Direct Observation of Nanoscale Peltier and Joule Effects at Metal–Insulator Domain Walls in Vanadium Dioxide Nanobeams
The metal to insulator transition (MIT) of strongly correlated materials is subject to strong lattice coupling, which brings about the unique one-dimensional alignment of metal–insulator (M–I) domains along nanowires or nanobeams. Many studies have investigated the effects of stress on the MIT and h...
Saved in:
Published in | Nano letters Vol. 14; no. 5; pp. 2394 - 2400 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
14.05.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The metal to insulator transition (MIT) of strongly correlated materials is subject to strong lattice coupling, which brings about the unique one-dimensional alignment of metal–insulator (M–I) domains along nanowires or nanobeams. Many studies have investigated the effects of stress on the MIT and hence the phase boundary, but few have directly examined the temperature profile across the metal–insulating interface. Here, we use thermoreflectance microscopy to create two-dimensional temperature maps of single-crystalline VO2 nanobeams under external bias in the phase coexisting regime. We directly observe highly localized alternating Peltier heating and cooling as well as Joule heating concentrated at the M–I domain boundaries, indicating the significance of the domain walls and band offsets. Utilizing the thermoreflectance technique, we are able to elucidate strain accumulation along the nanobeam and distinguish between two insulating phases of VO2 through detection of the opposite polarity of their respective thermoreflectance coefficients. Microelasticity theory was employed to predict favorable domain wall configurations, confirming the monoclinic phase identification. |
---|---|
AbstractList | The metal to insulator transition (MIT) of strongly correlated materials is subject to strong lattice coupling, which brings about the unique one-dimensional alignment of metal-insulator (M-I) domains along nanowires or nanobeams. Many studies have investigated the effects of stress on the MIT and hence the phase boundary, but few have directly examined the temperature profile across the metal-insulating interface. Here, we use thermoreflectance microscopy to create two-dimensional temperature maps of single-crystalline VO sub(2) nanobeams under external bias in the phase coexisting regime. We directly observe highly localized alternating Peltier heating and cooling as well as Joule heating concentrated at the M-I domain boundaries, indicating the significance of the domain walls and band offsets. Utilizing the thermoreflectance technique, we are able to elucidate strain accumulation along the nanobeam and distinguish between two insulating phases of VO sub(2) through detection of the opposite polarity of their respective thermoreflectance coefficients. Microelasticity theory was employed to predict favorable domain wall configurations, confirming the monoclinic phase identification. Keywords: Vanadium dioxide; thermoreflectance microscopy; Peltier effect; Joule heating; metal-insulator domain wall The metal to insulator transition (MIT) of strongly correlated materials is subject to strong lattice coupling, which brings about the unique one-dimensional alignment of metal–insulator (M–I) domains along nanowires or nanobeams. Many studies have investigated the effects of stress on the MIT and hence the phase boundary, but few have directly examined the temperature profile across the metal–insulating interface. Here, we use thermoreflectance microscopy to create two-dimensional temperature maps of single-crystalline VO2 nanobeams under external bias in the phase coexisting regime. We directly observe highly localized alternating Peltier heating and cooling as well as Joule heating concentrated at the M–I domain boundaries, indicating the significance of the domain walls and band offsets. Utilizing the thermoreflectance technique, we are able to elucidate strain accumulation along the nanobeam and distinguish between two insulating phases of VO2 through detection of the opposite polarity of their respective thermoreflectance coefficients. Microelasticity theory was employed to predict favorable domain wall configurations, confirming the monoclinic phase identification. The metal to insulator transition (MIT) of strongly correlated materials is subject to strong lattice coupling, which brings about the unique one-dimensional alignment of metal-insulator (M-I) domains along nanowires or nanobeams. Many studies have investigated the effects of stress on the MIT and hence the phase boundary, but few have directly examined the temperature profile across the metal-insulating interface. Here, we use thermoreflectance microscopy to create two-dimensional temperature maps of single-crystalline VO2 nanobeams under external bias in the phase coexisting regime. We directly observe highly localized alternating Peltier heating and cooling as well as Joule heating concentrated at the M-I domain boundaries, indicating the significance of the domain walls and band offsets. Utilizing the thermoreflectance technique, we are able to elucidate strain accumulation along the nanobeam and distinguish between two insulating phases of VO2 through detection of the opposite polarity of their respective thermoreflectance coefficients. Microelasticity theory was employed to predict favorable domain wall configurations, confirming the monoclinic phase identification.The metal to insulator transition (MIT) of strongly correlated materials is subject to strong lattice coupling, which brings about the unique one-dimensional alignment of metal-insulator (M-I) domains along nanowires or nanobeams. Many studies have investigated the effects of stress on the MIT and hence the phase boundary, but few have directly examined the temperature profile across the metal-insulating interface. Here, we use thermoreflectance microscopy to create two-dimensional temperature maps of single-crystalline VO2 nanobeams under external bias in the phase coexisting regime. We directly observe highly localized alternating Peltier heating and cooling as well as Joule heating concentrated at the M-I domain boundaries, indicating the significance of the domain walls and band offsets. Utilizing the thermoreflectance technique, we are able to elucidate strain accumulation along the nanobeam and distinguish between two insulating phases of VO2 through detection of the opposite polarity of their respective thermoreflectance coefficients. Microelasticity theory was employed to predict favorable domain wall configurations, confirming the monoclinic phase identification. |
