The Utility of RGB Color for Discrimination of Lunar Maturity and Composition

We explore the extent to which red‐green‐blue (RGB) color images, such as those produced by a complementary metal oxide semiconductor (CMOS) Bayer‐filter camera, can be utilized for studying the maturity and composition of the lunar surface. RGB filters typically are quite broad, with considerable o...

Full description

Saved in:
Bibliographic Details
Published inEarth and space science (Hoboken, N.J.) Vol. 10; no. 1
Main Authors Blewett, David T., Choi, Tiffanie X., Zheng, YongChun, Cloutis, Edward A.
Format Journal Article
LanguageEnglish
Published Hoboken John Wiley & Sons, Inc 01.01.2023
American Geophysical Union (AGU)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We explore the extent to which red‐green‐blue (RGB) color images, such as those produced by a complementary metal oxide semiconductor (CMOS) Bayer‐filter camera, can be utilized for studying the maturity and composition of the lunar surface. RGB filters typically are quite broad, with considerable overlap among the three colors. Convolution of laboratory spectra for lunar samples to the RGB responsivities of the Chang'E‐3 rover's Panoramic Camera allowed determination of the correlations between color ratios (B/R, B/G, and G/R) and the sample maturity (Is/FeO) or composition (wt.% FeO or TiO2). In general, color ratios decrease as Is/FeO increases. When separate sample categories are considered, we find that the B/R ratio is a good predictor of Is/FeO for low‐Ti mare, low‐Fe highland, and moderate‐Fe highland soils. For high‐Ti mare soils, Is/FeO has little influence on the B/R ratio (due to the spectral effects of abundant ilmenite), and hence the ratio cannot be used to determine maturity. We also find that color ratios have no useful correlation with sample wt.% FeO or TiO2. Thus, in locations excluding the high‐Ti maria, RGB color data could be used to estimate soil maturity. We outline a concept for a multispectral imager based on a CMOS sensor with a Bayer‐like pattern of custom‐wavelength filters chosen specifically for lunar science applications. Plain Language Summary Typical color cameras capture light through pixels covered with red, green, and blue (RGB) filters, enabling images to mimic the visual response of the human eye. However, because the color filters are broad (transmit a wide range of wavelengths of light) and overlap to some extent, RGB images can be less useful for scientific purposes. We wanted to determine whether RGB images could be used to estimate certain characteristics of rocks and soils on the Moon. Using lab data for Apollo lunar samples, we determined that RGB images might be helpful for mapping a characteristic of the soil known as “maturity,” which is related to the length of time that the soil has been exposed on the lunar surface. This mapping technique could be applied to surfaces except for those soils containing high abundances of titanium. We also discuss a concept for a camera that could achieve greater science return than RGB by using a set of three filters that are customized for application to the Moon. Key Points Analyzed lunar sample spectra in terms of typical red‐green‐blue (RGB) camera bandpasses RGB color ratios can be used to estimate soil maturity of specific sample categories (low‐Fe highland, moderate‐Fe highland, low‐Ti mare) We present a concept for a camera based on a complementary metal oxide semiconductor sensor with custom pattern filters that are selected specifically for lunar composition and maturity mapping
AbstractList We explore the extent to which red‐green‐blue (RGB) color images, such as those produced by a complementary metal oxide semiconductor (CMOS) Bayer‐filter camera, can be utilized for studying the maturity and composition of the lunar surface. RGB filters typically are quite broad, with considerable overlap among the three colors. Convolution of laboratory spectra for lunar samples to the RGB responsivities of the Chang'E‐3 rover's Panoramic Camera allowed determination of the correlations between color ratios (B/R, B/G, and G/R) and the sample maturity (I s /FeO) or composition (wt.% FeO or TiO 2 ). In general, color ratios decrease as I s /FeO increases. When separate sample categories are considered, we find that the B/R ratio is a good predictor of I s /FeO for low‐Ti mare, low‐Fe highland, and moderate‐Fe highland soils. For high‐Ti mare soils, I s /FeO has little influence on the B/R ratio (due to the spectral effects of abundant ilmenite), and hence the ratio cannot be used to determine maturity. We also find that color ratios have no useful correlation with sample wt.% FeO or TiO 2 . Thus, in locations excluding the high‐Ti maria, RGB color data could be used to estimate soil maturity. We outline a concept for a multispectral imager based on a CMOS sensor with a Bayer‐like pattern of custom‐wavelength filters chosen specifically for lunar science applications. Typical color cameras capture light through pixels covered with red, green, and blue (RGB) filters, enabling images to mimic the visual response of the human eye. However, because the color filters are broad (transmit a wide range of wavelengths of light) and overlap to some extent, RGB images can be less useful for scientific purposes. We wanted to determine whether RGB images could be used to estimate certain characteristics of rocks and soils on the Moon. Using lab data for Apollo lunar samples, we determined that RGB images might be helpful for mapping a characteristic of the soil known as “maturity,” which is related to the length of time that the soil has been exposed on the lunar surface. This mapping technique could be applied to surfaces except for those soils containing high abundances of titanium. We also discuss a concept for a camera that could achieve greater science return than RGB by using a set of three filters that are customized for application to the Moon. Analyzed lunar sample spectra in terms of typical red‐green‐blue (RGB) camera bandpasses RGB color ratios can be used to estimate soil maturity of specific sample categories (low‐Fe highland, moderate‐Fe highland, low‐Ti mare) We present a concept for a camera based on a complementary metal oxide semiconductor sensor with custom pattern filters that are selected specifically for lunar composition and maturity mapping
We explore the extent to which red‐green‐blue (RGB) color images, such as those produced by a complementary metal oxide semiconductor (CMOS) Bayer‐filter camera, can be utilized for studying the maturity and composition of the lunar surface. RGB filters typically are quite broad, with considerable overlap among the three colors. Convolution of laboratory spectra for lunar samples to the RGB responsivities of the Chang'E‐3 rover's Panoramic Camera allowed determination of the correlations between color ratios (B/R, B/G, and G/R) and the sample maturity (Is/FeO) or composition (wt.% FeO or TiO2). In general, color ratios decrease as Is/FeO increases. When separate sample categories are considered, we find that the B/R ratio is a good predictor of Is/FeO for low‐Ti mare, low‐Fe highland, and moderate‐Fe highland soils. For high‐Ti mare soils, Is/FeO has little influence on the B/R ratio (due to the spectral effects of abundant ilmenite), and hence the ratio cannot be used to determine maturity. We also find that color ratios have no useful correlation with sample wt.% FeO or TiO2. Thus, in locations excluding the high‐Ti maria, RGB color data could be used to estimate soil maturity. We outline a concept for a multispectral imager based on a CMOS sensor with a Bayer‐like pattern of custom‐wavelength filters chosen specifically for lunar science applications. Plain Language Summary Typical color cameras capture light through pixels covered with red, green, and blue (RGB) filters, enabling images to mimic the visual response of the human eye. However, because the color filters are broad (transmit a wide range of wavelengths of light) and overlap to some extent, RGB images can be less useful for scientific purposes. We wanted to determine whether RGB images could be used to estimate certain characteristics of rocks and soils on the Moon. Using lab data for Apollo lunar samples, we determined that RGB images might be helpful for mapping a characteristic of the soil known as “maturity,” which is related to the length of time that the soil has been exposed on the lunar surface. This mapping technique could be applied to surfaces except for those soils containing high abundances of titanium. We also discuss a concept for a camera that could achieve greater science return than RGB by using a set of three filters that are customized for application to the Moon. Key Points Analyzed lunar sample spectra in terms of typical red‐green‐blue (RGB) camera bandpasses RGB color ratios can be used to estimate soil maturity of specific sample categories (low‐Fe highland, moderate‐Fe highland, low‐Ti mare) We present a concept for a camera based on a complementary metal oxide semiconductor sensor with custom pattern filters that are selected specifically for lunar composition and maturity mapping
Abstract We explore the extent to which red‐green‐blue (RGB) color images, such as those produced by a complementary metal oxide semiconductor (CMOS) Bayer‐filter camera, can be utilized for studying the maturity and composition of the lunar surface. RGB filters typically are quite broad, with considerable overlap among the three colors. Convolution of laboratory spectra for lunar samples to the RGB responsivities of the Chang'E‐3 rover's Panoramic Camera allowed determination of the correlations between color ratios (B/R, B/G, and G/R) and the sample maturity (Is/FeO) or composition (wt.% FeO or TiO2). In general, color ratios decrease as Is/FeO increases. When separate sample categories are considered, we find that the B/R ratio is a good predictor of Is/FeO for low‐Ti mare, low‐Fe highland, and moderate‐Fe highland soils. For high‐Ti mare soils, Is/FeO has little influence on the B/R ratio (due to the spectral effects of abundant ilmenite), and hence the ratio cannot be used to determine maturity. We also find that color ratios have no useful correlation with sample wt.% FeO or TiO2. Thus, in locations excluding the high‐Ti maria, RGB color data could be used to estimate soil maturity. We outline a concept for a multispectral imager based on a CMOS sensor with a Bayer‐like pattern of custom‐wavelength filters chosen specifically for lunar science applications.
We explore the extent to which red-green-blue (RGB) color images, such as those produced by a complementary metal oxide semiconductor (CMOS) Bayer-filter camera, can be utilized for studying the maturity and composition of the lunar surface. RGB filters typically are quite broad, with considerable overlap among the three colors. Convolution of laboratory spectra for lunar samples to the RGB responsivities of the Chang'E-3 rover's Panoramic Camera allowed determination of the correlations between color ratios (B/R, B/G, and G/R) and the sample maturity (Is/FeO) or composition (wt.% FeO or TiO2). In general, color ratios decrease as Is/FeO increases. When separate sample categories are considered, we find that the B/R ratio is a good predictor of Is/FeO for low-Ti mare, low-Fe highland, and moderate-Fe highland soils. For high-Ti mare soils, Is/FeO has little influence on the B/R ratio (due to the spectral effects of abundant ilmenite), and hence the ratio cannot be used to determine maturity. We also find that color ratios have no useful correlation with sample wt.% FeO or TiO2. Thus, in locations excluding the high-Ti maria, RGB color data could be used to estimate soil maturity. We outline a concept for a multispectral imager based on a CMOS sensor with a Bayer-like pattern of custom-wavelength filters chosen specifically for lunar science applications.
Author Zheng, YongChun
Blewett, David T.
Cloutis, Edward A.
Choi, Tiffanie X.
Author_xml – sequence: 1
  givenname: David T.
  orcidid: 0000-0002-9241-6358
  surname: Blewett
  fullname: Blewett, David T.
  email: david.blewett@jhuapl.edu
  organization: Johns Hopkins University Applied Physics Laboratory
– sequence: 2
  givenname: Tiffanie X.
  surname: Choi
  fullname: Choi, Tiffanie X.
  organization: Now at University of Maryland
– sequence: 3
  givenname: YongChun
  surname: Zheng
  fullname: Zheng, YongChun
  organization: Chinese Academy of Sciences
– sequence: 4
  givenname: Edward A.
  orcidid: 0000-0001-7301-0929
  surname: Cloutis
  fullname: Cloutis, Edward A.
  organization: University of Winnipeg
BookMark eNqFkMFOwzAMhiM0JGDsxgNU4krBcdKmOcIYA2kTEoNzlKYpZCrNSFuhvT0tQwhxgINly_782_qPyKj2tSXkhMI5BZQXCIizSwAUFPbIITLG4gQyPvpRH5BJ06wBgGKSAvJDsnx8sdFT6yrXbiNfRg_zq2jqKx-iso9r15jgXl2tW-frYb7oah2ipW67MGzouujx141v3EAck_1SV42dfOUxebqZPU5v48X9_G56uYg1F8hji3ooiiSn0hqkMs2t4MaaQmQ2TwwVpmQipRkvUZokyyUVgudJwTnDPEM2Jnc73cLrtdr0L-qwVV479dnw4Vnp0DpTWWWNENSW3GqkvDBaSoapZKBNyiEF3Wud7rQ2wb91tmnV2neh7t9XKARA1jsle-psR5ngmybY8vsqBTX4r3763-P4Czeu_TSxDdpV_yy9u8pu_zygZqsVUpZy9gEe0JVm
CitedBy_id crossref_primary_10_1016_j_lwt_2023_115043
Cites_doi 10.1111/j.1945-5100.2000.tb01496.x
10.2138/rmg.2006.60.2
10.1086/506426
10.1016/0019-1035(87)90037-6
10.5281/zenodo.7465280
10.1029/1999je001117
10.1126/science.268.5214.1150
10.1029/2001je001515
10.1029/93je02467
10.1029/2011JE003879
10.1029/97je03019
10.1029/2019GL083611
10.1029/97je01505
10.1029/2019gl085252
10.1109/tip.2004.840683
10.1016/j.icarus.2017.06.013
10.1016/0019-1035(87)90003-0
10.1007/s11214-014-0134-7
10.1002/2013JE004527
10.1029/1999JE001110
10.1016/j.asr.2021.09.001
10.1088/1674-4527/15/11/009
10.1002/2015GL065789
10.1088/1674-4527/14/12/005
10.1016/j.icarus.2018.02.008
10.1126/science.266.5192.1835
10.1029/2000je001402
10.1086/430185
10.1029/2000JE001338
10.3390/rs12061047
10.1016/j.icarus.2016.07.010
10.1029/2009JE003427
10.1029/2010je003748
ContentType Journal Article
Copyright 2023 The Authors. Earth and Space Science published by Wiley Periodicals LLC on behalf of American Geophysical Union.
2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. Earth and Space Science published by Wiley Periodicals LLC on behalf of American Geophysical Union.
– notice: 2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BHPHI
BKSAR
CCPQU
DWQXO
HCIFZ
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1029/2022EA002710
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest Central
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One
ProQuest Central
SciTech Premium Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ (Directory of Open Access Journals)
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Sustainability
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access (Activated by CARLI)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2333-5084
EndPage n/a
ExternalDocumentID oai_doaj_org_article_ec771ef4ea214dca99326930ac64060a
10_1029_2022EA002710
ESS21364
Genre researchArticle
GrantInformation_xml – fundername: Manitoba Research Innovation Fund
– fundername: NASA Lunar Data Analysis Program
  funderid: NNX16AN55G
– fundername: National Natural Science Foundation of China
  funderid: 41490633
– fundername: Canada Foundation for Innovation
– fundername: Canadian Space Agency
– fundername: Natural Sciences and Engineering Research Council of Canada
– fundername: University of Winnipeg
GroupedDBID 0R~
1OC
24P
5VS
AAFWJ
AAHHS
AAZKR
ABDBF
ACCFJ
ACCMX
ACUHS
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AEUYN
AFKRA
AFPKN
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
BCNDV
BENPR
BHPHI
BKSAR
CCPQU
EBS
EJD
GODZA
GROUPED_DOAJ
HCIFZ
IAO
IGS
ITC
KQ8
M~E
O9-
OK1
PCBAR
PIMPY
WIN
AAYXX
CITATION
IEP
PHGZM
PHGZT
AAMMB
ABUWG
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-a4724-e2aa472d5b19ec2196be74cecd78eb5c17cf376184f29c58b91774b5d4432b823
IEDL.DBID 24P
ISSN 2333-5084
IngestDate Wed Aug 27 01:27:06 EDT 2025
Fri Jul 25 07:39:30 EDT 2025
Thu Apr 24 23:07:43 EDT 2025
Tue Jul 01 01:06:23 EDT 2025
Wed Jan 22 16:24:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a4724-e2aa472d5b19ec2196be74cecd78eb5c17cf376184f29c58b91774b5d4432b823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9241-6358
0000-0001-7301-0929
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2022EA002710
PQID 2770085609
PQPubID 4368366
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_ec771ef4ea214dca99326930ac64060a
proquest_journals_2770085609
crossref_primary_10_1029_2022EA002710
crossref_citationtrail_10_1029_2022EA002710
wiley_primary_10_1029_2022EA002710_ESS21364
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2023
2023-01-00
20230101
2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: January 2023
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Earth and space science (Hoboken, N.J.)
PublicationYear 2023
Publisher John Wiley & Sons, Inc
American Geophysical Union (AGU)
Publisher_xml – name: John Wiley & Sons, Inc
– name: American Geophysical Union (AGU)
References 2011; 116
2014; 119
2015; 15
2012
1987; 71
2018; 306
1976
2008
2006; 132
1974
2022; 69
1973
2006
1972
2020; 12
2017; 296
2016; 280
2001; 106
1997; 102
1994; 266
1987; 69
2003; 108
2015; 190
2022
2020
2000; 105
2000; 35
2019; 46
2015; 42
1993; 98
2010; 115
2005; 129
2019
2014; 14
1995; 268
1983
1998; 103
2012; 117
2005; 14
e_1_2_7_6_1
Rhodes J. M. (e_1_2_7_34_1) 1973
e_1_2_7_5_1
e_1_2_7_4_1
Rhodes J. M. (e_1_2_7_35_1) 1976
Xu T.‐Y. (e_1_2_7_45_1) 2019
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
Haskin L. A. (e_1_2_7_12_1) 1973
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_47_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_49_1
e_1_2_7_28_1
Rhodes J. M. (e_1_2_7_36_1) 1974
Blewett D. T. (e_1_2_7_3_1) 2022
e_1_2_7_30_1
Longhi J. (e_1_2_7_20_1) 1972
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
Morris R. V. (e_1_2_7_26_1) 1983
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_38_1
e_1_2_7_39_1
Otake H. (e_1_2_7_29_1) 2012
Rose H. J. (e_1_2_7_37_1) 1973
References_xml – volume: 306
  start-page: 243
  year: 2018
  end-page: 255
  article-title: Mineralogy and chemistry of Ti‐bearing lunar soils: Effects on reflectance spectra and remote sensing observations
  publication-title: Icarus
– year: 2012
  article-title: Lunar iron and titanium abundance algorithms based on SELENE (Kaguya) Multiband Imager data
  publication-title: 43rd Lunar and Planetary Science Conference
– year: 1983
– volume: 14
  start-page: 370
  issue: 3
  year: 2005
  end-page: 379
  article-title: Demosaicing by successive approximation
  publication-title: IEEE Transactions on Image Processing
– volume: 106
  start-page: 27985
  issue: E11
  year: 2001
  end-page: 28000
  article-title: Lunar mare soils: Space weathering and the major effects of surface‐correlated nanophase Fe
  publication-title: Journal of Geophysical Research
– start-page: 131
  year: 1972
  end-page: 139
  article-title: Petrology and crystallization history of basalts 14310 and 14072
  publication-title: Proceedings of the 3rd Lunar Science Conference
– volume: 42
  start-page: 8312
  issue: 20
  year: 2015
  end-page: 8319
  article-title: In situ optical measurements of Chang’E‐3 landing site in mare Imbrium: 2. Photometric properties of the regolith
  publication-title: Geophysical Research Letters
– volume: 14
  start-page: 1557
  issue: 12
  year: 2014
  end-page: 1566
  article-title: A method and results of color calibration for the Chang’e‐3 terrain camera and panoramic camera
  publication-title: Research in Astronomy and Astrophysics
– volume: 296
  start-page: 216
  year: 2017
  end-page: 238
  article-title: Lunar mare TiO abundances estimated from UV/Vis reflectance
  publication-title: Icarus
– volume: 103
  start-page: 3679
  issue: E2
  year: 1998
  end-page: 3699
  article-title: Mapping the FeO and TiO content of the lunar surface with multispectral imagery
  publication-title: Journal of Geophysical Research
– start-page: 1467
  year: 1976
  end-page: 1489
  article-title: Chemistry, classification, and petrogenesis of Apollo 17 mare basalts
  publication-title: Proceedings of the 7th Lunar Science Conference
– volume: 69
  start-page: 14
  issue: 1
  year: 1987
  end-page: 28
  article-title: Atlas of reflectance spectra of terrestrial, lunar, and meteoritic powders and frosts from 92 to 1800 nm
  publication-title: Icarus
– volume: 266
  start-page: 1835
  issue: 5192
  year: 1994
  end-page: 1839
  article-title: The Clementine mission to the Moon: Scientific overview
  publication-title: Science
– start-page: 1097
  year: 1974
  end-page: 1117
  article-title: The relationships between geology and soil chemistry at the Apollo 17 landing site
  publication-title: Proceedings of the 5th Lunar Science Conference
– volume: 106
  start-page: 10039
  issue: E5
  year: 2001
  end-page: 10073
  article-title: Space weathering from Mercury to the asteroid belt
  publication-title: Journal of Geophysical Research
– start-page: 1149
  year: 1973
  end-page: 1158
  article-title: Compositional data for twenty‐two Apollo 16 samples
  publication-title: Proceedings of the 4th Lunar Science Conference
– volume: 190
  start-page: 85
  issue: 1–4
  year: 2015
  end-page: 101
  article-title: The Chang'e 3 mission overview
  publication-title: Space Science Reviews
– volume: 117
  issue: E2
  year: 2012
  article-title: Global estimates of lunar iron and titanium contents from the Chang’ E‐1 IIM data
  publication-title: Journal of Geophysical Research
– volume: 119
  start-page: 976
  issue: 5
  year: 2014
  end-page: 997
  article-title: Characterization of space weathering from Lunar Reconnaissance Orbiter Camera ultraviolet observations of the Moon
  publication-title: Journal of Geophysical Research: Planets
– volume: 115
  issue: E2
  year: 2010
  article-title: Mineralogical and chemical characterization of lunar highland soils: Insights into the space weathering of soils on airless bodies
  publication-title: Journal of Geophysical Research
– volume: 46
  start-page: 9405
  issue: 16
  year: 2019
  end-page: 9413
  article-title: Weak dust activity near a geologically young surface revealed by Chang'E‐3 mission
  publication-title: Geophysical Research Letters
– volume: 69
  start-page: 823
  issue: 1
  year: 2022
  end-page: 836
  article-title: Scientific objectives and payloads of the lunar sample return mission—Chang’E‐5
  publication-title: Advances in Space Research
– volume: 129
  start-page: 2887
  issue: 6
  year: 2005
  end-page: 2901
  article-title: The spectral irradiance of the Moon
  publication-title: The Astronomical Journal
– volume: 280
  start-page: 183
  year: 2016
  end-page: 198
  article-title: Lunar iron and optical maturity mapping: Results from partial least squares modeling of Chang’E‐1 IIM data
  publication-title: Icarus
– volume: 132
  start-page: 1396
  issue: 3
  year: 2006
  end-page: 1404
  article-title: The effects of space weathering at UV wavelengths: S‐Class asteroids
  publication-title: The Astronomical Journal
– year: 2022
  article-title: : PRISM exploration of Reiner Gamma
  publication-title: 53rd Lunar and Planetary Science Conference
– volume: 108
  issue: E2
  year: 2003
  article-title: A revised algorithm for calculating TiO from Clementine UVVIS data: A synthesis of rock, soil, and remotely sensed TiO concentrations
  publication-title: Journal of Geophysical Research
– volume: 105
  start-page: 20297
  issue: E8
  year: 2000
  end-page: 20305
  article-title: Lunar iron and titanium abundance algorithms based on final processing of Clementine ultraviolet‐visible images
  publication-title: Journal of Geophysical Research
– volume: 35
  start-page: 1101
  issue: 5
  year: 2000
  end-page: 1107
  article-title: Space weathering on airless bodies: Resolving a mystery with lunar samples
  publication-title: Meteoritics & Planetary Science
– volume: 46
  start-page: 12764
  issue: 22
  year: 2019
  end-page: 12770
  article-title: Topographic evolution of Von Kármán crater revealed by the lunar rover Yutu‐2
  publication-title: Geophysical Research Letters
– volume: 71
  start-page: 397
  issue: 3
  year: 1987
  end-page: 429
  article-title: An analysis of the Mariner 10 color ratio map of Mercury
  publication-title: Icarus
– volume: 268
  start-page: 1150
  issue: 5214
  year: 1995
  end-page: 1153
  article-title: Abundance and distribution of iron on the Moon
  publication-title: Science
– year: 2008
– volume: 105
  start-page: 20377
  issue: E8
  year: 2000
  end-page: 20386
  article-title: Imaging of lunar surface maturity
  publication-title: Journal of Geophysical Research
– year: 2022
– year: 2006
– year: 2020
– start-page: 1275
  year: 1973
  end-page: 1296
  article-title: Major and trace element abundances in samples from the lunar highlands
  publication-title: Proceedings of the 4th Lunar Science Conference
– volume: 15
  start-page: 1867
  issue: 11
  year: 2015
  end-page: 1880
  article-title: Panoramic camera on the Yutu lunar rover of the Chang’e‐3 mission
  publication-title: Research in Astronomy and Astrophysics
– volume: 116
  year: 2011
  article-title: Optical maturity variation in lunar spectra as measured by Moon Mineralogy Mapper data
  publication-title: Journal of Geophysical Research
– start-page: 1127
  year: 1973
  end-page: 1148
  article-title: Chemistry, classification, and petrogenesis of Apollo 15 mare basalts
  publication-title: Proceedings of the 4th Lunar Science Conference
– year: 2019
  article-title: The calibration of Chang’e‐3 PCAM data and regolith maturity study based on in‐situ measurements
  publication-title: 50th Lunar and Planetary Science Conference
– volume: 98
  start-page: 20817
  issue: E11
  year: 1993
  end-page: 20824
  article-title: Optical effects of space weathering: The role of the finest fraction
  publication-title: Journal of Geophysical Research
– volume: 102
  start-page: 16319
  issue: E7
  year: 1997
  end-page: 16325
  article-title: Clementine images of the lunar sample return stations: Refinement of FeO and TiO mapping techniques
  publication-title: Journal of Geophysical Research
– volume: 12
  issue: 6
  year: 2020
  article-title: An empirical model to estimate abundance of nanophase metallic iron (npFe ) in lunar soils
  publication-title: Remote Sensing
– ident: e_1_2_7_31_1
  doi: 10.1111/j.1945-5100.2000.tb01496.x
– ident: e_1_2_7_24_1
  doi: 10.2138/rmg.2006.60.2
– start-page: 131
  year: 1972
  ident: e_1_2_7_20_1
  article-title: Petrology and crystallization history of basalts 14310 and 14072
  publication-title: Proceedings of the 3rd Lunar Science Conference
– year: 2022
  ident: e_1_2_7_3_1
  article-title: Lunar Vertex: PRISM exploration of Reiner Gamma
  publication-title: 53rd Lunar and Planetary Science Conference
– ident: e_1_2_7_13_1
  doi: 10.1086/506426
– start-page: 1275
  year: 1973
  ident: e_1_2_7_12_1
  article-title: Major and trace element abundances in samples from the lunar highlands
  publication-title: Proceedings of the 4th Lunar Science Conference
– ident: e_1_2_7_32_1
  doi: 10.1016/0019-1035(87)90037-6
– start-page: 1467
  year: 1976
  ident: e_1_2_7_35_1
  article-title: Chemistry, classification, and petrogenesis of Apollo 17 mare basalts
  publication-title: Proceedings of the 7th Lunar Science Conference
– ident: e_1_2_7_2_1
  doi: 10.5281/zenodo.7465280
– ident: e_1_2_7_48_1
– ident: e_1_2_7_22_1
  doi: 10.1029/1999je001117
– start-page: 1149
  year: 1973
  ident: e_1_2_7_37_1
  article-title: Compositional data for twenty‐two Apollo 16 samples
  publication-title: Proceedings of the 4th Lunar Science Conference
– ident: e_1_2_7_25_1
  doi: 10.1126/science.268.5214.1150
– ident: e_1_2_7_10_1
  doi: 10.1029/2001je001515
– ident: e_1_2_7_7_1
– ident: e_1_2_7_30_1
  doi: 10.1029/93je02467
– ident: e_1_2_7_44_1
  doi: 10.1029/2011JE003879
– year: 2019
  ident: e_1_2_7_45_1
  article-title: The calibration of Chang’e‐3 PCAM data and regolith maturity study based on in‐situ measurements
  publication-title: 50th Lunar and Planetary Science Conference
– ident: e_1_2_7_39_1
– ident: e_1_2_7_21_1
  doi: 10.1029/97je03019
– ident: e_1_2_7_46_1
  doi: 10.1029/2019GL083611
– ident: e_1_2_7_4_1
  doi: 10.1029/97je01505
– ident: e_1_2_7_9_1
  doi: 10.1029/2019gl085252
– ident: e_1_2_7_16_1
– ident: e_1_2_7_18_1
  doi: 10.1109/tip.2004.840683
– start-page: 1097
  year: 1974
  ident: e_1_2_7_36_1
  article-title: The relationships between geology and soil chemistry at the Apollo 17 landing site
  publication-title: Proceedings of the 5th Lunar Science Conference
– ident: e_1_2_7_38_1
  doi: 10.1016/j.icarus.2017.06.013
– ident: e_1_2_7_43_1
  doi: 10.1016/0019-1035(87)90003-0
– ident: e_1_2_7_17_1
  doi: 10.1007/s11214-014-0134-7
– ident: e_1_2_7_8_1
  doi: 10.1002/2013JE004527
– ident: e_1_2_7_23_1
  doi: 10.1029/1999JE001110
– ident: e_1_2_7_49_1
  doi: 10.1016/j.asr.2021.09.001
– ident: e_1_2_7_47_1
  doi: 10.1088/1674-4527/15/11/009
– ident: e_1_2_7_14_1
  doi: 10.1002/2015GL065789
– year: 2012
  ident: e_1_2_7_29_1
  article-title: Lunar iron and titanium abundance algorithms based on SELENE (Kaguya) Multiband Imager data
  publication-title: 43rd Lunar and Planetary Science Conference
– ident: e_1_2_7_33_1
  doi: 10.1088/1674-4527/14/12/005
– volume-title: Handbook of lunar soils. Part I and Part II
  year: 1983
  ident: e_1_2_7_26_1
– ident: e_1_2_7_5_1
  doi: 10.1016/j.icarus.2018.02.008
– ident: e_1_2_7_28_1
  doi: 10.1126/science.266.5192.1835
– ident: e_1_2_7_42_1
  doi: 10.1029/2000je001402
– ident: e_1_2_7_15_1
  doi: 10.1086/430185
– ident: e_1_2_7_6_1
– ident: e_1_2_7_11_1
  doi: 10.1029/2000JE001338
– ident: e_1_2_7_19_1
  doi: 10.3390/rs12061047
– ident: e_1_2_7_40_1
  doi: 10.1016/j.icarus.2016.07.010
– ident: e_1_2_7_41_1
  doi: 10.1029/2009JE003427
– ident: e_1_2_7_27_1
  doi: 10.1029/2010je003748
– start-page: 1127
  year: 1973
  ident: e_1_2_7_34_1
  article-title: Chemistry, classification, and petrogenesis of Apollo 15 mare basalts
  publication-title: Proceedings of the 4th Lunar Science Conference
SSID ssj0001256024
Score 2.2138524
Snippet We explore the extent to which red‐green‐blue (RGB) color images, such as those produced by a complementary metal oxide semiconductor (CMOS) Bayer‐filter...
We explore the extent to which red-green-blue (RGB) color images, such as those produced by a complementary metal oxide semiconductor (CMOS) Bayer-filter...
Abstract We explore the extent to which red‐green‐blue (RGB) color images, such as those produced by a complementary metal oxide semiconductor (CMOS)...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Cameras
CMOS
composition
Discrimination
Filters
instrument concept
Laboratories
Maturity
Minerals
Moon
Ratios
regolith maturity
remote sensing
RGB camera
Titanium dioxide
SummonAdditionalLinks – databaseName: DOAJ (Directory of Open Access Journals)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yELyInzidkoOepNimabMcN90H4jyIg91CkiYgSCdzO-y_9720G_WgXryU0qbweL_kvd9LXt8j5DoBxpYbpiPp0zTiPC3ADsIFqK3OnPfShh5Lk-d8POWPs2zWaPWFOWFVeeBKcXfOCpE4z51mCS-slkg4ZBprm4MvigM1Ap_XCKaq3RXw5IzXme4xkxjks0EPozD8Wbbhg0Kp_m_8sslSg5sZHpD9mh_SXiXXIdlx5RHZHYX-u-tjMgFY6XSJCa1rOvf0ZdSnEPvPFxTIJ314QyOAyS2obnz_tCr1gk6weid-ocuCogWoM7VOyHQ4eL0fR3VHhEhzwXjkmMabIjOJdBaMTW6c4NbZQnSdyWwirAeLAVGbZ9JmXQPBmOAmKwAEZrosPSWtcl66M0ITDctPa8etlZyJTENUbY0XVlrQnsvb5HajI2XrcuHYteJdhWNrJlVTo21ysx39UZXJ-GFcH9W9HYPFrcMDgFzVkKu_IG-TzgYsVa-4T8WEQPqYxxIkDwD-KoiC6c2SNOfn_yHRBdnDNvTV1kyHtJaLlbsEsrI0V2FefgGA6eDz
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS8MwEA46EXwRf-J0Sh70SYprmjbNk2xzm4gTGQ58K8k1FUG6uc0H_3vvukzng76U0iQl3CVfv7tc7xg7D5GxJVaYQBdRFEgZ5YiDeEFqa2JXFBqqGkuDh-R2JO-e42fvcJv5sMolJlZAnY-BfORXQimiB0lTX0_eA6oaRaervoTGOttACE7TGttodx8ehyteFhwhpI94bwpNxr7otsgao59mV75FVcr-Xzxzla1Wn5veDtv2PJG3FordZWuu3GOb_aoO7-c-G6B6-WhOga2ffFzwYb_NO9g25UhC-c0rgQEFuZDYqf3-ozRTPqAsnjTClDknJPARWwds1Os-dW4DXxkhMFIJGThh6CaPbagdIOgk1ikJDnKVOhtDqKBA5EDrrRAa4tSiUaakjXNUhrCpiA5ZrRyX7ojx0OA2NMZJAC2Fig1a12ALBRpQei6ps8uljDLwacOpesVbVh1fC52tSrTOLr57TxbpMv7o1yZxf_ehJNfVg_H0JfN7JnOgVOgK6YwIZQ5GE9fUUdNAgjSkaeqssVRW5nfeLPtZJzjzSoH_TiTDZS7CKJHH_7_shG1RofmF86XBavPphztFOjK3Z37NfQEex9nX
  priority: 102
  providerName: ProQuest
Title The Utility of RGB Color for Discrimination of Lunar Maturity and Composition
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2022EA002710
https://www.proquest.com/docview/2770085609
https://doaj.org/article/ec771ef4ea214dca99326930ac64060a
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La8MwDDajZbDL2JN164oP22mENY4T18e264OxllJW6C3YjjMGIx19HPrvJ7luaQ8b7BJCrAQjWfInRZYIeQgBsSWaqUDmURRwHmVgB-EC0FbFNs-lcT2WBsOkP-Gv03jqA254FmZTH2IXcEPNcPYaFVzphS82gDUywWtnnSa6VXjCqoynazGlj_HRXowF9nPX15ZFMBPAItznvsMnnvc_cLArueL9B4hzH7e6jad7Rk49YqTNjYjPyZEtLshxz3XkXV-SAQiaTpaY4rqms5yOey3ahrE5BThKXz7RLGC6CwoAx99WhZrTAdbzxDdUkVG0CT5364pMup33dj_wPRICxQXjgWUKb7JYh9IaMD-JtoIbazLRsDo2oTA52BDw43ImTdzQ4J4JruMMxMJ0g0XXpFTMCntDaKhAIZWy3BjJmYgV-NlG58JIA5y0SYU8bXmUGl9AHPtYfKXuRzaT6T5HK-RxR_29KZzxC10L2b2jwXLX7sFs_pF67UmtESK0ObeKhTwzSiLqlFFdmQQASV1VSHUrrNTr4CJlQiCgTOoSZu4E-OdEUljwLIwSfvsv6jtygh3oN1GZKikt5yt7DzhlqWtuMdZIudUZjsY15-3_ACXy3N4
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fT9swED-homl7mfZXK7Dhh_E0RUscJ64fpolCoYy2mhCVePPsizNNQikrRahfap9xd2kC3cN44yWKYidyznfn353PdwAfE0JsuZcuMmWaRkqlBelBuhC0dVkoS4N1jaXxJB9O1beL7GID_rRnYTisstWJtaIuZsg-8s9Sa4YHeWy-Xv2OuGoU7662JTRWbHEalrdksl1_OTmk-d2T8mhwfjCMmqoCkVNaqihIxzdF5hMTkAQ290ErDFjoXvAZJhpLkjqyfEppMOt5Mmi08llBPyJ9jxMdkMrfVGkeyw5s9geT72drXh0aoVRNhH0sDTsX5GCfrT8-pLu29tUlAv7BtevouF7ejl7A8waXiv0VI72EjVC9gifHdd3f5WsYEzuJ6YIDaZdiVoqz4744oLa5INArDn-x8uGgGp5mbh_dVG4uxpw1lN9wVSFY8zQRYm9g-ig0ewudalaFdyASR2LvXFCIRkmdObLm0ZcaDRL1Qt6FTy2NLDZpyrlaxqWtt8ulsesU7cLeXe-rVXqO__TrM7nv-nBS7frBbP7TNjJqA2qdhFIFJxNVoDOMbU0aO8wJ9sSuCzvtZNlG0q_tPV_SyOsJfHAglsRKJmmuth7-2C48HZ6PR3Z0Mjndhmdc5H7l-NmBzmJ-E94TFFr4Dw3_Cfjx2Cz_FydvFic
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9swED-hok17QexLK-PDD-NpimgcJ64fponSFhi0QmiVePNsx0aTppSVoqn_Gn_d7lKHlYfxxksUxU7knO_Ovzuf7wA-pYjYCstNokKWJUJkJepBvCC0NbkPQbm6xtJoXJxMxLer_GoN7puzMBRW2ejEWlGXU0c-8gMuJcGDoqMOQgyLuOgPv978TqiCFO20NuU0lixy5hd_0Hy7_XLax7ne53w4-H50ksQKA4kRkovEc0M3ZW5T5R0Kb2G9FM67Una9zV0qXUAJRCsocOXyrkXjRgqbl_hT3HYp6QGq_3VJVlEL1nuD8cXliocHR8tFjLbvcEWOBj44JEuQDuyurIN1uYBHGHcVKddL3XATNiJGZYdLpnoNa756Ay-O6xrAi7cwQtZikzkF1S7YNLDL4x47wrYZQwDM-j9JEVGADU05tZ_fVWbGRpRBlN4wVclIC8VosXcweRaavYdWNa38B2CpQRVgjBfOKcFlbtCydzZIpxxSzxdt-NzQSLuYspwqZ_zS9dY5V3qVom3Yf-h9s0zV8Z9-PSL3Qx9KsF0_mM6udZRX7Z2UqQ_CG56K0hlFOFdlHeMKhEAd04btZrJ0lPpb_Y9HceT1BD45EI0ixtOsEFtPf2wPXiKr6_PT8dlHeEX17pc-oG1ozWd3fgdR0dzuRvZj8OO5Of4vNA8aXA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Utility+of+RGB+Color+for+Discrimination+of+Lunar+Maturity+and+Composition&rft.jtitle=Earth+and+space+science+%28Hoboken%2C+N.J.%29&rft.au=Blewett%2C+David+T.&rft.au=Choi%2C+Tiffanie+X.&rft.au=Zheng%2C+YongChun&rft.au=Cloutis%2C+Edward+A.&rft.date=2023-01-01&rft.issn=2333-5084&rft.eissn=2333-5084&rft.volume=10&rft.issue=1&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2022EA002710&rft.externalDBID=10.1029%252F2022EA002710&rft.externalDocID=ESS21364
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2333-5084&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2333-5084&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2333-5084&client=summon