Enhanced Adsorption of PFOA and PFOS on Multiwalled Carbon Nanotubes under Electrochemical Assistance
Removal of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from aqueous solution has attracted wide attention in light of their environmental persistence, bioaccumulation, and potential toxicity. Although various destructive technologies were developed, removal of PFOX (X = A and...
Saved in:
Published in | Environmental science & technology Vol. 45; no. 19; pp. 8498 - 8505 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
01.10.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Removal of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from aqueous solution has attracted wide attention in light of their environmental persistence, bioaccumulation, and potential toxicity. Although various destructive technologies were developed, removal of PFOX (X = A and S) under mild conditions are still desirable. In this work, multiwalled carbon nanotubes (MWNTs) were applied to remove PFOX in electrochemically assistant adsorption. Electrosorption kinetics and isotherms were investigated relative to open circuit (OC) adsorption and adsorption on powder MWNTs. Compared with powder MWNTs adsorption, the initial adsorption rate (υ0) of 100 μg/L PFOX at 0.6 V increased 60-fold (PFOA) and 41-fold (PFOS) according to pseudosecond-order kinetics model and the maximum electrosorption capacity (q m) of PFOX (50 μg/L to 10 mg/L) increased 150-fold (PFOA) and 94-fold (PFOS) simulated with Langmuir model. These significant improvements were assumed to benefit from enhanced electrostatic attraction under electrochemical assistance. Furthermore, the used MWNTs were found to be regenerative and reusable. This work provides not only a new approach to effective removal of perfluorochemicals from aqueous solution but also a low energy-consumption and environmentally-friendly strategy for application of carbon nanotubes in water treatment. |
---|---|
AbstractList | Removal of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from aqueous solution has attracted wide attention in light of their environmental persistence, bioaccumulation, and potential toxicity. Although various destructive technologies were developed, removal of PFOX (X = A and S) under mild conditions are still desirable. In this work, multiwalled carbon nanotubes (MWNTs) were applied to remove PFOX in electrochemically assistant adsorption. Electrosorption kinetics and isotherms were investigated relative to open circuit (OC) adsorption and adsorption on powder MWNTs. Compared with powder MWNTs adsorption, the initial adsorption rate (...) of 100 ...g/L PFOX at 0.6 V increased 60-fold (PFOA) and 41-fold (PFOS) according to pseudosecond-order kinetics model and the maximum electrosorption capacity (q...) of PFOX (50 ...g/L to 10 mg/L) increased 150-fold (PFOA) and 94-fold (PFOS) simulated with Langmuir model. These significant improvements were assumed to benefit from enhanced electrostatic attraction under electrochemical assistance. Furthermore, the used MWNTs were found to be regenerative and reusable. This work provides not only a new approach to effective removal of perfluorochemicals from aqueous solution but also a low energy-consumption and environmentally-friendly strategy for application of carbon nanotubes in water treatment. (ProQuest: ... denotes formulae/symbols omitted.) Removal of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from aqueous solution has attracted wide attention in light of their environmental persistence, bioaccumulation, and potential toxicity. Although various destructive technologies were developed, removal of PFOX (X = A and S) under mild conditions are still desirable. In this work, multiwalled carbon nanotubes (MWNTs) were applied to remove PFOX in electrochemically assistant adsorption. Electrosorption kinetics and isotherms were investigated relative to open circuit (OC) adsorption and adsorption on powder MWNTs. Compared with powder MWNTs adsorption, the initial adsorption rate (υ(0)) of 100 μg/L PFOX at 0.6 V increased 60-fold (PFOA) and 41-fold (PFOS) according to pseudosecond-order kinetics model and the maximum electrosorption capacity (q(m)) of PFOX (50 μg/L to 10 mg/L) increased 150-fold (PFOA) and 94-fold (PFOS) simulated with Langmuir model. These significant improvements were assumed to benefit from enhanced electrostatic attraction under electrochemical assistance. Furthermore, the used MWNTs were found to be regenerative and reusable. This work provides not only a new approach to effective removal of perfluorochemicals from aqueous solution but also a low energy-consumption and environmentally-friendly strategy for application of carbon nanotubes in water treatment.Removal of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from aqueous solution has attracted wide attention in light of their environmental persistence, bioaccumulation, and potential toxicity. Although various destructive technologies were developed, removal of PFOX (X = A and S) under mild conditions are still desirable. In this work, multiwalled carbon nanotubes (MWNTs) were applied to remove PFOX in electrochemically assistant adsorption. Electrosorption kinetics and isotherms were investigated relative to open circuit (OC) adsorption and adsorption on powder MWNTs. Compared with powder MWNTs adsorption, the initial adsorption rate (υ(0)) of 100 μg/L PFOX at 0.6 V increased 60-fold (PFOA) and 41-fold (PFOS) according to pseudosecond-order kinetics model and the maximum electrosorption capacity (q(m)) of PFOX (50 μg/L to 10 mg/L) increased 150-fold (PFOA) and 94-fold (PFOS) simulated with Langmuir model. These significant improvements were assumed to benefit from enhanced electrostatic attraction under electrochemical assistance. Furthermore, the used MWNTs were found to be regenerative and reusable. This work provides not only a new approach to effective removal of perfluorochemicals from aqueous solution but also a low energy-consumption and environmentally-friendly strategy for application of carbon nanotubes in water treatment. Removal of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from aqueous solution has attracted wide attention in light of their environmental persistence, bioaccumulation, and potential toxicity. Although various destructive technologies were developed, removal of PFOX (X = A and S) under mild conditions are still desirable. In this work, multiwalled carbon nanotubes (MWNTs) were applied to remove PFOX in electrochemically assistant adsorption. Electrosorption kinetics and isotherms were investigated relative to open circuit (OC) adsorption and adsorption on powder MWNTs. Compared with powder MWNTs adsorption, the initial adsorption rate (υ0) of 100 μg/L PFOX at 0.6 V increased 60-fold (PFOA) and 41-fold (PFOS) according to pseudosecond-order kinetics model and the maximum electrosorption capacity (q m) of PFOX (50 μg/L to 10 mg/L) increased 150-fold (PFOA) and 94-fold (PFOS) simulated with Langmuir model. These significant improvements were assumed to benefit from enhanced electrostatic attraction under electrochemical assistance. Furthermore, the used MWNTs were found to be regenerative and reusable. This work provides not only a new approach to effective removal of perfluorochemicals from aqueous solution but also a low energy-consumption and environmentally-friendly strategy for application of carbon nanotubes in water treatment. Removal of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from aqueous solution has attracted wide attention in light of their environmental persistence, bioaccumulation, and potential toxicity. Although various destructive technologies were developed, removal of PFOX (X = A and S) under mild conditions are still desirable. In this work, multiwalled carbon nanotubes (MWNTs) were applied to remove PFOX in electrochemically assistant adsorption. Electrosorption kinetics and isotherms were investigated relative to open circuit (OC) adsorption and adsorption on powder MWNTs. Compared with powder MWNTs adsorption, the initial adsorption rate (υ(0)) of 100 μg/L PFOX at 0.6 V increased 60-fold (PFOA) and 41-fold (PFOS) according to pseudosecond-order kinetics model and the maximum electrosorption capacity (q(m)) of PFOX (50 μg/L to 10 mg/L) increased 150-fold (PFOA) and 94-fold (PFOS) simulated with Langmuir model. These significant improvements were assumed to benefit from enhanced electrostatic attraction under electrochemical assistance. Furthermore, the used MWNTs were found to be regenerative and reusable. This work provides not only a new approach to effective removal of perfluorochemicals from aqueous solution but also a low energy-consumption and environmentally-friendly strategy for application of carbon nanotubes in water treatment. |
Author | Chen, Shuo Quan, Xie Li, Xiaona Zhang, Yaobin |
AuthorAffiliation | Dalian University of Technology |
AuthorAffiliation_xml | – name: Dalian University of Technology |
Author_xml | – sequence: 1 givenname: Xiaona surname: Li fullname: Li, Xiaona – sequence: 2 givenname: Shuo surname: Chen fullname: Chen, Shuo – sequence: 3 givenname: Xie surname: Quan fullname: Quan, Xie email: quanxie@dlut.edu.cn – sequence: 4 givenname: Yaobin surname: Zhang fullname: Zhang, Yaobin |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24566992$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21861476$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0VtrFDEUAOAgFbutPvgHZBCk9GHsSTKTmXlclm0rVCuo4Ntwchmakk3WJKP475ul2xaq5CHh8OVwLkfkwAdvCHlL4SMFRs9MYlCO-P2CLGjLoG77lh6QBQDl9cDFz0NylNItADAO_StyyGgvaNOJBTFrf4NeGV0tdQpxm23wVZiqr-fXywq93j2-VSX2eXbZ_kHnCl1hlCX0BX3IszSpmr02sVo7o3IM6sZsrEJXLVOyKe-yvyYvJ3TJvNnfx-TH-fr76rK-ur74tFpe1dh0kGuJwFkLGmEAM1GpQXeqk6hog1JMpmeCSRx4oybaS9qZ0oNqgQotO8Up5cfk5D7vNoZfs0l53NikjHPoTZjT2A9lMrykKfL9M3kb5uhLceMAwDsBtC_o3R7NcmP0uI12g_Hv-DC-Aj7sAabS8RRLszY9uaYVYhhYcaf3TsWQUjTTI6Ew7lY4Pq6w2LNnVtmMu73kiNb998e-ClTpqY1_3R1YLqgZ |
CODEN | ESTHAG |
CitedBy_id | crossref_primary_10_1039_C7NJ03026F crossref_primary_10_1021_acs_est_6b00730 crossref_primary_10_1007_s41742_024_00582_w crossref_primary_10_1016_j_memsci_2018_02_012 crossref_primary_10_1021_es302148z crossref_primary_10_1039_D0EW00785D crossref_primary_10_1039_D1RA04821J crossref_primary_10_1021_jacs_7b02381 crossref_primary_10_1016_j_jece_2024_114990 crossref_primary_10_1021_je400974z crossref_primary_10_1016_j_apcatb_2019_04_030 crossref_primary_10_1021_acs_est_0c02773 crossref_primary_10_1016_j_cclet_2020_03_011 crossref_primary_10_1021_es500506w crossref_primary_10_1002_celc_202201006 crossref_primary_10_1039_C5RA14299G crossref_primary_10_1016_j_chemosphere_2020_126384 crossref_primary_10_1016_j_surfin_2024_105308 crossref_primary_10_1016_j_apsusc_2019_144716 crossref_primary_10_1039_D3EN00987D crossref_primary_10_1007_s12274_015_0968_7 crossref_primary_10_1016_j_chemosphere_2017_12_074 crossref_primary_10_1021_acs_est_9b05469 crossref_primary_10_1007_s10965_021_02820_7 crossref_primary_10_1039_C8GC00854J crossref_primary_10_1016_j_seppur_2023_124980 crossref_primary_10_1016_j_jhazmat_2020_123081 crossref_primary_10_1016_j_scitotenv_2022_154939 crossref_primary_10_1016_j_jhazmat_2024_134429 crossref_primary_10_3390_su151310617 crossref_primary_10_1016_j_chemosphere_2012_06_003 crossref_primary_10_1016_j_desal_2024_118457 crossref_primary_10_1016_j_cej_2020_126852 crossref_primary_10_1016_j_envres_2023_116102 crossref_primary_10_1016_j_proenv_2013_04_063 crossref_primary_10_1007_s10924_022_02737_2 crossref_primary_10_1016_j_apsusc_2020_146579 crossref_primary_10_1016_j_seppur_2025_132089 crossref_primary_10_1016_j_jpowsour_2018_08_050 crossref_primary_10_1016_j_chemosphere_2013_01_093 crossref_primary_10_1016_j_chemosphere_2017_05_033 crossref_primary_10_1016_j_scitotenv_2022_160836 crossref_primary_10_1016_j_envpol_2019_01_045 crossref_primary_10_1007_s11356_024_32449_0 crossref_primary_10_1016_j_electacta_2016_07_005 crossref_primary_10_1016_j_biortech_2013_09_107 crossref_primary_10_1002_cjce_23625 crossref_primary_10_4028_www_scientific_net_AMR_878_199 crossref_primary_10_1016_j_carbpol_2021_118165 crossref_primary_10_1016_j_cej_2022_137019 crossref_primary_10_1016_j_eti_2020_100915 crossref_primary_10_1016_j_cej_2021_129585 crossref_primary_10_1016_j_jcis_2014_07_041 crossref_primary_10_1016_j_scitotenv_2019_133606 crossref_primary_10_1016_j_jece_2024_114894 crossref_primary_10_1016_j_watres_2014_08_030 crossref_primary_10_1016_j_chemosphere_2014_03_050 crossref_primary_10_1021_es5039479 crossref_primary_10_1021_acsaenm_3c00686 crossref_primary_10_1016_j_chemosphere_2015_12_012 crossref_primary_10_1016_j_chempr_2022_09_004 crossref_primary_10_1016_j_chemosphere_2024_141164 crossref_primary_10_1021_acsomega_1c00044 crossref_primary_10_1080_09593330_2014_912253 crossref_primary_10_1016_j_jece_2021_105784 crossref_primary_10_3390_molecules29174229 crossref_primary_10_1016_j_cej_2021_129070 crossref_primary_10_1021_acs_est_0c03800 crossref_primary_10_1016_j_colsurfa_2015_01_069 crossref_primary_10_1021_acssuschemeng_7b02186 crossref_primary_10_1021_acsomega_8b03275 crossref_primary_10_1002_adma_202410720 crossref_primary_10_4236_gep_2017_56001 crossref_primary_10_1016_j_jhazmat_2014_04_038 crossref_primary_10_1021_acs_est_6b02100 crossref_primary_10_1007_s00449_015_1533_1 crossref_primary_10_1021_acs_est_3c01266 crossref_primary_10_1016_j_desal_2015_03_025 crossref_primary_10_1016_j_jwpe_2024_105756 crossref_primary_10_1016_j_cej_2024_157222 crossref_primary_10_1016_j_jhazmat_2022_129051 crossref_primary_10_1021_acsapm_2c01580 crossref_primary_10_1089_ees_2016_0233 crossref_primary_10_1007_s10450_013_9496_5 crossref_primary_10_1016_j_chemosphere_2015_06_095 crossref_primary_10_1016_j_apcatb_2017_02_084 crossref_primary_10_1016_j_chemosphere_2023_138268 crossref_primary_10_1007_s11434_014_0322_6 crossref_primary_10_1016_j_apcatb_2018_09_058 crossref_primary_10_1016_j_jhazmat_2021_125866 crossref_primary_10_1007_s11783_023_1618_z crossref_primary_10_1016_j_colsurfa_2014_10_044 crossref_primary_10_1039_D2EW00721E crossref_primary_10_1016_j_seppur_2025_131882 crossref_primary_10_1016_j_chemosphere_2020_128520 crossref_primary_10_1039_D2EN00545J crossref_primary_10_1007_s11164_021_04603_7 crossref_primary_10_1016_j_molliq_2017_06_090 crossref_primary_10_3390_jcs4030135 crossref_primary_10_2166_wst_2021_484 crossref_primary_10_1016_j_electacta_2016_04_082 crossref_primary_10_3390_nano5020981 crossref_primary_10_1080_10643389_2019_1700751 crossref_primary_10_1016_j_jhazmat_2020_124384 crossref_primary_10_1021_acsestengg_4c00418 crossref_primary_10_1016_j_cej_2013_08_027 crossref_primary_10_1016_j_scitotenv_2020_143719 crossref_primary_10_1016_j_scitotenv_2024_172184 crossref_primary_10_1093_nsr_nwad191 crossref_primary_10_1016_j_chemosphere_2025_144282 crossref_primary_10_1088_1757_899X_191_1_012008 crossref_primary_10_1016_j_watres_2015_10_043 crossref_primary_10_1039_D0TA07708A crossref_primary_10_1016_j_cej_2017_07_033 crossref_primary_10_1016_S1001_0742_12_60161_2 crossref_primary_10_3390_molecules21050628 crossref_primary_10_1007_s10934_014_9788_5 crossref_primary_10_1016_j_cej_2020_124230 crossref_primary_10_1021_acsestwater_3c00486 crossref_primary_10_1016_j_cej_2023_144354 crossref_primary_10_1016_j_ecoenv_2016_11_026 crossref_primary_10_1016_j_hazadv_2023_100252 crossref_primary_10_1016_j_jclepro_2020_121546 crossref_primary_10_1016_j_scitotenv_2022_155652 crossref_primary_10_1016_j_apcatb_2019_118442 crossref_primary_10_1021_acsestengg_1c00015 crossref_primary_10_1016_j_jwpe_2024_104854 crossref_primary_10_1039_C8EW00621K crossref_primary_10_1016_j_electacta_2021_139635 crossref_primary_10_1016_j_jcis_2013_10_021 crossref_primary_10_1016_j_memsci_2015_12_049 crossref_primary_10_1007_s11356_022_21513_2 crossref_primary_10_1016_j_seppur_2023_125494 crossref_primary_10_1021_acs_est_9b04352 crossref_primary_10_1016_j_chemosphere_2018_04_173 crossref_primary_10_1021_acs_est_0c07927 crossref_primary_10_1038_s41467_019_13775_1 crossref_primary_10_1016_j_memsci_2020_117821 crossref_primary_10_1016_j_jelechem_2017_07_018 crossref_primary_10_1016_j_scitotenv_2021_147041 crossref_primary_10_1021_acscatal_2c03551 crossref_primary_10_1021_acsomega_2c07134 crossref_primary_10_1016_j_seppur_2022_122411 crossref_primary_10_1016_j_chemosphere_2020_126316 crossref_primary_10_1002_aic_15185 crossref_primary_10_1007_s11783_015_0790_1 crossref_primary_10_1016_j_envpol_2015_08_032 crossref_primary_10_1007_s10570_023_05090_2 crossref_primary_10_1016_j_watres_2019_115381 crossref_primary_10_1021_acs_est_8b05186 crossref_primary_10_1016_j_envpol_2017_12_075 crossref_primary_10_1016_j_microc_2024_112557 crossref_primary_10_1021_es502312t crossref_primary_10_1016_j_cej_2012_04_092 crossref_primary_10_1016_j_eti_2020_100816 crossref_primary_10_1016_j_jhazmat_2018_12_066 crossref_primary_10_1016_j_cej_2017_03_073 crossref_primary_10_1007_s11356_018_1578_1 crossref_primary_10_1016_j_jhazmat_2023_132959 crossref_primary_10_1016_j_jcis_2013_03_065 crossref_primary_10_1016_j_scitotenv_2014_02_129 |
Cites_doi | 10.1021/es0112745 10.1016/j.jelechem.2011.01.012 10.1023/A:1017528002713 10.1016/j.apsusc.2008.06.168 10.1016/0040-6031(75)85095-7 10.1016/S0022-0728(02)01206-8 10.1021/es8001184 10.1016/j.jhazmat.2010.11.012 10.1021/es101888j 10.1021/es0517419 10.1016/j.cplett.2009.12.031 10.1016/j.jhazmat.2009.05.057 10.1021/es703273s 10.1063/1.2335614 10.1021/es900637a 10.1021/es801777n 10.1021/la001527s 10.1016/j.jhazmat.2010.11.025 10.1021/es803268b 10.1021/es101177k 10.1021/es040342v 10.1002/adma.200802560 10.1016/j.watres.2008.09.026 10.1080/10408440490464705 10.1021/es900464a 10.1021/es049719n 10.1016/S0022-0728(83)80398-2 10.1016/j.envpol.2008.11.007 10.1021/es060831q 10.1039/b907703k 10.1089/109287503768335959 10.1021/es00158a006 10.1021/es8013858 |
ContentType | Journal Article |
Copyright | Copyright © 2011 American Chemical Society 2014 INIST-CNRS Copyright American Chemical Society Oct 1, 2011 |
Copyright_xml | – notice: Copyright © 2011 American Chemical Society – notice: 2014 INIST-CNRS – notice: Copyright American Chemical Society Oct 1, 2011 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 |
DOI | 10.1021/es202026v |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Biotechnology Research Abstracts MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences Applied Sciences |
EISSN | 1520-5851 |
EndPage | 8505 |
ExternalDocumentID | 2494047961 21861476 24566992 10_1021_es202026v a2788130 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | - .K2 1AW 3R3 4.4 4R4 53G 55A 5GY 5VS 63O 7~N 85S AABXI ABFLS ABMVS ABOGM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACPRK ACS AEESW AENEX AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ K2 LG6 MS PQEST PQQKQ ROL RXW TN5 TWZ U5U UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK XZL YZZ --- -DZ -~X ..I .DC 6TJ AAHBH AAYOK AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV ADMHC ADUKH AGXLV AHGAQ CITATION CUPRZ GGK MS~ MW2 XSW ZCA .HR 186 1WB 42X 8WZ A6W ABHMW ABTAH ACKIV ACRPL ADNMO AETEA AEYZD ANPPW ANTXH IHE IQODW MVM NHB OHT RNS TAE UBC UBX UBY UQL VJK VOH YV5 ZCG ZY4 ~A~ CGR CUY CVF ECM EIF NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 |
ID | FETCH-LOGICAL-a470t-ba03250da090ef1bd0d7c7bac14ab6fe8262ba934cf18b17e147c5016db7c3113 |
IEDL.DBID | ACS |
ISSN | 0013-936X 1520-5851 |
IngestDate | Mon Jul 21 09:35:49 EDT 2025 Fri Jul 25 06:00:25 EDT 2025 Mon Jul 21 06:03:49 EDT 2025 Wed Apr 02 07:26:17 EDT 2025 Tue Jul 01 02:10:37 EDT 2025 Thu Apr 24 22:51:16 EDT 2025 Thu Aug 27 13:41:53 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Keywords | Emerging contaminant Carbon nanotubes Endocrine disruptor Electrode material Persistent organic pollutant Perfluorooctanoic acid Adsorption Decontamination Multiwalled nanotube Carboxylic acid Organic fluorine compounds Poison Water pollution Perfluorooctane sulfonate Electrochemical reaction Nanostructured materials Organic compounds |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a470t-ba03250da090ef1bd0d7c7bac14ab6fe8262ba934cf18b17e147c5016db7c3113 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 21861476 |
PQID | 900376018 |
PQPubID | 45412 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_895853826 proquest_journals_900376018 pubmed_primary_21861476 pascalfrancis_primary_24566992 crossref_primary_10_1021_es202026v crossref_citationtrail_10_1021_es202026v acs_journals_10_1021_es202026v |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-10-01 |
PublicationDateYYYYMMDD | 2011-10-01 |
PublicationDate_xml | – month: 10 year: 2011 text: 2011-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States – name: Easton |
PublicationTitle | Environmental science & technology |
PublicationTitleAlternate | Environ. Sci. Technol |
PublicationYear | 2011 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Milonjic S. K. (ref26/cit26) 1975; 11 Schultz M. M. (ref5/cit5) 2003; 20 Moriwaki H. (ref9/cit9) 2005; 39 Kennedy G. L. (ref7/cit7) 2004; 34 Salam M. A. (ref33/cit33) 2008; 255 Tobias H. (ref24/cit24) 1983; 148 Vincent C. H. (ref32/cit32) 1987; 21 ref11/cit11 ref25/cit25 Li H. B. (ref28/cit28) 2009; 19 Cheng J. (ref3/cit3) 2008; 42 Wang X. Z. (ref19/cit19) 2006; 89 Wang T. H. (ref6/cit6) 2009; 43 Hori H. (ref8/cit8) 2004; 38 Li H. B. (ref29/cit29) 2011; 653 Li H. B. (ref15/cit15) 2010; 44 Li X. N. (ref21/cit21) 2011; 186 Li H. B. (ref16/cit16) 2008; 42 Liu Y. X. (ref20/cit20) 2011; 186 Wu Z. S. (ref22/cit22) 2009; 21 Yang K. (ref14/cit14) 2009; 157 Li H. B. (ref27/cit27) 2010; 485 Foo K. Y. (ref18/cit18) 2009; 170 Carter K. E. (ref10/cit10) 2008; 42 Ayranci E. (ref34/cit34) 2001; 31 Niu J. J. (ref30/cit30) 2002; 536 Hori H. (ref1/cit1) 2006; 40 Yang K. L. (ref23/cit23) 2001; 17 Tang C. Y. Y. (ref4/cit4) 2006; 40 Pan B. (ref13/cit13) 2008; 42 Ji L. L. (ref31/cit31) 2009; 43 Mak Y. L. (ref2/cit2) 2009; 43 Gabelich C. J. (ref35/cit35) 2002; 36 Bayram E. (ref17/cit17) 2010; 44 Pan B. (ref12/cit12) 2008; 42 |
References_xml | – volume: 36 start-page: 3010 issue: 13 year: 2002 ident: ref35/cit35 publication-title: Environ. Sci. Technol. doi: 10.1021/es0112745 – ident: ref25/cit25 – volume: 653 start-page: 40 issue: 1 year: 2011 ident: ref29/cit29 publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2011.01.012 – volume: 31 start-page: 257 issue: 3 year: 2001 ident: ref34/cit34 publication-title: J. Appl. Electrochem. doi: 10.1023/A:1017528002713 – volume: 255 start-page: 1975 issue: 5 year: 2008 ident: ref33/cit33 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2008.06.168 – volume: 11 start-page: 261 issue: 3 year: 1975 ident: ref26/cit26 publication-title: Thermochim. Acta doi: 10.1016/0040-6031(75)85095-7 – volume: 536 start-page: 83 issue: 1 year: 2002 ident: ref30/cit30 publication-title: J. Electroanal. Chem. doi: 10.1016/S0022-0728(02)01206-8 – volume: 42 start-page: 5480 issue: 15 year: 2008 ident: ref13/cit13 publication-title: Environ. Sci. Technol. doi: 10.1021/es8001184 – ident: ref11/cit11 – volume: 186 start-page: 407 issue: 1 year: 2011 ident: ref21/cit21 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.11.012 – volume: 44 start-page: 8692 issue: 22 year: 2010 ident: ref15/cit15 publication-title: Environ. Sci. Technol. doi: 10.1021/es101888j – volume: 40 start-page: 1049 issue: 3 year: 2006 ident: ref1/cit1 publication-title: Environ. Sci. Technol. doi: 10.1021/es0517419 – volume: 485 start-page: 161 issue: 1 year: 2010 ident: ref27/cit27 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2009.12.031 – volume: 170 start-page: 552 issue: 2 year: 2009 ident: ref18/cit18 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2009.05.057 – volume: 42 start-page: 6111 issue: 16 year: 2008 ident: ref10/cit10 publication-title: Environ. Sci. Technol. doi: 10.1021/es703273s – volume: 89 start-page: 053127 issue: 5 year: 2006 ident: ref19/cit19 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2335614 – volume: 43 start-page: 4824 issue: 13 year: 2009 ident: ref2/cit2 publication-title: Environ. Sci. Technol. doi: 10.1021/es900637a – volume: 42 start-page: 9005 issue: 24 year: 2008 ident: ref12/cit12 publication-title: Environ. Sci. Technol. doi: 10.1021/es801777n – volume: 17 start-page: 1961 issue: 6 year: 2001 ident: ref23/cit23 publication-title: Langmuir doi: 10.1021/la001527s – volume: 186 start-page: 473 issue: 1 year: 2011 ident: ref20/cit20 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.11.025 – volume: 43 start-page: 2322 issue: 7 year: 2009 ident: ref31/cit31 publication-title: Environ. Sci. Technol. doi: 10.1021/es803268b – volume: 44 start-page: 6331 issue: 16 year: 2010 ident: ref17/cit17 publication-title: Environ. Sci. Technol. doi: 10.1021/es101177k – volume: 39 start-page: 3388 issue: 9 year: 2005 ident: ref9/cit9 publication-title: Environ. Sci. Technol. doi: 10.1021/es040342v – volume: 21 start-page: 1756 issue: 17 year: 2009 ident: ref22/cit22 publication-title: Adv. Mater. doi: 10.1002/adma.200802560 – volume: 42 start-page: 4923 issue: 20 year: 2008 ident: ref16/cit16 publication-title: Water Res. doi: 10.1016/j.watres.2008.09.026 – volume: 34 start-page: 351 issue: 4 year: 2004 ident: ref7/cit7 publication-title: Crit. Rev. Toxicol. doi: 10.1080/10408440490464705 – volume: 43 start-page: 5171 issue: 14 year: 2009 ident: ref6/cit6 publication-title: Environ. Sci. Technol. doi: 10.1021/es900464a – volume: 38 start-page: 6118 issue: 22 year: 2004 ident: ref8/cit8 publication-title: Environ. Sci. Technol. doi: 10.1021/es049719n – volume: 148 start-page: 221 issue: 2 year: 1983 ident: ref24/cit24 publication-title: J. Electroanal. Chem. doi: 10.1016/S0022-0728(83)80398-2 – volume: 157 start-page: 1095 issue: 4 year: 2009 ident: ref14/cit14 publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2008.11.007 – volume: 40 start-page: 7343 issue: 23 year: 2006 ident: ref4/cit4 publication-title: Environ. Sci. Technol. doi: 10.1021/es060831q – volume: 19 start-page: 6773 issue: 37 year: 2009 ident: ref28/cit28 publication-title: J. Mater. Chem. doi: 10.1039/b907703k – volume: 20 start-page: 487 issue: 5 year: 2003 ident: ref5/cit5 publication-title: Environ. Eng. Sci. doi: 10.1089/109287503768335959 – volume: 21 start-page: 370 issue: 4 year: 1987 ident: ref32/cit32 publication-title: Environ. Sci. Technol. doi: 10.1021/es00158a006 – volume: 42 start-page: 8057 issue: 21 year: 2008 ident: ref3/cit3 publication-title: Environ. Sci. Technol. doi: 10.1021/es8013858 |
SSID | ssj0002308 |
Score | 2.4515975 |
Snippet | Removal of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from aqueous solution has attracted wide attention in light of their... |
SourceID | proquest pubmed pascalfrancis crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8498 |
SubjectTerms | Adsorption Alkanesulfonic Acids - chemistry Applied sciences Aqueous solutions Biological and physicochemical phenomena Caprylates - chemistry Carbon Earth sciences Earth, ocean, space Electrochemical Techniques - methods Electrodes Electrolytes - chemistry Engineering and environment geology. Geothermics Exact sciences and technology Fluorocarbons - chemistry Hydrogen-Ion Concentration Kinetics Models, Chemical Nanotubes Nanotubes, Carbon - chemistry Nanotubes, Carbon - ultrastructure Natural water pollution Pollution Pollution, environment geology Recycling Remediation and Control Technologies Temperature Water treatment Water treatment and pollution |
Title | Enhanced Adsorption of PFOA and PFOS on Multiwalled Carbon Nanotubes under Electrochemical Assistance |
URI | http://dx.doi.org/10.1021/es202026v https://www.ncbi.nlm.nih.gov/pubmed/21861476 https://www.proquest.com/docview/900376018 https://www.proquest.com/docview/895853826 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB6VcgEhHoXSUFhZwIFLSuwkjn1cLbuqkHhIpdLeIj-FBEqqTbZI_HrGeW0rWrhFziSK7ZnxN5kXwFtleSK9zGPLPIszI3isJVWhiYBEgG8zLkKC86fP_PQ8-7jO13vw5hYPPqPvXYP2OVoKl3fgLuMovAH_LM4mdYsYWoxtCmTK12P5oKuPhqPHNNeOngcXqsFV8H37itvxZXfOrB7BhzFbpw8v-XGybfWJ-f138cZ_TeExPBxwJpn3jPEE9lx1APevVB88gMPlLskNSQcpb56CW1bfu8AAMrdNvemUCqk9-br6MieqsuHijOBYl737K3RjsWShNhqHUFvX7Va7hoTstA1Z9m12zFCXgCA7BMSKb38G56vlt8VpPLRjiFVWJG2sVZIiYLIqkYnzVNvEFqbQytBMae4dGipMK5lmxlOhaeFoVpgcIaXVhUkpTQ9hv6ordwSE6UIq6p1jNs-85CLXDhWNSYTlztI8ghnuVzmIU1N2nnJGy2khI3g3bmVphmLmoafGz5tIX0-kF30Fj5uIZtf4YaIMfmEuJYvgeGSQ3WeFv8AhpkhEQKa7KJ7B56IqV2-bUki0x1Jcmgie92y1ezUViI0K_uJ_kz2Ge2yMPKQvYb_dbN0rhEKtnnWi8Ad4vwJN |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BOUCFeBRaQmGxEAcuaWMnceLjarWrBdqC1FbaW-RXhARKqnUWJH4947y2RUVwi5KJZU9mxt_E8wB4Jw2PRCnS0LCShYnOeagElb6JgECAbxKe-wTn0zO-vEw-rtJVXybH58LgJByO5NpD_G11AXpsHbrp6DD8uAv3EIQwL83T2flodRFK50O3AhHz1VBF6PqrfgfS7sYO9PBKOmRG2XWx-DvMbLebxeOub1E70TbK5NvRplFH-tcfNRz_byVP4FGPOsm0E5OncMdWe7B7rRbhHuzPtylvSNrrvHsGdl59bcMEyNS4et2aGFKX5Mvi85TIyviLc4L32lzen743iyEzuVZ4C2133WyUdcTnqq3JvGu6o_sqBQSFw-NXHP05XC7mF7Nl2DdnCGWSRU2oZBQjfDIyEpEtqTKRyXSmpKaJVLy06LYwJUWc6JLmimaWJplOEWAalemY0ngfdqq6si-AMJUJSUtrmUmTUvA8VRbNjo5yw62haQAT5GPRK5cr2nNzRouRkQG8H75oofvS5r7DxvfbSN-OpFddPY_biCY3xGKk9KfEXAgWwOEgJ9tp-X_CPsIoD4CMT1FZ_QmMrGy9cUUu0DuLkTUBHHTStR2a5oiUMv7yX4t9A_eXF6cnxcmHs0-H8IANMYn0Few06419jSCpUZNWO34Dx2IKrg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3ra9RAEB-0gljER7U1Vs9F_OCXtNk8NtmPx3lHfbWFWrhvYZ8ISnLc5hT8653N61qp6LeQTJbdyczubzIvgDdCs4hbnoU6tnGYqoKFklPhmwhwBPg6ZYVPcP58yk4u0w_LbNkbij4XBifhcCTXOvG9Vq-07SsM0GPj0FRHo-HHbbjj3XVeoqezi3HnRThdDB0LeMKWQyWhq6_6U0i5a6fQ_ZVwyBDbdbL4O9Rsj5zFQzgbJ9tGmnw72jTySP36o47j_6_mETzo0SeZduLyGG6Zag92r9Qk3IP9-Tb1DUl73XdPwMyrr224AJlqV6_brYbUlpwvzqZEVNpfXBC81-b0_vQ9WjSZibXEW7iH181GGkd8ztqazLvmO6qvVkBQSDyOxdGfwuVi_mV2EvZNGkKR5lETShElCKO0iHhkLJU60rnKpVA0FZJZg-ZLLAVPUmVpIWluaJqrDIGmlrlKKE32YaeqK_MMSCxzLqg1JtZZajkrMmlw-1FRoZnRNAtggrwseyVzZes_j2k5MjKAt8NXLVVf4tx32vh-E-nrkXTV1fW4iWhyTTRGSu8tZpzHARwOsrKdlv837CONigDI-BSV1ntiRGXqjSsLjlZagqwJ4KCTsO3QtEDElLPn_1rsK7h7_m5Rfnp_-vEQ7sVDaCJ9ATvNemNeIlZq5KRVkN9v7Q0x |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+adsorption+of+PFOA+and+PFOS+on+multiwalled+carbon+nanotubes+under+electrochemical+assistance&rft.jtitle=Environmental+science+%26+technology&rft.au=Li%2C+Xiaona&rft.au=Chen%2C+Shuo&rft.au=Quan%2C+Xie&rft.au=Zhang%2C+Yaobin&rft.date=2011-10-01&rft.eissn=1520-5851&rft.volume=45&rft.issue=19&rft.spage=8498&rft_id=info:doi/10.1021%2Fes202026v&rft_id=info%3Apmid%2F21861476&rft.externalDocID=21861476 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon |