Electrophilic Pt(II) Complexes: Precision Instruments for the Initiation of Transformations Mediated by the Cation–Olefin Reaction
A discontinuity exists between the importance of the cation–olefin reaction as the principal C–C bond forming reaction in terpene biosynthesis and the synthetic tools for mimicking this reaction under catalyst control; that is, having the product identity, stereochemistry, and functionality under th...
Saved in:
Published in | Accounts of chemical research Vol. 47; no. 8; pp. 2319 - 2331 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
19.08.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A discontinuity exists between the importance of the cation–olefin reaction as the principal C–C bond forming reaction in terpene biosynthesis and the synthetic tools for mimicking this reaction under catalyst control; that is, having the product identity, stereochemistry, and functionality under the control of a catalyst. The main reason for this deficiency is that the cation–olefin reaction starts with a reactive intermediate (a carbocation) that reacts exothermically with an alkene to reform the reactive intermediate; not to mention that reactive intermediates can also react in nonproductive fashions. In this Account, we detail our efforts to realize catalyst control over this most fundamental of reactions and thereby access steroid like compounds. Our story is organized around our progress in each component of the cascade reaction: the metal controlled electrophilic initiation, the propagation and termination of the cyclization (the cyclase phase), and the turnover deplatinating events. Electrophilic Pt(II) complexes efficiently initiate the cation–olefin reaction by first coordinating to the alkene with selection rules that favor less substituted alkenes over more substituted alkenes. In complex substrates with multiple alkenes, this preference ensures that the least substituted alkene is always the better ligand for the Pt(II) initiator, and consequently the site at which all electrophilic chemistry is initiated. This control element is invariant. With a suitably electron deficient ligand set, the catalyst then activates the coordinated alkene to intramolecular addition by a second alkene, which initiates the cation–olefin reaction cascade and generates an organometallic Pt(II)-alkyl. Deplatination by a range of mechanisms (β-H elimination, single electron oxidation, two-electron oxidation, etc.) provides an additional level of control that ultimately enables A-ring functionalizations that are orthogonal to the cyclase cascade. We particularly focus on reactions that combine an initiated cyclization reaction with a turnover defining β-hydride elimination, fluorination, and oxygenation. These latter demetalation schemes lead to new compounds functionalized at the C3 carbon of the A-ring (steroid numbering convention) and thus provide access to interesting potentially bioactive targets. Progress toward efficient and diverse polycyclization reactions has been achieved by investing in both synthetic challenges and fundamental organometallic reactivity. In addition to an interest in the entrance and exit of the metal catalyst from this reaction scheme, we have been intrigued by the role of neighboring group participation in the cyclase phase. Computational studies have served to provide nuance and clarity on several key aspects, including the role (and consequences) of neighboring group participation in cation generation and stabilization. For example, these calculations have demonstrated that traversing carbonium ion transition states significantly impacts the kinetics of competitive 6-endo and 5-exo A-ring forming reactions. The resulting nonclassical transition states then become subject to a portion of the strain energy inherent to bicyclic structures, with the net result being that the 6-endo pathway becomes kinetically favored for alkene nucleophiles, in contrast to heteroatom nucleophiles which progress through classical transition states and preferentially follow 5-exo pathways. These vignettes articulate our approach to achieving the desired catalyst control. |
---|---|
AbstractList | A discontinuity exists between the importance of the cation-olefin reaction as the principal C-C bond forming reaction in terpene biosynthesis and the synthetic tools for mimicking this reaction under catalyst control; that is, having the product identity, stereochemistry, and functionality under the control of a catalyst. The main reason for this deficiency is that the cation-olefin reaction starts with a reactive intermediate (a carbocation) that reacts exothermically with an alkene to reform the reactive intermediate; not to mention that reactive intermediates can also react in nonproductive fashions. In this Account, we detail our efforts to realize catalyst control over this most fundamental of reactions and thereby access steroid like compounds. Our story is organized around our progress in each component of the cascade reaction: the metal controlled electrophilic initiation, the propagation and termination of the cyclization (the cyclase phase), and the turnover deplatinating events. Electrophilic Pt(II) complexes efficiently initiate the cation-olefin reaction by first coordinating to the alkene with selection rules that favor less substituted alkenes over more substituted alkenes. In complex substrates with multiple alkenes, this preference ensures that the least substituted alkene is always the better ligand for the Pt(II) initiator, and consequently the site at which all electrophilic chemistry is initiated. This control element is invariant. With a suitably electron deficient ligand set, the catalyst then activates the coordinated alkene to intramolecular addition by a second alkene, which initiates the cation-olefin reaction cascade and generates an organometallic Pt(II)-alkyl. Deplatination by a range of mechanisms (β-H elimination, single electron oxidation, two-electron oxidation, etc.) provides an additional level of control that ultimately enables A-ring functionalizations that are orthogonal to the cyclase cascade. We particularly focus on reactions that combine an initiated cyclization reaction with a turnover defining β-hydride elimination, fluorination, and oxygenation. These latter demetalation schemes lead to new compounds functionalized at the C3 carbon of the A-ring (steroid numbering convention) and thus provide access to interesting potentially bioactive targets. Progress toward efficient and diverse polycyclization reactions has been achieved by investing in both synthetic challenges and fundamental organometallic reactivity. In addition to an interest in the entrance and exit of the metal catalyst from this reaction scheme, we have been intrigued by the role of neighboring group participation in the cyclase phase. Computational studies have served to provide nuance and clarity on several key aspects, including the role (and consequences) of neighboring group participation in cation generation and stabilization. For example, these calculations have demonstrated that traversing carbonium ion transition states significantly impacts the kinetics of competitive 6-endo and 5-exo A-ring forming reactions. The resulting nonclassical transition states then become subject to a portion of the strain energy inherent to bicyclic structures, with the net result being that the 6-endo pathway becomes kinetically favored for alkene nucleophiles, in contrast to heteroatom nucleophiles which progress through classical transition states and preferentially follow 5-exo pathways. These vignettes articulate our approach to achieving the desired catalyst control. A discontinuity exists between the importance of the cation-olefin reaction as the principal C-C bond forming reaction in terpene biosynthesis and the synthetic tools for mimicking this reaction under catalyst control; that is, having the product identity, stereochemistry, and functionality under the control of a catalyst. The main reason for this deficiency is that the cation-olefin reaction starts with a reactive intermediate (a carbocation) that reacts exothermically with an alkene to reform the reactive intermediate; not to mention that reactive intermediates can also react in nonproductive fashions. In this Account, we detail our efforts to realize catalyst control over this most fundamental of reactions and thereby access steroid like compounds. Our story is organized around our progress in each component of the cascade reaction: the metal controlled electrophilic initiation, the propagation and termination of the cyclization (the cyclase phase), and the turnover deplatinating events. Electrophilic Pt(II) complexes efficiently initiate the cation-olefin reaction by first coordinating to the alkene with selection rules that favor less substituted alkenes over more substituted alkenes. In complex substrates with multiple alkenes, this preference ensures that the least substituted alkene is always the better ligand for the Pt(II) initiator, and consequently the site at which all electrophilic chemistry is initiated. This control element is invariant. With a suitably electron deficient ligand set, the catalyst then activates the coordinated alkene to intramolecular addition by a second alkene, which initiates the cation-olefin reaction cascade and generates an organometallic Pt(II)-alkyl. Deplatination by a range of mechanisms (β-H elimination, single electron oxidation, two-electron oxidation, etc.) provides an additional level of control that ultimately enables A-ring functionalizations that are orthogonal to the cyclase cascade. We particularly focus on reactions that combine an initiated cyclization reaction with a turnover defining β-hydride elimination, fluorination, and oxygenation. These latter demetalation schemes lead to new compounds functionalized at the C3 carbon of the A-ring (steroid numbering convention) and thus provide access to interesting potentially bioactive targets. Progress toward efficient and diverse polycyclization reactions has been achieved by investing in both synthetic challenges and fundamental organometallic reactivity. In addition to an interest in the entrance and exit of the metal catalyst from this reaction scheme, we have been intrigued by the role of neighboring group participation in the cyclase phase. Computational studies have served to provide nuance and clarity on several key aspects, including the role (and consequences) of neighboring group participation in cation generation and stabilization. For example, these calculations have demonstrated that traversing carbonium ion transition states significantly impacts the kinetics of competitive 6-endo and 5-exo A-ring forming reactions. The resulting nonclassical transition states then become subject to a portion of the strain energy inherent to bicyclic structures, with the net result being that the 6-endo pathway becomes kinetically favored for alkene nucleophiles, in contrast to heteroatom nucleophiles which progress through classical transition states and preferentially follow 5-exo pathways. These vignettes articulate our approach to achieving the desired catalyst control.A discontinuity exists between the importance of the cation-olefin reaction as the principal C-C bond forming reaction in terpene biosynthesis and the synthetic tools for mimicking this reaction under catalyst control; that is, having the product identity, stereochemistry, and functionality under the control of a catalyst. The main reason for this deficiency is that the cation-olefin reaction starts with a reactive intermediate (a carbocation) that reacts exothermically with an alkene to reform the reactive intermediate; not to mention that reactive intermediates can also react in nonproductive fashions. In this Account, we detail our efforts to realize catalyst control over this most fundamental of reactions and thereby access steroid like compounds. Our story is organized around our progress in each component of the cascade reaction: the metal controlled electrophilic initiation, the propagation and termination of the cyclization (the cyclase phase), and the turnover deplatinating events. Electrophilic Pt(II) complexes efficiently initiate the cation-olefin reaction by first coordinating to the alkene with selection rules that favor less substituted alkenes over more substituted alkenes. In complex substrates with multiple alkenes, this preference ensures that the least substituted alkene is always the better ligand for the Pt(II) initiator, and consequently the site at which all electrophilic chemistry is initiated. This control element is invariant. With a suitably electron deficient ligand set, the catalyst then activates the coordinated alkene to intramolecular addition by a second alkene, which initiates the cation-olefin reaction cascade and generates an organometallic Pt(II)-alkyl. Deplatination by a range of mechanisms (β-H elimination, single electron oxidation, two-electron oxidation, etc.) provides an additional level of control that ultimately enables A-ring functionalizations that are orthogonal to the cyclase cascade. We particularly focus on reactions that combine an initiated cyclization reaction with a turnover defining β-hydride elimination, fluorination, and oxygenation. These latter demetalation schemes lead to new compounds functionalized at the C3 carbon of the A-ring (steroid numbering convention) and thus provide access to interesting potentially bioactive targets. Progress toward efficient and diverse polycyclization reactions has been achieved by investing in both synthetic challenges and fundamental organometallic reactivity. In addition to an interest in the entrance and exit of the metal catalyst from this reaction scheme, we have been intrigued by the role of neighboring group participation in the cyclase phase. Computational studies have served to provide nuance and clarity on several key aspects, including the role (and consequences) of neighboring group participation in cation generation and stabilization. For example, these calculations have demonstrated that traversing carbonium ion transition states significantly impacts the kinetics of competitive 6-endo and 5-exo A-ring forming reactions. The resulting nonclassical transition states then become subject to a portion of the strain energy inherent to bicyclic structures, with the net result being that the 6-endo pathway becomes kinetically favored for alkene nucleophiles, in contrast to heteroatom nucleophiles which progress through classical transition states and preferentially follow 5-exo pathways. These vignettes articulate our approach to achieving the desired catalyst control. A discontinuity exists between the importance of the cation–olefin reaction as the principal C–C bond forming reaction in terpene biosynthesis and the synthetic tools for mimicking this reaction under catalyst control; that is, having the product identity, stereochemistry, and functionality under the control of a catalyst. The main reason for this deficiency is that the cation–olefin reaction starts with a reactive intermediate (a carbocation) that reacts exothermically with an alkene to reform the reactive intermediate; not to mention that reactive intermediates can also react in nonproductive fashions. In this Account, we detail our efforts to realize catalyst control over this most fundamental of reactions and thereby access steroid like compounds. Our story is organized around our progress in each component of the cascade reaction: the metal controlled electrophilic initiation, the propagation and termination of the cyclization (the cyclase phase), and the turnover deplatinating events. Electrophilic Pt(II) complexes efficiently initiate the cation–olefin reaction by first coordinating to the alkene with selection rules that favor less substituted alkenes over more substituted alkenes. In complex substrates with multiple alkenes, this preference ensures that the least substituted alkene is always the better ligand for the Pt(II) initiator, and consequently the site at which all electrophilic chemistry is initiated. This control element is invariant. With a suitably electron deficient ligand set, the catalyst then activates the coordinated alkene to intramolecular addition by a second alkene, which initiates the cation–olefin reaction cascade and generates an organometallic Pt(II)-alkyl. Deplatination by a range of mechanisms (β-H elimination, single electron oxidation, two-electron oxidation, etc.) provides an additional level of control that ultimately enables A-ring functionalizations that are orthogonal to the cyclase cascade. We particularly focus on reactions that combine an initiated cyclization reaction with a turnover defining β-hydride elimination, fluorination, and oxygenation. These latter demetalation schemes lead to new compounds functionalized at the C3 carbon of the A-ring (steroid numbering convention) and thus provide access to interesting potentially bioactive targets. Progress toward efficient and diverse polycyclization reactions has been achieved by investing in both synthetic challenges and fundamental organometallic reactivity. In addition to an interest in the entrance and exit of the metal catalyst from this reaction scheme, we have been intrigued by the role of neighboring group participation in the cyclase phase. Computational studies have served to provide nuance and clarity on several key aspects, including the role (and consequences) of neighboring group participation in cation generation and stabilization. For example, these calculations have demonstrated that traversing carbonium ion transition states significantly impacts the kinetics of competitive 6-endo and 5-exo A-ring forming reactions. The resulting nonclassical transition states then become subject to a portion of the strain energy inherent to bicyclic structures, with the net result being that the 6-endo pathway becomes kinetically favored for alkene nucleophiles, in contrast to heteroatom nucleophiles which progress through classical transition states and preferentially follow 5-exo pathways. These vignettes articulate our approach to achieving the desired catalyst control. A discontinuity exists between the importance of the cation–olefin reaction as the principal C–C bond forming reaction in terpene biosynthesis and the synthetic tools for mimicking this reaction under catalyst control; that is, having the product identity, stereochemistry, and functionality under the control of a catalyst. The main reason for this deficiency is that the cation–olefin