Electrophilic Pt(II) Complexes: Precision Instruments for the Initiation of Transformations Mediated by the Cation–Olefin Reaction

A discontinuity exists between the importance of the cation–olefin reaction as the principal C–C bond forming reaction in terpene biosynthesis and the synthetic tools for mimicking this reaction under catalyst control; that is, having the product identity, stereochemistry, and functionality under th...

Full description

Saved in:
Bibliographic Details
Published inAccounts of chemical research Vol. 47; no. 8; pp. 2319 - 2331
Main Authors Felix, Ryan J, Munro-Leighton, Colleen, Gagné, Michel R
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 19.08.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A discontinuity exists between the importance of the cation–olefin reaction as the principal C–C bond forming reaction in terpene biosynthesis and the synthetic tools for mimicking this reaction under catalyst control; that is, having the product identity, stereochemistry, and functionality under the control of a catalyst. The main reason for this deficiency is that the cation–olefin reaction starts with a reactive intermediate (a carbocation) that reacts exothermically with an alkene to reform the reactive intermediate; not to mention that reactive intermediates can also react in nonproductive fashions. In this Account, we detail our efforts to realize catalyst control over this most fundamental of reactions and thereby access steroid like compounds. Our story is organized around our progress in each component of the cascade reaction: the metal controlled electrophilic initiation, the propagation and termination of the cyclization (the cyclase phase), and the turnover deplatinating events. Electrophilic Pt­(II) complexes efficiently initiate the cation–olefin reaction by first coordinating to the alkene with selection rules that favor less substituted alkenes over more substituted alkenes. In complex substrates with multiple alkenes, this preference ensures that the least substituted alkene is always the better ligand for the Pt­(II) initiator, and consequently the site at which all electrophilic chemistry is initiated. This control element is invariant. With a suitably electron deficient ligand set, the catalyst then activates the coordinated alkene to intramolecular addition by a second alkene, which initiates the cation–olefin reaction cascade and generates an organometallic Pt­(II)-alkyl. Deplatination by a range of mechanisms (β-H elimination, single electron oxidation, two-electron oxidation, etc.) provides an additional level of control that ultimately enables A-ring functionalizations that are orthogonal to the cyclase cascade. We particularly focus on reactions that combine an initiated cyclization reaction with a turnover defining β-hydride elimination, fluorination, and oxygenation. These latter demetalation schemes lead to new compounds functionalized at the C3 carbon of the A-ring (steroid numbering convention) and thus provide access to interesting potentially bioactive targets. Progress toward efficient and diverse polycyclization reactions has been achieved by investing in both synthetic challenges and fundamental organometallic reactivity. In addition to an interest in the entrance and exit of the metal catalyst from this reaction scheme, we have been intrigued by the role of neighboring group participation in the cyclase phase. Computational studies have served to provide nuance and clarity on several key aspects, including the role (and consequences) of neighboring group participation in cation generation and stabilization. For example, these calculations have demonstrated that traversing carbonium ion transition states significantly impacts the kinetics of competitive 6-endo and 5-exo A-ring forming reactions. The resulting nonclassical transition states then become subject to a portion of the strain energy inherent to bicyclic structures, with the net result being that the 6-endo pathway becomes kinetically favored for alkene nucleophiles, in contrast to heteroatom nucleophiles which progress through classical transition states and preferentially follow 5-exo pathways. These vignettes articulate our approach to achieving the desired catalyst control.
AbstractList A discontinuity exists between the importance of the cation-olefin reaction as the principal C-C bond forming reaction in terpene biosynthesis and the synthetic tools for mimicking this reaction under catalyst control; that is, having the product identity, stereochemistry, and functionality under the control of a catalyst. The main reason for this deficiency is that the cation-olefin reaction starts with a reactive intermediate (a carbocation) that reacts exothermically with an alkene to reform the reactive intermediate; not to mention that reactive intermediates can also react in nonproductive fashions. In this Account, we detail our efforts to realize catalyst control over this most fundamental of reactions and thereby access steroid like compounds. Our story is organized around our progress in each component of the cascade reaction: the metal controlled electrophilic initiation, the propagation and termination of the cyclization (the cyclase phase), and the turnover deplatinating events. Electrophilic Pt(II) complexes efficiently initiate the cation-olefin reaction by first coordinating to the alkene with selection rules that favor less substituted alkenes over more substituted alkenes. In complex substrates with multiple alkenes, this preference ensures that the least substituted alkene is always the better ligand for the Pt(II) initiator, and consequently the site at which all electrophilic chemistry is initiated. This control element is invariant. With a suitably electron deficient ligand set, the catalyst then activates the coordinated alkene to intramolecular addition by a second alkene, which initiates the cation-olefin reaction cascade and generates an organometallic Pt(II)-alkyl. Deplatination by a range of mechanisms (β-H elimination, single electron oxidation, two-electron oxidation, etc.) provides an additional level of control that ultimately enables A-ring functionalizations that are orthogonal to the cyclase cascade. We particularly focus on reactions that combine an initiated cyclization reaction with a turnover defining β-hydride elimination, fluorination, and oxygenation. These latter demetalation schemes lead to new compounds functionalized at the C3 carbon of the A-ring (steroid numbering convention) and thus provide access to interesting potentially bioactive targets. Progress toward efficient and diverse polycyclization reactions has been achieved by investing in both synthetic challenges and fundamental organometallic reactivity. In addition to an interest in the entrance and exit of the metal catalyst from this reaction scheme, we have been intrigued by the role of neighboring group participation in the cyclase phase. Computational studies have served to provide nuance and clarity on several key aspects, including the role (and consequences) of neighboring group participation in cation generation and stabilization. For example, these calculations have demonstrated that traversing carbonium ion transition states significantly impacts the kinetics of competitive 6-endo and 5-exo A-ring forming reactions. The resulting nonclassical transition states then become subject to a portion of the strain energy inherent to bicyclic structures, with the net result being that the 6-endo pathway becomes kinetically favored for alkene nucleophiles, in contrast to heteroatom nucleophiles which progress through classical transition states and preferentially follow 5-exo pathways. These vignettes articulate our approach to achieving the desired catalyst control.
A discontinuity exists between the importance of the cation-olefin reaction as the principal C-C bond forming reaction in terpene biosynthesis and the synthetic tools for mimicking this reaction under catalyst control; that is, having the product identity, stereochemistry, and functionality under the control of a catalyst. The main reason for this deficiency is that the cation-olefin reaction starts with a reactive intermediate (a carbocation) that reacts exothermically with an alkene to reform the reactive intermediate; not to mention that reactive intermediates can also react in nonproductive fashions. In this Account, we detail our efforts to realize catalyst control over this most fundamental of reactions and thereby access steroid like compounds. Our story is organized around our progress in each component of the cascade reaction: the metal controlled electrophilic initiation, the propagation and termination of the cyclization (the cyclase phase), and the turnover deplatinating events. Electrophilic Pt(II) complexes efficiently initiate the cation-olefin reaction by first coordinating to the alkene with selection rules that favor less substituted alkenes over more substituted alkenes. In complex substrates with multiple alkenes, this preference ensures that the least substituted alkene is always the better ligand for the Pt(II) initiator, and consequently the site at which all electrophilic chemistry is initiated. This control element is invariant. With a suitably electron deficient ligand set, the catalyst then activates the coordinated alkene to intramolecular addition by a second alkene, which initiates the cation-olefin reaction cascade and generates an organometallic Pt(II)-alkyl. Deplatination by a range of mechanisms (β-H elimination, single electron oxidation, two-electron oxidation, etc.) provides an additional level of control that ultimately enables A-ring functionalizations that are orthogonal to the cyclase cascade. We particularly focus on reactions that combine an initiated cyclization reaction with a turnover defining β-hydride elimination, fluorination, and oxygenation. These latter demetalation schemes lead to new compounds functionalized at the C3 carbon of the A-ring (steroid numbering convention) and thus provide access to interesting potentially bioactive targets. Progress toward efficient and diverse polycyclization reactions has been achieved by investing in both synthetic challenges and fundamental organometallic reactivity. In addition to an interest in the entrance and exit of the metal catalyst from this reaction scheme, we have been intrigued by the role of neighboring group participation in the cyclase phase. Computational studies have served to provide nuance and clarity on several key aspects, including the role (and consequences) of neighboring group participation in cation generation and stabilization. For example, these calculations have demonstrated that traversing carbonium ion transition states significantly impacts the kinetics of competitive 6-endo and 5-exo A-ring forming reactions. The resulting nonclassical transition states then become subject to a portion of the strain energy inherent to bicyclic structures, with the net result being that the 6-endo pathway becomes kinetically favored for alkene nucleophiles, in contrast to heteroatom nucleophiles which progress through classical transition states and preferentially follow 5-exo pathways. These vignettes articulate our approach to achieving the desired catalyst control.A discontinuity exists between the importance of the cation-olefin reaction as the principal C-C bond forming reaction in terpene biosynthesis and the synthetic tools for mimicking this reaction under catalyst control; that is, having the product identity, stereochemistry, and functionality under the control of a catalyst. The main reason for this deficiency is that the cation-olefin reaction starts with a reactive intermediate (a carbocation) that reacts exothermically with an alkene to reform the reactive intermediate; not to mention that reactive intermediates can also react in nonproductive fashions. In this Account, we detail our efforts to realize catalyst control over this most fundamental of reactions and thereby access steroid like compounds. Our story is organized around our progress in each component of the cascade reaction: the metal controlled electrophilic initiation, the propagation and termination of the cyclization (the cyclase phase), and the turnover deplatinating events. Electrophilic Pt(II) complexes efficiently initiate the cation-olefin reaction by first coordinating to the alkene with selection rules that favor less substituted alkenes over more substituted alkenes. In complex substrates with multiple alkenes, this preference ensures that the least substituted alkene is always the better ligand for the Pt(II) initiator, and consequently the site at which all electrophilic chemistry is initiated. This control element is invariant. With a suitably electron deficient ligand set, the catalyst then activates the coordinated alkene to intramolecular addition by a second alkene, which initiates the cation-olefin reaction cascade and generates an organometallic Pt(II)-alkyl. Deplatination by a range of mechanisms (β-H elimination, single electron oxidation, two-electron oxidation, etc.) provides an additional level of control that ultimately enables A-ring functionalizations that are orthogonal to the cyclase cascade. We particularly focus on reactions that combine an initiated cyclization reaction with a turnover defining β-hydride elimination, fluorination, and oxygenation. These latter demetalation schemes lead to new compounds functionalized at the C3 carbon of the A-ring (steroid numbering convention) and thus provide access to interesting potentially bioactive targets. Progress toward efficient and diverse polycyclization reactions has been achieved by investing in both synthetic challenges and fundamental organometallic reactivity. In addition to an interest in the entrance and exit of the metal catalyst from this reaction scheme, we have been intrigued by the role of neighboring group participation in the cyclase phase. Computational studies have served to provide nuance and clarity on several key aspects, including the role (and consequences) of neighboring group participation in cation generation and stabilization. For example, these calculations have demonstrated that traversing carbonium ion transition states significantly impacts the kinetics of competitive 6-endo and 5-exo A-ring forming reactions. The resulting nonclassical transition states then become subject to a portion of the strain energy inherent to bicyclic structures, with the net result being that the 6-endo pathway becomes kinetically favored for alkene nucleophiles, in contrast to heteroatom nucleophiles which progress through classical transition states and preferentially follow 5-exo pathways. These vignettes articulate our approach to achieving the desired catalyst control.
A discontinuity exists between the importance of the cation–olefin reaction as the principal C–C bond forming reaction in terpene biosynthesis and the synthetic tools for mimicking this reaction under catalyst control; that is, having the product identity, stereochemistry, and functionality under the control of a catalyst. The main reason for this deficiency is that the cation–olefin reaction starts with a reactive intermediate (a carbocation) that reacts exothermically with an alkene to reform the reactive intermediate; not to mention that reactive intermediates can also react in nonproductive fashions. In this Account, we detail our efforts to realize catalyst control over this most fundamental of reactions and thereby access steroid like compounds. Our story is organized around our progress in each component of the cascade reaction: the metal controlled electrophilic initiation, the propagation and termination of the cyclization (the cyclase phase), and the turnover deplatinating events. Electrophilic Pt(II) complexes efficiently initiate the cation–olefin reaction by first coordinating to the alkene with selection rules that favor less substituted alkenes over more substituted alkenes. In complex substrates with multiple alkenes, this preference ensures that the least substituted alkene is always the better ligand for the Pt(II) initiator, and consequently the site at which all electrophilic chemistry is initiated. This control element is invariant. With a suitably electron deficient ligand set, the catalyst then activates the coordinated alkene to intramolecular addition by a second alkene, which initiates the cation–olefin reaction cascade and generates an organometallic Pt(II)-alkyl. Deplatination by a range of mechanisms (β-H elimination, single electron oxidation, two-electron oxidation, etc.) provides an additional level of control that ultimately enables A-ring functionalizations that are orthogonal to the cyclase cascade. We particularly focus on reactions that combine an initiated cyclization reaction with a turnover defining β-hydride elimination, fluorination, and oxygenation. These latter demetalation schemes lead to new compounds functionalized at the C3 carbon of the A-ring (steroid numbering convention) and thus provide access to interesting potentially bioactive targets. Progress toward efficient and diverse polycyclization reactions has been achieved by investing in both synthetic challenges and fundamental organometallic reactivity. In addition to an interest in the entrance and exit of the metal catalyst from this reaction scheme, we have been intrigued by the role of neighboring group participation in the cyclase phase. Computational studies have served to provide nuance and clarity on several key aspects, including the role (and consequences) of neighboring group participation in cation generation and stabilization. For example, these calculations have demonstrated that traversing carbonium ion transition states significantly impacts the kinetics of competitive 6-endo and 5-exo A-ring forming reactions. The resulting nonclassical transition states then become subject to a portion of the strain energy inherent to bicyclic structures, with the net result being that the 6-endo pathway becomes kinetically favored for alkene nucleophiles, in contrast to heteroatom nucleophiles which progress through classical transition states and preferentially follow 5-exo pathways. These vignettes articulate our approach to achieving the desired catalyst control.
A discontinuity exists between the importance of the cation–olefin reaction as the principal C–C bond forming reaction in terpene biosynthesis and the synthetic tools for mimicking this reaction under catalyst control; that is, having the product identity, stereochemistry, and functionality under the control of a catalyst. The main reason for this deficiency is that the cation–olefin reaction starts with a reactive intermediate (a carbocation) that reacts exothermically with an alkene to reform the reactive intermediate; not to mention that reactive intermediates can also react in nonproductive fashions. In this Account, we detail our efforts to realize catalyst control over this most fundamental of reactions and thereby access steroid like compounds. Our story is organized around our progress in each component of the cascade reaction: the metal controlled electrophilic initiation, the propagation and termination of the cyclization (the cyclase phase), and the turnover deplatinating events. Electrophilic Pt­(II) complexes efficiently initiate the cation–olefin reaction by first coordinating to the alkene with selection rules that favor less substituted alkenes over more substituted alkenes. In complex substrates with multiple alkenes, this preference ensures that the least substituted alkene is always the better ligand for the Pt­(II) initiator, and consequently the site at which all electrophilic chemistry is initiated. This control element is invariant. With a suitably electron deficient ligand set, the catalyst then activates the coordinated alkene to intramolecular addition by a second alkene, which initiates the cation–olefin reaction cascade and generates an organometallic Pt­(II)-alkyl. Deplatination by a range of mechanisms (β-H elimination, single electron oxidation, two-electron oxidation, etc.) provides an additional level of control that ultimately enables A-ring functionalizations that are orthogonal to the cyclase cascade. We particularly focus on reactions that combine an initiated cyclization reaction with a turnover defining β-hydride elimination, fluorination, and oxygenation. These latter demetalation schemes lead to new compounds functionalized at the C3 carbon of the A-ring (steroid numbering convention) and thus provide access to interesting potentially bioactive targets. Progress toward efficient and diverse polycyclization reactions has been achieved by investing in both synthetic challenges and fundamental organometallic reactivity. In addition to an interest in the entrance and exit of the metal catalyst from this reaction scheme, we have been intrigued by the role of neighboring group participation in the cyclase phase. Computational studies have served to provide nuance and clarity on several key aspects, including the role (and consequences) of neighboring group participation in cation generation and stabilization. For example, these calculations have demonstrated that traversing carbonium ion transition states significantly impacts the kinetics of competitive 6-endo and 5-exo A-ring forming reactions. The resulting nonclassical transition states then become subject to a portion of the strain energy inherent to bicyclic structures, with the net result being that the 6-endo pathway becomes kinetically favored for alkene nucleophiles, in contrast to heteroatom nucleophiles which progress through classical transition states and preferentially follow 5-exo pathways. These vignettes articulate our approach to achieving the desired catalyst control.
Author Gagné, Michel R
Felix, Ryan J
Munro-Leighton, Colleen
AuthorAffiliation Department of Chemistry
University of North Carolina at Chapel Hill
Austin College
Elmhurst College
AuthorAffiliation_xml – name: Department of Chemistry
– name: Elmhurst College
– name: University of North Carolina at Chapel Hill
– name: Austin College
Author_xml – sequence: 1
  givenname: Ryan J
  surname: Felix
  fullname: Felix, Ryan J
  email: rfelix@austincollege.edu
– sequence: 2
  givenname: Colleen
  surname: Munro-Leighton
  fullname: Munro-Leighton, Colleen
  email: c.munro-leighton@elmhurst.edu
– sequence: 3
  givenname: Michel R
  surname: Gagné
  fullname: Gagné, Michel R
  email: mgagne@unc.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24845777$$D View this record in MEDLINE/PubMed
BookMark eNptUctuUzEQtaqiNi1d8APIG6R2EernfbBAQlGBSEWtULu2fJ25xJGvHWxfRHcs-AP-kC_BSdoKUFcen3PmjObMEdr3wQNCLyh5TQmj5zpKQoioV3toQiUjU9G0zT6aFJCWWrBDdJTSqnyZqOoDdMgKKOu6nqCfFw5MjmG9tM4afJ1P5_MzPAvD2sF3SG_wdQRjkw0ez33KcRzA54T7EHFeQsFstjpv6NDjm6h9KtSwRRL-BItCwgJ3d1v1bIv__vHrykFvPf4M2myQ5-hZr12Ck_v3GN2-v7iZfZxeXn2Yz95dTrWoaZ4aKYHXXHYN7xpBSctZ1XSCCcF013NKOiZLVdGGccIZ4aaWLSOk4iWHpmr5MXq7812P3QALU1aJ2ql1tIOOdypoq_5lvF2qL-GbEpS3tCbF4PTeIIavI6SsBpsMOKc9hDEpKqVoRTnJRvry71mPQx6iL4LzncDEkFKEXhmbtwGV0dYpStTmuOrxuKXj7L-OB9OntK92Wm2SWoUx-hLsE7o_LfSxeQ
CitedBy_id crossref_primary_10_1002_anie_202008854
crossref_primary_10_1021_acscatal_4c06539
crossref_primary_10_1038_s41467_021_22287_w
crossref_primary_10_1002_ange_201702278
crossref_primary_10_1002_chem_202101926
crossref_primary_10_1016_j_ccr_2021_213863
crossref_primary_10_6023_cjoc202306028
crossref_primary_10_1002_ange_201700958
crossref_primary_10_1021_jacs_0c02665
crossref_primary_10_1016_j_xcrp_2023_101647
crossref_primary_10_1039_C6OB00375C
crossref_primary_10_1021_cr500691k
crossref_primary_10_1021_jacs_6b01368
crossref_primary_10_1002_anie_201702278
crossref_primary_10_1021_acs_organomet_5b00121
crossref_primary_10_1002_adsc_201900028
crossref_primary_10_1039_C4NP00142G
crossref_primary_10_1039_D0CC01438A
crossref_primary_10_1002_ange_202008854
crossref_primary_10_1039_C4SC03782K
crossref_primary_10_1002_chem_201903440
crossref_primary_10_1038_s41586_024_07757_7
crossref_primary_10_1002_anie_201700958
crossref_primary_10_1016_j_tet_2024_133910
crossref_primary_10_1021_acs_orglett_7b03306
crossref_primary_10_1002_adsc_201800455
crossref_primary_10_1002_chem_202005157
crossref_primary_10_1021_acscatal_8b02448
crossref_primary_10_1021_om5006929
crossref_primary_10_1002_chin_201442283
crossref_primary_10_1021_jacs_7b05381
crossref_primary_10_1039_C7OB00235A
crossref_primary_10_1039_C8CC04909B
Cites_doi 10.1021/om200515f
10.1021/ja075518i
10.1021/ja803187x
10.1021/om9801498
10.1021/cr00022a009
10.1021/ja064335d
10.1021/ja0293002
10.1016/j.tet.2004.06.023
10.1021/ja00376a046
10.1021/ja00513a024
10.1021/ja00815a037
10.1021/ja00521a077
10.1021/ar020094c
10.1021/om800760x
10.1021/ja3116795
10.1002/anie.201302886
10.1002/1099-0682(200102)2001:2<419::AID-EJIC419>3.0.CO;2-2
10.1021/ol051277c
10.1002/anie.200603954
10.1021/ja00288a052
10.1002/anie.200604335
10.1021/om8011272
10.1021/cr040623l
10.1021/ja00003a028
10.1021/om00089a027
10.1002/anie.200300630
10.1021/ja101436w
10.1039/c3sc51657a
10.1021/ja00831a044
10.1021/cr030726o
10.1021/op700134j
10.1021/ol017218q
10.1126/science.1131943
10.1039/b917107j
10.1021/ja8054595
10.1021/ja00447a028
10.1038/nature05553
10.1016/j.tetlet.2003.11.060
10.1002/anie.200453913
10.1021/ja9714245
10.1021/ja073573l
10.1021/om030500b
10.1021/ja00166a034
10.1002/hlca.200590245
10.1021/ja01084a027
10.1021/ja01571a068
10.1021/ja00369a046
10.1021/jo980245i
10.1002/1521-3773(20000818)39:16<2812::AID-ANIE2812>3.0.CO;2-#
10.1021/ol049126h
10.1002/anie.200806187
10.1021/om2001958
10.1021/om060632f
10.1021/jo00315a027
10.1021/ol0496125
10.1021/cr9411886
10.1021/ja00044a019
10.1351/pac199264121813
10.1002/anie.201100463
10.1021/jo0705871
10.1002/hlca.19540370404
10.1021/om400003c
10.1016/S0040-4039(00)94527-1
10.1021/jo00404a024
10.1007/978-3-662-04164-2
10.1021/ja00522a082
10.1021/jo0513010
10.1016/S0898-8838(03)54005-3
10.1021/ol048780u
10.1038/nature12284
10.1021/ja0263386
10.1021/ja01064a012
10.1021/ja001165a
10.1016/j.solidstatesciences.2005.06.015
10.1039/dt9860000891
10.1002/anie.200801423
10.1021/ja030436p
ContentType Journal Article
Copyright Copyright © 2014 American Chemical Society
Copyright © 2014 American Chemical Society 2014 American Chemical Society
Copyright_xml – notice: Copyright © 2014 American Chemical Society
– notice: Copyright © 2014 American Chemical Society 2014 American Chemical Society
DBID N~.
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1021/ar500047j
DatabaseName American Chemical Society (ACS) Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: N~.
  name: American Chemical Society (ACS) Open Access
  url: https://pubs.acs.org
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-4898
EndPage 2331
ExternalDocumentID PMC4139170
24845777
10_1021_ar500047j
b659828024
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: GM 60578
GroupedDBID -
.K2
02
23M
4.4
53G
55A
5GY
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
K2
LG6
N~.
P2P
RNS
ROL
TWZ
UI2
UPT
VF5
VG9
W1F
WH7
X
YZZ
---
-DZ
-~X
5ZA
6J9
6P2
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACGFO
ADHLV
AFXLT
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
ZCA
~02
CGR
CUY
CVF
ECM
EIF
NPM
YIN
7X8
5PM
ID FETCH-LOGICAL-a471t-c55e3735b83b841093268b42442abf310b252ab6182303203c759200630018693
IEDL.DBID N~.
ISSN 0001-4842
1520-4898
IngestDate Thu Aug 21 14:06:23 EDT 2025
Fri Jul 11 02:42:40 EDT 2025
Wed Feb 19 01:51:55 EST 2025
Tue Jul 01 04:04:08 EDT 2025
Thu Apr 24 22:58:01 EDT 2025
Thu Aug 27 13:42:16 EDT 2020
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License http://pubs.acs.org/page/policy/authorchoice_termsofuse.html
Terms of Use
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a471t-c55e3735b83b841093268b42442abf310b252ab6182303203c759200630018693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://dx.doi.org/10.1021/ar500047j
PMID 24845777
PQID 1554940210
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4139170
proquest_miscellaneous_1554940210
pubmed_primary_24845777
crossref_citationtrail_10_1021_ar500047j
crossref_primary_10_1021_ar500047j
acs_journals_10_1021_ar500047j
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
N~.
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-08-19
PublicationDateYYYYMMDD 2014-08-19
PublicationDate_xml – month: 08
  year: 2014
  text: 2014-08-19
  day: 19
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Accounts of chemical research
PublicationTitleAlternate Acc. Chem. Res
PublicationYear 2014
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
Geier M. J. (ref55/cit55) 2013; 32
Harding K. E. (ref75/cit75) 1974; 96
Hahn C. (ref16/cit16) 2002; 124
Jansen M. (ref12/cit12) 2005; 7
Seligson A. L. (ref59/cit59) 1992; 114
Hart D. J. (ref40/cit40) 1981; 46
Bell F. (ref87/cit87) 2009; 28
Poulter C. D. (ref74/cit74) 1982; 104
Sokol J. G. (ref64/cit64) 2011; 50
Nowroozi-Isfahani T. (ref35/cit35) 2007; 26
Chianese A. R. (ref8/cit8) 2007; 46
Hess B. A. (ref78/cit78) 2013; 52
Overman L. E. (ref20/cit20) 1983; 24
ref10/cit10
Joseph M. F. (ref62/cit62) 1984; 3
Bartlett P. D. (ref73/cit73) 1965; 87
Overman L. E. (ref21/cit21) 1990; 112
Cochrane N. A. (ref34/cit34) 2011; 30
Takao H. (ref67/cit67) 2004; 45
Fürstner A. (ref11/cit11) 2007; 46
Overman L. E. (ref19/cit19) 1980; 102
Cochrane N. A. (ref44/cit44) 2013; 135
Johansson L. (ref58/cit58) 1998; 17
Gutierrez O. (ref80/cit80) 2013; 4
Mullen C. A. (ref25/cit25) 2007; 129
Hiyama T. (ref45/cit45) 2000
Sakakura A. (ref68/cit68b) 2007; 445
Yoder R. A. (ref70/cit70) 2005; 105
Helm L. (ref13/cit13) 2005; 105
Zhao S.-B. (ref43/cit43) 2011; 30
Hart D. J. (ref39/cit39) 1980; 102
Feducia J. A. (ref83/cit83) 2006; 128
Johnson W. S. (ref41/cit41) 1982; 104
Uozumi Y. (ref28/cit28) 1998; 63
Richards J. H. (ref3/cit3) 1964
Hahn C. (ref15/cit15) 2001
Shilov A. E. (ref52/cit52) 1997; 97
Korotchenko V. N. (ref24/cit24) 2007; 72
Yoder R. A. (ref6/cit6) 2005; 105
Wendt K. U. (ref1/cit1) 2000; 39
Kerber W. D. (ref81/cit81) 2004; 6
Koh J. H. (ref17/cit17) 2004; 43
Russell G. A. (ref63/cit63) 1957; 79
Eschenmoser A. (ref71/cit71) 2005; 88
Kurosawa H. (ref32/cit32) 1986; 4
Stahl S. S. (ref27/cit27) 2004; 43
Hartwig J. F. (ref18/cit18) 2009
Ball N. D. (ref50/cit50) 2009; 131
Tantillo D. J. (ref66/cit66) 2010; 39
ref5/cit5
Gamboni G. (ref69/cit69) 1954; 37
Furuya T. (ref49/cit49) 2008; 130
Mayr H. (ref65/cit65) 2003; 36
Nishizawa M. (ref76/cit76) 1985; 107
Borst M. L. G. (ref79/cit79) 2005; 70
Yuan C. (ref7/cit7) 2013; 499
Helfer D. S. (ref29/cit29) 2004; 23
Fekl U. (ref53/cit53) 2003; 54
Grice K. A. (ref57/cit57) 2009; 28
Kumazawa K. (ref30/cit30) 2004; 6
Becker J. J. (ref54/cit54) 2002; 4
Nakamura S. (ref68/cit68a) 2000; 122
Feducia J. A. (ref37/cit37) 2008; 130
Johnson W. S. (ref72/cit72) 1964; 86
Qian H. (ref14/cit14) 2003; 125
Casey C. P. (ref84/cit84) 2004; 126
Hahn C. (ref33/cit33) 2001; 2
Taylor R. A. (ref56/cit56) 2009; 48
Abe I. (ref2/cit2) 1993; 93
Kirk K. L. (ref47/cit47) 2008; 12
Dennis D. D. (ref86/cit86) 1974; 96
Koh J. H. (ref23/cit23) 2004; 60
Brookhart M. (ref85/cit85) 1991; 113
Müller K. (ref46/cit46) 2007; 317
Wong C. L. (ref61/cit61) 1979; 101
Overman L. E. (ref22/cit22) 1992; 64
Mullen C. A. (ref31/cit31) 2008; 47
Marinus B. (ref38/cit38) 1978; 43
ref4/cit4
Kaspi A. W. (ref51/cit51) 2010; 132
Kerber W. D. (ref82/cit82) 2005; 7
Jenson C. (ref36/cit36) 1997; 119
Chen J. Y. (ref60/cit60) 1977; 99
Hess B. A. (ref77/cit77) 2004; 6
12148993 - J Am Chem Soc. 2002 Aug 7;124(31):9038-9
16277336 - J Org Chem. 2005 Sep 30;70(20):8110-6
17530903 - J Org Chem. 2007 Jun 22;72(13):4877-81
16018665 - Org Lett. 2005 Jul 21;7(15):3379-81
18649296 - Angew Chem Int Ed Engl. 2008;47(32):6011-4
15151397 - Org Lett. 2004 May 27;6(11):1717-20
21574222 - Angew Chem Int Ed Engl. 2011 Jun 14;50(25):5658-61
17850150 - J Am Chem Soc. 2007 Oct 3;129(39):11880-1
19249867 - J Am Chem Soc. 2009 Mar 25;131(11):3796-7
19569145 - Angew Chem Int Ed Engl. 2009;48(32):5900-3
17427893 - Angew Chem Int Ed Engl. 2007;46(19):3410-49
12590527 - J Am Chem Soc. 2003 Feb 26;125(8):2056-7
24404374 - Chem Sci. 2013 Oct;4(10):null
11027983 - Angew Chem Int Ed Engl. 2000 Aug 18;39(16):2812-2833
11851481 - Chem Rev. 1997 Dec 18;97(8):2879-2932
15330671 - Org Lett. 2004 Aug 19;6(17):3013-5
17901324 - Science. 2007 Sep 28;317(5846):1881-6
20442917 - Chem Soc Rev. 2010 Aug;39(8):2847-54
17487902 - Angew Chem Int Ed Engl. 2007;46(22):4042-59
20161262 - Organometallics. 2009 Apr 13;28(7):2038-2045
11869112 - Org Lett. 2002 Mar 7;4(5):727-30
16351060 - Chem Rev. 2005 Dec;105(12):4730-56
14871100 - J Am Chem Soc. 2004 Feb 18;126(6):1699-704
15221827 - Angew Chem Int Ed Engl. 2004 Jun 28;43(26):3400-20
12534306 - Acc Chem Res. 2003 Jan;36(1):66-77
23846658 - Nature. 2013 Jul 11;499(7457):192-6
17017811 - J Am Chem Soc. 2006 Oct 11;128(40):13290-7
23282101 - J Am Chem Soc. 2013 Jan 16;135(2):628-31
23526863 - Organometallics. 2013 Jan 28;32(2):380-383
21869853 - Organometallics. 2011 Aug 8;30(15):3926-3929
20681679 - J Am Chem Soc. 2010 Aug 11;132(31):10626-7
18616246 - J Am Chem Soc. 2008 Aug 6;130(31):10060-1
15221839 - Angew Chem Int Ed Engl. 2004 Jun 28;43(26):3459-61
18095679 - J Am Chem Soc. 2008 Jan 16;130(2):592-9
17314976 - Nature. 2007 Feb 22;445(7130):900-3
21572581 - Organometallics. 2011 May 9;30(9):2457-2460
15941206 - Chem Rev. 2005 Jun;105(6):1923-59
15255688 - Org Lett. 2004 Jul 22;6(15):2551-4
24038770 - Angew Chem Int Ed Engl. 2013 Oct 11;52(42):11029-33
References_xml – volume: 30
  start-page: 3926
  year: 2011
  ident: ref43/cit43
  publication-title: Organometallics
  doi: 10.1021/om200515f
– volume: 130
  start-page: 592
  year: 2008
  ident: ref37/cit37
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja075518i
– volume: 130
  start-page: 10060
  year: 2008
  ident: ref49/cit49
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja803187x
– volume: 17
  start-page: 3957
  year: 1998
  ident: ref58/cit58
  publication-title: Organometallics
  doi: 10.1021/om9801498
– volume: 93
  start-page: 2189
  year: 1993
  ident: ref2/cit2
  publication-title: Chem. Rev.
  doi: 10.1021/cr00022a009
– ident: ref9/cit9
– volume: 128
  start-page: 13290
  year: 2006
  ident: ref83/cit83
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja064335d
– volume: 125
  start-page: 2056
  year: 2003
  ident: ref14/cit14
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0293002
– volume: 60
  start-page: 7405
  year: 2004
  ident: ref23/cit23
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2004.06.023
– volume: 104
  start-page: 3508
  year: 1982
  ident: ref41/cit41
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00376a046
– volume: 101
  start-page: 5593
  year: 1979
  ident: ref61/cit61
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00513a024
– volume: 96
  start-page: 2540
  year: 1974
  ident: ref75/cit75
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00815a037
– volume: 102
  start-page: 397
  year: 1980
  ident: ref39/cit39
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00521a077
– volume: 36
  start-page: 66
  year: 2003
  ident: ref65/cit65
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar020094c
– volume: 28
  start-page: 2038
  year: 2009
  ident: ref87/cit87
  publication-title: Organometallics
  doi: 10.1021/om800760x
– ident: ref4/cit4
– volume: 135
  start-page: 628
  year: 2013
  ident: ref44/cit44
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3116795
– volume: 52
  start-page: 11029
  year: 2013
  ident: ref78/cit78
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201302886
– start-page: 419
  year: 2001
  ident: ref15/cit15
  publication-title: Eur. J. Inorg. Chem.
  doi: 10.1002/1099-0682(200102)2001:2<419::AID-EJIC419>3.0.CO;2-2
– volume: 7
  start-page: 3379
  year: 2005
  ident: ref82/cit82
  publication-title: Org. Lett.
  doi: 10.1021/ol051277c
– volume: 46
  start-page: 4042
  year: 2007
  ident: ref8/cit8
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200603954
– volume: 107
  start-page: 522
  year: 1985
  ident: ref76/cit76
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00288a052
– volume: 46
  start-page: 3410
  year: 2007
  ident: ref11/cit11
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200604335
– volume: 28
  start-page: 953
  year: 2009
  ident: ref57/cit57
  publication-title: Organometallics
  doi: 10.1021/om8011272
– volume: 105
  start-page: 4730
  year: 2005
  ident: ref6/cit6
  publication-title: Chem. Rev.
  doi: 10.1021/cr040623l
– volume: 113
  start-page: 927
  year: 1991
  ident: ref85/cit85
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00003a028
– volume: 105
  start-page: 4730
  year: 2005
  ident: ref70/cit70
  publication-title: Chem. Rev.
  doi: 10.1021/cr040623l
– volume: 3
  start-page: 1749
  year: 1984
  ident: ref62/cit62
  publication-title: Organometallics
  doi: 10.1021/om00089a027
– volume: 43
  start-page: 3400
  year: 2004
  ident: ref27/cit27
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200300630
– volume: 132
  start-page: 10626
  year: 2010
  ident: ref51/cit51
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja101436w
– volume: 4
  start-page: 3894
  year: 2013
  ident: ref80/cit80
  publication-title: Chem. Sci.
  doi: 10.1039/c3sc51657a
– volume: 96
  start-page: 7576
  year: 1974
  ident: ref86/cit86
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00831a044
– volume: 105
  start-page: 1923
  year: 2005
  ident: ref13/cit13
  publication-title: Chem. Rev.
  doi: 10.1021/cr030726o
– volume: 12
  start-page: 305
  year: 2008
  ident: ref47/cit47
  publication-title: Org. Process Res. Dev.
  doi: 10.1021/op700134j
– volume: 4
  start-page: 727
  year: 2002
  ident: ref54/cit54
  publication-title: Org. Lett.
  doi: 10.1021/ol017218q
– volume: 317
  start-page: 1881
  year: 2007
  ident: ref46/cit46
  publication-title: Science
  doi: 10.1126/science.1131943
– volume: 39
  start-page: 2847
  year: 2010
  ident: ref66/cit66
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b917107j
– volume: 131
  start-page: 3796
  year: 2009
  ident: ref50/cit50
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja8054595
– volume: 99
  start-page: 1450
  year: 1977
  ident: ref60/cit60
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00447a028
– volume: 445
  start-page: 900
  year: 2007
  ident: ref68/cit68b
  publication-title: Nature
  doi: 10.1038/nature05553
– ident: ref5/cit5
– volume: 45
  start-page: 1079
  year: 2004
  ident: ref67/cit67
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2003.11.060
– volume: 43
  start-page: 3459
  year: 2004
  ident: ref17/cit17
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200453913
– volume: 119
  start-page: 10846
  year: 1997
  ident: ref36/cit36
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9714245
– volume: 129
  start-page: 11880
  year: 2007
  ident: ref25/cit25
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja073573l
– volume: 23
  start-page: 2412
  year: 2004
  ident: ref29/cit29
  publication-title: Organometallics
  doi: 10.1021/om030500b
– volume: 112
  start-page: 3945
  year: 1990
  ident: ref21/cit21
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00166a034
– volume: 88
  start-page: 3011
  year: 2005
  ident: ref71/cit71
  publication-title: Helv. Chim. Acta
  doi: 10.1002/hlca.200590245
– volume: 87
  start-page: 1308
  year: 1965
  ident: ref73/cit73
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01084a027
– volume: 79
  start-page: 3871
  year: 1957
  ident: ref63/cit63
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01571a068
– volume: 104
  start-page: 1422
  year: 1982
  ident: ref74/cit74
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00369a046
– volume: 63
  start-page: 5071
  year: 1998
  ident: ref28/cit28
  publication-title: J. Org. Chem.
  doi: 10.1021/jo980245i
– volume: 39
  start-page: 2812
  year: 2000
  ident: ref1/cit1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/1521-3773(20000818)39:16<2812::AID-ANIE2812>3.0.CO;2-#
– volume: 6
  start-page: 2551
  year: 2004
  ident: ref30/cit30
  publication-title: Org. Lett.
  doi: 10.1021/ol049126h
– volume: 48
  start-page: 5900
  year: 2009
  ident: ref56/cit56
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200806187
– volume: 30
  start-page: 2457
  year: 2011
  ident: ref34/cit34
  publication-title: Organometallics
  doi: 10.1021/om2001958
– volume: 26
  start-page: 2540
  year: 2007
  ident: ref35/cit35
  publication-title: Organometallics
  doi: 10.1021/om060632f
– volume: 46
  start-page: 367
  year: 1981
  ident: ref40/cit40
  publication-title: J. Org. Chem.
  doi: 10.1021/jo00315a027
– volume: 6
  start-page: 1717
  year: 2004
  ident: ref77/cit77
  publication-title: Org. Lett.
  doi: 10.1021/ol0496125
– volume: 97
  start-page: 2879
  year: 1997
  ident: ref52/cit52
  publication-title: Chem. Rev.
  doi: 10.1021/cr9411886
– ident: ref10/cit10
– volume-title: Organotransition Metal Chemistry: from Bonding to Catalysis
  year: 2009
  ident: ref18/cit18
– volume: 114
  start-page: 7085
  year: 1992
  ident: ref59/cit59
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00044a019
– volume: 2
  start-page: 419
  year: 2001
  ident: ref33/cit33
  publication-title: Eur. J. Inorg. Chem.
  doi: 10.1002/1099-0682(200102)2001:2<419::AID-EJIC419>3.0.CO;2-2
– volume: 64
  start-page: 1813
  year: 1992
  ident: ref22/cit22
  publication-title: Pure Appl. Chem.
  doi: 10.1351/pac199264121813
– volume: 50
  start-page: 5658
  year: 2011
  ident: ref64/cit64
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201100463
– volume: 72
  start-page: 4877
  year: 2007
  ident: ref24/cit24
  publication-title: J. Org. Chem.
  doi: 10.1021/jo0705871
– volume: 37
  start-page: 964
  year: 1954
  ident: ref69/cit69
  publication-title: Helv. Chim. Acta
  doi: 10.1002/hlca.19540370404
– volume: 32
  start-page: 380
  year: 2013
  ident: ref55/cit55
  publication-title: Organometallics
  doi: 10.1021/om400003c
– volume: 24
  start-page: 3757
  year: 1983
  ident: ref20/cit20
  publication-title: Tetrahedron Lett.
  doi: 10.1016/S0040-4039(00)94527-1
– volume: 43
  start-page: 1961
  year: 1978
  ident: ref38/cit38
  publication-title: J. Org. Chem.
  doi: 10.1021/jo00404a024
– volume-title: Organofluorine Compounds
  year: 2000
  ident: ref45/cit45
  doi: 10.1007/978-3-662-04164-2
– volume: 102
  start-page: 865
  year: 1980
  ident: ref19/cit19
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00522a082
– volume: 70
  start-page: 8110
  year: 2005
  ident: ref79/cit79
  publication-title: J. Org. Chem.
  doi: 10.1021/jo0513010
– volume: 54
  start-page: 259
  year: 2003
  ident: ref53/cit53
  publication-title: Adv. Inorg. Chem.
  doi: 10.1016/S0898-8838(03)54005-3
– volume: 6
  start-page: 3013
  year: 2004
  ident: ref81/cit81
  publication-title: Org. Lett.
  doi: 10.1021/ol048780u
– volume: 499
  start-page: 192
  year: 2013
  ident: ref7/cit7
  publication-title: Nature
  doi: 10.1038/nature12284
– volume: 124
  start-page: 9038
  year: 2002
  ident: ref16/cit16
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0263386
– volume: 86
  start-page: 1959
  year: 1964
  ident: ref72/cit72
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01064a012
– volume: 122
  start-page: 8131
  year: 2000
  ident: ref68/cit68a
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja001165a
– volume: 7
  start-page: 1464
  year: 2005
  ident: ref12/cit12
  publication-title: Solid State Sci.
  doi: 10.1016/j.solidstatesciences.2005.06.015
– volume: 4
  start-page: 891
  year: 1986
  ident: ref32/cit32
  publication-title: J. Chem. Soc., Dalton Trans.
  doi: 10.1039/dt9860000891
– volume-title: The Biosynthesis of Steroids, Terpenes, and Acetogenins
  year: 1964
  ident: ref3/cit3
– volume: 47
  start-page: 6011
  year: 2008
  ident: ref31/cit31
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200801423
– volume: 126
  start-page: 1699
  year: 2004
  ident: ref84/cit84
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja030436p
– reference: 20161262 - Organometallics. 2009 Apr 13;28(7):2038-2045
– reference: 16351060 - Chem Rev. 2005 Dec;105(12):4730-56
– reference: 12590527 - J Am Chem Soc. 2003 Feb 26;125(8):2056-7
– reference: 20442917 - Chem Soc Rev. 2010 Aug;39(8):2847-54
– reference: 11851481 - Chem Rev. 1997 Dec 18;97(8):2879-2932
– reference: 17901324 - Science. 2007 Sep 28;317(5846):1881-6
– reference: 23526863 - Organometallics. 2013 Jan 28;32(2):380-383
– reference: 21869853 - Organometallics. 2011 Aug 8;30(15):3926-3929
– reference: 19569145 - Angew Chem Int Ed Engl. 2009;48(32):5900-3
– reference: 17850150 - J Am Chem Soc. 2007 Oct 3;129(39):11880-1
– reference: 17487902 - Angew Chem Int Ed Engl. 2007;46(22):4042-59
– reference: 17427893 - Angew Chem Int Ed Engl. 2007;46(19):3410-49
– reference: 12534306 - Acc Chem Res. 2003 Jan;36(1):66-77
– reference: 21572581 - Organometallics. 2011 May 9;30(9):2457-2460
– reference: 15151397 - Org Lett. 2004 May 27;6(11):1717-20
– reference: 24038770 - Angew Chem Int Ed Engl. 2013 Oct 11;52(42):11029-33
– reference: 23846658 - Nature. 2013 Jul 11;499(7457):192-6
– reference: 18095679 - J Am Chem Soc. 2008 Jan 16;130(2):592-9
– reference: 23282101 - J Am Chem Soc. 2013 Jan 16;135(2):628-31
– reference: 11869112 - Org Lett. 2002 Mar 7;4(5):727-30
– reference: 17017811 - J Am Chem Soc. 2006 Oct 11;128(40):13290-7
– reference: 15221839 - Angew Chem Int Ed Engl. 2004 Jun 28;43(26):3459-61
– reference: 17530903 - J Org Chem. 2007 Jun 22;72(13):4877-81
– reference: 18616246 - J Am Chem Soc. 2008 Aug 6;130(31):10060-1
– reference: 16018665 - Org Lett. 2005 Jul 21;7(15):3379-81
– reference: 12148993 - J Am Chem Soc. 2002 Aug 7;124(31):9038-9
– reference: 19249867 - J Am Chem Soc. 2009 Mar 25;131(11):3796-7
– reference: 15941206 - Chem Rev. 2005 Jun;105(6):1923-59
– reference: 17314976 - Nature. 2007 Feb 22;445(7130):900-3
– reference: 15255688 - Org Lett. 2004 Jul 22;6(15):2551-4
– reference: 21574222 - Angew Chem Int Ed Engl. 2011 Jun 14;50(25):5658-61
– reference: 15330671 - Org Lett. 2004 Aug 19;6(17):3013-5
– reference: 11027983 - Angew Chem Int Ed Engl. 2000 Aug 18;39(16):2812-2833
– reference: 20681679 - J Am Chem Soc. 2010 Aug 11;132(31):10626-7
– reference: 24404374 - Chem Sci. 2013 Oct;4(10):null
– reference: 18649296 - Angew Chem Int Ed Engl. 2008;47(32):6011-4
– reference: 14871100 - J Am Chem Soc. 2004 Feb 18;126(6):1699-704
– reference: 16277336 - J Org Chem. 2005 Sep 30;70(20):8110-6
– reference: 15221827 - Angew Chem Int Ed Engl. 2004 Jun 28;43(26):3400-20
SSID ssj0002467
Score 2.308004
Snippet A discontinuity exists between the importance of the cation–olefin reaction as the principal C–C bond forming reaction in terpene biosynthesis and the...
A discontinuity exists between the importance of the cation-olefin reaction as the principal C-C bond forming reaction in terpene biosynthesis and the...
A discontinuity exists between the importance of the cation–olefin reaction as the principal C–C bond forming reaction in terpene biosynthesis and the...
SourceID pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2319
SubjectTerms Alkenes - chemistry
Catalysis
Cations
Coordination Complexes - chemical synthesis
Coordination Complexes - chemistry
Cyclization
Electrons
Isomerism
Kinetics
Lewis Acids - chemistry
Oxidation-Reduction
Palladium - chemistry
Title Electrophilic Pt(II) Complexes: Precision Instruments for the Initiation of Transformations Mediated by the Cation–Olefin Reaction
URI http://dx.doi.org/10.1021/ar500047j
https://www.ncbi.nlm.nih.gov/pubmed/24845777
https://www.proquest.com/docview/1554940210
https://pubmed.ncbi.nlm.nih.gov/PMC4139170
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JTsMwEB1BOcAFsVOWyiyHcgg0jh073FBV1CIBFRSJWxQnjiiqUkSLBBfEgT_gD_kSxkkatSziFjmTRPGbyTzb8RuAfcxasarp0EJv8CwWudKSEVOW5Ep7NBKYBM085PmF27xhZ7f8dgr2_ljBp_ZR8Gg0-5m4n4YZ6kppou_i9bD43FLmZsKYOC5mktGRfND4pSb1hIPJ1PODT37_LXIsz5wuwHxOEMlJhugiTOlkCWbro7psy_DeyCrXPJipkJC0h9VW64CYuO7pZz04Ju3HvG4OaaXysOkmNoLklCDZw7buMIOD9GPSGeOt6H_kPK3coSOiXlLretr--fZx2dNxNyFXOtsIsQI3p41OvWnltRSsANPP0Ao5145wuJKOksxoSGFfKrPLjQYqRo6nKMcj1zYLbw6tOaHgHs0UuUzVKmcVSkk_0etAtPBUGESepxzJmKABxjyPbCemUYiDu7gMFexsP4-FgZ8uc1PbL9AoQ3WEgx_mSuSmIEbvN9PdwvQhk9_4zWhnBKaPWJgVjyDR_Sd8NJIlj5lhbRnWMnCL21B0Fi6EKIOYgL0wMMLbk2eS7l0qwI2JH0e5tY3_XnQT5pBfMTMFbXtbUELI9TZymKGqIIevX1dST_4CKLfuBw
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JTsMwEB2xHOCC2CmrQRzgEGgcO064oQrUAi0IFYlbFCeOKKpSRIoEF8SBP-AP-RLGThpaQOIWOZP12Zk3duYNwC56rURWVWRhb_AtFrue5cVMWh6XyqexQCeo5yGbLbd-w85u-W0hk6NzYfAmMjxTZhbxv9UF7MPwUUv3M3E_DpNIQrgehK3Xg_KrS5mb62NieMw8RgcqQsOHag8UZaMe6Bet_Pl35JC7OZ2FmYInkuMc2DkYU-k8TNUG5dkW4P0kL2DzoGdEInLV32s09oke3l31rLIjcvVYlM8hDaMSa3LZCHJUgpwP2zr9HBXSS0h7iL5iNyRNU8BDxUS-GOuaaf98-7jsqqSTkmuV50Msws3pSbtWt4qSClaIXqhvRZwrRzhceo70mJaSoq4ndbIbDWWCVE9SjluurdffHFp1IsF9mgtz6eJVzhJMpL1UrQBRwpdRGPu-dDzGBA1x6PPYdhIaRxjjJRXYxJcdFEMiC8xqN7WDEo0K7A1wCKJCkFzXxej-ZbpTmj7kKhx_GW0PwAwQC73wEaaq94SXRs7kMx3dVmA5B7c8DcXOwoUQFRAjsJcGWn97dE_auTM63Oj_Mditrv73oFswVW83L4KLRut8DaaRcjE9K2376zCB8KsNpDV9uWn68xdqDPK0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1NT9tAEB1RkGgvVaGlDW1hqXqAgyFe73rt3qqQKOEjRBVI3CyvvVaDIieKU6m9VBz4B_xDfkln1o6VFCRu1nr8-XY8b3a9bwC-YtTKdNMkDvaG0BGpHzhBKrQTSG1CnioMgjQOed73u1fi5FpeV4kirYXBmyjwTIWdxCevnqRZpTDgHsVTku8X6uYFrCENaZIj9v8e1l9eLvxSIxNTZBEIPlcSWjyUolBSLEehR9Ty_z8kF0JO5w28rrgi-16CuwErJt-El615iba3cNcui9hMaFQkYYPZfq93wMjFR-a3Kb6xwbQqocN6VinWrmdjyFMZ8j5sG85KZNg4Y5cLFBa7Iju3RTxMyvQfa92y7Q-39xcjkw1z9sOUayLewVWnfdnqOlVZBSfGSDRzEimNpzypA08HguSkuB9oWvDGY50h3dNc4pbv0hycx5teomTIS3EuKmDlbcFqPs7NB2BGhTqJ0zDUXiCE4jG6v0xdL-Npgnle1oAdfNlR5RZFZGe8uRvVaDRgf45DlFSi5FQbY_SU6ZfadFIqcTxltDcHM0IsaPIjzs34F14aeVMoKMNtwPsS3Po0HDuLVEo1QC3BXhuQBvfynnz402pxIwfAhLe5_dyD7sL64LgTnfX6px_hFbIuQQPTbvgJVhF98xmZzUzv2O78D-3X88E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrophilic+Pt%28II%29+complexes%3A+precision+instruments+for+the+initiation+of+transformations+mediated+by+the+cation-olefin+reaction&rft.jtitle=Accounts+of+chemical+research&rft.au=Felix%2C+Ryan+J&rft.au=Munro-Leighton%2C+Colleen&rft.au=Gagn%C3%A9%2C+Michel+R&rft.date=2014-08-19&rft.eissn=1520-4898&rft.volume=47&rft.issue=8&rft.spage=2319&rft_id=info:doi/10.1021%2Far500047j&rft_id=info%3Apmid%2F24845777&rft.externalDocID=24845777
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon