OpenGeoSys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media
In this paper we describe the OpenGeoSys (OGS) project, which is a scientific open-source initiative for numerical simulation of thermo-hydro-mechanical-chemical processes in porous media. The basic concept is to provide a flexible numerical framework (using primarily the Finite Element Method (FEM)...
Saved in:
Published in | Environmental earth sciences Vol. 67; no. 2; pp. 589 - 599 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer-Verlag
01.09.2012
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper we describe the OpenGeoSys (OGS) project, which is a scientific open-source initiative for numerical simulation of thermo-hydro-mechanical-chemical processes in porous media. The basic concept is to provide a flexible numerical framework (using primarily the Finite Element Method (FEM)) for solving multifield problems in porous and fractured media for applications in geoscience and hydrology. To this purpose OGS is based on an object-oriented FEM concept including a broad spectrum of interfaces for pre- and postprocessing. The OGS idea has been in development since the mid-eighties. We provide a short historical note about the continuous process of concept and software development having evolved through Fortran, C, and C++ implementations. The idea behind OGS is to provide an open platform to the community, outfitted with professional software-engineering tools such as platform-independent compiling and automated benchmarking. A comprehensive benchmarking book has been prepared for publication. Benchmarking has been proven to be a valuable tool for cooperation between different developer teams, for example, for code comparison and validation purposes (DEVOVALEX and CO
2
BENCH projects). On one hand, object-orientation (OO) provides a suitable framework for distributed code development; however, the parallelization of OO codes still lacks efficiency. High-performance-computing efficiency of OO codes is subject to future research. |
---|---|
AbstractList | In this paper we describe the OpenGeoSys (OGS) project, which is a scientific open-source initiative for numerical simulation of thermo-hydro-mechanical-chemical processes in porous media. The basic concept is to provide a flexible numerical framework (using primarily the Finite Element Method (FEM)) for solving multifield problems in porous and fractured media for applications in geoscience and hydrology. To this purpose OGS is based on an object-oriented FEM concept including a broad spectrum of interfaces for pre- and postprocessing. The OGS idea has been in development since the mid-eighties. We provide a short historical note about the continuous process of concept and software development having evolved through Fortran, C, and C++ implementations. The idea behind OGS is to provide an open platform to the community, outfitted with professional software-engineering tools such as platform-independent compiling and automated benchmarking. A comprehensive benchmarking book has been prepared for publication. Benchmarking has been proven to be a valuable tool for cooperation between different developer teams, for example, for code comparison and validation purposes (DEVOVALEX and CO
2
BENCH projects). On one hand, object-orientation (OO) provides a suitable framework for distributed code development; however, the parallelization of OO codes still lacks efficiency. High-performance-computing efficiency of OO codes is subject to future research. In this paper we describe the OpenGeoSys (OGS) project, which is a scientific open-source initiative for numerical simulation of thermo-hydro-mechanical-chemical processes in porous media. The basic concept is to provide a flexible numerical framework (using primarily the Finite Element Method (FEM)) for solving multifield problems in porous and fractured media for applications in geoscience and hydrology. To this purpose OGS is based on an object-oriented FEM concept including a broad spectrum of interfaces for pre- and postprocessing. The OGS idea has been in development since the mid-eighties. We provide a short historical note about the continuous process of concept and software development having evolved through Fortran, C, and C++ implementations. The idea behind OGS is to provide an open platform to the community, outfitted with professional software-engineering tools such as platform-independent compiling and automated benchmarking. A comprehensive benchmarking book has been prepared for publication. Benchmarking has been proven to be a valuable tool for cooperation between different developer teams, for example, for code comparison and validation purposes (DEVOVALEX and CO(2) BENCH projects). On one hand, object-orientation (OO) provides a suitable framework for distributed code development; however, the parallelization of OO codes still lacks efficiency. High-performance-computing efficiency of OO codes is subject to future research. In this paper we describe the OpenGeoSys (OGS) project, which is a scientific open-source initiative for numerical simulation of thermo-hydro-mechanical-chemical processes in porous media. The basic concept is to provide a flexible numerical framework (using primarily the Finite Element Method (FEM)) for solving multifield problems in porous and fractured media for applications in geoscience and hydrology. To this purpose OGS is based on an object-oriented FEM concept including a broad spectrum of interfaces for pre- and postprocessing. The OGS idea has been in development since the mid-eighties. We provide a short historical note about the continuous process of concept and software development having evolved through Fortran, C, and C++ implementations. The idea behind OGS is to provide an open platform to the community, outfitted with professional software-engineering tools such as platform-independent compiling and automated benchmarking. A comprehensive benchmarking book has been prepared for publication. Benchmarking has been proven to be a valuable tool for cooperation between different developer teams, for example, for code comparison and validation purposes (DEVOVALEX and CO sub(2) BENCH projects). On one hand, object-orientation (OO) provides a suitable framework for distributed code development; however, the parallelization of OO codes still lacks efficiency. High-performance-computing efficiency of OO codes is subject to future research. Issue Title: Topical Issue: CLEAN - Enhanced gas recovery storage and geological CO2 storage In this paper we describe the OpenGeoSys (OGS) project, which is a scientific open-source initiative for numerical simulation of thermo-hydro-mechanical-chemical processes in porous media. The basic concept is to provide a flexible numerical framework (using primarily the Finite Element Method (FEM)) for solving multifield problems in porous and fractured media for applications in geoscience and hydrology. To this purpose OGS is based on an object-oriented FEM concept including a broad spectrum of interfaces for pre- and postprocessing. The OGS idea has been in development since the mid-eighties. We provide a short historical note about the continuous process of concept and software development having evolved through Fortran, C, and C++ implementations. The idea behind OGS is to provide an open platform to the community, outfitted with professional software-engineering tools such as platform-independent compiling and automated benchmarking. A comprehensive benchmarking book has been prepared for publication. Benchmarking has been proven to be a valuable tool for cooperation between different developer teams, for example, for code comparison and validation purposes (DEVOVALEX and CO2 BENCH projects). On one hand, object-orientation (OO) provides a suitable framework for distributed code development; however, the parallelization of OO codes still lacks efficiency. High-performance-computing efficiency of OO codes is subject to future research.[PUBLICATION ABSTRACT] |
Author | Kosakowski, G. Singh, A. K. Park, C. H. Bilke, L. Wu, Y. Xie, M. Kalbacher, T. Sun, Y. Y. Görke, U. J. Taron, J. Sun, F. Fischer, T. Xu, W. Delfs, J. O. Walther, M. Shao, H. B. McDermott, C. I. Böttcher, N. Zehner, B. Bauer, S. Rink, K. Wang, W. Watanabe, N. Radu, F. Shao, H. Kolditz, O. |