Author | Favaloro, Tela Suh, Joonki Gu, Yijia Shakouri, Ali Liu, Kai Chen, Long-Qing Wu, Junqiao Vermeersch, Bjorn Wang, Kevin X |
AuthorAffiliation | Baskin School of Engineering Pennsylvania State University Purdue University Lawrence Berkeley National Laboratory University of California Birck Nanotechnology Center Department of Materials Science and Engineering Deparment of Materials Sciences and Engineering Materials Sciences Division |
AuthorAffiliation_xml | – name: Baskin School of Engineering – name: University of California – name: Birck Nanotechnology Center – name: Deparment of Materials Sciences and Engineering – name: Pennsylvania State University – name: Lawrence Berkeley National Laboratory – name: Purdue University – name: Department of Materials Science and Engineering – name: Materials Sciences Division |
Author_xml | – sequence: 1 givenname: Tela surname: Favaloro fullname: Favaloro, Tela – sequence: 2 givenname: Joonki surname: Suh fullname: Suh, Joonki – sequence: 3 givenname: Bjorn surname: Vermeersch fullname: Vermeersch, Bjorn – sequence: 4 givenname: Kai surname: Liu fullname: Liu, Kai – sequence: 5 givenname: Yijia surname: Gu fullname: Gu, Yijia – sequence: 6 givenname: Long-Qing surname: Chen fullname: Chen, Long-Qing – sequence: 7 givenname: Kevin X surname: Wang fullname: Wang, Kevin X – sequence: 8 givenname: Junqiao surname: Wu fullname: Wu, Junqiao – sequence: 9 givenname: Ali surname: Shakouri fullname: Shakouri, Ali email: shakouri@purdue.edu |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28510273$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/24735496$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1369755$$D View this record in Osti.gov |
BookMark | eNqF0stqFTEYAOAgFXvRhS8gQRDq4thkcptZSk_VSrUuvCzDfzIJpmSSmmSk3fUdfEOfxLTntIIUXCWE7__Jf9lFWzFFi9BTSl5R0tGDGAQhhHcXD9AOFYws5DB0W3f3nm-j3VLOmhmYII_QdscVE3yQO-hy6bM1FZ-uis0_ofoUcXL4I8RUDASLP9lQvc0Y4ojfp7m9HDnXIgqGij_YCuH31a_jWOYANWW8TBP4iL9BCAW3y1eIMPp5wkufLvxobzKvLEzlMXroIBT7ZHPuoS9vjj4fvlucnL49Pnx9sgCuaF10TEou-05SqeTgVob2bJScA3ecDEJxy5ygzjrgjCsFEsy4Imwkw-AMIz3bQ8_XeVOpXhfjqzXfTYqxFaEpk4MSoqH9NTrP6cdsS9WTL8aGANGmuWiqZEcEZWr4PxUd76nqZdfosw2dV5Md9Xn2E-RLfdv-Bl5sAFx322WIxpe_rhdtvoo1d7B2JqdSsnW6lXEzrJrBB02Jvl4EfbcILeLlPxG3Se-zm1-AKfoszTm2edzj_gCiVL23 |
CitedBy_id | crossref_primary_10_1016_j_apsusc_2023_158556 crossref_primary_10_1002_smll_201701147 crossref_primary_10_1088_1361_6463_ac0843 crossref_primary_10_1002_adma_202106871 crossref_primary_10_1039_C5RA13490K crossref_primary_10_1063_5_0142754 crossref_primary_10_1021_acsaelm_1c00550 crossref_primary_10_1088_1361_6528_ac1fb1 crossref_primary_10_1021_acs_jpclett_1c03278 crossref_primary_10_1063_5_0097460 crossref_primary_10_1002_adma_201501859 crossref_primary_10_1021_acs_nanolett_5b03086 crossref_primary_10_1038_srep10861 crossref_primary_10_1016_j_solmat_2019_110303 crossref_primary_10_1016_j_pnsc_2015_09_003 crossref_primary_10_1016_j_vacuum_2022_111309 crossref_primary_10_1002_pssr_201900383 crossref_primary_10_1021_acs_nanolett_9b00984 crossref_primary_10_1126_sciadv_aar3679 crossref_primary_10_1364_OE_380866 crossref_primary_10_7566_JPSJ_90_122001 crossref_primary_10_1016_j_jallcom_2017_05_298 crossref_primary_10_1002_smll_201603113 crossref_primary_10_1039_D2TC05295D crossref_primary_10_1016_j_jallcom_2023_171035 crossref_primary_10_1007_s11467_021_1101_x crossref_primary_10_1016_j_jallcom_2017_03_164 crossref_primary_10_1103_PhysRevMaterials_4_114414 crossref_primary_10_1021_acsami_2c21367 crossref_primary_10_1021_acsami_0c01076 crossref_primary_10_1038_s41598_024_52021_7 crossref_primary_10_1039_C7NR00318H crossref_primary_10_25159_3005_2602_13618 crossref_primary_10_1063_1_4954734 crossref_primary_10_1038_srep10417 crossref_primary_10_1063_5_0129312 crossref_primary_10_1103_PhysRevApplied_19_044040 |
Cites_doi | 10.1006/jssc.1993.1081 10.1038/nnano.2009.266 10.1103/PhysRevB.85.020101 10.1103/PhysRev.117.1442 10.1021/ja400658u 10.1103/PhysRevB.77.235111 10.1103/PhysRevB.85.085111 10.1364/JOSAA.24.001156 10.1038/nnano.2012.176 10.1063/1.4788804 10.1021/nl101457k 10.1021/nl902167b 10.1063/1.1149966 10.1021/nl903765h 10.1103/PhysRevLett.35.873 10.1021/nl9028973 10.1038/nnano.2009.141 10.1021/nl0624768 10.1021/nl1020443 10.1063/1.3499349 10.1088/0022-3727/42/14/143001 10.1063/1.3394016 10.1063/1.1415768 10.1002/andp.20025140902 10.1103/PhysRevB.82.241101 10.1103/PhysRevB.5.2541 10.1021/ja045976g 10.1103/PhysRevLett.3.34 10.1021/nl061831r 10.1021/nl303065h |
ContentType | Journal Article |
Copyright | Copyright © 2014 American Chemical Society 2015 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2014 American Chemical Society – notice: 2015 INIST-CNRS |
CorporateAuthor | Energy Frontier Research Centers (EFRC) (United States). Center for Energy Efficient Materials (CEEM) |
CorporateAuthor_xml | – name: Energy Frontier Research Centers (EFRC) (United States). Center for Energy Efficient Materials (CEEM) |
DBID | AAYXX CITATION IQODW NPM 7X8 7SP 7SR 7U5 8BQ 8FD JG9 L7M OTOTI |
DOI | 10.1021/nl500042x |
DatabaseName | CrossRef Pascal-Francis PubMed MEDLINE - Academic Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace OSTI.GOV |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1530-6992 |
EndPage | 2400 |
ExternalDocumentID | 1369755 24735496 28510273 10_1021_nl500042x b662212912 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GroupedDBID | - .K2 123 4.4 55A 5VS 7~N AABXI ABMVS ABPTK ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 LG6 PK8 RNS ROL TN5 UI2 VF5 VG9 W1F X --- -~X 6P2 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHLV AHGAQ CITATION CUPRZ GGK 53G AAYOK AFFNX IQODW NPM 7X8 7SP 7SR 7U5 8BQ 8FD JG9 L7M ABFRP OTOTI |
ID | FETCH-LOGICAL-a471t-23664682616769fbc183d644a4f409574e3f51fefa43477a6acdb03d099fc3083 |
IEDL.DBID | ACS |
ISSN | 1530-6984 1530-6992 |
IngestDate | Thu May 18 22:30:21 EDT 2023 Thu Jul 10 22:18:21 EDT 2025 Thu Jul 10 16:27:38 EDT 2025 Thu Jan 02 22:17:30 EST 2025 Wed Apr 02 07:18:35 EDT 2025 Tue Jul 01 00:42:59 EDT 2025 Thu Apr 24 22:50:21 EDT 2025 Thu Aug 27 13:50:17 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | thermoreflectance microscopy Vanadium dioxide Peltier effect Joule heating metal−insulator domain wall Temperature distribution Metal-insulator transition Domain walls Nanostructures Monoclinic lattices Heat treatments Interfaces Nanometer scale Monocrystals Stress effects Polarity Band offset Nanowires Nanostructured materials Crystal structure |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a471t-23664682616769fbc183d644a4f409574e3f51fefa43477a6acdb03d099fc3083 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22) SC0001009 |
PMID | 24735496 |
PQID | 1524817862 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | osti_scitechconnect_1369755 proquest_miscellaneous_1762051379 proquest_miscellaneous_1524817862 pubmed_primary_24735496 pascalfrancis_primary_28510273 crossref_citationtrail_10_1021_nl500042x crossref_primary_10_1021_nl500042x acs_journals_10_1021_nl500042x |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-05-14 |
PublicationDateYYYYMMDD | 2014-05-14 |
PublicationDate_xml | – month: 05 year: 2014 text: 2014-05-14 day: 14 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States |
PublicationTitle | Nano letters |
PublicationTitleAlternate | Nano Lett |
PublicationYear | 2014 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Guiton B. S. (ref18/cit18) 2005; 127 Cao J. (ref13/cit13) 2009; 4 Gu Q. (ref22/cit22) 2007; 7 Jones A. C. (ref7/cit7) 2010; 10 Cao J. (ref6/cit6) 2010; 10 Pouget J. P. (ref5/cit5) 1975; 35 Wei J. (ref32/cit32) 2009; 4 Wu J. Q. (ref12/cit12) 2006; 6 Grauby S. (ref24/cit24) 1999; 70 Mayer P. M. (ref19/cit19) 2007; 24 Morin F. J. (ref1/cit1) 1959; 3 Lee S. (ref14/cit14) 2013; 135 Tselev A. (ref26/cit26) 2010; 10 Kasirga T. S. (ref9/cit9) 2012; 7 Eyert V. (ref15/cit15) 2002; 11 Atkin J. M. (ref8/cit8) 2012; 85 Marini C. (ref25/cit25) 2008; 77 Vermeersch B. (ref23/cit23) 2010 Strelcov E. (ref29/cit29) 2012; 12 Rakotoniaina J. C. (ref4/cit4) 1993; 103 Goodenough J. B. (ref2/cit2) 1960; 117 Marezio M. (ref3/cit3) 1972; 5 Khachaturyan A. G. (ref30/cit30) 1983 Lopez R. (ref11/cit11) 2001; 79 Oh D. W. (ref28/cit28) 2010; 96 Komarov P. L. (ref21/cit21) 2006 Cao J. (ref33/cit33) 2010; 82 Fu D. (ref17/cit17) 2013; 113 Zhang S. (ref10/cit10) 2009; 9 Cao J. (ref16/cit16) 2009; 9 Miller C. (ref27/cit27) 2012; 85 Farzaneh M. (ref20/cit20) 2009; 42 Gu Y. (ref31/cit31) 2010; 108 |
References_xml | – volume: 103 start-page: 81 year: 1993 ident: ref4/cit4 publication-title: J. Solid State Chem. doi: 10.1006/jssc.1993.1081 – volume: 4 start-page: 732 year: 2009 ident: ref13/cit13 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2009.266 – volume: 85 start-page: 020101 year: 2012 ident: ref8/cit8 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.020101 – volume: 117 start-page: 1442 year: 1960 ident: ref2/cit2 publication-title: Phys. Rev. doi: 10.1103/PhysRev.117.1442 – volume: 135 start-page: 4850 year: 2013 ident: ref14/cit14 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja400658u – volume: 77 start-page: 235111 year: 2008 ident: ref25/cit25 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.77.235111 – volume-title: Theory of the Structural Transformation in Solids year: 1983 ident: ref30/cit30 – volume: 85 start-page: 085111 year: 2012 ident: ref27/cit27 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.085111 – volume: 24 start-page: 1156 year: 2007 ident: ref19/cit19 publication-title: J. Opt. Soc. Am. A doi: 10.1364/JOSAA.24.001156 – volume: 7 start-page: 723 year: 2012 ident: ref9/cit9 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.176 – volume: 113 start-page: 043707 year: 2013 ident: ref17/cit17 publication-title: J. Appl. Phys. doi: 10.1063/1.4788804 – volume: 10 start-page: 2667 year: 2010 ident: ref6/cit6 publication-title: Nano Lett. doi: 10.1021/nl101457k – volume: 9 start-page: 4001 year: 2009 ident: ref16/cit16 publication-title: Nano Lett. doi: 10.1021/nl902167b – volume-title: IMAPS Thermal ATW year: 2010 ident: ref23/cit23 – volume: 70 start-page: 3603 year: 1999 ident: ref24/cit24 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1149966 – volume: 10 start-page: 1574 year: 2010 ident: ref7/cit7 publication-title: Nano Lett. doi: 10.1021/nl903765h – volume: 35 start-page: 873 year: 1975 ident: ref5/cit5 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.35.873 – volume: 9 start-page: 4527 year: 2009 ident: ref10/cit10 publication-title: Nano Lett. doi: 10.1021/nl9028973 – volume: 4 start-page: 420 year: 2009 ident: ref32/cit32 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2009.141 – start-page: 199 volume-title: Proceedings of 22nd IEEE SEMI-THERM Symposium year: 2006 ident: ref21/cit21 – volume: 7 start-page: 363 year: 2007 ident: ref22/cit22 publication-title: Nano Lett. doi: 10.1021/nl0624768 – volume: 10 start-page: 4409 year: 2010 ident: ref26/cit26 publication-title: Nano Lett. doi: 10.1021/nl1020443 – volume: 108 start-page: 083517 year: 2010 ident: ref31/cit31 publication-title: J. Appl. Phys. doi: 10.1063/1.3499349 – volume: 42 start-page: 143001 year: 2009 ident: ref20/cit20 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/42/14/143001 – volume: 96 start-page: 151906 year: 2010 ident: ref28/cit28 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3394016 – volume: 79 start-page: 3161 year: 2001 ident: ref11/cit11 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1415768 – volume: 11 start-page: 650 year: 2002 ident: ref15/cit15 publication-title: Ann. Phys. doi: 10.1002/andp.20025140902 – volume: 82 start-page: 241101 year: 2010 ident: ref33/cit33 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.82.241101 – volume: 5 start-page: 2541 year: 1972 ident: ref3/cit3 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.5.2541 – volume: 127 start-page: 498 year: 2005 ident: ref18/cit18 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja045976g – volume: 3 start-page: 34 year: 1959 ident: ref1/cit1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.3.34 – volume: 6 start-page: 2313 year: 2006 ident: ref12/cit12 publication-title: Nano Lett. doi: 10.1021/nl061831r – volume: 12 start-page: 6198 year: 2012 ident: ref29/cit29 publication-title: Nano Lett. doi: 10.1021/nl303065h |
SSID | ssj0009350 |
Score | 2.317214 |
Snippet | The metal to insulator transition (MIT) of strongly correlated materials is subject to strong lattice coupling, which brings about the unique one-dimensional... |
SourceID | osti proquest pubmed pascalfrancis crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2394 |
SubjectTerms | Condensed matter: electronic structure, electrical, magnetic, and optical properties Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science; rheology Domain walls Electron states Exact sciences and technology Insulators Joule heating Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties Materials science Metal-insulator transitions and other electronic transitions Microscopy Nanocrystalline materials Nanoscale materials and structures: fabrication and characterization Nanostructure Phase boundaries Physics Quantum wires Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) Vanadium dioxide Vanadium oxides |
Title | Direct Observation of Nanoscale Peltier and Joule Effects at Metal–Insulator Domain Walls in Vanadium Dioxide Nanobeams |
URI | http://dx.doi.org/10.1021/nl500042x https://www.ncbi.nlm.nih.gov/pubmed/24735496 https://www.proquest.com/docview/1524817862 https://www.proquest.com/docview/1762051379 https://www.osti.gov/biblio/1369755 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwELbQ9tIe-qKP5SWX9tBL6Dp27OSI2CJaCajUUnGLJn5IK3aTqslKwIn_wD_klzCT7C6gAr1FkeM4zjy-scffMPbJ6cwIoSEShdCRCnYQQTAuAhtC6h1i5IQOJ-8f6L0j9f04OV5iHx_YwY_Fl3JMnP0qRqD4JNapoQhre-fnDbOubMuwouZiHJSlak4fdPtRcj22vuN6ehWqEGVCQo2TEboqFg_DzNbd7L5gw_mhnS7L5GRr2hRb9vxfDsfHvuQlez6Dm3y7k49XbMmXr9mzWySEy-yss3r8sFgs0PIqcDS7FY3Z8x9-3KDz5FA6jh3inY7yuObQ8H2P6P3q4vIb5bRTAM-H1QRGJacV-prjxe82rWw64cNRdTpyvu258DCp37Cj3a-_dvaiWUGGCNCHNVEstVYaAxJBibGhsGgPHAIqUAHDxMQoL0Migg-gpDIGNFhXDKRDFBqsRLD3lvXKqvTvGU-dMC62zg0cKJe5FHyQiVPpICBCAdtnG_jH8plC1Xm7Vx6LfDGHffZ5_jNzO6Mzp6oa4_uabi6a_uk4PO5rtEoSkSPwIPZcS2lGtsmFRGFOEhzOHUFZ9BMjYiVKoD77MJecHBWUdl2g9NUUR57EKhUGI8dH2qBLQusoTdZn7zqxu3kDFYdWmV7534yssqeI5hSlNgi1xnrN36lfR8TUFButxlwDWuEQkQ |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbQcgAO5Q1LoRjEgUvKOnac5Fi1VFvoFiRa1Fs08UNasZtUJCsBJ_4D_5BfwoyT3W1RedyiyHEmzoznG3v8DWMvrM5TITREohQ6Ut6MIvCpjcB4nzmLGDmhw8mTIz0-UW9Ok9OeJofOwqAQDfbUhE38NbuAeFXNiLpfxYgXryIIiSnQ2tn9sCbYlaEaKxowhkN5ppYsQucfJQ9kmgseaFCjJVFCJDQ4Jr4rZvFntBm8zv7NrnxRkDckm3zaXrTltvn2G5Xj_33QLbbRg0--02nLbXbFVXfYjXOUhHfZ124O5O_K1XItrz3HSbgm0R1_72YtulIOleXYId7pCJAbDi2fOMTyP7__OKAMdwrn-V49h2nFab2-4XjxMSSZLeZ8b1p_mVoXei4dzJt77GT_9fHuOOrLM0SAHq2NYqm10hieCEqT9aXB2cEivALlMWhMUuWkT4R3HpRUaQoajC1H0iIm9UYi9LvPBlVduYeMZ1akNjbWjiwom9sMnJeJVdnII14BM2RbOIRFb15NEXbOY1GsxnDIXi7_aWF6cnOqsTG7rOnzVdOzjtHjskabpBgFwhDi0jWUdGTaQkhU7SRBcS7oy6qfGPErEQQN2bOlAhVorrQHA5WrFyh5EqtMpBhH_qUNOiicK2WaD9mDTvvWb6BS0SrXj_41Ik_ZtfHx5LA4PDh6u8muI85TlPQg1GM2aD8v3BPEUm25FYzoFy62GPI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbQIiE48H5sW4pBHLikXceOkxyrLqsW6EOCot4ix2NLK3aTqslKLSf-A_-QX9KZJJu2qDxuUeQ4E2fG8409_oaxt6DTWAhtApELHShvR4HxMQTGep84QIwc0eHkvX29c6Q-HEfHXaBIZ2FQiAp7qppNfLLqE_Adw4DYLGZE369CxIy3abuOgq2t7c-XJLuyqciKRowhUZqoJZPQ1UfJC9nqmhcalGhNlBRpKhwX3xa0-DPibDzP5AE76GVuEk6-bSzqfMN-_43O8f8_6iG734FQvtVqzSN2yxWP2b0r1IRP2Hk7F_KDvF-25aXnOBmXJL7jh25Wo0vlpgCOHeKdlgi54qbmew4x_a8fP3cp053Cej4u52ZacFq3rzhefG2SzRZzPp6WZ1NwTc-5M_PqKTuavP-yvRN0ZRoCg56tDkKptdIYpghKl_W5xVkCEGYZ5TF4jGLlpI-Ed94oqeLYaGMhH0lAbOqtRAj4jA2KsnAvGE9AxBBagBEYBSkkxnkZgUpGHnGLsUO2jsOYdWZWZc0OeiiyfgyH7N3yv2a2IzmnWhuzm5q-6ZuetMweNzVaJeXIEI4Qp66l5CNbZ0KiikcRinNNZ_p-QsSxRBQ0ZK-XSpSh2dJejClcuUDJo1AlIsZ48i9t0FHhnCnjdMietxp4-QYqGa1SvfKvEXnF7hyOJ9mn3f2Pq-wuwj1FuQ9CrbFBfbpwLxFS1fl6Y0cXPQIbdQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+Observation+of+Nanoscale+Peltier+and+Joule+Effects+at+Metal-Insulator+Domain+Walls+in+Vanadium+Dioxide+Nanobeams&rft.jtitle=Nano+letters&rft.au=FAVALORO%2C+Tela&rft.au=SUH%2C+Joonki&rft.au=VERMEERSCH%2C+Bjorn&rft.au=KAI+LIU&rft.date=2014-05-14&rft.pub=American+Chemical+Society&rft.issn=1530-6984&rft.volume=14&rft.issue=5&rft.spage=2394&rft.epage=2400&rft_id=info:doi/10.1021%2Fnl500042x&rft.externalDBID=n%2Fa&rft.externalDocID=28510273 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon |