594J
– ident: ref24/cit24
  doi: 10.1016/j.cplett.2016.12.008
– ident: ref261/cit261
  doi: 10.1016/j.apcatb.2019.02.012
– ident: ref97/cit97
  doi: 10.1021/ja2089876
– ident: ref291/cit291
  doi: 10.1016/j.apcatb.2017.05.040
– ident: ref329/cit329
  doi: 10.1021/acsami.6b03728
– ident: ref282/cit282
  doi: 10.1021/acssuschemeng.7b03032
– ident: ref213/cit213
  doi: 10.1021/acs.nanolett.7b04776
– ident: ref308/cit308
  doi: 10.1039/C3CP43856B
– ident: ref250/cit250
  doi: 10.1016/j.jcat.2018.11.003
– ident: ref153/cit153
  doi: 10.1021/acs.est.5b03758
– ident: ref263/cit263
  doi: 10.1016/j.cej.2020.124558
– ident: ref140/cit140
  doi: 10.1021/nl303517v
– ident: ref403/cit403
  doi: 10.1007/s10853-018-2624-6
– ident: ref15/cit15
  doi: 10.1002/adma.201500033
– ident: ref214/cit214
  doi: 10.1063/1.2830005
– ident: ref269/cit269
  doi: 10.1021/acssuschemeng.5b01416
– ident: ref312/cit312
  doi: 10.1039/C5CS00769K
– ident: ref301/cit301
  doi: 10.1039/C8DT04408B
– ident: ref388/cit388
  doi: 10.1039/C9NR00901A
– ident: ref170/cit170
  doi: 10.1039/C8CY01466C
– ident: ref346/cit346
  doi: 10.1016/S1872-2067(20)63637-3
– ident: ref143/cit143
  doi: 10.1021/nn405495q
– ident: ref43/cit43
  doi: 10.1016/j.apsusc.2016.07.104
– ident: ref243/cit243
  doi: 10.1021/jp5114812
– ident: ref325/cit325
  doi: 10.1039/c3ta14493c
– ident: ref69/cit69
  doi: 10.1088/1361-6463/aadca2
– ident: ref2/cit2
  doi: 10.1039/C2CS35355E
– ident: ref335/cit335
  doi: 10.1021/nn403954p
– ident: ref175/cit175
  doi: 10.1016/j.nanoen.2016.11.026
– ident: ref333/cit333
  doi: 10.1002/anie.201301669
– ident: ref102/cit102
  doi: 10.1021/la702876h
– ident: ref402/cit402
  doi: 10.1021/acsphotonics.8b00214
– ident: ref51/cit51
  doi: 10.1039/C8EE02096E
– ident: ref348/cit348
  doi: 10.1007/s12596-014-0215-8
SSID ssj0005527
Score 2.7292094
SecondaryResourceType review_article
Snippet Solar-to-chemical energy conversion via heterogeneous photocatalysis is one of the sustainable approaches to tackle the growing environmental and energy...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 10484
SubjectTerms Carbon dioxide
Chemical energy
cost effectiveness
Energy conversion
Materials science
Noble metals
Photocatalysis
Photocatalysts
Plasmonics
Pollutant removal
Pollutants
Solar energy
surface plasmon resonance
Water pollution
Water splitting
Title Non-Noble Plasmonic Metal-Based Photocatalysts
URI http://dx.doi.org/10.1021/acs.chemrev.1c00473
https://www.ncbi.nlm.nih.gov/pubmed/35438967
https://www.proquest.com/docview/2675696410
https://www.proquest.com/docview/2652865284
https://www.proquest.com/docview/2718247304
Volume 122
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZ4DLDwfhQKChIDAymJEzvOCBWoQmqEBEhskWPHqgRNEE0H-PXc5dHyrLpkSM6xfbb1nX2--wg5DaShgTHC1gA3NpoMdihlCOsqYQnnLDQlJUs_4r1H__aJPX0JVv_hwafuhVSg_EE6REoWV2F2Q2-RLFMuAtxrXXbvpzc6GoZWdBpAPU2Sob9_gnCkRt_h6B8bs8Sam3USNRE71RWT5864SDrq43cCx_m6sUHWaqvTuqymySZZSLMtstJtyN62SSfKMztCbhnrDuzpISbMtfopWOb2FeCctu4GeZGXZz3vo2K0Qx5vrh-6PbumUrClH9DC9kVKtSNMoiU1SsKTCaEU910nSZgyyuM6pEZI4zkaxsnzNXNh86q4dJnRjrdLlrI8S_eJFQqtMes78xzfpzoAEy1QQrppKKmrqWqRM-hrXC-FUVx6uakb48taAXGtgBahjfJjVackR2aMl9mFzieFXquMHLPF282oTttEYZvEQ-x9i5xMPoPK0VsiszQfowzDqF2A7xkygOwUKnFAZq-aMZM2eQyJ5XlwML8-DskqxegKPOQRbbJUvI3TI7B5iuS4nOmflO_7iw
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB6x5dC98NyF8togcdjDpps4ceIcoQKVhVZItBK3yLFjrQRNEEkP8OuZSZNWILZaLjk4Y3tmbGvGHns-gJNQGhYaI2yN5sYml8GOpIxwXSU8CQIemQqSZTAM-mP_zx2_qx-F0VsYZKLAlooqiL_ILuD-pjIUY0LILK6iJIfeF1jFthltuU57t4uLHQ1QK8UOsLsm19DHjZBVUsVbq_QPV7MyORfrMJ4zW900ue9Oy6SrXt7lcfysNBuwVvug1uls0mzCSpptQbvXQL9tQ3eYZ_aQkGasG_SuJ5Q-1xqk6KfbZ2j1tHXzNy_z6uTnuSiLbzC-OB_1-nYNrGBLP2Sl7YuUaUeYREtmlMQvF0KpwHedJOHKKC_QETNCGs_ROGqer7mLW1kVSJcb7XjfoZXlWboLViS0phzw3HN8n-kQHbZQCemmkWSuZqoDP1HWuF4YRVzFvJkbU2GtgLhWQAdYMwaxqhOUE07Gw_JKv-aVHmf5OZaTHzSDu-CJ4aYpiEj6DhzPf6PKKXYiszSfEg2nN7xozJfQoJ1n2ImDNDuziTPnyeMEMx-Ee_-vjx_Q7o8G1_H15fBqH74yendBxz_iAFrl0zQ9RG-oTI6qyf8KF24D-w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwED6VIsFexsbGVuggSDzsgZTEiRPnsXRUZVurSlCpPEWOHQuJLamW9AF-PXdpkgrEqomXPDhn--5s684--z6Ad6E0LDRG2BrNjU0ugx1JGeG6SngSBDwyFSTLdBZMFv7lki87IJq3MMhEgS0VVRCfVvVKmzrDgPuBylGUW0JncRUlOvQewWMK3NG2azj6sr3c0YC1UvwAu2zyDf27EbJMqvjTMt3jblZmZ_wMvrUMV7dNfgzWZTJQv_7K5fg_Eh3Afu2LWsPN5DmETpo9h6ejBgLuCAazPLNnhDhjzdHLvqU0utY0RX_d_ojWT1vz73mZVydAP4uyOIbF-NPX0cSuARZs6YestH2RMu0Ik2jJjJL45UIoFfiukyRcGeUFOmJGSOM5GkfP8zV3cUurAulyox3vBXSzPEtPwYqE1pQLnnuO7zMdouMWKiHdNJLM1Uz14BxljesFUsRV7Ju5MRXWCohrBfSANeMQqzpROeFl3Oyu9L6ttNrk6dhN3m8GeMsTw81TEJH0PXjb_kaVUwxFZmm-JhpOb3nRqO-gQXvPsBMHaU42k6flyeMENx-ELx-ujzfwZH4xjq8_z65ewR6j5xd0CiT60C3v1ukZOkVl8rqa_78BhmAGfg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-Noble+Plasmonic+Metal-Based+Photocatalysts&rft.jtitle=Chemical+reviews&rft.au=Sayed%2C+Mahmoud&rft.au=Yu%2C+Jiaguo&rft.au=Liu%2C+Gang&rft.au=Jaroniec%2C+Mietek&rft.date=2022-06-08&rft.issn=1520-6890&rft.eissn=1520-6890&rft.volume=122&rft.issue=11&rft.spage=10484&rft_id=info:doi/10.1021%2Facs.chemrev.1c00473&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2665&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2665&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2665&client=summon