Author_xml | – sequence: 1 givenname: O. surname: Kolditz fullname: Kolditz, O. email: olaf.kolditz@ufz.de organization: Helmholtz Centre for Environmental Research—UFZ/TU Dresden – sequence: 2 givenname: S. surname: Bauer fullname: Bauer, S. organization: University of Kiel – sequence: 3 givenname: L. surname: Bilke fullname: Bilke, L. organization: Helmholtz Centre for Environmental Research—UFZ – sequence: 4 givenname: N. surname: Böttcher fullname: Böttcher, N. organization: TU Dresden – sequence: 5 givenname: J. O. surname: Delfs fullname: Delfs, J. O. organization: Helmholtz Centre for Environmental Research—UFZ – sequence: 6 givenname: T. surname: Fischer fullname: Fischer, T. organization: Helmholtz Centre for Environmental Research—UFZ – sequence: 7 givenname: U. J. surname: Görke fullname: Görke, U. J. organization: Helmholtz Centre for Environmental Research—UFZ – sequence: 8 givenname: T. surname: Kalbacher fullname: Kalbacher, T. organization: Helmholtz Centre for Environmental Research—UFZ – sequence: 9 givenname: G. surname: Kosakowski fullname: Kosakowski, G. organization: Paul-Scherrer-Institute – sequence: 10 givenname: C. I. surname: McDermott fullname: McDermott, C. I. organization: University of Edinburgh – sequence: 11 givenname: C. H. surname: Park fullname: Park, C. H. organization: Korea Institute of Geoscience and Mineral Resources (KIGAM) – sequence: 12 givenname: F. surname: Radu fullname: Radu, F. organization: Helmholtz Centre for Environmental Research—UFZ – sequence: 13 givenname: K. surname: Rink fullname: Rink, K. organization: Helmholtz Centre for Environmental Research—UFZ – sequence: 14 givenname: H. surname: Shao fullname: Shao, H. organization: Federal Institute for Geosciences and Natural Resources – sequence: 15 givenname: H. B. surname: Shao fullname: Shao, H. B. organization: Helmholtz Centre for Environmental Research—UFZ – sequence: 16 givenname: F. surname: Sun fullname: Sun, F. organization: Beijing Hydrological Center – sequence: 17 givenname: Y. Y. surname: Sun fullname: Sun, Y. Y. organization: Helmholtz Centre for Environmental Research—UFZ – sequence: 18 givenname: A. K. surname: Singh fullname: Singh, A. K. organization: Helmholtz Centre for Environmental Research—UFZ – sequence: 19 givenname: J. surname: Taron fullname: Taron, J. organization: Helmholtz Centre for Environmental Research—UFZ – sequence: 20 givenname: M. surname: Walther fullname: Walther, M. organization: TU Dresden – sequence: 21 givenname: W. surname: Wang fullname: Wang, W. organization: Helmholtz Centre for Environmental Research—UFZ – sequence: 22 givenname: N. surname: Watanabe fullname: Watanabe, N. organization: Helmholtz Centre for Environmental Research—UFZ – sequence: 23 givenname: Y. surname: Wu fullname: Wu, Y. organization: Ocean University of China – sequence: 24 givenname: M. surname: Xie fullname: Xie, M. organization: Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) – sequence: 25 givenname: W. surname: Xu fullname: Xu, W. organization: Federal Institute for Geosciences and Natural Resources – sequence: 26 givenname: B. surname: Zehner fullname: Zehner, B. organization: Helmholtz Centre for Environmental Research—UFZ |
BookMark | eNqFkU9vFSEUxYmpibX2A7gjcVMX-LjzBwZ35kVbk5ou2v2EB3d8NDPwhBnTt_eDe1-fMaaJygYIv3NzOOclO4kpImOvQb4DKfWqQKVUKyRUAtpGiYdn7BQ6pYSqjDn5fe7kC3Zeyr2kVUNtpDplP252GC8x3e7Le24jT3QVJS3ZIQ8xzMHO4TvyIWUelwlzcHbkJUzLSA-J-IHPW8xTEtu9z0lM6LY2HqiV2-L0iF_cXX1Zrd_yXU4OS8FCk_ku5bQUPqEP9hV7Ptix4Pmv_Yzdfvp4t74S1zeXn9cfroVtNMwCYLCD2dh246w2rTdeAnqrm6ZrvdJ6o3BoWjS123jf-qrp6rYCA8ZqBF2fsYvjVPLxbcEy91MoDsfRRiQrfWU61QGAkf9FQSoa22ppCH3zBL2n9CJ9g6haU8616ojSR8rlVErGoXdhfkxwzjaMhPaHJvtjkz012R-a7B9ICU-Uuxwmm_f_1FRHTSE2fsX8p6e_iX4CvaOz4g |
CitedBy_id | crossref_primary_10_1002_2017JB015156 crossref_primary_10_1016_j_enconman_2018_11_042 crossref_primary_10_1016_j_applthermaleng_2016_05_158 crossref_primary_10_21105_joss_02176 crossref_primary_10_5194_gmd_14_6257_2021 crossref_primary_10_5194_piahs_373_31_2016 crossref_primary_10_1016_j_renene_2015_08_052 crossref_primary_10_1016_j_geothermics_2020_101982 crossref_primary_10_1111_gwat_12815 crossref_primary_10_1007_s12665_012_1684_1 crossref_primary_10_1007_s10596_022_10176_0 crossref_primary_10_1016_j_egypro_2013_06_260 crossref_primary_10_1029_2022JB024771 crossref_primary_10_1016_j_egypro_2015_07_885 crossref_primary_10_1016_j_rineng_2024_103706 crossref_primary_10_3390_su13084125 crossref_primary_10_1016_j_fuel_2024_134209 crossref_primary_10_1186_s40517_024_00322_5 crossref_primary_10_1016_j_jhydrol_2015_07_013 crossref_primary_10_4028_www_scientific_net_AMR_986_987_765 crossref_primary_10_3390_hydrology8010035 crossref_primary_10_1007_s10230_023_00944_4 crossref_primary_10_1007_s12665_012_1784_y crossref_primary_10_1016_j_jclepro_2023_139954 crossref_primary_10_1029_2020WR029472 crossref_primary_10_5194_gmd_8_3681_2015 crossref_primary_10_1016_j_petsci_2024_08_015 crossref_primary_10_1144_sjg2018_028 crossref_primary_10_1007_s11242_015_0564_z crossref_primary_10_1029_2018JB015702 crossref_primary_10_1016_j_advwatres_2015_06_001 crossref_primary_10_5194_bg_19_665_2022 crossref_primary_10_1016_j_ijmst_2022_07_005 crossref_primary_10_1016_j_egypro_2013_06_288 crossref_primary_10_3178_jjshwr_31_549 crossref_primary_10_1007_s12665_012_1795_8 crossref_primary_10_1016_j_csite_2024_104855 crossref_primary_10_1007_s12665_019_8800_4 crossref_primary_10_1007_s12665_013_2420_1 crossref_primary_10_1016_j_cma_2021_114182 crossref_primary_10_1007_s10596_020_10009_y crossref_primary_10_1016_j_ijsolstr_2018_12_019 crossref_primary_10_1016_j_egyr_2022_04_012 crossref_primary_10_1016_j_energy_2018_04_119 crossref_primary_10_1016_j_jrmge_2022_05_011 crossref_primary_10_5194_hess_23_171_2019 crossref_primary_10_1016_j_egypro_2013_06_278 crossref_primary_10_1016_j_tsep_2023_102352 crossref_primary_10_1016_j_geothermics_2021_102089 crossref_primary_10_1016_j_enconman_2016_08_097 crossref_primary_10_1016_j_ecss_2020_106797 crossref_primary_10_1021_acs_chemrev_2c00130 crossref_primary_10_1038_s41529_021_00150_z crossref_primary_10_1007_s12665_023_10836_z crossref_primary_10_1016_j_energy_2020_118643 crossref_primary_10_1016_j_ces_2019_06_017 crossref_primary_10_1007_s11242_019_01293_z crossref_primary_10_1007_s12665_013_2249_7 crossref_primary_10_1016_j_ijrmms_2025_106075 crossref_primary_10_2166_hydro_2016_086 crossref_primary_10_1016_j_compenvurbsys_2022_101759 crossref_primary_10_1038_s41560_018_0311_0 crossref_primary_10_1016_j_jclepro_2022_130434 crossref_primary_10_1002_nag_2869 crossref_primary_10_1016_j_jhydrol_2023_130360 crossref_primary_10_1016_j_geothermics_2023_102750 crossref_primary_10_1029_2021WR031289 crossref_primary_10_1016_j_jhydrol_2019_124507 crossref_primary_10_5194_gmd_11_1989_2018 crossref_primary_10_1016_j_egypro_2015_07_842 crossref_primary_10_1007_s00477_020_01815_y crossref_primary_10_1186_s40517_020_00170_z crossref_primary_10_1016_j_apgeochem_2013_06_008 crossref_primary_10_1007_s12665_021_09411_1 crossref_primary_10_1007_s12665_012_2212_z crossref_primary_10_1007_s10596_019_09885_w crossref_primary_10_3390_w11112323 crossref_primary_10_1016_j_scitotenv_2020_137042 crossref_primary_10_1002_nag_3965 crossref_primary_10_1007_s10040_018_1744_z crossref_primary_10_1007_s00267_022_01662_3 crossref_primary_10_1016_j_enggeo_2021_106265 crossref_primary_10_1186_s40517_019_0133_8 crossref_primary_10_1007_s11242_024_02094_9 crossref_primary_10_1002_2017WR022344 crossref_primary_10_1016_j_applthermaleng_2024_123007 crossref_primary_10_9798_KOSHAM_2024_24_4_249 crossref_primary_10_1186_s40517_024_00330_5 crossref_primary_10_1016_j_jconhyd_2013_10_007 crossref_primary_10_1016_j_apgeochem_2019_02_003 crossref_primary_10_1016_j_geothermics_2016_06_016 crossref_primary_10_1016_j_ijrmms_2020_104505 crossref_primary_10_1016_j_coldregions_2019_102940 crossref_primary_10_3389_frwa_2022_780297 crossref_primary_10_1016_j_geothermics_2022_102451 crossref_primary_10_1016_j_ijrmms_2018_08_012 crossref_primary_10_1016_j_apenergy_2021_116590 crossref_primary_10_1007_s13137_022_00207_4 crossref_primary_10_1007_s40948_022_00353_x crossref_primary_10_1016_j_egypro_2013_08_055 crossref_primary_10_1016_j_compgeo_2022_104836 crossref_primary_10_1007_s10596_014_9405_3 crossref_primary_10_1007_s12665_021_09897_9 crossref_primary_10_1007_s12665_013_2400_5 crossref_primary_10_1016_j_egypro_2015_07_868 crossref_primary_10_1007_s12665_012_1707_y crossref_primary_10_1007_s12665_014_3576_z crossref_primary_10_1016_j_conbuildmat_2018_09_114 crossref_primary_10_1016_j_earscirev_2024_104974 crossref_primary_10_1016_j_jhydrol_2015_09_067 crossref_primary_10_1007_s00015_016_0252_1 crossref_primary_10_1007_s12665_012_1661_8 crossref_primary_10_1007_s12665_014_3136_6 crossref_primary_10_1016_j_cam_2012_02_008 crossref_primary_10_1016_j_ecolmodel_2025_111089 crossref_primary_10_1007_s00767_020_00453_z crossref_primary_10_1016_j_geothermics_2022_102584 crossref_primary_10_5004_dwt_2017_20381 crossref_primary_10_1016_j_tecto_2015_12_020 crossref_primary_10_1016_j_gete_2024_100597 crossref_primary_10_1016_j_gete_2025_100636 crossref_primary_10_1007_s11831_024_10164_w crossref_primary_10_1016_j_matpr_2021_03_220 crossref_primary_10_1007_s40948_023_00659_4 crossref_primary_10_1016_j_ijrmms_2020_104525 crossref_primary_10_1007_s12517_021_07715_x crossref_primary_10_1007_s12665_014_3785_5 crossref_primary_10_1007_s12665_024_11753_5 crossref_primary_10_1016_j_acags_2024_100166 crossref_primary_10_1016_j_advwatres_2016_11_007 crossref_primary_10_1186_s40517_023_00259_1 crossref_primary_10_1016_j_cles_2023_100100 crossref_primary_10_1016_j_energy_2022_123910 crossref_primary_10_1016_j_jhydrol_2021_126229 crossref_primary_10_1002_nme_4910 crossref_primary_10_1007_s12665_016_5638_x crossref_primary_10_1186_s40517_014_0019_8 crossref_primary_10_1016_j_camwa_2020_02_012 crossref_primary_10_1016_j_earscirev_2018_07_006 crossref_primary_10_1007_s00603_017_1260_9 crossref_primary_10_5194_se_8_921_2017 crossref_primary_10_3389_feart_2021_787057 crossref_primary_10_1016_j_cageo_2022_105106 crossref_primary_10_1016_j_cpc_2014_10_005 crossref_primary_10_1016_j_jclepro_2020_123396 crossref_primary_10_1016_j_conbuildmat_2024_136855 crossref_primary_10_1007_s12665_015_4156_6 crossref_primary_10_1016_j_applthermaleng_2025_126269 crossref_primary_10_1016_j_jrmge_2024_03_007 crossref_primary_10_1038_s41598_022_24545_3 crossref_primary_10_5194_hess_28_735_2024 crossref_primary_10_1016_j_softx_2020_100596 crossref_primary_10_1007_s12665_017_7080_0 crossref_primary_10_3389_frwa_2022_980030 crossref_primary_10_1016_j_egypro_2013_08_048 crossref_primary_10_2136_vzj2016_11_0113 crossref_primary_10_1007_s12665_014_3239_0 crossref_primary_10_1016_j_ijggc_2015_11_025 crossref_primary_10_1007_s12665_012_1703_2 crossref_primary_10_1016_j_gete_2025_100654 crossref_primary_10_1016_j_jngse_2022_104823 crossref_primary_10_1007_s12665_015_4761_4 crossref_primary_10_1016_j_jhydrol_2014_12_054 crossref_primary_10_5194_gmd_13_6547_2020 crossref_primary_10_1016_j_applthermaleng_2023_121345 crossref_primary_10_1016_j_compgeo_2025_107186 crossref_primary_10_1016_j_jhydrol_2021_127333 crossref_primary_10_3389_feart_2021_790315 crossref_primary_10_1016_j_ijggc_2022_103589 crossref_primary_10_1029_2022WR033852 crossref_primary_10_1016_j_apenergy_2016_03_053 crossref_primary_10_1016_j_jrmge_2024_11_043 crossref_primary_10_1007_s10596_018_9737_5 crossref_primary_10_1016_j_advwatres_2022_104155 crossref_primary_10_1007_s12665_015_4145_9 crossref_primary_10_1007_s10040_017_1615_z crossref_primary_10_1016_j_egypro_2017_08_250 crossref_primary_10_1029_2020JB020539 crossref_primary_10_1016_j_jrmge_2020_06_001 crossref_primary_10_1016_j_jrmge_2021_08_013 crossref_primary_10_1016_j_compgeo_2023_105996 crossref_primary_10_1016_j_geothermics_2014_03_003 crossref_primary_10_21105_joss_06725 crossref_primary_10_21105_joss_02003 crossref_primary_10_1016_j_envsoft_2019_02_014 crossref_primary_10_1016_j_renene_2024_122171 crossref_primary_10_1007_s12665_013_2402_3 crossref_primary_10_1680_jgeot_21_00306 crossref_primary_10_3390_w16010082 crossref_primary_10_1007_s10040_022_02481_w crossref_primary_10_1016_j_jrmge_2023_09_015 crossref_primary_10_1016_j_renene_2022_03_089 crossref_primary_10_1007_s11004_020_09898_7 crossref_primary_10_1007_s12665_016_5626_1 crossref_primary_10_1007_s12665_012_1704_1 crossref_primary_10_1016_j_ijrmms_2015_04_003 crossref_primary_10_1016_j_jhydrol_2019_04_094 crossref_primary_10_3390_su12052021 crossref_primary_10_7733_jnfcwt_2023_021 crossref_primary_10_1029_2020JB019856 crossref_primary_10_1007_s00477_019_01697_9 crossref_primary_10_1016_j_ijrmms_2020_104574 crossref_primary_10_1016_j_jhydrol_2024_131335 crossref_primary_10_1016_j_est_2025_115598 crossref_primary_10_1016_j_apenergy_2024_125216 crossref_primary_10_1007_s10596_024_10268_z crossref_primary_10_1007_s12665_016_6326_6 crossref_primary_10_1016_j_advwatres_2016_10_013 crossref_primary_10_1029_2019WR025388 crossref_primary_10_1029_2022WR032430 crossref_primary_10_1002_nag_3556 crossref_primary_10_3390_w11081576 crossref_primary_10_1016_j_jhydrol_2015_11_030 crossref_primary_10_1016_j_apgeochem_2022_105445 crossref_primary_10_5194_hess_25_1_2021 crossref_primary_10_1016_j_ijrmms_2020_104580 crossref_primary_10_1007_s12665_013_2403_2 crossref_primary_10_1029_2022WR032315 crossref_primary_10_1016_j_ijrmms_2021_104683 crossref_primary_10_1016_j_ijrmms_2020_104582 crossref_primary_10_3390_en15030925 crossref_primary_10_1016_j_egypro_2013_06_611 crossref_primary_10_1016_j_enggeo_2015_09_009 crossref_primary_10_1007_s12665_013_2370_7 crossref_primary_10_1007_s12665_017_6404_4 crossref_primary_10_1155_2020_8834666 crossref_primary_10_1631_jzus_A1600246 crossref_primary_10_1016_j_cageo_2024_105752 crossref_primary_10_1007_s12665_012_1714_z crossref_primary_10_1007_s40948_022_00394_2 crossref_primary_10_1016_j_applthermaleng_2024_124610 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121127 crossref_primary_10_1155_2018_4694829 crossref_primary_10_1007_s12517_021_06551_3 crossref_primary_10_1007_s12665_015_4333_7 crossref_primary_10_1016_j_envsoft_2017_06_008 crossref_primary_10_2138_rmg_2019_85_14 crossref_primary_10_1016_j_apenergy_2014_08_104 crossref_primary_10_1016_j_geothermics_2024_103086 crossref_primary_10_1016_j_compstruc_2016_11_010 crossref_primary_10_1016_j_ijrmms_2020_104481 crossref_primary_10_1016_j_jhydrol_2020_125163 crossref_primary_10_1144_SP406_18 crossref_primary_10_3390_atmos15070795 crossref_primary_10_5194_gmd_8_3333_2015 crossref_primary_10_1680_jenge_18_00092 crossref_primary_10_3389_fnuen_2024_1437714 crossref_primary_10_1016_j_renene_2021_01_033 crossref_primary_10_1016_j_geothermics_2016_08_007 crossref_primary_10_1007_s12517_021_07976_6 crossref_primary_10_1016_j_geothermics_2022_102500 crossref_primary_10_1007_s00767_024_00585_6 crossref_primary_10_1016_j_jhydrol_2019_03_016 crossref_primary_10_1016_j_tecto_2017_01_011 crossref_primary_10_1016_j_ijthermalsci_2024_109023 crossref_primary_10_1016_j_ejrh_2025_102309 crossref_primary_10_1144_geoenergy2023_018 crossref_primary_10_1016_j_compgeo_2019_103341 crossref_primary_10_1007_s12665_016_6117_0 crossref_primary_10_3389_feart_2023_1289662 crossref_primary_10_1016_j_apenergy_2024_124441 crossref_primary_10_1016_j_jhydrol_2024_131018 crossref_primary_10_1016_j_jrmge_2017_05_007 crossref_primary_10_1186_s40517_024_00318_1 crossref_primary_10_1016_j_envsoft_2016_10_003 crossref_primary_10_1007_s12665_016_6324_8 crossref_primary_10_1016_j_cej_2019_123173 crossref_primary_10_1016_j_jgsce_2024_205421 crossref_primary_10_1007_s12665_024_11471_y crossref_primary_10_3390_w13212945 crossref_primary_10_1016_j_applthermaleng_2021_117945 crossref_primary_10_1007_s10596_014_9467_2 crossref_primary_10_1016_j_jvolgeores_2021_107377 crossref_primary_10_1016_j_applthermaleng_2020_116339 crossref_primary_10_1186_s40517_023_00255_5 crossref_primary_10_1002_2015EA000155 crossref_primary_10_1007_s10532_013_9665_y crossref_primary_10_1016_j_geothermics_2016_01_011 crossref_primary_10_1007_s00603_022_03039_8 crossref_primary_10_1016_j_energy_2021_122937 crossref_primary_10_1016_j_pce_2013_11_008 crossref_primary_10_1144_geoenergy2023_029 crossref_primary_10_1016_j_jrmge_2014_07_002 crossref_primary_10_1016_j_scitotenv_2024_172663 crossref_primary_10_5802_ogeo_17 crossref_primary_10_1016_j_cageo_2020_104529 crossref_primary_10_1016_j_geothermics_2025_103307 crossref_primary_10_1111_gwat_13365 crossref_primary_10_1103_PhysRevE_97_013106 crossref_primary_10_1016_j_egypro_2017_08_206 crossref_primary_10_1002_2015WR017164 crossref_primary_10_1016_j_apenergy_2015_10_126 crossref_primary_10_3390_fluids6100341 crossref_primary_10_1016_j_clay_2016_10_007 crossref_primary_10_1016_j_egypro_2017_08_204 crossref_primary_10_1029_2019WR026203 crossref_primary_10_1007_s40948_023_00573_9 crossref_primary_10_2208_jscejj_24_00030 crossref_primary_10_1016_j_envint_2022_107700 crossref_primary_10_1007_s12665_023_11004_z crossref_primary_10_1016_j_apenergy_2020_115823 crossref_primary_10_1111_cgf_13983 crossref_primary_10_1016_j_cageo_2021_104820 crossref_primary_10_1016_j_compgeo_2024_106286 crossref_primary_10_1016_j_cageo_2015_01_001 crossref_primary_10_1016_j_ijrmms_2015_06_003 crossref_primary_10_1080_17538947_2016_1265016 crossref_primary_10_1016_j_wasman_2023_09_036 crossref_primary_10_1016_j_scitotenv_2024_173836 crossref_primary_10_3389_feart_2022_806416 crossref_primary_10_1016_j_pce_2013_03_007 crossref_primary_10_3390_geosciences8110397 crossref_primary_10_1016_j_gete_2018_09_003 crossref_primary_10_1016_j_earscirev_2023_104515 crossref_primary_10_1007_s12665_016_6118_z crossref_primary_10_1007_s11356_017_0845_x crossref_primary_10_1017_jfm_2023_1031 crossref_primary_10_1017_jfm_2023_1032 crossref_primary_10_1016_j_ijrmms_2021_104734 crossref_primary_10_1111_gwat_13017 crossref_primary_10_1016_j_softx_2020_100533 crossref_primary_10_1016_j_advengsoft_2016_01_009 crossref_primary_10_1016_j_jobe_2023_107286 crossref_primary_10_1016_j_ijrmms_2023_105389 crossref_primary_10_1016_j_enggeo_2013_02_005 crossref_primary_10_1016_j_ijhydene_2017_07_228 crossref_primary_10_1007_s12665_012_1656_5 crossref_primary_10_3390_w16111528 crossref_primary_10_1007_s11440_022_01746_8 crossref_primary_10_1016_j_ijrmms_2021_104726 crossref_primary_10_5194_gmd_15_3161_2022 crossref_primary_10_1007_s12665_023_10971_7 crossref_primary_10_1007_s10596_014_9443_x crossref_primary_10_1002_2017RG000556 crossref_primary_10_3389_fenvs_2024_1454295 crossref_primary_10_5194_adgeo_58_77_2022 crossref_primary_10_1111_1365_2478_13579 crossref_primary_10_1007_s12665_016_5429_4 crossref_primary_10_1016_j_cma_2020_113292 crossref_primary_10_1007_s12665_012_1668_1 crossref_primary_10_3389_feart_2021_787133 crossref_primary_10_1016_j_isci_2024_111094 crossref_primary_10_1016_j_cageo_2021_104953 crossref_primary_10_1016_j_enconman_2019_111913 crossref_primary_10_1016_j_cma_2022_114939 crossref_primary_10_1016_j_matcom_2020_05_024 crossref_primary_10_1007_s00603_024_03763_3 crossref_primary_10_1061_IJGNAI_GMENG_7497 crossref_primary_10_1016_j_clay_2023_107232 crossref_primary_10_1016_j_advwatres_2017_08_017 crossref_primary_10_1016_j_matcom_2012_06_010 crossref_primary_10_1007_s11440_013_0234_7 crossref_primary_10_1016_j_geothermics_2024_103234 crossref_primary_10_3989_aeamer_2023_1_10 crossref_primary_10_1002_2016WR019277 crossref_primary_10_1016_j_egypro_2017_08_217 crossref_primary_10_1186_s40517_022_00215_5 crossref_primary_10_1002_nag_3257 crossref_primary_10_1144_qjegh2023_162 crossref_primary_10_1016_j_advwatres_2014_07_005 crossref_primary_10_1007_s13137_019_0126_6 crossref_primary_10_1016_j_gete_2024_100616 crossref_primary_10_1016_j_petrol_2019_106803 crossref_primary_10_3390_min14100999 crossref_primary_10_1007_s10040_023_02612_x crossref_primary_10_1007_s12665_012_1600_8 crossref_primary_10_1016_j_jconhyd_2016_04_008 crossref_primary_10_3390_w15020374 crossref_primary_10_1016_j_envsoft_2024_105973 crossref_primary_10_1063_1_5039920 crossref_primary_10_5194_gmd_16_353_2023 crossref_primary_10_1186_s40517_015_0030_8 crossref_primary_10_1007_s12665_012_2030_3 crossref_primary_10_1016_j_enggeo_2023_107251 crossref_primary_10_1016_j_cageo_2016_10_009 crossref_primary_10_1016_j_egypro_2017_08_227 crossref_primary_10_1016_j_envsoft_2017_11_030 crossref_primary_10_1016_j_gete_2024_100608 crossref_primary_10_1680_geolett_13_00060 crossref_primary_10_1007_s11242_016_0645_7 crossref_primary_10_1016_j_cageo_2016_04_002 crossref_primary_10_1016_j_ijrmms_2024_105744 crossref_primary_10_1038_s41598_020_72354_3 crossref_primary_10_1002_2013WR013725 crossref_primary_10_1002_hyp_13615 crossref_primary_10_1016_j_apenergy_2017_07_008 crossref_primary_10_1016_j_ijggc_2016_01_002 crossref_primary_10_1038_s41598_018_32753_z crossref_primary_10_1007_s12665_016_5773_4 crossref_primary_10_1016_j_cageo_2016_12_003 crossref_primary_10_3389_esss_2022_10047 crossref_primary_10_1007_s11440_022_01544_2 crossref_primary_10_1007_s10596_019_09919_3 crossref_primary_10_1016_j_apenergy_2024_122786 crossref_primary_10_1016_j_pce_2013_01_002 crossref_primary_10_1007_s12665_013_2883_0 crossref_primary_10_1016_j_jhydrol_2019_124309 crossref_primary_10_1007_s11269_015_1163_z crossref_primary_10_1007_s12665_017_6709_3 crossref_primary_10_1016_j_jrmge_2023_05_019 crossref_primary_10_1016_j_enbuild_2020_110019 crossref_primary_10_1016_j_apgeochem_2020_104562 crossref_primary_10_1007_s12665_013_2970_2 crossref_primary_10_3390_computation8040098 crossref_primary_10_1016_j_gete_2023_100528 crossref_primary_10_1016_j_jcp_2015_04_019 crossref_primary_10_1051_e3sconf_20185400008 crossref_primary_10_1186_s40517_023_00275_1 crossref_primary_10_1007_s12517_021_08165_1 crossref_primary_10_3390_w8030104 crossref_primary_10_1016_j_cemconres_2020_106285 crossref_primary_10_1007_s11242_016_0646_6 crossref_primary_10_1061__ASCE_EM_1943_7889_0001905 crossref_primary_10_3390_su15054140 crossref_primary_10_1007_s00603_023_03717_1 crossref_primary_10_1016_j_rser_2022_112760 crossref_primary_10_1016_j_applthermaleng_2019_114750 crossref_primary_10_1007_s40948_024_00739_z crossref_primary_10_1016_j_advwatres_2017_09_015 crossref_primary_10_1007_s12665_024_12066_3 crossref_primary_10_1016_j_ress_2023_109903 crossref_primary_10_1016_j_cageo_2015_03_014 crossref_primary_10_1016_j_jhydrol_2017_10_050 crossref_primary_10_1007_s12665_014_3243_4 crossref_primary_10_3390_w6123671 crossref_primary_10_1016_j_applthermaleng_2018_12_094 crossref_primary_10_1016_j_compgeo_2024_106447 crossref_primary_10_1016_j_scitotenv_2017_06_126 crossref_primary_10_1016_j_undsp_2024_05_002 crossref_primary_10_1080_1573062X_2021_1893360 crossref_primary_10_1016_j_renene_2017_12_105 crossref_primary_10_1016_j_renene_2019_10_037 crossref_primary_10_1016_j_cageo_2014_04_011 crossref_primary_10_1016_j_gete_2022_100325 crossref_primary_10_2136_vzj2014_03_0023 crossref_primary_10_3389_fnuen_2022_919541 crossref_primary_10_1007_s12665_013_2784_2 crossref_primary_10_1016_j_energy_2022_123148 crossref_primary_10_1029_2023JB028205 crossref_primary_10_1016_j_petrol_2016_04_041 crossref_primary_10_1016_j_jrmge_2025_01_016 crossref_primary_10_1016_j_cageo_2013_09_014 crossref_primary_10_1007_s11242_019_01356_1 crossref_primary_10_1002_ghg_1601 crossref_primary_10_1007_s11440_013_0237_4 crossref_primary_10_1016_j_advwatres_2021_103849 crossref_primary_10_1016_j_egypro_2015_07_317 crossref_primary_10_1016_j_advwatres_2020_103561 crossref_primary_10_1016_j_advwatres_2017_02_010 crossref_primary_10_1016_j_advwatres_2020_103563 crossref_primary_10_1111_gwat_12066 crossref_primary_10_1002_2015WR017641 crossref_primary_10_1007_s12665_017_6970_5 crossref_primary_10_1007_s12665_013_2761_9 crossref_primary_10_1016_j_jhydrol_2016_03_026 crossref_primary_10_1016_j_compgeo_2019_103377 crossref_primary_10_1016_j_mechrescom_2017_09_005 crossref_primary_10_1016_j_watres_2021_117635 crossref_primary_10_1016_j_cma_2020_113210 crossref_primary_10_1007_s11242_019_01323_w crossref_primary_10_1007_s12665_013_2881_2 crossref_primary_10_1016_j_cag_2022_02_009 crossref_primary_10_1007_s12665_015_4734_7 crossref_primary_10_1016_j_geothermics_2018_07_004 crossref_primary_10_1016_j_applthermaleng_2024_123184 crossref_primary_10_1016_j_engfracmech_2023_109424 crossref_primary_10_1016_j_jhydrol_2021_127188 crossref_primary_10_1186_s40517_024_00287_5 crossref_primary_10_3390_en15228366 crossref_primary_10_1007_s11242_018_1188_x crossref_primary_10_1088_1748_9326_ac59a9 crossref_primary_10_1016_j_applthermaleng_2018_10_130 crossref_primary_10_1007_s12665_012_1688_x crossref_primary_10_1007_s10596_020_09951_8 crossref_primary_10_1007_s12665_018_7255_3 crossref_primary_10_1007_s11440_024_02371_3 crossref_primary_10_1016_j_ijheatmasstransfer_2018_09_042 crossref_primary_10_1016_j_wse_2019_05_007 crossref_primary_10_1002_2016RG000542 crossref_primary_10_1186_s40517_021_00191_2 crossref_primary_10_3390_fractalfract8060303 crossref_primary_10_1007_s12665_015_4769_9 crossref_primary_10_1016_j_apenergy_2020_115370 crossref_primary_10_1016_j_scitotenv_2022_154606 crossref_primary_10_1016_j_jconhyd_2024_104417 crossref_primary_10_1016_j_ecolmodel_2020_108973 crossref_primary_10_3390_app122311933 crossref_primary_10_1007_s10040_020_02182_2 crossref_primary_10_1016_j_apenergy_2021_116513 crossref_primary_10_1061__ASCE_HE_1943_5584_0002040 crossref_primary_10_1016_j_egypro_2015_07_331 crossref_primary_10_1186_s40517_024_00319_0 crossref_primary_10_1016_j_cpc_2014_08_004 crossref_primary_10_3389_feart_2023_1061420 crossref_primary_10_1038_s41467_019_12146_0 crossref_primary_10_1186_s40517_022_00211_9 crossref_primary_10_1007_s12665_016_5743_x crossref_primary_10_1002_aic_15506 crossref_primary_10_1029_2019WR025721 crossref_primary_10_1016_j_applthermaleng_2016_02_039 crossref_primary_10_1016_j_compositesb_2022_110055 crossref_primary_10_1007_s40808_016_0111_0 crossref_primary_10_3390_en15062160 crossref_primary_10_69631_ipj_v1i1nr8 crossref_primary_10_1016_j_watres_2019_03_062 crossref_primary_10_1016_j_ijrmms_2013_06_004 crossref_primary_10_1016_j_rockmb_2024_100125 crossref_primary_10_1155_2018_3818629 crossref_primary_10_1002_esp_5565 crossref_primary_10_1002_2015WR018509 crossref_primary_10_1002_hyp_11428 crossref_primary_10_3390_geosciences9120495 crossref_primary_10_1016_j_envsoft_2014_12_018 crossref_primary_10_1016_j_renene_2024_121562 crossref_primary_10_1002_2015WR017780 crossref_primary_10_1007_s00366_023_01825_8 crossref_primary_10_1007_s12145_023_01071_y crossref_primary_10_1016_j_apgeochem_2021_104967 crossref_primary_10_1007_s12665_014_3253_2 crossref_primary_10_1016_j_cageo_2019_02_004 crossref_primary_10_1007_s12665_013_2333_z crossref_primary_10_1016_j_ijhydene_2021_12_224 |
Cites_doi | 10.2136/vzj2007.0070 10.2136/vzj2011.0006 10.1016/j.jcp.2006.08.013 10.1016/0375-6505(95)00020-Q 10.1007/s12665-010-0608-1 10.13182/NT08-A3974 10.1007/s12665-011-1230-6 10.1007/s12665-010-0898-3 10.1016/j.cageo.2005.06.014 10.1007/s12303-008-0013-x 10.1016/S0309-1708(96)00034-6 10.1016/j.cageo.2008.07.007 10.1016/0309-1708(88)90019-X 10.2166/hydro.2004.0017 10.2166/hydro.2008.003 10.1016/j.chemer.2010.05.017 10.1111/j.1745-6584.2003.tb02588.x 10.1016/j.cageo.2007.12.008 10.1016/j.jconhyd.2005.11.003 10.1007/s12303-008-0029-2 10.1111/j.1745-6584.1994.tb00924.x 10.1016/S0309-1708(02)00063-5 10.1016/j.cageo.2010.02.010 10.1016/j.advwatres.2011.03.007 10.1007/s10596-009-9158-6 10.1002/nme.1770 10.1016/j.advwatres.2009.06.005 10.1007/s12665-011-0957-4 10.1007/s10596-008-9118-6 10.1111/j.1745-6584.2000.tb00205.x |
ContentType | Journal Article |
Copyright | Springer-Verlag 2012 |
Copyright_xml | – notice: Springer-Verlag 2012 |
DBID | AAYXX CITATION 3V. 7ST 7TG 7UA 7XB 88I 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H96 HCIFZ KL. L.G M2P PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI PYCSY Q9U SOI 7QH 7S9 L.6 |
DOI | 10.1007/s12665-012-1546-x |
DatabaseName | CrossRef ProQuest Central (Corporate) Environment Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Science Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection ProQuest Central Basic Environment Abstracts Aqualine AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest Central (Alumni) ProQuest One Academic (New) Aqualine AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 1866-6299 |
EndPage | 599 |
ExternalDocumentID | 2748895121 10_1007_s12665_012_1546_x |
Genre | Feature |
GroupedDBID | -5A -5G -BR -DZ -EM -Y2 -~C .4S .DC 06D 0R~ 0VY 199 1N0 203 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 30V 3V. 4.4 406 408 40D 40E 4P2 5VS 67M 67Z 6NX 7XC 88I 8FE 8FH 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAGAY AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACCUX ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BDATZ BENPR BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EBD EBLON EBS ECGQY EDH EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 H13 HCIFZ HF~ HG5 HG6 HMJXF HRMNR HVGLF HZ~ I-F IKXTQ ITM IWAJR J-C J0Z JBSCW JZLTJ KOV L8X LK5 LLZTM M2P M4Y M7R MA- ML. MQGED N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9J PATMY PCBAR PF- PQQKQ PROAC PT4 PYCSY Q2X QOS R89 R9I ROL RSV S16 S1Z S27 S3B SAP SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7V Z7W Z7Y Z7Z Z81 Z83 Z85 ZCG ZMTXR ~02 ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7ST 7TG 7UA 7XB 8FK ABRTQ C1K F1W H96 KL. L.G PKEHL PQEST PQUKI Q9U SOI 7QH 7S9 L.6 |
ID | FETCH-LOGICAL-a471t-11faf9ba5bca795d9d01eda74485d677b6ef45e93cbdd5d2483521919a7e173 |
IEDL.DBID | U2A |
ISSN | 1866-6280 |
IngestDate | Fri Jul 11 11:42:10 EDT 2025 Mon Jul 21 10:51:07 EDT 2025 Sat Jul 26 01:21:05 EDT 2025 Thu Apr 24 23:01:38 EDT 2025 Tue Jul 01 01:23:48 EDT 2025 Fri Feb 21 02:34:46 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Porous media Open-source software Thermo-hydro-mechanical/chemical Carbon dioxide storage OpenGeoSys |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a471t-11faf9ba5bca795d9d01eda74485d677b6ef45e93cbdd5d2483521919a7e173 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PQID | 1037313368 |
PQPubID | 54063 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2986811190 proquest_miscellaneous_1069195709 proquest_journals_1037313368 crossref_citationtrail_10_1007_s12665_012_1546_x crossref_primary_10_1007_s12665_012_1546_x springer_journals_10_1007_s12665_012_1546_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-09-01 |
PublicationDateYYYYMMDD | 2012-09-01 |
PublicationDate_xml | – month: 09 year: 2012 text: 2012-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Environmental earth sciences |
PublicationTitleAbbrev | Environ Earth Sci |
PublicationYear | 2012 |
Publisher | Springer-Verlag Springer Nature B.V |
Publisher_xml | – name: Springer-Verlag – name: Springer Nature B.V |
References | Kolditz O (1996) Stoff- und Waermetransport im Kluftgestein. Habilitation: Institute of Fluid Mechanics, Hannover University Walsh R (2007) Numerical modeling of THM coupled processes in fractured porous media. PhD Thesis, GeoHydrology and HydroInformatics, Center for Applied Geosciences, Tuebingen University SudickyEJonesJParkYBrookfieldAColauttiDSimulating complex flow and transport dynamics in an integrated surface-subsurface modeling frameworkGeosci J200812210712210.1007/s12303-008-0013-x WangWKolditzOObject-oriented finite element analysis of thermo-hydro-mechanical (thm) problems in porous mediaInt J Numer Methods Eng200769116220110.1002/nme.1770 BloecherGZimmermannGSettle3D—a numerical generator for artificial porous mediaComput Geosci200834121827184210.1016/j.cageo.2007.12.008 Schulze-Ruhfus M (1996) Adaptive Verfeinerung und Vergroeberung gekoppelter 1D/2D/3D Elemente. Diploma Thesis: Institute of Fluid Mechanics, Hannover University Moenickes S (2004) Grid generation for simulation of flow and transport processes in fractured porous media. PhD Thesis, Institute of Fluid Mechanics, Hannover University ReevesHThibodeauPUnderwoodRIncorporation of total stress changes into the ground water model SUTRAGround Water2000381899810.1111/j.1745-6584.2000.tb00205.x Beinhorn M (2005) Contributions to computational hydrology: Non-linear flow processes in subsurface and surface hydrosystems. PhD Thesis, GeoHydrology and HydroInformatics, Center for Applied Geosciences, Tuebingen University Tenzer H (2006) Comparison of the exploration and evaluation techniques of Hot Dry Rock Enhanced Geothermal sites at Soultz-sous-Forêts and Urach Spa in the framework of the geomechanical facies concept. PhD Thesis, GeoHydrology and HydroInformatics, Center for Applied Geosciences, Tuebingen University ParkCHBeyerCBauerSKolditzOA study of preferential flow in heterogeneous media using random walk particle trackingGeosci J200812328529710.1007/s12303-008-0029-2 KolditzOModelling flow and heat transfer in fractured rocks: conceptual model of a 3-d deterministic fracture networkGeothermics199524345147010.1016/0375-6505(95)00020-Q ZehnerBWatanabeNKolditzOVisualization of gridded scalar data with uncertainty in geosciencesComput Geosci201036101268127510.1016/j.cageo.2010.02.010 de Jonge J (2004) Contributions to computational geotechnics: Non-isothermal flow in low-permeable porous media. PhD Thesis, GeoHydrology and HydroInformatics, Center for Applied Geosciences, Tuebingen University Habbar A (2001) Direkte und inverse Modellierung reaktiver Transportprozesse in klüftig-porösen medien. PhD Thesis, Institute of Fluid Mechanics, Hannover University DierschHFinite-element modeling of recirculating density-driven saltwater intrusion processes in groundwaterAdv Water Resour1988111254310.1016/0309-1708(88)90019-X Bauer S (2006) Process based numerical modeling as a tool for aquifer characterization and groundwater quality evaluation. Habilitation: GeoHydrology and HydroInformatics, Center for Applied Geosciences, Tuebingen University McDermott C (2006) Reservoir engineering and system analysis: hydraulic, thermal and geomechanical coupled processes in geosystems. Habilitation: GeoHydrology and HydroInformatics, Center for Applied Geosciences, Tuebingen University Gronewold J (2006) Entwicklung eines Internet-Informationssystems zur Modellierung natuerlicher Rueckhalte- und Abbauprozesse im Grundwasser. PhD Thesis, GeoHydrology and HydroInformatics, Center for Applied Geosciences, Tuebingen University Wollrath J (1990) Ein Stroemungs- und Transportmodell fuer klueftiges Gestein und Untersuchungen zu homogenen Ersatzsystemen. PhD Thesis, Institute of Fluid Mechanics, Hannover University Lege T (1995) Modellierung des Kluftgesteins als geologische Barriere fuer Deponien. PhD Thesis, Institute of Fluid Mechanics, Hannover University Miles B (2007) Practical approaches to modeling natural attenuation processes at LNAPL contaminated sites. PhD Thesis, GeoHydrology and HydroInformatics, Center for Applied Geosciences, Tuebingen University XieMBauerSKolditzONowakTShaoHNumerical simulation of reactive processes in an experiment with partially saturated bentoniteJ Contam Hydrol2006831–212214710.1016/j.jconhyd.2005.11.003 Thorenz C (2001) Model adaptive simulation of multiphase and density driven flow in fractured and porous media. PhD Thesis, Institute of Fluid Mechanics, Hannover University Chen C (2006) Integrating GIS methods for the analysis of geosystems. PhD Thesis, GeoHydrology and HydroInformatics, Center for Applied Geosciences, Tuebingen University WangWKosakowskiGKolditzOA parallel finite element scheme for thermo-hydro-mechanical (thm) coupled problems in porous mediaComput Geosci20093581631164110.1016/j.cageo.2008.07.007 PiggottABobbaAXiangJInverse analysis implementation of the SUTRA groundwater modelGround Water199432582983610.1111/j.1745-6584.1994.tb00924.x Kolditz O (1990) Zur Modellierung und Simulation geothermischer Transportprozesse in untertägigen Zirkulationssystemen. Dissertation, Akademie der Wissenschaften der DDR, Berlin Kohlmeier M (2006) Coupling of thermal, hydraulic and mechanical processes for geotechnical simulations of partially saturated porous media. PhD Thesis, Institute of Fluid Mechanics, Hannover University WhiteMOostromMRockholdMScalable modeling of carbon tetrachloride migration at the hanford site using the STOMP simulatorVadose Zone J20087265466610.2136/vzj2007.0070 PruessKThe TOUGH codes—a family of simulation tools for multiphase flow and transport processes in permeable mediaVadose Zone J200433738746 Kaiser R (2001) Gitteradaption für die Finite-Elemente-Modellierung gekoppelter Prozesse in klüftig-porösen Medien. PhD Thesis, Institute of Fluid Mechanics, Hannover University MayerKMacQuarrieKSolution of the MoMaS reactive transport benchmark with MIN3P-model formulation and simulation resultsComput Geosci201014340541910.1007/s10596-009-9158-6 Watanabe N (2012) Finite element method for coupled thermo-hydro-mechanical processes in discretely fractured and non-fractured porous media. PhD Thesis, Technische Universität Dresden, Chair of Applied Environmental System Analysis, Helmholtz Centre for Environmental Research UFZ, Department of Environmental Informatics KalbacherTSchneiderCWangWHildebrandtAAttingerSKolditzOParallelized modelling of soil-coupled 3d water uptake of multiple root systems with automatic adaptive time step controlVadose Zone J2011101910.2136/vzj2011.0006 Engelhardt I (2003) Experimental and numerical investigations with respect to the material properties of geotechnical barriers. PhD Thesis, Tuebingen University Barlag C (1997) Adaptive Methoden zur Modellierung von Stofftransport im Kluftgestein. PhD Thesis, Institute of Fluid Mechanics, Hannover University FreibothSClassHHelmigRA model for multiphase flow and transport in porous media including a phenomenological approach to account for deformation—a model concept and its validation within a code intercomparison studyComput Geosci200913328130010.1007/s10596-008-9118-6 GörkeUJParkCHWangWSinghAKolditzONumerical simulation of multiphase hydromechanical processes induced by CO2 injection in deep saline aquifersOil Gas Sci Technol201148115 FlemischBDarcisMErbertsederKFaigleBLauserBMosthafKMuthingSNuskePTatomirAWolffMDuMux: DUNE for multi-phase, component, scale, physics, ... flow and transport in porous mediaAdv Water Resour20113491102111210.1016/j.advwatres.2011.03.007 WangWRutqvistJGörkeUJBirkholzerJKolditzONon-isothermal flow in low permeable porous media: a comparison of Richards’ and two-phase flow approachesEnviron Earth Sci20116261197120710.1007/s12665-010-0608-1 PrommerHBarryDZhengCMODFLOW/MT3DMS-based reactive multicomponent transport modelingGround Water200341224725710.1111/j.1745-6584.2003.tb02588.x Shao H (1994) Simulation von Stroemungs- und Transportvorgaengen im gekluefteten poroesen Medien mit gekoppelten Finite-Elementund und Rand-Element-Methoden. PhD Thesis, Institute of Fluid Mechanics, Hannover University Shao H (2010) Modelling reactive transport processes in porous media. PhD Thesis, Technische Universität Dresden, Chair of Applied Environmental System Analysis, Helmholtz Centre for Environmental Research UFZ, Department of Environmental Informatics Delfs JO (2010) An Euler-Lagrangian concept for transport processes in coupled hydrosystems. PhD Thesis, GeoHydrology and HydroInformatics, Center for Applied Geosciences, Tuebingen University in cooperation with Helmholtz Centre for Environmental Research UFZ and Technische Universität Dresden Sun F (2011) Computational hydrosystem analysis: Applications to the meijiang and nankou catchments in china. PhD Thesis, Technische Universität Dresden, Chair of Applied Environmental System Analysis, Helmholtz Centre for Environmental Research UFZ, Department of Environmental Informatics XuTSonnenthalESpycherNPruessKTOUGHREACT—a simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: applications to geothermal injectivity and CO2 geological sequestrationComput Geosci200632214516510.1016/j.cageo.2005.06.014 Helmig R (1993) Theorie und Numerik der Mehrphasenstroemungen in geklueftet-poroesen Medien. PhD Thesis, Institute of Fluid Mechanics, Hannover University SunFShaoHKalbacherTWangWYangZHuangZKolditzOGroundwater drawdown at Nankou site of Beijing Plain: model development and calibrationEnviron Earth Sci20116451323133310.1007/s12665-011-0957-4 Kosakowski G (2007) Transport in fractured media: concepts, models, and applications. Habilitation: GeoHydrology and HydroInformatics, Center for Applied Geosciences, Tuebingen University NowakTKunzHDixonDWangWGörkeUJKolditzOCoupled 3-D thermo-hydro-mechanical analysis of geotechnical in situ testsInt J Numer Anal Meth Geomech201148115 TartakovskyAMeakinPScheibeTSimulations of reactive transport and precipitation with smoothed particle hydrodynamicsJ Comput Phys2007222265467210.1016/j.jcp.2006.08.013 Kroehn K (1991) Simulation v K Pruess (1546_CR42) 2004; 3 1546_CR24 1546_CR23 HJ Diersch (1546_CR12) 2002; 25 1546_CR26 A Piggott (1546_CR40) 1994; 32 1546_CR61 T Xu (1546_CR66) 2006; 32 1546_CR21 H Diersch (1546_CR11) 1988; 11 1546_CR20 1546_CR63 O Kolditz (1546_CR25) 1995; 24 M White (1546_CR62) 2008; 7 Y Wu (1546_CR64) 2011; 64 T Kalbacher (1546_CR22) 2011; 10 1546_CR4 T Nowak (1546_CR38) 2011; 48 1546_CR7 1546_CR19 W Wang (1546_CR59) 2009; 35 1546_CR1 O Kolditz (1546_CR29) 2008; 10 1546_CR3 1546_CR2 O Kolditz (1546_CR27) 2004; 6 E Sudicky (1546_CR50) 2008; 12 A Tartakovsky (1546_CR53) 2007; 222 1546_CR13 1546_CR57 S Freiboth (1546_CR15) 2009; 13 UJ Görke (1546_CR16) 2011; 48 1546_CR56 1546_CR55 1546_CR9 1546_CR18 1546_CR8 1546_CR17 (1546_CR30) 2012 1546_CR54 O Kolditz (1546_CR28) 1998; 21 1546_CR51 J Rutqvist (1546_CR46) 2008; 163 W Wang (1546_CR60) 2011; 62 M Xie (1546_CR65) 2006; 83 G Bloecher (1546_CR5) 2008; 34 M Cacace (1546_CR6) 2010; 70 W Wang (1546_CR58) 2007; 69 1546_CR47 1546_CR45 1546_CR44 H Prommer (1546_CR41) 2003; 41 1546_CR49 1546_CR48 B Zehner (1546_CR67) 2010; 36 K Mayer (1546_CR34) 2010; 14 CH Park (1546_CR39) 2008; 12 B Flemisch (1546_CR14) 2011; 34 1546_CR36 1546_CR35 1546_CR33 JO Delfs (1546_CR10) 2009; 32 1546_CR37 H Reeves (1546_CR43) 2000; 38 1546_CR32 1546_CR31 F Sun (1546_CR52) 2011; 64 |
References_xml | – reference: ZehnerBWatanabeNKolditzOVisualization of gridded scalar data with uncertainty in geosciencesComput Geosci201036101268127510.1016/j.cageo.2010.02.010 – reference: CacaceMKaiserBLewerenzBGeothermal energy in sedimentary basins: what we can learn from regional numerical modelsChemie der Erde Geochem2010703334610.1016/j.chemer.2010.05.017 – reference: Thorenz C (2001) Model adaptive simulation of multiphase and density driven flow in fractured and porous media. PhD Thesis, Institute of Fluid Mechanics, Hannover University – reference: Watanabe N (2012) Finite element method for coupled thermo-hydro-mechanical processes in discretely fractured and non-fractured porous media. PhD Thesis, Technische Universität Dresden, Chair of Applied Environmental System Analysis, Helmholtz Centre for Environmental Research UFZ, Department of Environmental Informatics – reference: Chen C (2006) Integrating GIS methods for the analysis of geosystems. PhD Thesis, GeoHydrology and HydroInformatics, Center for Applied Geosciences, Tuebingen University – reference: Kolditz O (1990) Zur Modellierung und Simulation geothermischer Transportprozesse in untertägigen Zirkulationssystemen. Dissertation, Akademie der Wissenschaften der DDR, Berlin – reference: Rink K, Kalbacher T, Kolditz O (2011) Visual data management for hydrological analysis. Environ. Earth Sci. doi:10.1007/s12665-011-1230-6 – reference: MayerKMacQuarrieKSolution of the MoMaS reactive transport benchmark with MIN3P-model formulation and simulation resultsComput Geosci201014340541910.1007/s10596-009-9158-6 – reference: Kohlmeier M (2006) Coupling of thermal, hydraulic and mechanical processes for geotechnical simulations of partially saturated porous media. PhD Thesis, Institute of Fluid Mechanics, Hannover University – reference: Habbar A (2001) Direkte und inverse Modellierung reaktiver Transportprozesse in klüftig-porösen medien. PhD Thesis, Institute of Fluid Mechanics, Hannover University – reference: XuTSonnenthalESpycherNPruessKTOUGHREACT—a simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: applications to geothermal injectivity and CO2 geological sequestrationComput Geosci200632214516510.1016/j.cageo.2005.06.014 – reference: KolditzOModelling flow and heat transfer in fractured rocks: conceptual model of a 3-d deterministic fracture networkGeothermics199524345147010.1016/0375-6505(95)00020-Q – reference: Sun F (2011) Computational hydrosystem analysis: Applications to the meijiang and nankou catchments in china. PhD Thesis, Technische Universität Dresden, Chair of Applied Environmental System Analysis, Helmholtz Centre for Environmental Research UFZ, Department of Environmental Informatics – reference: Walsh R (2007) Numerical modeling of THM coupled processes in fractured porous media. PhD Thesis, GeoHydrology and HydroInformatics, Center for Applied Geosciences, Tuebingen University – reference: Kalbacher T (2006) Geometric modelling and 3-d visualization of hydrogeological systems: software designing and application. PhD Thesis, GeoHydrology and HydroInformatics, Center for Applied Geosciences, Tuebingen University – reference: PruessKThe TOUGH codes—a family of simulation tools for multiphase flow and transport processes in permeable mediaVadose Zone J200433738746 – reference: Barlag C (1997) Adaptive Methoden zur Modellierung von Stofftransport im Kluftgestein. PhD Thesis, Institute of Fluid Mechanics, Hannover University – reference: KolditzORatkeRDierschHZielkeWCoupled groundwater flow and transport: 1. Verification of variable density flow and transport modelsAdv Water Resour1998211274610.1016/S0309-1708(96)00034-6 – reference: KolditzODelfsJOBürgerCBeinhornMParkCHNumerical analysis of coupled hydrosystems based on an object-oriented compartment approachJ Hydroinform200810322724410.2166/hydro.2008.003 – reference: DierschHFinite-element modeling of recirculating density-driven saltwater intrusion processes in groundwaterAdv Water Resour1988111254310.1016/0309-1708(88)90019-X – reference: Kroehn K (1991) Simulation von Transportvorgaengen im klueftigen Gestein mit der Methode der Finiten Elemente. PhD Thesis, Institute of Fluid Mechanics, Hannover University – reference: Shao H (2010) Modelling reactive transport processes in porous media. PhD Thesis, Technische Universität Dresden, Chair of Applied Environmental System Analysis, Helmholtz Centre for Environmental Research UFZ, Department of Environmental Informatics – reference: WangWRutqvistJGörkeUJBirkholzerJKolditzONon-isothermal flow in low permeable porous media: a comparison of Richards’ and two-phase flow approachesEnviron Earth Sci20116261197120710.1007/s12665-010-0608-1 – reference: McDermott C (2006) Reservoir engineering and system analysis: hydraulic, thermal and geomechanical coupled processes in geosystems. Habilitation: GeoHydrology and HydroInformatics, Center for Applied Geosciences, Tuebingen University – reference: de Jonge J (2004) Contributions to computational geotechnics: Non-isothermal flow in low-permeable porous media. PhD Thesis, GeoHydrology and HydroInformatics, Center for Applied Geosciences, Tuebingen University – reference: Gronewold J (2006) Entwicklung eines Internet-Informationssystems zur Modellierung natuerlicher Rueckhalte- und Abbauprozesse im Grundwasser. PhD Thesis, GeoHydrology and HydroInformatics, Center for Applied Geosciences, Tuebingen University – reference: PiggottABobbaAXiangJInverse analysis implementation of the SUTRA groundwater modelGround Water199432582983610.1111/j.1745-6584.1994.tb00924.x – reference: KalbacherTSchneiderCWangWHildebrandtAAttingerSKolditzOParallelized modelling of soil-coupled 3d water uptake of multiple root systems with automatic adaptive time step controlVadose Zone J2011101910.2136/vzj2011.0006 – reference: Moenickes S (2004) Grid generation for simulation of flow and transport processes in fractured porous media. PhD Thesis, Institute of Fluid Mechanics, Hannover University – reference: Wollrath J (1990) Ein Stroemungs- und Transportmodell fuer klueftiges Gestein und Untersuchungen zu homogenen Ersatzsystemen. PhD Thesis, Institute of Fluid Mechanics, Hannover University – reference: GörkeUJParkCHWangWSinghAKolditzONumerical simulation of multiphase hydromechanical processes induced by CO2 injection in deep saline aquifersOil Gas Sci Technol201148115 – reference: BloecherGZimmermannGSettle3D—a numerical generator for artificial porous mediaComput Geosci200834121827184210.1016/j.cageo.2007.12.008 – reference: FreibothSClassHHelmigRA model for multiphase flow and transport in porous media including a phenomenological approach to account for deformation—a model concept and its validation within a code intercomparison studyComput Geosci200913328130010.1007/s10596-008-9118-6 – reference: Kolditz O (1996) Stoff- und Waermetransport im Kluftgestein. Habilitation: Institute of Fluid Mechanics, Hannover University – reference: WangWKolditzOObject-oriented finite element analysis of thermo-hydro-mechanical (thm) problems in porous mediaInt J Numer Methods Eng200769116220110.1002/nme.1770 – reference: ReevesHThibodeauPUnderwoodRIncorporation of total stress changes into the ground water model SUTRAGround Water2000381899810.1111/j.1745-6584.2000.tb00205.x – reference: Beyer C (2007) Applied numerical modeling of saturated / unsaturated flow and reactive contaminant transport: evaluation of site investigation strategies and assessment of environmental impact. PhD Thesis, GeoHydrology and HydroInformatics, Center for Applied Geosciences, Tuebingen University – reference: Engelhardt I (2003) Experimental and numerical investigations with respect to the material properties of geotechnical barriers. PhD Thesis, Tuebingen University – reference: Delfs JO (2010) An Euler-Lagrangian concept for transport processes in coupled hydrosystems. PhD Thesis, GeoHydrology and HydroInformatics, Center for Applied Geosciences, Tuebingen University in cooperation with Helmholtz Centre for Environmental Research UFZ and Technische Universität Dresden – reference: Lege T (1995) Modellierung des Kluftgesteins als geologische Barriere fuer Deponien. PhD Thesis, Institute of Fluid Mechanics, Hannover University – reference: Bauer S (2006) Process based numerical modeling as a tool for aquifer characterization and groundwater quality evaluation. Habilitation: GeoHydrology and HydroInformatics, Center for Applied Geosciences, Tuebingen University – reference: Tenzer H (2006) Comparison of the exploration and evaluation techniques of Hot Dry Rock Enhanced Geothermal sites at Soultz-sous-Forêts and Urach Spa in the framework of the geomechanical facies concept. PhD Thesis, GeoHydrology and HydroInformatics, Center for Applied Geosciences, Tuebingen University – reference: ParkCHBeyerCBauerSKolditzOA study of preferential flow in heterogeneous media using random walk particle trackingGeosci J200812328529710.1007/s12303-008-0029-2 – reference: KolditzOGoerkeUShaoHWangWBenchmarks and examples for thermo-hydro-mechanical/chemical processes in Porous Media, 1st edn2012BerlinSpringer – reference: DelfsJOParkCHKolditzOA sensitivity analysis of hortonian flowAdv Water Resour20093291386139510.1016/j.advwatres.2009.06.005 – reference: Kosakowski G (2007) Transport in fractured media: concepts, models, and applications. Habilitation: GeoHydrology and HydroInformatics, Center for Applied Geosciences, Tuebingen University – reference: NowakTKunzHDixonDWangWGörkeUJKolditzOCoupled 3-D thermo-hydro-mechanical analysis of geotechnical in situ testsInt J Numer Anal Meth Geomech201148115 – reference: WangWKosakowskiGKolditzOA parallel finite element scheme for thermo-hydro-mechanical (thm) coupled problems in porous mediaComput Geosci20093581631164110.1016/j.cageo.2008.07.007 – reference: TartakovskyAMeakinPScheibeTSimulations of reactive transport and precipitation with smoothed particle hydrodynamicsJ Comput Phys2007222265467210.1016/j.jcp.2006.08.013 – reference: Helmig R (1993) Theorie und Numerik der Mehrphasenstroemungen in geklueftet-poroesen Medien. PhD Thesis, Institute of Fluid Mechanics, Hannover University – reference: WuYWangWTollMAlkhouryWSauterMKolditzODevelopment of a 3D groundwater model based on scarce data: the Wadi Kafrein catchment/JordanEnviron Earth Sci201164377178510.1007/s12665-010-0898-3 – reference: XieMBauerSKolditzONowakTShaoHNumerical simulation of reactive processes in an experiment with partially saturated bentoniteJ Contam Hydrol2006831–212214710.1016/j.jconhyd.2005.11.003 – reference: PrommerHBarryDZhengCMODFLOW/MT3DMS-based reactive multicomponent transport modelingGround Water200341224725710.1111/j.1745-6584.2003.tb02588.x – reference: Shao H (1994) Simulation von Stroemungs- und Transportvorgaengen im gekluefteten poroesen Medien mit gekoppelten Finite-Elementund und Rand-Element-Methoden. PhD Thesis, Institute of Fluid Mechanics, Hannover University – reference: Beinhorn M (2005) Contributions to computational hydrology: Non-linear flow processes in subsurface and surface hydrosystems. PhD Thesis, GeoHydrology and HydroInformatics, Center for Applied Geosciences, Tuebingen University – reference: DierschHJKolditzOVariable-density flow and transport in porous media: approaches and challengesAdv Water Resour2002258–1289994410.1016/S0309-1708(02)00063-5 – reference: Schulze-Ruhfus M (1996) Adaptive Verfeinerung und Vergroeberung gekoppelter 1D/2D/3D Elemente. Diploma Thesis: Institute of Fluid Mechanics, Hannover University – reference: Kaiser R (2001) Gitteradaption für die Finite-Elemente-Modellierung gekoppelter Prozesse in klüftig-porösen Medien. PhD Thesis, Institute of Fluid Mechanics, Hannover University – reference: SudickyEJonesJParkYBrookfieldAColauttiDSimulating complex flow and transport dynamics in an integrated surface-subsurface modeling frameworkGeosci J200812210712210.1007/s12303-008-0013-x – reference: RutqvistJBarrDBirkholzerJChijimatsuMKolditzOLiuQOdaYWangWZhangCResults from an international simulation study on coupled thermal, hydrological, and mechanical processes near geological nuclear waste repositoriesNucl Technol20081631101109 – reference: Teutsch G, Krüger (2010) Water science alliance—priority research fields. UFZ, 2010, http://www.watersciencealliance.ufz.de – reference: FlemischBDarcisMErbertsederKFaigleBLauserBMosthafKMuthingSNuskePTatomirAWolffMDuMux: DUNE for multi-phase, component, scale, physics, ... flow and transport in porous mediaAdv Water Resour20113491102111210.1016/j.advwatres.2011.03.007 – reference: Rother T (2001) Geometric modelling geo-systems. PhD Thesis, Institute of Fluid Mechanics, Hannover University – reference: WhiteMOostromMRockholdMScalable modeling of carbon tetrachloride migration at the hanford site using the STOMP simulatorVadose Zone J20087265466610.2136/vzj2007.0070 – reference: SunFShaoHKalbacherTWangWYangZHuangZKolditzOGroundwater drawdown at Nankou site of Beijing Plain: model development and calibrationEnviron Earth Sci20116451323133310.1007/s12665-011-0957-4 – reference: KolditzOBauerSA process-oriented approach to computing multi-field problems in porous mediaJ Hydroinform20046225244 – reference: Miles B (2007) Practical approaches to modeling natural attenuation processes at LNAPL contaminated sites. PhD Thesis, GeoHydrology and HydroInformatics, Center for Applied Geosciences, Tuebingen University – ident: 1546_CR20 – ident: 1546_CR18 – volume: 7 start-page: 654 issue: 2 year: 2008 ident: 1546_CR62 publication-title: Vadose Zone J doi: 10.2136/vzj2007.0070 – volume: 10 start-page: 1 year: 2011 ident: 1546_CR22 publication-title: Vadose Zone J doi: 10.2136/vzj2011.0006 – volume: 222 start-page: 654 issue: 2 year: 2007 ident: 1546_CR53 publication-title: J Comput Phys doi: 10.1016/j.jcp.2006.08.013 – ident: 1546_CR47 – volume: 24 start-page: 451 issue: 3 year: 1995 ident: 1546_CR25 publication-title: Geothermics doi: 10.1016/0375-6505(95)00020-Q – volume: 62 start-page: 1197 issue: 6 year: 2011 ident: 1546_CR60 publication-title: Environ Earth Sci doi: 10.1007/s12665-010-0608-1 – ident: 1546_CR1 – volume: 163 start-page: 101 issue: 1 year: 2008 ident: 1546_CR46 publication-title: Nucl Technol doi: 10.13182/NT08-A3974 – ident: 1546_CR8 – ident: 1546_CR44 doi: 10.1007/s12665-011-1230-6 – volume: 64 start-page: 771 issue: 3 year: 2011 ident: 1546_CR64 publication-title: Environ Earth Sci doi: 10.1007/s12665-010-0898-3 – ident: 1546_CR57 – volume: 32 start-page: 145 issue: 2 year: 2006 ident: 1546_CR66 publication-title: Comput Geosci doi: 10.1016/j.cageo.2005.06.014 – volume: 3 start-page: 738 issue: 3 year: 2004 ident: 1546_CR42 publication-title: Vadose Zone J – ident: 1546_CR24 – volume: 48 start-page: 1 year: 2011 ident: 1546_CR16 publication-title: Oil Gas Sci Technol – volume: 48 start-page: 1 year: 2011 ident: 1546_CR38 publication-title: Int J Numer Anal Meth Geomech – volume-title: Benchmarks and examples for thermo-hydro-mechanical/chemical processes in Porous Media, 1st edn year: 2012 ident: 1546_CR30 – volume: 12 start-page: 107 issue: 2 year: 2008 ident: 1546_CR50 publication-title: Geosci J doi: 10.1007/s12303-008-0013-x – volume: 21 start-page: 27 issue: 1 year: 1998 ident: 1546_CR28 publication-title: Adv Water Resour doi: 10.1016/S0309-1708(96)00034-6 – volume: 35 start-page: 1631 issue: 8 year: 2009 ident: 1546_CR59 publication-title: Comput Geosci doi: 10.1016/j.cageo.2008.07.007 – volume: 11 start-page: 25 issue: 1 year: 1988 ident: 1546_CR11 publication-title: Adv Water Resour doi: 10.1016/0309-1708(88)90019-X – ident: 1546_CR23 – volume: 6 start-page: 225 year: 2004 ident: 1546_CR27 publication-title: J Hydroinform doi: 10.2166/hydro.2004.0017 – volume: 10 start-page: 227 issue: 3 year: 2008 ident: 1546_CR29 publication-title: J Hydroinform doi: 10.2166/hydro.2008.003 – ident: 1546_CR17 – ident: 1546_CR48 – ident: 1546_CR4 – ident: 1546_CR13 – volume: 70 start-page: 33 issue: 3 year: 2010 ident: 1546_CR6 publication-title: Chemie der Erde Geochem doi: 10.1016/j.chemer.2010.05.017 – volume: 41 start-page: 247 issue: 2 year: 2003 ident: 1546_CR41 publication-title: Ground Water doi: 10.1111/j.1745-6584.2003.tb02588.x – ident: 1546_CR7 – volume: 34 start-page: 1827 issue: 12 year: 2008 ident: 1546_CR5 publication-title: Comput Geosci doi: 10.1016/j.cageo.2007.12.008 – ident: 1546_CR33 – ident: 1546_CR54 – volume: 83 start-page: 122 issue: 1–2 year: 2006 ident: 1546_CR65 publication-title: J Contam Hydrol doi: 10.1016/j.jconhyd.2005.11.003 – ident: 1546_CR61 – ident: 1546_CR37 – volume: 12 start-page: 285 issue: 3 year: 2008 ident: 1546_CR39 publication-title: Geosci J doi: 10.1007/s12303-008-0029-2 – volume: 32 start-page: 829 issue: 5 year: 1994 ident: 1546_CR40 publication-title: Ground Water doi: 10.1111/j.1745-6584.1994.tb00924.x – volume: 25 start-page: 899 issue: 8–12 year: 2002 ident: 1546_CR12 publication-title: Adv Water Resour doi: 10.1016/S0309-1708(02)00063-5 – ident: 1546_CR45 – volume: 36 start-page: 1268 issue: 10 year: 2010 ident: 1546_CR67 publication-title: Comput Geosci doi: 10.1016/j.cageo.2010.02.010 – ident: 1546_CR49 – ident: 1546_CR51 – ident: 1546_CR3 – volume: 34 start-page: 1102 issue: 9 year: 2011 ident: 1546_CR14 publication-title: Adv Water Resour doi: 10.1016/j.advwatres.2011.03.007 – ident: 1546_CR32 – volume: 14 start-page: 405 issue: 3 year: 2010 ident: 1546_CR34 publication-title: Comput Geosci doi: 10.1007/s10596-009-9158-6 – ident: 1546_CR36 – ident: 1546_CR55 – volume: 69 start-page: 162 issue: 1 year: 2007 ident: 1546_CR58 publication-title: Int J Numer Methods Eng doi: 10.1002/nme.1770 – volume: 32 start-page: 1386 issue: 9 year: 2009 ident: 1546_CR10 publication-title: Adv Water Resour doi: 10.1016/j.advwatres.2009.06.005 – ident: 1546_CR26 – ident: 1546_CR19 – ident: 1546_CR21 – volume: 64 start-page: 1323 issue: 5 year: 2011 ident: 1546_CR52 publication-title: Environ Earth Sci doi: 10.1007/s12665-011-0957-4 – ident: 1546_CR2 – ident: 1546_CR9 – ident: 1546_CR31 – ident: 1546_CR35 – ident: 1546_CR56 – ident: 1546_CR63 – volume: 13 start-page: 281 issue: 3 year: 2009 ident: 1546_CR15 publication-title: Comput Geosci doi: 10.1007/s10596-008-9118-6 – volume: 38 start-page: 89 issue: 1 year: 2000 ident: 1546_CR43 publication-title: Ground Water doi: 10.1111/j.1745-6584.2000.tb00205.x |
SSID | ssj0000313906 |
Score | 2.5548544 |
Snippet | In this paper we describe the OpenGeoSys (OGS) project, which is a scientific open-source initiative for numerical simulation of... Issue Title: Topical Issue: CLEAN - Enhanced gas recovery storage and geological CO2 storage In this paper we describe the OpenGeoSys (OGS) project, which is a... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 589 |
SubjectTerms | Biogeosciences Carbon dioxide Carbon sequestration computer software Earth and Environmental Science Earth Sciences Environmental Science and Engineering Geochemistry Geology Geophysics Hydrology Hydrology/Water Resources mathematical models Open source software Porosity Porous media Simulation Special Issue teams Terrestrial Pollution Thermodynamics |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3JSuRAtHCUgbmIOjNMjwsleBiVorNWpbyIitoIiriAt1BbGMFOWtMN9t0P972kulsFPYa8JJV6r96-ELKltA5irTBPKixY4kLDVGyQlqUoXGrBBkB_x_kF790mZ3fpnXe41T6tcsITG0ZtK4M-8i7Ws8VgUPFsf_DIcGoURlf9CI1vZAFYcAbG18Lh8cXl1dTLgp0JZTNgExu7MR5l09BmUz8H4glz1yIGmgRnz--F00zj_BAkbWTPyRJZ9EojPWixvEzmXLlCvp82Q3nHP8kLZoXA1fW43qOqpDgRi7VeeXqPyUFNc28K6iktR22E5oHW930_uYtWBUU1sF-x_2P7VLG-w3JghOoa30-A_rvpnXePtumgLSxwNbyZgu5ejWraVJ_8ItcnxzdHPeanKzAFAmnIwrBQhdQq1UYJmVppg9BZJcBeAxQJobkrktTJ2GhrUxslqKuBdSeVcKGIf5P5sirdH0JNpKKAGyl0ohKTuAyYhgmMcjYyXFjVIcFkU3PjG4_j_IuHfNYyGfGQAx5yxEP-3CE700cGbdeNr4DXJpjK_QGs8xm5dMjm9DYcHYyHqNLB7gAMh99JRSA_h4lkxjOQBzLokN0JFbz9zCeL-vv1olbJjwjJrklWWyPzw6eRWwftZqg3PAm_Anxh-FI priority: 102 providerName: ProQuest |
Title | OpenGeoSys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media |
URI | https://link.springer.com/article/10.1007/s12665-012-1546-x https://www.proquest.com/docview/1037313368 https://www.proquest.com/docview/1069195709 https://www.proquest.com/docview/2986811190 |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS9xAEF-KUvBFrFW8VmWFPvjBYrJJdrN9u8rp0aKUqqBPYb-CgpeIuQPv3T-8M_m4U6lCn0LIZJPszGZ-s_NFyDdtTBAZjXFSYc5iH1qmI4uyrGTuEwc2AO53nJ6J4WX88yq5avO4qy7avXNJ1n_qebIb6BIMNOMM1L5gABwXEzTdQYgveX-2sYLFCFXdUxNruTHB05k381-jvNRHc5D5yi9aq5vjFbLc4kTabxj7iXzwxSr5eFL34Z1-Jk8YCAJn59PqO9UFxSZYrNmIp7cYD1TX86aASGkxaZwyd7S6HbXNumiZU0R-o5LdTN1DyUYeM4CR6tC2JQTo7sXw9PBoj943uQS-gpEpwPVyUtE64WSNnB8PLo6GrG2owDTooDELw1znyujEWC1V4pQLQu-0BBMNuCKlET6PE68ia5xLHI8RnoFBp7T0oYzWyUJRFn6DUMs1D4RV0sQ6trFP4T9hA6u941ZIp3sk6CY1s22tcWx5cZfNqyQjHzLgQ4Z8yB57ZH92y31TaOM94s2OU1m75qoMMx6B95FIe2RndhlWC7pAdOFhdoBGwOckMlBv03CVihRUgAp65KCTguePeeOlvvwX9VeyxFEK63C1TbIwfpj4LcA3Y7NNFvsn178GcPwxOPv9Z7uW779H1fc1 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1rb9Mw8DQ6IfiCeIpuA4wEEg9ZTZyHaySEYGx0bK0Q66R9InJsR0xak7K0Yv3Oz-FHcpdHC0jbt32McnFs3_kevhfAM52mXpBqipPyMx4633AdGKJlJTMXWbQB6L5jOIoHR-Hn4-h4DX63uTAUVtnyxIpR28LQHXmP8tkCNKji_rvpD05do8i72rbQqMli3y1-oslWvt37iPh9LsTuznh7wJuuAlwjI55x3890plIdpUZLFVllPd9ZLdFOwalJmcYuCyOnApNaG1kRko6CVo3S0vkywFGvwXoY4CI6sP5hZ_Tl6_JOh-ogqqqdJ5WR47HoLx2pVbYeCkOKlBMc9ZaYn_8rClf67X8u2UrS7d6GW42Kyt7XNHUH1lx-F65_qloAL-7BL4pBwafDRfmG6ZxR_y1e-wDYCYUiVaXEGSrDLJ_X_qBTVp5Mmj5hrMgYKZ2Tgn9f2LOCTxwlHxNUzzTVC9iL8WDY237JpnUagytxZIaWQjEvWZXrch8Or2DXH0AnL3L3EJgRWnixUTINdWhC10cWZTyjnRUmllZ3wWs3NTFNmXPqtnGarAo0Ex4SxENCeEjOu_Bq-cm0rvFxGfBWi6mkOe5lsiLOLjxdvsaDSt4XnTvcHYSJcTmR9NTFMEL14z5KH-V14XVLBX__5oJJbVw-qSdwYzAeHiQHe6P9TbgpiASrMLkt6MzO5u4R6lWz9HFDzgy-Xe35-QMUvDSw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3batRA9FC3KL6IV1ytOoKCF4ZNJpfJCCLadt1auxRboU-GycwEC91kbXax--5H-Xmek8uuCu1bH0NOksmc-5wbwDOdZV6QacqT8nMeOt9wHRiiZSVzF1n0Aei8Y28cj76Gn46iozX43dXCUFplJxNrQW1LQ2fkA6pnC9ChipNB3qZF7G8N301_cJogRZHWbpxGQyK7bvET3bfq7c4W4vq5EMPtw80RbycMcI1CecZ9P9e5ynSUGS1VZJX1fGe1RJ8FlyllFrs8jJwKTGZtZEVI9gp6OEpL58sA33oF1iX6RF4P1j9sj_e_LM93qCeiqkd7Uks5HotkGVStK_dQMVLWnOBow8T87F-1uLJ1_wvP1lpveBNutOYqe9_Q1y1Yc8VtuPqxHge8uAO_KB8Frw4W1RumC0azuHgTD2DHlJZUtxVnaBizYt7Ehk5YdTxpZ4axMmdkgE5K_n1hT0s-cVSITFAD03YyYC8OR3uDzZds2pQ0uArfzNBrKOcVq-te7sLBJez6PegVZeHuAzNCCy82SmahDk3oEhRXxjPaWWFiaXUfvG5TU9O2PKfJGyfpqlkz4SFFPKSEh_SsD6-Wj0ybfh8XAW90mEpb1q_SFaH24enyNjItRWJ04XB3ECbG34mkp86HESqJE9REyuvD644K_v7MOYt6cPGinsA15Jv088549yFcF0SBdcbcBvRmp3P3CE2sWfa4pWYG3y6Xff4AXwo45Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=OpenGeoSys%3A+an+open-source+initiative+for+numerical+simulation+of+thermo-hydro-mechanical%2Fchemical+%28THM%2FC%29+processes+in+porous+media&rft.jtitle=Environmental+earth+sciences&rft.au=Kolditz%2C+O&rft.au=Bauer%2C+S&rft.au=Bilke%2C+L&rft.au=B%C3%83%C2%B6ttcher%2C+N.&rft.date=2012-09-01&rft.issn=1866-6280&rft.volume=67&rft.issue=2+p.589-599&rft.spage=589&rft.epage=599&rft_id=info:doi/10.1007%2Fs12665-012-1546-x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1866-6280&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1866-6280&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1866-6280&client=summon |