reaction starts with a reactive intermediate (a carbocation) that reacts exothermically with an alkene to reform the reactive intermediate; not to mention that reactive intermediates can also react in nonproductive fashions. In this Account, we detail our efforts to realize catalyst control over this most fundamental of reactions and thereby access steroid like compounds. Our story is organized around our progress in each component of the cascade reaction: the metal controlled electrophilic initiation, the propagation and termination of the cyclization (the cyclase phase), and the turnover deplatinating events. Electrophilic Pt(II) complexes efficiently initiate the cation–olefin reaction by first coordinating to the alkene with selection rules that favor less substituted alkenes over more substituted alkenes. In complex substrates with multiple alkenes, this preference ensures that the least substituted alkene is always the better ligand for the Pt(II) initiator, and consequently the site at which all electrophilic chemistry is initiated. This control element is invariant. With a suitably electron deficient ligand set, the catalyst then activates the coordinated alkene to intramolecular addition by a second alkene, which initiates the cation–olefin reaction cascade and generates an organometallic Pt(II)-alkyl. Deplatination by a range of mechanisms (β-H elimination, single electron oxidation, two-electron oxidation, etc.) provides an additional level of control that ultimately enables A-ring functionalizations that are orthogonal to the cyclase cascade. We particularly focus on reactions that combine an initiated cyclization reaction with a turnover defining β-hydride elimination, fluorination, and oxygenation. These latter demetalation schemes lead to new compounds functionalized at the C3 carbon of the A-ring (steroid numbering convention) and thus provide access to interesting potentially bioactive targets. Progress toward efficient and diverse polycyclization reactions has been achieved by investing in both synthetic challenges and fundamental organometallic reactivity. In addition to an interest in the entrance and exit of the metal catalyst from this reaction scheme, we have been intrigued by the role of neighboring group participation in the cyclase phase. Computational studies have served to provide nuance and clarity on several key aspects, including the role (and consequences) of neighboring group participation in cation generation and stabilization. For example, these calculations have demonstrated that traversing carbonium ion transition states significantly impacts the kinetics of competitive 6-endo and 5-exo A-ring forming reactions. The resulting nonclassical transition states then become subject to a portion of the strain energy inherent to bicyclic structures, with the net result being that the 6-endo pathway becomes kinetically favored for alkene nucleophiles, in contrast to heteroatom nucleophiles which progress through classical transition states and preferentially follow 5-exo pathways. These vignettes articulate our approach to achieving the desired catalyst control. |
Author | Gagné, Michel R Felix, Ryan J Munro-Leighton, Colleen |
AuthorAffiliation | Department of Chemistry University of North Carolina at Chapel Hill Austin College Elmhurst College |
AuthorAffiliation_xml | – name: Department of Chemistry – name: Elmhurst College – name: University of North Carolina at Chapel Hill – name: Austin College |
Author_xml | – sequence: 1 givenname: Ryan J surname: Felix fullname: Felix, Ryan J email: rfelix@austincollege.edu – sequence: 2 givenname: Colleen surname: Munro-Leighton fullname: Munro-Leighton, Colleen email: c.munro-leighton@elmhurst.edu – sequence: 3 givenname: Michel R surname: Gagné fullname: Gagné, Michel R email: mgagne@unc.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24845777$$D View this record in MEDLINE/PubMed |
BookMark | eNptUctuUzEQtaqiNi1d8APIG6R2EernfbBAQlGBSEWtULu2fJ25xJGvHWxfRHcs-AP-kC_BSdoKUFcen3PmjObMEdr3wQNCLyh5TQmj5zpKQoioV3toQiUjU9G0zT6aFJCWWrBDdJTSqnyZqOoDdMgKKOu6nqCfFw5MjmG9tM4afJ1P5_MzPAvD2sF3SG_wdQRjkw0ez33KcRzA54T7EHFeQsFstjpv6NDjm6h9KtSwRRL-BItCwgJ3d1v1bIv__vHrykFvPf4M2myQ5-hZr12Ck_v3GN2-v7iZfZxeXn2Yz95dTrWoaZ4aKYHXXHYN7xpBSctZ1XSCCcF013NKOiZLVdGGccIZ4aaWLSOk4iWHpmr5MXq7812P3QALU1aJ2ql1tIOOdypoq_5lvF2qL-GbEpS3tCbF4PTeIIavI6SsBpsMOKc9hDEpKqVoRTnJRvry71mPQx6iL4LzncDEkFKEXhmbtwGV0dYpStTmuOrxuKXj7L-OB9OntK92Wm2SWoUx-hLsE7o_LfSxeQ |
CitedBy_id | crossref_primary_10_1002_anie_202008854 crossref_primary_10_1021_acscatal_4c06539 crossref_primary_10_1038_s41467_021_22287_w crossref_primary_10_1002_ange_201702278 crossref_primary_10_1002_chem_202101926 crossref_primary_10_1016_j_ccr_2021_213863 crossref_primary_10_6023_cjoc202306028 crossref_primary_10_1002_ange_201700958 crossref_primary_10_1021_jacs_0c02665 crossref_primary_10_1016_j_xcrp_2023_101647 crossref_primary_10_1039_C6OB00375C crossref_primary_10_1021_cr500691k crossref_primary_10_1021_jacs_6b01368 crossref_primary_10_1002_anie_201702278 crossref_primary_10_1021_acs_organomet_5b00121 crossref_primary_10_1002_adsc_201900028 crossref_primary_10_1039_C4NP00142G crossref_primary_10_1039_D0CC01438A crossref_primary_10_1002_ange_202008854 crossref_primary_10_1039_C4SC03782K crossref_primary_10_1002_chem_201903440 crossref_primary_10_1038_s41586_024_07757_7 crossref_primary_10_1002_anie_201700958 crossref_primary_10_1016_j_tet_2024_133910 crossref_primary_10_1021_acs_orglett_7b03306 crossref_primary_10_1002_adsc_201800455 crossref_primary_10_1002_chem_202005157 crossref_primary_10_1021_acscatal_8b02448 crossref_primary_10_1021_om5006929 crossref_primary_10_1002_chin_201442283 crossref_primary_10_1021_jacs_7b05381 crossref_primary_10_1039_C7OB00235A crossref_primary_10_1039_C8CC04909B |
Cites_doi | 10.1021/om200515f 10.1021/ja075518i 10.1021/ja803187x 10.1021/om9801498 10.1021/cr00022a009 10.1021/ja064335d 10.1021/ja0293002 10.1016/j.tet.2004.06.023 10.1021/ja00376a046 10.1021/ja00513a024 10.1021/ja00815a037 10.1021/ja00521a077 10.1021/ar020094c 10.1021/om800760x 10.1021/ja3116795 10.1002/anie.201302886 10.1002/1099-0682(200102)2001:2<419::AID-EJIC419>3.0.CO;2-2 10.1021/ol051277c 10.1002/anie.200603954 10.1021/ja00288a052 10.1002/anie.200604335 10.1021/om8011272 10.1021/cr040623l 10.1021/ja00003a028 10.1021/om00089a027 10.1002/anie.200300630 10.1021/ja101436w 10.1039/c3sc51657a 10.1021/ja00831a044 10.1021/cr030726o 10.1021/op700134j 10.1021/ol017218q 10.1126/science.1131943 10.1039/b917107j 10.1021/ja8054595 10.1021/ja00447a028 10.1038/nature05553 10.1016/j.tetlet.2003.11.060 10.1002/anie.200453913 10.1021/ja9714245 10.1021/ja073573l 10.1021/om030500b 10.1021/ja00166a034 10.1002/hlca.200590245 10.1021/ja01084a027 10.1021/ja01571a068 10.1021/ja00369a046 10.1021/jo980245i 10.1002/1521-3773(20000818)39:16<2812::AID-ANIE2812>3.0.CO;2-# 10.1021/ol049126h 10.1002/anie.200806187 10.1021/om2001958 10.1021/om060632f 10.1021/jo00315a027 10.1021/ol0496125 10.1021/cr9411886 10.1021/ja00044a019 10.1351/pac199264121813 10.1002/anie.201100463 10.1021/jo0705871 10.1002/hlca.19540370404 10.1021/om400003c 10.1016/S0040-4039(00)94527-1 10.1021/jo00404a024 10.1007/978-3-662-04164-2 10.1021/ja00522a082 10.1021/jo0513010 10.1016/S0898-8838(03)54005-3 10.1021/ol048780u 10.1038/nature12284 10.1021/ja0263386 10.1021/ja01064a012 10.1021/ja001165a 10.1016/j.solidstatesciences.2005.06.015 10.1039/dt9860000891 10.1002/anie.200801423 10.1021/ja030436p |
ContentType | Journal Article |
Copyright | Copyright © 2014 American Chemical Society Copyright © 2014 American Chemical Society 2014 American Chemical Society |
Copyright_xml | – notice: Copyright © 2014 American Chemical Society – notice: Copyright © 2014 American Chemical Society 2014 American Chemical Society |
DBID | N~. AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1021/ar500047j |
DatabaseName | American Chemical Society (ACS) Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: N~. name: American Chemical Society (ACS) Open Access url: https://pubs.acs.org sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-4898 |
EndPage | 2331 |
ExternalDocumentID | PMC4139170 24845777 10_1021_ar500047j b659828024 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: GM 60578 |
GroupedDBID | - .K2 02 23M 4.4 53G 55A 5GY 5VS 7~N 85S AABXI ABFLS ABMVS ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ K2 LG6 N~. P2P RNS ROL TWZ UI2 UPT VF5 VG9 W1F WH7 X YZZ --- -DZ -~X 5ZA 6J9 6P2 AAYXX ABBLG ABJNI ABLBI ABQRX ACGFO ADHLV AFXLT AGXLV AHGAQ CITATION CUPRZ GGK IH2 XSW ZCA ~02 CGR CUY CVF ECM EIF NPM YIN 7X8 5PM |
ID | FETCH-LOGICAL-a471t-c55e3735b83b841093268b42442abf310b252ab6182303203c759200630018693 |
IEDL.DBID | N~. |
ISSN | 0001-4842 1520-4898 |
IngestDate | Thu Aug 21 14:06:23 EDT 2025 Fri Jul 11 02:42:40 EDT 2025 Wed Feb 19 01:51:55 EST 2025 Tue Jul 01 04:04:08 EDT 2025 Thu Apr 24 22:58:01 EDT 2025 Thu Aug 27 13:42:16 EDT 2020 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | http://pubs.acs.org/page/policy/authorchoice_termsofuse.html Terms of Use |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a471t-c55e3735b83b841093268b42442abf310b252ab6182303203c759200630018693 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://dx.doi.org/10.1021/ar500047j |
PMID | 24845777 |
PQID | 1554940210 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4139170 proquest_miscellaneous_1554940210 pubmed_primary_24845777 crossref_citationtrail_10_1021_ar500047j crossref_primary_10_1021_ar500047j acs_journals_10_1021_ar500047j |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ N~. UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-08-19 |
PublicationDateYYYYMMDD | 2014-08-19 |
PublicationDate_xml | – month: 08 year: 2014 text: 2014-08-19 day: 19 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Accounts of chemical research |
PublicationTitleAlternate | Acc. Chem. Res |
PublicationYear | 2014 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 Geier M. J. (ref55/cit55) 2013; 32 Harding K. E. (ref75/cit75) 1974; 96 Hahn C. (ref16/cit16) 2002; 124 Jansen M. (ref12/cit12) 2005; 7 Seligson A. L. (ref59/cit59) 1992; 114 Hart D. J. (ref40/cit40) 1981; 46 Bell F. (ref87/cit87) 2009; 28 Poulter C. D. (ref74/cit74) 1982; 104 Sokol J. G. (ref64/cit64) 2011; 50 Nowroozi-Isfahani T. (ref35/cit35) 2007; 26 Chianese A. R. (ref8/cit8) 2007; 46 Hess B. A. (ref78/cit78) 2013; 52 Overman L. E. (ref20/cit20) 1983; 24 ref10/cit10 Joseph M. F. (ref62/cit62) 1984; 3 Bartlett P. D. (ref73/cit73) 1965; 87 Overman L. E. (ref21/cit21) 1990; 112 Cochrane N. A. (ref34/cit34) 2011; 30 Takao H. (ref67/cit67) 2004; 45 Fürstner A. (ref11/cit11) 2007; 46 Overman L. E. (ref19/cit19) 1980; 102 Cochrane N. A. (ref44/cit44) 2013; 135 Johansson L. (ref58/cit58) 1998; 17 Gutierrez O. (ref80/cit80) 2013; 4 Mullen C. A. (ref25/cit25) 2007; 129 Hiyama T. (ref45/cit45) 2000 Sakakura A. (ref68/cit68b) 2007; 445 Yoder R. A. (ref70/cit70) 2005; 105 Helm L. (ref13/cit13) 2005; 105 Zhao S.-B. (ref43/cit43) 2011; 30 Hart D. J. (ref39/cit39) 1980; 102 Feducia J. A. (ref83/cit83) 2006; 128 Johnson W. S. (ref41/cit41) 1982; 104 Uozumi Y. (ref28/cit28) 1998; 63 Richards J. H. (ref3/cit3) 1964 Hahn C. (ref15/cit15) 2001 Shilov A. E. (ref52/cit52) 1997; 97 Korotchenko V. N. (ref24/cit24) 2007; 72 Yoder R. A. (ref6/cit6) 2005; 105 Wendt K. U. (ref1/cit1) 2000; 39 Kerber W. D. (ref81/cit81) 2004; 6 Koh J. H. (ref17/cit17) 2004; 43 Russell G. A. (ref63/cit63) 1957; 79 Eschenmoser A. (ref71/cit71) 2005; 88 Kurosawa H. (ref32/cit32) 1986; 4 Stahl S. S. (ref27/cit27) 2004; 43 Hartwig J. F. (ref18/cit18) 2009 Ball N. D. (ref50/cit50) 2009; 131 Tantillo D. J. (ref66/cit66) 2010; 39 ref5/cit5 Gamboni G. (ref69/cit69) 1954; 37 Furuya T. (ref49/cit49) 2008; 130 Mayr H. (ref65/cit65) 2003; 36 Nishizawa M. (ref76/cit76) 1985; 107 Borst M. L. G. (ref79/cit79) 2005; 70 Yuan C. (ref7/cit7) 2013; 499 Helfer D. S. (ref29/cit29) 2004; 23 Fekl U. (ref53/cit53) 2003; 54 Grice K. A. (ref57/cit57) 2009; 28 Kumazawa K. (ref30/cit30) 2004; 6 Becker J. J. (ref54/cit54) 2002; 4 Nakamura S. (ref68/cit68a) 2000; 122 Feducia J. A. (ref37/cit37) 2008; 130 Johnson W. S. (ref72/cit72) 1964; 86 Qian H. (ref14/cit14) 2003; 125 Casey C. P. (ref84/cit84) 2004; 126 Hahn C. (ref33/cit33) 2001; 2 Taylor R. A. (ref56/cit56) 2009; 48 Abe I. (ref2/cit2) 1993; 93 Kirk K. L. (ref47/cit47) 2008; 12 Dennis D. D. (ref86/cit86) 1974; 96 Koh J. H. (ref23/cit23) 2004; 60 Brookhart M. (ref85/cit85) 1991; 113 Müller K. (ref46/cit46) 2007; 317 Wong C. L. (ref61/cit61) 1979; 101 Overman L. E. (ref22/cit22) 1992; 64 Mullen C. A. (ref31/cit31) 2008; 47 Marinus B. (ref38/cit38) 1978; 43 ref4/cit4 Kaspi A. W. (ref51/cit51) 2010; 132 Kerber W. D. (ref82/cit82) 2005; 7 Jenson C. (ref36/cit36) 1997; 119 Chen J. Y. (ref60/cit60) 1977; 99 Hess B. A. (ref77/cit77) 2004; 6 12148993 - J Am Chem Soc. 2002 Aug 7;124(31):9038-9 16277336 - J Org Chem. 2005 Sep 30;70(20):8110-6 17530903 - J Org Chem. 2007 Jun 22;72(13):4877-81 16018665 - Org Lett. 2005 Jul 21;7(15):3379-81 18649296 - Angew Chem Int Ed Engl. 2008;47(32):6011-4 15151397 - Org Lett. 2004 May 27;6(11):1717-20 21574222 - Angew Chem Int Ed Engl. 2011 Jun 14;50(25):5658-61 17850150 - J Am Chem Soc. 2007 Oct 3;129(39):11880-1 19249867 - J Am Chem Soc. 2009 Mar 25;131(11):3796-7 19569145 - Angew Chem Int Ed Engl. 2009;48(32):5900-3 17427893 - Angew Chem Int Ed Engl. 2007;46(19):3410-49 12590527 - J Am Chem Soc. 2003 Feb 26;125(8):2056-7 24404374 - Chem Sci. 2013 Oct;4(10):null 11027983 - Angew Chem Int Ed Engl. 2000 Aug 18;39(16):2812-2833 11851481 - Chem Rev. 1997 Dec 18;97(8):2879-2932 15330671 - Org Lett. 2004 Aug 19;6(17):3013-5 17901324 - Science. 2007 Sep 28;317(5846):1881-6 20442917 - Chem Soc Rev. 2010 Aug;39(8):2847-54 17487902 - Angew Chem Int Ed Engl. 2007;46(22):4042-59 20161262 - Organometallics. 2009 Apr 13;28(7):2038-2045 11869112 - Org Lett. 2002 Mar 7;4(5):727-30 16351060 - Chem Rev. 2005 Dec;105(12):4730-56 14871100 - J Am Chem Soc. 2004 Feb 18;126(6):1699-704 15221827 - Angew Chem Int Ed Engl. 2004 Jun 28;43(26):3400-20 12534306 - Acc Chem Res. 2003 Jan;36(1):66-77 23846658 - Nature. 2013 Jul 11;499(7457):192-6 17017811 - J Am Chem Soc. 2006 Oct 11;128(40):13290-7 23282101 - J Am Chem Soc. 2013 Jan 16;135(2):628-31 23526863 - Organometallics. 2013 Jan 28;32(2):380-383 21869853 - Organometallics. 2011 Aug 8;30(15):3926-3929 20681679 - J Am Chem Soc. 2010 Aug 11;132(31):10626-7 18616246 - J Am Chem Soc. 2008 Aug 6;130(31):10060-1 15221839 - Angew Chem Int Ed Engl. 2004 Jun 28;43(26):3459-61 18095679 - J Am Chem Soc. 2008 Jan 16;130(2):592-9 17314976 - Nature. 2007 Feb 22;445(7130):900-3 21572581 - Organometallics. 2011 May 9;30(9):2457-2460 15941206 - Chem Rev. 2005 Jun;105(6):1923-59 15255688 - Org Lett. 2004 Jul 22;6(15):2551-4 24038770 - Angew Chem Int Ed Engl. 2013 Oct 11;52(42):11029-33 |
References_xml | – volume: 30 start-page: 3926 year: 2011 ident: ref43/cit43 publication-title: Organometallics doi: 10.1021/om200515f – volume: 130 start-page: 592 year: 2008 ident: ref37/cit37 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja075518i – volume: 130 start-page: 10060 year: 2008 ident: ref49/cit49 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja803187x – volume: 17 start-page: 3957 year: 1998 ident: ref58/cit58 publication-title: Organometallics doi: 10.1021/om9801498 – volume: 93 start-page: 2189 year: 1993 ident: ref2/cit2 publication-title: Chem. Rev. doi: 10.1021/cr00022a009 – ident: ref9/cit9 – volume: 128 start-page: 13290 year: 2006 ident: ref83/cit83 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja064335d – volume: 125 start-page: 2056 year: 2003 ident: ref14/cit14 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0293002 – volume: 60 start-page: 7405 year: 2004 ident: ref23/cit23 publication-title: Tetrahedron doi: 10.1016/j.tet.2004.06.023 – volume: 104 start-page: 3508 year: 1982 ident: ref41/cit41 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00376a046 – volume: 101 start-page: 5593 year: 1979 ident: ref61/cit61 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00513a024 – volume: 96 start-page: 2540 year: 1974 ident: ref75/cit75 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00815a037 – volume: 102 start-page: 397 year: 1980 ident: ref39/cit39 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00521a077 – volume: 36 start-page: 66 year: 2003 ident: ref65/cit65 publication-title: Acc. Chem. Res. doi: 10.1021/ar020094c – volume: 28 start-page: 2038 year: 2009 ident: ref87/cit87 publication-title: Organometallics doi: 10.1021/om800760x – ident: ref4/cit4 – volume: 135 start-page: 628 year: 2013 ident: ref44/cit44 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3116795 – volume: 52 start-page: 11029 year: 2013 ident: ref78/cit78 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201302886 – start-page: 419 year: 2001 ident: ref15/cit15 publication-title: Eur. J. Inorg. Chem. doi: 10.1002/1099-0682(200102)2001:2<419::AID-EJIC419>3.0.CO;2-2 – volume: 7 start-page: 3379 year: 2005 ident: ref82/cit82 publication-title: Org. Lett. doi: 10.1021/ol051277c – volume: 46 start-page: 4042 year: 2007 ident: ref8/cit8 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200603954 – volume: 107 start-page: 522 year: 1985 ident: ref76/cit76 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00288a052 – volume: 46 start-page: 3410 year: 2007 ident: ref11/cit11 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200604335 – volume: 28 start-page: 953 year: 2009 ident: ref57/cit57 publication-title: Organometallics doi: 10.1021/om8011272 – volume: 105 start-page: 4730 year: 2005 ident: ref6/cit6 publication-title: Chem. Rev. doi: 10.1021/cr040623l – volume: 113 start-page: 927 year: 1991 ident: ref85/cit85 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00003a028 – volume: 105 start-page: 4730 year: 2005 ident: ref70/cit70 publication-title: Chem. Rev. doi: 10.1021/cr040623l – volume: 3 start-page: 1749 year: 1984 ident: ref62/cit62 publication-title: Organometallics doi: 10.1021/om00089a027 – volume: 43 start-page: 3400 year: 2004 ident: ref27/cit27 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200300630 – volume: 132 start-page: 10626 year: 2010 ident: ref51/cit51 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja101436w – volume: 4 start-page: 3894 year: 2013 ident: ref80/cit80 publication-title: Chem. Sci. doi: 10.1039/c3sc51657a – volume: 96 start-page: 7576 year: 1974 ident: ref86/cit86 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00831a044 – volume: 105 start-page: 1923 year: 2005 ident: ref13/cit13 publication-title: Chem. Rev. doi: 10.1021/cr030726o – volume: 12 start-page: 305 year: 2008 ident: ref47/cit47 publication-title: Org. Process Res. Dev. doi: 10.1021/op700134j – volume: 4 start-page: 727 year: 2002 ident: ref54/cit54 publication-title: Org. Lett. doi: 10.1021/ol017218q – volume: 317 start-page: 1881 year: 2007 ident: ref46/cit46 publication-title: Science doi: 10.1126/science.1131943 – volume: 39 start-page: 2847 year: 2010 ident: ref66/cit66 publication-title: Chem. Soc. Rev. doi: 10.1039/b917107j – volume: 131 start-page: 3796 year: 2009 ident: ref50/cit50 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8054595 – volume: 99 start-page: 1450 year: 1977 ident: ref60/cit60 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00447a028 – volume: 445 start-page: 900 year: 2007 ident: ref68/cit68b publication-title: Nature doi: 10.1038/nature05553 – ident: ref5/cit5 – volume: 45 start-page: 1079 year: 2004 ident: ref67/cit67 publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2003.11.060 – volume: 43 start-page: 3459 year: 2004 ident: ref17/cit17 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200453913 – volume: 119 start-page: 10846 year: 1997 ident: ref36/cit36 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9714245 – volume: 129 start-page: 11880 year: 2007 ident: ref25/cit25 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja073573l – volume: 23 start-page: 2412 year: 2004 ident: ref29/cit29 publication-title: Organometallics doi: 10.1021/om030500b – volume: 112 start-page: 3945 year: 1990 ident: ref21/cit21 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00166a034 – volume: 88 start-page: 3011 year: 2005 ident: ref71/cit71 publication-title: Helv. Chim. Acta doi: 10.1002/hlca.200590245 – volume: 87 start-page: 1308 year: 1965 ident: ref73/cit73 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01084a027 – volume: 79 start-page: 3871 year: 1957 ident: ref63/cit63 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01571a068 – volume: 104 start-page: 1422 year: 1982 ident: ref74/cit74 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00369a046 – volume: 63 start-page: 5071 year: 1998 ident: ref28/cit28 publication-title: J. Org. Chem. doi: 10.1021/jo980245i – volume: 39 start-page: 2812 year: 2000 ident: ref1/cit1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/1521-3773(20000818)39:16<2812::AID-ANIE2812>3.0.CO;2-# – volume: 6 start-page: 2551 year: 2004 ident: ref30/cit30 publication-title: Org. Lett. doi: 10.1021/ol049126h – volume: 48 start-page: 5900 year: 2009 ident: ref56/cit56 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200806187 – volume: 30 start-page: 2457 year: 2011 ident: ref34/cit34 publication-title: Organometallics doi: 10.1021/om2001958 – volume: 26 start-page: 2540 year: 2007 ident: ref35/cit35 publication-title: Organometallics doi: 10.1021/om060632f – volume: 46 start-page: 367 year: 1981 ident: ref40/cit40 publication-title: J. Org. Chem. doi: 10.1021/jo00315a027 – volume: 6 start-page: 1717 year: 2004 ident: ref77/cit77 publication-title: Org. Lett. doi: 10.1021/ol0496125 – volume: 97 start-page: 2879 year: 1997 ident: ref52/cit52 publication-title: Chem. Rev. doi: 10.1021/cr9411886 – ident: ref10/cit10 – volume-title: Organotransition Metal Chemistry: from Bonding to Catalysis year: 2009 ident: ref18/cit18 – volume: 114 start-page: 7085 year: 1992 ident: ref59/cit59 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00044a019 – volume: 2 start-page: 419 year: 2001 ident: ref33/cit33 publication-title: Eur. J. Inorg. Chem. doi: 10.1002/1099-0682(200102)2001:2<419::AID-EJIC419>3.0.CO;2-2 – volume: 64 start-page: 1813 year: 1992 ident: ref22/cit22 publication-title: Pure Appl. Chem. doi: 10.1351/pac199264121813 – volume: 50 start-page: 5658 year: 2011 ident: ref64/cit64 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201100463 – volume: 72 start-page: 4877 year: 2007 ident: ref24/cit24 publication-title: J. Org. Chem. doi: 10.1021/jo0705871 – volume: 37 start-page: 964 year: 1954 ident: ref69/cit69 publication-title: Helv. Chim. Acta doi: 10.1002/hlca.19540370404 – volume: 32 start-page: 380 year: 2013 ident: ref55/cit55 publication-title: Organometallics doi: 10.1021/om400003c – volume: 24 start-page: 3757 year: 1983 ident: ref20/cit20 publication-title: Tetrahedron Lett. doi: 10.1016/S0040-4039(00)94527-1 – volume: 43 start-page: 1961 year: 1978 ident: ref38/cit38 publication-title: J. Org. Chem. doi: 10.1021/jo00404a024 – volume-title: Organofluorine Compounds year: 2000 ident: ref45/cit45 doi: 10.1007/978-3-662-04164-2 – volume: 102 start-page: 865 year: 1980 ident: ref19/cit19 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00522a082 – volume: 70 start-page: 8110 year: 2005 ident: ref79/cit79 publication-title: J. Org. Chem. doi: 10.1021/jo0513010 – volume: 54 start-page: 259 year: 2003 ident: ref53/cit53 publication-title: Adv. Inorg. Chem. doi: 10.1016/S0898-8838(03)54005-3 – volume: 6 start-page: 3013 year: 2004 ident: ref81/cit81 publication-title: Org. Lett. doi: 10.1021/ol048780u – volume: 499 start-page: 192 year: 2013 ident: ref7/cit7 publication-title: Nature doi: 10.1038/nature12284 – volume: 124 start-page: 9038 year: 2002 ident: ref16/cit16 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0263386 – volume: 86 start-page: 1959 year: 1964 ident: ref72/cit72 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01064a012 – volume: 122 start-page: 8131 year: 2000 ident: ref68/cit68a publication-title: J. Am. Chem. Soc. doi: 10.1021/ja001165a – volume: 7 start-page: 1464 year: 2005 ident: ref12/cit12 publication-title: Solid State Sci. doi: 10.1016/j.solidstatesciences.2005.06.015 – volume: 4 start-page: 891 year: 1986 ident: ref32/cit32 publication-title: J. Chem. Soc., Dalton Trans. doi: 10.1039/dt9860000891 – volume-title: The Biosynthesis of Steroids, Terpenes, and Acetogenins year: 1964 ident: ref3/cit3 – volume: 47 start-page: 6011 year: 2008 ident: ref31/cit31 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200801423 – volume: 126 start-page: 1699 year: 2004 ident: ref84/cit84 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja030436p – reference: 20161262 - Organometallics. 2009 Apr 13;28(7):2038-2045 – reference: 16351060 - Chem Rev. 2005 Dec;105(12):4730-56 – reference: 12590527 - J Am Chem Soc. 2003 Feb 26;125(8):2056-7 – reference: 20442917 - Chem Soc Rev. 2010 Aug;39(8):2847-54 – reference: 11851481 - Chem Rev. 1997 Dec 18;97(8):2879-2932 – reference: 17901324 - Science. 2007 Sep 28;317(5846):1881-6 – reference: 23526863 - Organometallics. 2013 Jan 28;32(2):380-383 – reference: 21869853 - Organometallics. 2011 Aug 8;30(15):3926-3929 – reference: 19569145 - Angew Chem Int Ed Engl. 2009;48(32):5900-3 – reference: 17850150 - J Am Chem Soc. 2007 Oct 3;129(39):11880-1 – reference: 17487902 - Angew Chem Int Ed Engl. 2007;46(22):4042-59 – reference: 17427893 - Angew Chem Int Ed Engl. 2007;46(19):3410-49 – reference: 12534306 - Acc Chem Res. 2003 Jan;36(1):66-77 – reference: 21572581 - Organometallics. 2011 May 9;30(9):2457-2460 – reference: 15151397 - Org Lett. 2004 May 27;6(11):1717-20 – reference: 24038770 - Angew Chem Int Ed Engl. 2013 Oct 11;52(42):11029-33 – reference: 23846658 - Nature. 2013 Jul 11;499(7457):192-6 – reference: 18095679 - J Am Chem Soc. 2008 Jan 16;130(2):592-9 – reference: 23282101 - J Am Chem Soc. 2013 Jan 16;135(2):628-31 – reference: 11869112 - Org Lett. 2002 Mar 7;4(5):727-30 – reference: 17017811 - J Am Chem Soc. 2006 Oct 11;128(40):13290-7 – reference: 15221839 - Angew Chem Int Ed Engl. 2004 Jun 28;43(26):3459-61 – reference: 17530903 - J Org Chem. 2007 Jun 22;72(13):4877-81 – reference: 18616246 - J Am Chem Soc. 2008 Aug 6;130(31):10060-1 – reference: 16018665 - Org Lett. 2005 Jul 21;7(15):3379-81 – reference: 12148993 - J Am Chem Soc. 2002 Aug 7;124(31):9038-9 – reference: 19249867 - J Am Chem Soc. 2009 Mar 25;131(11):3796-7 – reference: 15941206 - Chem Rev. 2005 Jun;105(6):1923-59 – reference: 17314976 - Nature. 2007 Feb 22;445(7130):900-3 – reference: 15255688 - Org Lett. 2004 Jul 22;6(15):2551-4 – reference: 21574222 - Angew Chem Int Ed Engl. 2011 Jun 14;50(25):5658-61 – reference: 15330671 - Org Lett. 2004 Aug 19;6(17):3013-5 – reference: 11027983 - Angew Chem Int Ed Engl. 2000 Aug 18;39(16):2812-2833 – reference: 20681679 - J Am Chem Soc. 2010 Aug 11;132(31):10626-7 – reference: 24404374 - Chem Sci. 2013 Oct;4(10):null – reference: 18649296 - Angew Chem Int Ed Engl. 2008;47(32):6011-4 – reference: 14871100 - J Am Chem Soc. 2004 Feb 18;126(6):1699-704 – reference: 16277336 - J Org Chem. 2005 Sep 30;70(20):8110-6 – reference: 15221827 - Angew Chem Int Ed Engl. 2004 Jun 28;43(26):3400-20 |
SSID | ssj0002467 |
Score | 2.308004 |
Snippet | A discontinuity exists between the importance of the cation–olefin reaction as the principal C–C bond forming reaction in terpene biosynthesis and the... A discontinuity exists between the importance of the cation-olefin reaction as the principal C-C bond forming reaction in terpene biosynthesis and the... A discontinuity exists between the importance of the cation–olefin reaction as the principal C–C bond forming reaction in terpene biosynthesis and the... |
SourceID | pubmedcentral proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2319 |
SubjectTerms | Alkenes - chemistry Catalysis Cations Coordination Complexes - chemical synthesis Coordination Complexes - chemistry Cyclization Electrons Isomerism Kinetics Lewis Acids - chemistry Oxidation-Reduction Palladium - chemistry |
Title | Electrophilic Pt(II) Complexes: Precision Instruments for the Initiation of Transformations Mediated by the Cation–Olefin Reaction |
URI | http://dx.doi.org/10.1021/ar500047j https://www.ncbi.nlm.nih.gov/pubmed/24845777 https://www.proquest.com/docview/1554940210 https://pubmed.ncbi.nlm.nih.gov/PMC4139170 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JTsMwEB1BOcAFsVOWyiyHcgg0jh073FBV1CIBFRSJWxQnjiiqUkSLBBfEgT_gD_kSxkkatSziFjmTRPGbyTzb8RuAfcxasarp0EJv8CwWudKSEVOW5Ep7NBKYBM085PmF27xhZ7f8dgr2_ljBp_ZR8Gg0-5m4n4YZ6kppou_i9bD43FLmZsKYOC5mktGRfND4pSb1hIPJ1PODT37_LXIsz5wuwHxOEMlJhugiTOlkCWbro7psy_DeyCrXPJipkJC0h9VW64CYuO7pZz04Ju3HvG4OaaXysOkmNoLklCDZw7buMIOD9GPSGeOt6H_kPK3coSOiXlLretr--fZx2dNxNyFXOtsIsQI3p41OvWnltRSsANPP0Ao5145wuJKOksxoSGFfKrPLjQYqRo6nKMcj1zYLbw6tOaHgHs0UuUzVKmcVSkk_0etAtPBUGESepxzJmKABxjyPbCemUYiDu7gMFexsP4-FgZ8uc1PbL9AoQ3WEgx_mSuSmIEbvN9PdwvQhk9_4zWhnBKaPWJgVjyDR_Sd8NJIlj5lhbRnWMnCL21B0Fi6EKIOYgL0wMMLbk2eS7l0qwI2JH0e5tY3_XnQT5pBfMTMFbXtbUELI9TZymKGqIIevX1dST_4CKLfuBw |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JTsMwEB2xHOCC2CmrQRzgEGgcO064oQrUAi0IFYlbFCeOKKpSRIoEF8SBP-AP-RLGThpaQOIWOZP12Zk3duYNwC56rURWVWRhb_AtFrue5cVMWh6XyqexQCeo5yGbLbd-w85u-W0hk6NzYfAmMjxTZhbxv9UF7MPwUUv3M3E_DpNIQrgehK3Xg_KrS5mb62NieMw8RgcqQsOHag8UZaMe6Bet_Pl35JC7OZ2FmYInkuMc2DkYU-k8TNUG5dkW4P0kL2DzoGdEInLV32s09oke3l31rLIjcvVYlM8hDaMSa3LZCHJUgpwP2zr9HBXSS0h7iL5iNyRNU8BDxUS-GOuaaf98-7jsqqSTkmuV50Msws3pSbtWt4qSClaIXqhvRZwrRzhceo70mJaSoq4ndbIbDWWCVE9SjluurdffHFp1IsF9mgtz6eJVzhJMpL1UrQBRwpdRGPu-dDzGBA1x6PPYdhIaRxjjJRXYxJcdFEMiC8xqN7WDEo0K7A1wCKJCkFzXxej-ZbpTmj7kKhx_GW0PwAwQC73wEaaq94SXRs7kMx3dVmA5B7c8DcXOwoUQFRAjsJcGWn97dE_auTM63Oj_Mditrv73oFswVW83L4KLRut8DaaRcjE9K2376zCB8KsNpDV9uWn68xdqDPK0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1NT9tAEB1RkGgvVaGlDW1hqXqAgyFe73rt3qqQKOEjRBVI3CyvvVaDIieKU6m9VBz4B_xDfkln1o6VFCRu1nr8-XY8b3a9bwC-YtTKdNMkDvaG0BGpHzhBKrQTSG1CnioMgjQOed73u1fi5FpeV4kirYXBmyjwTIWdxCevnqRZpTDgHsVTku8X6uYFrCENaZIj9v8e1l9eLvxSIxNTZBEIPlcSWjyUolBSLEehR9Ty_z8kF0JO5w28rrgi-16CuwErJt-El615iba3cNcui9hMaFQkYYPZfq93wMjFR-a3Kb6xwbQqocN6VinWrmdjyFMZ8j5sG85KZNg4Y5cLFBa7Iju3RTxMyvQfa92y7Q-39xcjkw1z9sOUayLewVWnfdnqOlVZBSfGSDRzEimNpzypA08HguSkuB9oWvDGY50h3dNc4pbv0hycx5teomTIS3EuKmDlbcFqPs7NB2BGhTqJ0zDUXiCE4jG6v0xdL-Npgnle1oAdfNlR5RZFZGe8uRvVaDRgf45DlFSi5FQbY_SU6ZfadFIqcTxltDcHM0IsaPIjzs34F14aeVMoKMNtwPsS3Po0HDuLVEo1QC3BXhuQBvfynnz402pxIwfAhLe5_dyD7sL64LgTnfX6px_hFbIuQQPTbvgJVhF98xmZzUzv2O78D-3X88E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrophilic+Pt%28II%29+complexes%3A+precision+instruments+for+the+initiation+of+transformations+mediated+by+the+cation-olefin+reaction&rft.jtitle=Accounts+of+chemical+research&rft.au=Felix%2C+Ryan+J&rft.au=Munro-Leighton%2C+Colleen&rft.au=Gagn%C3%A9%2C+Michel+R&rft.date=2014-08-19&rft.eissn=1520-4898&rft.volume=47&rft.issue=8&rft.spage=2319&rft_id=info:doi/10.1021%2Far500047j&rft_id=info%3Apmid%2F24845777&rft.externalDocID=24845777 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon |