Direct Observation of Nanoscale Peltier and Joule Effects at Metal–Insulator Domain Walls in Vanadium Dioxide Nanobeams

The metal to insulator transition (MIT) of strongly correlated materials is subject to strong lattice coupling, which brings about the unique one-dimensional alignment of metal–insulator (M–I) domains along nanowires or nanobeams. Many studies have investigated the effects of stress on the MIT and h...

Full description

Saved in:
Bibliographic Details
Published inNano letters Vol. 14; no. 5; pp. 2394 - 2400
Main Authors Favaloro, Tela, Suh, Joonki, Vermeersch, Bjorn, Liu, Kai, Gu, Yijia, Chen, Long-Qing, Wang, Kevin X, Wu, Junqiao, Shakouri, Ali
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 14.05.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The metal to insulator transition (MIT) of strongly correlated materials is subject to strong lattice coupling, which brings about the unique one-dimensional alignment of metal–insulator (M–I) domains along nanowires or nanobeams. Many studies have investigated the effects of stress on the MIT and hence the phase boundary, but few have directly examined the temperature profile across the metal–insulating interface. Here, we use thermoreflectance microscopy to create two-dimensional temperature maps of single-crystalline VO2 nanobeams under external bias in the phase coexisting regime. We directly observe highly localized alternating Peltier heating and cooling as well as Joule heating concentrated at the M–I domain boundaries, indicating the significance of the domain walls and band offsets. Utilizing the thermoreflectance technique, we are able to elucidate strain accumulation along the nanobeam and distinguish between two insulating phases of VO2 through detection of the opposite polarity of their respective thermoreflectance coefficients. Microelasticity theory was employed to predict favorable domain wall configurations, confirming the monoclinic phase identification.
AbstractList The metal to insulator transition (MIT) of strongly correlated materials is subject to strong lattice coupling, which brings about the unique one-dimensional alignment of metal-insulator (M-I) domains along nanowires or nanobeams. Many studies have investigated the effects of stress on the MIT and hence the phase boundary, but few have directly examined the temperature profile across the metal-insulating interface. Here, we use thermoreflectance microscopy to create two-dimensional temperature maps of single-crystalline VO sub(2) nanobeams under external bias in the phase coexisting regime. We directly observe highly localized alternating Peltier heating and cooling as well as Joule heating concentrated at the M-I domain boundaries, indicating the significance of the domain walls and band offsets. Utilizing the thermoreflectance technique, we are able to elucidate strain accumulation along the nanobeam and distinguish between two insulating phases of VO sub(2) through detection of the opposite polarity of their respective thermoreflectance coefficients. Microelasticity theory was employed to predict favorable domain wall configurations, confirming the monoclinic phase identification. Keywords: Vanadium dioxide; thermoreflectance microscopy; Peltier effect; Joule heating; metal-insulator domain wall
The metal to insulator transition (MIT) of strongly correlated materials is subject to strong lattice coupling, which brings about the unique one-dimensional alignment of metal–insulator (M–I) domains along nanowires or nanobeams. Many studies have investigated the effects of stress on the MIT and hence the phase boundary, but few have directly examined the temperature profile across the metal–insulating interface. Here, we use thermoreflectance microscopy to create two-dimensional temperature maps of single-crystalline VO2 nanobeams under external bias in the phase coexisting regime. We directly observe highly localized alternating Peltier heating and cooling as well as Joule heating concentrated at the M–I domain boundaries, indicating the significance of the domain walls and band offsets. Utilizing the thermoreflectance technique, we are able to elucidate strain accumulation along the nanobeam and distinguish between two insulating phases of VO2 through detection of the opposite polarity of their respective thermoreflectance coefficients. Microelasticity theory was employed to predict favorable domain wall configurations, confirming the monoclinic phase identification.
The metal to insulator transition (MIT) of strongly correlated materials is subject to strong lattice coupling, which brings about the unique one-dimensional alignment of metal-insulator (M-I) domains along nanowires or nanobeams. Many studies have investigated the effects of stress on the MIT and hence the phase boundary, but few have directly examined the temperature profile across the metal-insulating interface. Here, we use thermoreflectance microscopy to create two-dimensional temperature maps of single-crystalline VO2 nanobeams under external bias in the phase coexisting regime. We directly observe highly localized alternating Peltier heating and cooling as well as Joule heating concentrated at the M-I domain boundaries, indicating the significance of the domain walls and band offsets. Utilizing the thermoreflectance technique, we are able to elucidate strain accumulation along the nanobeam and distinguish between two insulating phases of VO2 through detection of the opposite polarity of their respective thermoreflectance coefficients. Microelasticity theory was employed to predict favorable domain wall configurations, confirming the monoclinic phase identification.The metal to insulator transition (MIT) of strongly correlated materials is subject to strong lattice coupling, which brings about the unique one-dimensional alignment of metal-insulator (M-I) domains along nanowires or nanobeams. Many studies have investigated the effects of stress on the MIT and hence the phase boundary, but few have directly examined the temperature profile across the metal-insulating interface. Here, we use thermoreflectance microscopy to create two-dimensional temperature maps of single-crystalline VO2 nanobeams under external bias in the phase coexisting regime. We directly observe highly localized alternating Peltier heating and cooling as well as Joule heating concentrated at the M-I domain boundaries, indicating the significance of the domain walls and band offsets. Utilizing the thermoreflectance technique, we are able to elucidate strain accumulation along the nanobeam and distinguish between two insulating phases of VO2 through detection of the opposite polarity of their respective thermoreflectance coefficients. Microelasticity theory was employed to predict favorable domain wall configurations, confirming the monoclinic phase identification.
Author Favaloro, Tela
Suh, Joonki
Gu, Yijia
Shakouri, Ali
Liu, Kai
Chen, Long-Qing
Wu, Junqiao
Vermeersch, Bjorn
Wang, Kevin X
AuthorAffiliation Baskin School of Engineering
Pennsylvania State University
Purdue University
Lawrence Berkeley National Laboratory
University of California
Birck Nanotechnology Center
Department of Materials Science and Engineering
Deparment of Materials Sciences and Engineering
Materials Sciences Division
AuthorAffiliation_xml – name: Baskin School of Engineering
– name: University of California
– name: Birck Nanotechnology Center
– name: Deparment of Materials Sciences and Engineering
– name: Pennsylvania State University
– name: Lawrence Berkeley National Laboratory
– name: Purdue University
– name: Department of Materials Science and Engineering
– name: Materials Sciences Division
Author_xml – sequence: 1
  givenname: Tela
  surname: Favaloro
  fullname: Favaloro, Tela
– sequence: 2
  givenname: Joonki
  surname: Suh
  fullname: Suh, Joonki
– sequence: 3
  givenname: Bjorn
  surname: Vermeersch
  fullname: Vermeersch, Bjorn
– sequence: 4
  givenname: Kai
  surname: Liu
  fullname: Liu, Kai
– sequence: 5
  givenname: Yijia
  surname: Gu
  fullname: Gu, Yijia
– sequence: 6
  givenname: Long-Qing
  surname: Chen
  fullname: Chen, Long-Qing
– sequence: 7
  givenname: Kevin X
  surname: Wang
  fullname: Wang, Kevin X
– sequence: 8
  givenname: Junqiao
  surname: Wu
  fullname: Wu, Junqiao
– sequence: 9
  givenname: Ali
  surname: Shakouri
  fullname: Shakouri, Ali
  email: shakouri@purdue.edu
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28510273$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/24735496$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1369755$$D View this record in Osti.gov
BookMark eNqF0stqFTEYAOAgFXvRhS8gQRDq4thkcptZSk_VSrUuvCzDfzIJpmSSmmSk3fUdfEOfxLTntIIUXCWE7__Jf9lFWzFFi9BTSl5R0tGDGAQhhHcXD9AOFYws5DB0W3f3nm-j3VLOmhmYII_QdscVE3yQO-hy6bM1FZ-uis0_ofoUcXL4I8RUDASLP9lQvc0Y4ojfp7m9HDnXIgqGij_YCuH31a_jWOYANWW8TBP4iL9BCAW3y1eIMPp5wkufLvxobzKvLEzlMXroIBT7ZHPuoS9vjj4fvlucnL49Pnx9sgCuaF10TEou-05SqeTgVob2bJScA3ecDEJxy5ygzjrgjCsFEsy4Imwkw-AMIz3bQ8_XeVOpXhfjqzXfTYqxFaEpk4MSoqH9NTrP6cdsS9WTL8aGANGmuWiqZEcEZWr4PxUd76nqZdfosw2dV5Md9Xn2E-RLfdv-Bl5sAFx322WIxpe_rhdtvoo1d7B2JqdSsnW6lXEzrJrBB02Jvl4EfbcILeLlPxG3Se-zm1-AKfoszTm2edzj_gCiVL23
CitedBy_id crossref_primary_10_1016_j_apsusc_2023_158556
crossref_primary_10_1002_smll_201701147
crossref_primary_10_1088_1361_6463_ac0843
crossref_primary_10_1002_adma_202106871
crossref_primary_10_1039_C5RA13490K
crossref_primary_10_1063_5_0142754
crossref_primary_10_1021_acsaelm_1c00550
crossref_primary_10_1088_1361_6528_ac1fb1
crossref_primary_10_1021_acs_jpclett_1c03278
crossref_primary_10_1063_5_0097460
crossref_primary_10_1002_adma_201501859
crossref_primary_10_1021_acs_nanolett_5b03086
crossref_primary_10_1038_srep10861
crossref_primary_10_1016_j_solmat_2019_110303
crossref_primary_10_1016_j_pnsc_2015_09_003
crossref_primary_10_1016_j_vacuum_2022_111309
crossref_primary_10_1002_pssr_201900383
crossref_primary_10_1021_acs_nanolett_9b00984
crossref_primary_10_1126_sciadv_aar3679
crossref_primary_10_1364_OE_380866
crossref_primary_10_7566_JPSJ_90_122001
crossref_primary_10_1016_j_jallcom_2017_05_298
crossref_primary_10_1002_smll_201603113
crossref_primary_10_1039_D2TC05295D
crossref_primary_10_1016_j_jallcom_2023_171035
crossref_primary_10_1007_s11467_021_1101_x
crossref_primary_10_1016_j_jallcom_2017_03_164
crossref_primary_10_1103_PhysRevMaterials_4_114414
crossref_primary_10_1021_acsami_2c21367
crossref_primary_10_1021_acsami_0c01076
crossref_primary_10_1038_s41598_024_52021_7
crossref_primary_10_1039_C7NR00318H
crossref_primary_10_25159_3005_2602_13618
crossref_primary_10_1063_1_4954734
crossref_primary_10_1038_srep10417
crossref_primary_10_1063_5_0129312
crossref_primary_10_1103_PhysRevApplied_19_044040
Cites_doi 10.1006/jssc.1993.1081
10.1038/nnano.2009.266
10.1103/PhysRevB.85.020101
10.1103/PhysRev.117.1442
10.1021/ja400658u
10.1103/PhysRevB.77.235111
10.1103/PhysRevB.85.085111
10.1364/JOSAA.24.001156
10.1038/nnano.2012.176
10.1063/1.4788804
10.1021/nl101457k
10.1021/nl902167b
10.1063/1.1149966
10.1021/nl903765h
10.1103/PhysRevLett.35.873
10.1021/nl9028973
10.1038/nnano.2009.141
10.1021/nl0624768
10.1021/nl1020443
10.1063/1.3499349
10.1088/0022-3727/42/14/143001
10.1063/1.3394016
10.1063/1.1415768
10.1002/andp.20025140902
10.1103/PhysRevB.82.241101
10.1103/PhysRevB.5.2541
10.1021/ja045976g
10.1103/PhysRevLett.3.34
10.1021/nl061831r
10.1021/nl303065h
ContentType Journal Article
Copyright Copyright © 2014 American Chemical Society
2015 INIST-CNRS
Copyright_xml – notice: Copyright © 2014 American Chemical Society
– notice: 2015 INIST-CNRS
CorporateAuthor Energy Frontier Research Centers (EFRC) (United States). Center for Energy Efficient Materials (CEEM)
CorporateAuthor_xml – name: Energy Frontier Research Centers (EFRC) (United States). Center for Energy Efficient Materials (CEEM)
DBID AAYXX
CITATION
IQODW
NPM
7X8
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
OTOTI
DOI 10.1021/nl500042x
DatabaseName CrossRef
Pascal-Francis
PubMed
MEDLINE - Academic
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
OSTI.GOV
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1530-6992
EndPage 2400
ExternalDocumentID 1369755
24735496
28510273
10_1021_nl500042x
b662212912
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID -
.K2
123
4.4
55A
5VS
7~N
AABXI
ABMVS
ABPTK
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
PK8
RNS
ROL
TN5
UI2
VF5
VG9
W1F
X
---
-~X
6P2
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
53G
AAYOK
AFFNX
IQODW
NPM
7X8
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ABFRP
OTOTI
ID FETCH-LOGICAL-a471t-23664682616769fbc183d644a4f409574e3f51fefa43477a6acdb03d099fc3083
IEDL.DBID ACS
ISSN 1530-6984
1530-6992
IngestDate Thu May 18 22:30:21 EDT 2023
Thu Jul 10 22:18:21 EDT 2025
Thu Jul 10 16:27:38 EDT 2025
Thu Jan 02 22:17:30 EST 2025
Wed Apr 02 07:18:35 EDT 2025
Tue Jul 01 00:42:59 EDT 2025
Thu Apr 24 22:50:21 EDT 2025
Thu Aug 27 13:50:17 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords thermoreflectance microscopy
Vanadium dioxide
Peltier effect
Joule heating
metal−insulator domain wall
Temperature distribution
Metal-insulator transition
Domain walls
Nanostructures
Monoclinic lattices
Heat treatments
Interfaces
Nanometer scale
Monocrystals
Stress effects
Polarity
Band offset
Nanowires
Nanostructured materials
Crystal structure
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a471t-23664682616769fbc183d644a4f409574e3f51fefa43477a6acdb03d099fc3083
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
SC0001009
PMID 24735496
PQID 1524817862
PQPubID 23479
PageCount 7
ParticipantIDs osti_scitechconnect_1369755
proquest_miscellaneous_1762051379
proquest_miscellaneous_1524817862
pubmed_primary_24735496
pascalfrancis_primary_28510273
crossref_citationtrail_10_1021_nl500042x
crossref_primary_10_1021_nl500042x
acs_journals_10_1021_nl500042x
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-05-14
PublicationDateYYYYMMDD 2014-05-14
PublicationDate_xml – month: 05
  year: 2014
  text: 2014-05-14
  day: 14
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
PublicationTitle Nano letters
PublicationTitleAlternate Nano Lett
PublicationYear 2014
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Guiton B. S. (ref18/cit18) 2005; 127
Cao J. (ref13/cit13) 2009; 4
Gu Q. (ref22/cit22) 2007; 7
Jones A. C. (ref7/cit7) 2010; 10
Cao J. (ref6/cit6) 2010; 10
Pouget J. P. (ref5/cit5) 1975; 35
Wei J. (ref32/cit32) 2009; 4
Wu J. Q. (ref12/cit12) 2006; 6
Grauby S. (ref24/cit24) 1999; 70
Mayer P. M. (ref19/cit19) 2007; 24
Morin F. J. (ref1/cit1) 1959; 3
Lee S. (ref14/cit14) 2013; 135
Tselev A. (ref26/cit26) 2010; 10
Kasirga T. S. (ref9/cit9) 2012; 7
Eyert V. (ref15/cit15) 2002; 11
Atkin J. M. (ref8/cit8) 2012; 85
Marini C. (ref25/cit25) 2008; 77
Vermeersch B. (ref23/cit23) 2010
Strelcov E. (ref29/cit29) 2012; 12
Rakotoniaina J. C. (ref4/cit4) 1993; 103
Goodenough J. B. (ref2/cit2) 1960; 117
Marezio M. (ref3/cit3) 1972; 5
Khachaturyan A. G. (ref30/cit30) 1983
Lopez R. (ref11/cit11) 2001; 79
Oh D. W. (ref28/cit28) 2010; 96
Komarov P. L. (ref21/cit21) 2006
Cao J. (ref33/cit33) 2010; 82
Fu D. (ref17/cit17) 2013; 113
Zhang S. (ref10/cit10) 2009; 9
Cao J. (ref16/cit16) 2009; 9
Miller C. (ref27/cit27) 2012; 85
Farzaneh M. (ref20/cit20) 2009; 42
Gu Y. (ref31/cit31) 2010; 108
References_xml – volume: 103
  start-page: 81
  year: 1993
  ident: ref4/cit4
  publication-title: J. Solid State Chem.
  doi: 10.1006/jssc.1993.1081
– volume: 4
  start-page: 732
  year: 2009
  ident: ref13/cit13
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2009.266
– volume: 85
  start-page: 020101
  year: 2012
  ident: ref8/cit8
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.85.020101
– volume: 117
  start-page: 1442
  year: 1960
  ident: ref2/cit2
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.117.1442
– volume: 135
  start-page: 4850
  year: 2013
  ident: ref14/cit14
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja400658u
– volume: 77
  start-page: 235111
  year: 2008
  ident: ref25/cit25
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.77.235111
– volume-title: Theory of the Structural Transformation in Solids
  year: 1983
  ident: ref30/cit30
– volume: 85
  start-page: 085111
  year: 2012
  ident: ref27/cit27
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.85.085111
– volume: 24
  start-page: 1156
  year: 2007
  ident: ref19/cit19
  publication-title: J. Opt. Soc. Am. A
  doi: 10.1364/JOSAA.24.001156
– volume: 7
  start-page: 723
  year: 2012
  ident: ref9/cit9
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.176
– volume: 113
  start-page: 043707
  year: 2013
  ident: ref17/cit17
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4788804
– volume: 10
  start-page: 2667
  year: 2010
  ident: ref6/cit6
  publication-title: Nano Lett.
  doi: 10.1021/nl101457k
– volume: 9
  start-page: 4001
  year: 2009
  ident: ref16/cit16
  publication-title: Nano Lett.
  doi: 10.1021/nl902167b
– volume-title: IMAPS Thermal ATW
  year: 2010
  ident: ref23/cit23
– volume: 70
  start-page: 3603
  year: 1999
  ident: ref24/cit24
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1149966
– volume: 10
  start-page: 1574
  year: 2010
  ident: ref7/cit7
  publication-title: Nano Lett.
  doi: 10.1021/nl903765h
– volume: 35
  start-page: 873
  year: 1975
  ident: ref5/cit5
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.35.873
– volume: 9
  start-page: 4527
  year: 2009
  ident: ref10/cit10
  publication-title: Nano Lett.
  doi: 10.1021/nl9028973
– volume: 4
  start-page: 420
  year: 2009
  ident: ref32/cit32
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2009.141
– start-page: 199
  volume-title: Proceedings of 22nd IEEE SEMI-THERM Symposium
  year: 2006
  ident: ref21/cit21
– volume: 7
  start-page: 363
  year: 2007
  ident: ref22/cit22
  publication-title: Nano Lett.
  doi: 10.1021/nl0624768
– volume: 10
  start-page: 4409
  year: 2010
  ident: ref26/cit26
  publication-title: Nano Lett.
  doi: 10.1021/nl1020443
– volume: 108
  start-page: 083517
  year: 2010
  ident: ref31/cit31
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3499349
– volume: 42
  start-page: 143001
  year: 2009
  ident: ref20/cit20
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/42/14/143001
– volume: 96
  start-page: 151906
  year: 2010
  ident: ref28/cit28
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3394016
– volume: 79
  start-page: 3161
  year: 2001
  ident: ref11/cit11
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1415768
– volume: 11
  start-page: 650
  year: 2002
  ident: ref15/cit15
  publication-title: Ann. Phys.
  doi: 10.1002/andp.20025140902
– volume: 82
  start-page: 241101
  year: 2010
  ident: ref33/cit33
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.82.241101
– volume: 5
  start-page: 2541
  year: 1972
  ident: ref3/cit3
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.5.2541
– volume: 127
  start-page: 498
  year: 2005
  ident: ref18/cit18
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja045976g
– volume: 3
  start-page: 34
  year: 1959
  ident: ref1/cit1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.3.34
– volume: 6
  start-page: 2313
  year: 2006
  ident: ref12/cit12
  publication-title: Nano Lett.
  doi: 10.1021/nl061831r
– volume: 12
  start-page: 6198
  year: 2012
  ident: ref29/cit29
  publication-title: Nano Lett.
  doi: 10.1021/nl303065h
SSID ssj0009350
Score 2.317214
Snippet The metal to insulator transition (MIT) of strongly correlated materials is subject to strong lattice coupling, which brings about the unique one-dimensional...
SourceID osti
proquest
pubmed
pascalfrancis
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2394
SubjectTerms Condensed matter: electronic structure, electrical, magnetic, and optical properties
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science; rheology
Domain walls
Electron states
Exact sciences and technology
Insulators
Joule heating
Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties
Materials science
Metal-insulator transitions and other electronic transitions
Microscopy
Nanocrystalline materials
Nanoscale materials and structures: fabrication and characterization
Nanostructure
Phase boundaries
Physics
Quantum wires
Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)
Vanadium dioxide
Vanadium oxides
Title Direct Observation of Nanoscale Peltier and Joule Effects at Metal–Insulator Domain Walls in Vanadium Dioxide Nanobeams
URI http://dx.doi.org/10.1021/nl500042x
https://www.ncbi.nlm.nih.gov/pubmed/24735496
https://www.proquest.com/docview/1524817862
https://www.proquest.com/docview/1762051379
https://www.osti.gov/biblio/1369755
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwELbQ9tIe-qKP5SWX9tBL6Dp27OSI2CJaCajUUnGLJn5IK3aTqslKwIn_wD_klzCT7C6gAr1FkeM4zjy-scffMPbJ6cwIoSEShdCRCnYQQTAuAhtC6h1i5IQOJ-8f6L0j9f04OV5iHx_YwY_Fl3JMnP0qRqD4JNapoQhre-fnDbOubMuwouZiHJSlak4fdPtRcj22vuN6ehWqEGVCQo2TEboqFg_DzNbd7L5gw_mhnS7L5GRr2hRb9vxfDsfHvuQlez6Dm3y7k49XbMmXr9mzWySEy-yss3r8sFgs0PIqcDS7FY3Z8x9-3KDz5FA6jh3inY7yuObQ8H2P6P3q4vIb5bRTAM-H1QRGJacV-prjxe82rWw64cNRdTpyvu258DCp37Cj3a-_dvaiWUGGCNCHNVEstVYaAxJBibGhsGgPHAIqUAHDxMQoL0Migg-gpDIGNFhXDKRDFBqsRLD3lvXKqvTvGU-dMC62zg0cKJe5FHyQiVPpICBCAdtnG_jH8plC1Xm7Vx6LfDGHffZ5_jNzO6Mzp6oa4_uabi6a_uk4PO5rtEoSkSPwIPZcS2lGtsmFRGFOEhzOHUFZ9BMjYiVKoD77MJecHBWUdl2g9NUUR57EKhUGI8dH2qBLQusoTdZn7zqxu3kDFYdWmV7534yssqeI5hSlNgi1xnrN36lfR8TUFButxlwDWuEQkQ
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbQcgAO5Q1LoRjEgUvKOnac5Fi1VFvoFiRa1Fs08UNasZtUJCsBJ_4D_5BfwoyT3W1RedyiyHEmzoznG3v8DWMvrM5TITREohQ6Ut6MIvCpjcB4nzmLGDmhw8mTIz0-UW9Ok9OeJofOwqAQDfbUhE38NbuAeFXNiLpfxYgXryIIiSnQ2tn9sCbYlaEaKxowhkN5ppYsQucfJQ9kmgseaFCjJVFCJDQ4Jr4rZvFntBm8zv7NrnxRkDckm3zaXrTltvn2G5Xj_33QLbbRg0--02nLbXbFVXfYjXOUhHfZ124O5O_K1XItrz3HSbgm0R1_72YtulIOleXYId7pCJAbDi2fOMTyP7__OKAMdwrn-V49h2nFab2-4XjxMSSZLeZ8b1p_mVoXei4dzJt77GT_9fHuOOrLM0SAHq2NYqm10hieCEqT9aXB2cEivALlMWhMUuWkT4R3HpRUaQoajC1H0iIm9UYi9LvPBlVduYeMZ1akNjbWjiwom9sMnJeJVdnII14BM2RbOIRFb15NEXbOY1GsxnDIXi7_aWF6cnOqsTG7rOnzVdOzjtHjskabpBgFwhDi0jWUdGTaQkhU7SRBcS7oy6qfGPErEQQN2bOlAhVorrQHA5WrFyh5EqtMpBhH_qUNOiicK2WaD9mDTvvWb6BS0SrXj_41Ik_ZtfHx5LA4PDh6u8muI85TlPQg1GM2aD8v3BPEUm25FYzoFy62GPI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbQIiE48H5sW4pBHLikXceOkxyrLqsW6EOCot4ix2NLK3aTqslKLSf-A_-QX9KZJJu2qDxuUeQ4E2fG8409_oaxt6DTWAhtApELHShvR4HxMQTGep84QIwc0eHkvX29c6Q-HEfHXaBIZ2FQiAp7qppNfLLqE_Adw4DYLGZE369CxIy3abuOgq2t7c-XJLuyqciKRowhUZqoJZPQ1UfJC9nqmhcalGhNlBRpKhwX3xa0-DPibDzP5AE76GVuEk6-bSzqfMN-_43O8f8_6iG734FQvtVqzSN2yxWP2b0r1IRP2Hk7F_KDvF-25aXnOBmXJL7jh25Wo0vlpgCOHeKdlgi54qbmew4x_a8fP3cp053Cej4u52ZacFq3rzhefG2SzRZzPp6WZ1NwTc-5M_PqKTuavP-yvRN0ZRoCg56tDkKptdIYpghKl_W5xVkCEGYZ5TF4jGLlpI-Ed94oqeLYaGMhH0lAbOqtRAj4jA2KsnAvGE9AxBBagBEYBSkkxnkZgUpGHnGLsUO2jsOYdWZWZc0OeiiyfgyH7N3yv2a2IzmnWhuzm5q-6ZuetMweNzVaJeXIEI4Qp66l5CNbZ0KiikcRinNNZ_p-QsSxRBQ0ZK-XSpSh2dJejClcuUDJo1AlIsZ48i9t0FHhnCnjdMietxp4-QYqGa1SvfKvEXnF7hyOJ9mn3f2Pq-wuwj1FuQ9CrbFBfbpwLxFS1fl6Y0cXPQIbdQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+Observation+of+Nanoscale+Peltier+and+Joule+Effects+at+Metal-Insulator+Domain+Walls+in+Vanadium+Dioxide+Nanobeams&rft.jtitle=Nano+letters&rft.au=FAVALORO%2C+Tela&rft.au=SUH%2C+Joonki&rft.au=VERMEERSCH%2C+Bjorn&rft.au=KAI+LIU&rft.date=2014-05-14&rft.pub=American+Chemical+Society&rft.issn=1530-6984&rft.volume=14&rft.issue=5&rft.spage=2394&rft.epage=2400&rft_id=info:doi/10.1021%2Fnl500042x&rft.externalDBID=n%2Fa&rft.externalDocID=28510273
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon