Enhanced Adsorption of PFOA and PFOS on Multiwalled Carbon Nanotubes under Electrochemical Assistance

Removal of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from aqueous solution has attracted wide attention in light of their environmental persistence, bioaccumulation, and potential toxicity. Although various destructive technologies were developed, removal of PFOX (X = A and...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 45; no. 19; pp. 8498 - 8505
Main Authors Li, Xiaona, Chen, Shuo, Quan, Xie, Zhang, Yaobin
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 01.10.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Removal of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from aqueous solution has attracted wide attention in light of their environmental persistence, bioaccumulation, and potential toxicity. Although various destructive technologies were developed, removal of PFOX (X = A and S) under mild conditions are still desirable. In this work, multiwalled carbon nanotubes (MWNTs) were applied to remove PFOX in electrochemically assistant adsorption. Electrosorption kinetics and isotherms were investigated relative to open circuit (OC) adsorption and adsorption on powder MWNTs. Compared with powder MWNTs adsorption, the initial adsorption rate (υ0) of 100 μg/L PFOX at 0.6 V increased 60-fold (PFOA) and 41-fold (PFOS) according to pseudosecond-order kinetics model and the maximum electrosorption capacity (q m) of PFOX (50 μg/L to 10 mg/L) increased 150-fold (PFOA) and 94-fold (PFOS) simulated with Langmuir model. These significant improvements were assumed to benefit from enhanced electrostatic attraction under electrochemical assistance. Furthermore, the used MWNTs were found to be regenerative and reusable. This work provides not only a new approach to effective removal of perfluorochemicals from aqueous solution but also a low energy-consumption and environmentally-friendly strategy for application of carbon nanotubes in water treatment.
AbstractList Removal of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from aqueous solution has attracted wide attention in light of their environmental persistence, bioaccumulation, and potential toxicity. Although various destructive technologies were developed, removal of PFOX (X = A and S) under mild conditions are still desirable. In this work, multiwalled carbon nanotubes (MWNTs) were applied to remove PFOX in electrochemically assistant adsorption. Electrosorption kinetics and isotherms were investigated relative to open circuit (OC) adsorption and adsorption on powder MWNTs. Compared with powder MWNTs adsorption, the initial adsorption rate (...) of 100 ...g/L PFOX at 0.6 V increased 60-fold (PFOA) and 41-fold (PFOS) according to pseudosecond-order kinetics model and the maximum electrosorption capacity (q...) of PFOX (50 ...g/L to 10 mg/L) increased 150-fold (PFOA) and 94-fold (PFOS) simulated with Langmuir model. These significant improvements were assumed to benefit from enhanced electrostatic attraction under electrochemical assistance. Furthermore, the used MWNTs were found to be regenerative and reusable. This work provides not only a new approach to effective removal of perfluorochemicals from aqueous solution but also a low energy-consumption and environmentally-friendly strategy for application of carbon nanotubes in water treatment. (ProQuest: ... denotes formulae/symbols omitted.)
Removal of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from aqueous solution has attracted wide attention in light of their environmental persistence, bioaccumulation, and potential toxicity. Although various destructive technologies were developed, removal of PFOX (X = A and S) under mild conditions are still desirable. In this work, multiwalled carbon nanotubes (MWNTs) were applied to remove PFOX in electrochemically assistant adsorption. Electrosorption kinetics and isotherms were investigated relative to open circuit (OC) adsorption and adsorption on powder MWNTs. Compared with powder MWNTs adsorption, the initial adsorption rate (υ(0)) of 100 μg/L PFOX at 0.6 V increased 60-fold (PFOA) and 41-fold (PFOS) according to pseudosecond-order kinetics model and the maximum electrosorption capacity (q(m)) of PFOX (50 μg/L to 10 mg/L) increased 150-fold (PFOA) and 94-fold (PFOS) simulated with Langmuir model. These significant improvements were assumed to benefit from enhanced electrostatic attraction under electrochemical assistance. Furthermore, the used MWNTs were found to be regenerative and reusable. This work provides not only a new approach to effective removal of perfluorochemicals from aqueous solution but also a low energy-consumption and environmentally-friendly strategy for application of carbon nanotubes in water treatment.Removal of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from aqueous solution has attracted wide attention in light of their environmental persistence, bioaccumulation, and potential toxicity. Although various destructive technologies were developed, removal of PFOX (X = A and S) under mild conditions are still desirable. In this work, multiwalled carbon nanotubes (MWNTs) were applied to remove PFOX in electrochemically assistant adsorption. Electrosorption kinetics and isotherms were investigated relative to open circuit (OC) adsorption and adsorption on powder MWNTs. Compared with powder MWNTs adsorption, the initial adsorption rate (υ(0)) of 100 μg/L PFOX at 0.6 V increased 60-fold (PFOA) and 41-fold (PFOS) according to pseudosecond-order kinetics model and the maximum electrosorption capacity (q(m)) of PFOX (50 μg/L to 10 mg/L) increased 150-fold (PFOA) and 94-fold (PFOS) simulated with Langmuir model. These significant improvements were assumed to benefit from enhanced electrostatic attraction under electrochemical assistance. Furthermore, the used MWNTs were found to be regenerative and reusable. This work provides not only a new approach to effective removal of perfluorochemicals from aqueous solution but also a low energy-consumption and environmentally-friendly strategy for application of carbon nanotubes in water treatment.
Removal of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from aqueous solution has attracted wide attention in light of their environmental persistence, bioaccumulation, and potential toxicity. Although various destructive technologies were developed, removal of PFOX (X = A and S) under mild conditions are still desirable. In this work, multiwalled carbon nanotubes (MWNTs) were applied to remove PFOX in electrochemically assistant adsorption. Electrosorption kinetics and isotherms were investigated relative to open circuit (OC) adsorption and adsorption on powder MWNTs. Compared with powder MWNTs adsorption, the initial adsorption rate (υ0) of 100 μg/L PFOX at 0.6 V increased 60-fold (PFOA) and 41-fold (PFOS) according to pseudosecond-order kinetics model and the maximum electrosorption capacity (q m) of PFOX (50 μg/L to 10 mg/L) increased 150-fold (PFOA) and 94-fold (PFOS) simulated with Langmuir model. These significant improvements were assumed to benefit from enhanced electrostatic attraction under electrochemical assistance. Furthermore, the used MWNTs were found to be regenerative and reusable. This work provides not only a new approach to effective removal of perfluorochemicals from aqueous solution but also a low energy-consumption and environmentally-friendly strategy for application of carbon nanotubes in water treatment.
Removal of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from aqueous solution has attracted wide attention in light of their environmental persistence, bioaccumulation, and potential toxicity. Although various destructive technologies were developed, removal of PFOX (X = A and S) under mild conditions are still desirable. In this work, multiwalled carbon nanotubes (MWNTs) were applied to remove PFOX in electrochemically assistant adsorption. Electrosorption kinetics and isotherms were investigated relative to open circuit (OC) adsorption and adsorption on powder MWNTs. Compared with powder MWNTs adsorption, the initial adsorption rate (υ(0)) of 100 μg/L PFOX at 0.6 V increased 60-fold (PFOA) and 41-fold (PFOS) according to pseudosecond-order kinetics model and the maximum electrosorption capacity (q(m)) of PFOX (50 μg/L to 10 mg/L) increased 150-fold (PFOA) and 94-fold (PFOS) simulated with Langmuir model. These significant improvements were assumed to benefit from enhanced electrostatic attraction under electrochemical assistance. Furthermore, the used MWNTs were found to be regenerative and reusable. This work provides not only a new approach to effective removal of perfluorochemicals from aqueous solution but also a low energy-consumption and environmentally-friendly strategy for application of carbon nanotubes in water treatment.
Author Chen, Shuo
Quan, Xie
Li, Xiaona
Zhang, Yaobin
AuthorAffiliation Dalian University of Technology
AuthorAffiliation_xml – name: Dalian University of Technology
Author_xml – sequence: 1
  givenname: Xiaona
  surname: Li
  fullname: Li, Xiaona
– sequence: 2
  givenname: Shuo
  surname: Chen
  fullname: Chen, Shuo
– sequence: 3
  givenname: Xie
  surname: Quan
  fullname: Quan, Xie
  email: quanxie@dlut.edu.cn
– sequence: 4
  givenname: Yaobin
  surname: Zhang
  fullname: Zhang, Yaobin
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24566992$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21861476$$D View this record in MEDLINE/PubMed
BookMark eNpt0VtrFDEUAOAgFbutPvgHZBCk9GHsSTKTmXlclm0rVCuo4Ntwchmakk3WJKP475ul2xaq5CHh8OVwLkfkwAdvCHlL4SMFRs9MYlCO-P2CLGjLoG77lh6QBQDl9cDFz0NylNItADAO_StyyGgvaNOJBTFrf4NeGV0tdQpxm23wVZiqr-fXywq93j2-VSX2eXbZ_kHnCl1hlCX0BX3IszSpmr02sVo7o3IM6sZsrEJXLVOyKe-yvyYvJ3TJvNnfx-TH-fr76rK-ur74tFpe1dh0kGuJwFkLGmEAM1GpQXeqk6hog1JMpmeCSRx4oybaS9qZ0oNqgQotO8Up5cfk5D7vNoZfs0l53NikjHPoTZjT2A9lMrykKfL9M3kb5uhLceMAwDsBtC_o3R7NcmP0uI12g_Hv-DC-Aj7sAabS8RRLszY9uaYVYhhYcaf3TsWQUjTTI6Ew7lY4Pq6w2LNnVtmMu73kiNb998e-ClTpqY1_3R1YLqgZ
CODEN ESTHAG
CitedBy_id crossref_primary_10_1039_C7NJ03026F
crossref_primary_10_1021_acs_est_6b00730
crossref_primary_10_1007_s41742_024_00582_w
crossref_primary_10_1016_j_memsci_2018_02_012
crossref_primary_10_1021_es302148z
crossref_primary_10_1039_D0EW00785D
crossref_primary_10_1039_D1RA04821J
crossref_primary_10_1021_jacs_7b02381
crossref_primary_10_1016_j_jece_2024_114990
crossref_primary_10_1021_je400974z
crossref_primary_10_1016_j_apcatb_2019_04_030
crossref_primary_10_1021_acs_est_0c02773
crossref_primary_10_1016_j_cclet_2020_03_011
crossref_primary_10_1021_es500506w
crossref_primary_10_1002_celc_202201006
crossref_primary_10_1039_C5RA14299G
crossref_primary_10_1016_j_chemosphere_2020_126384
crossref_primary_10_1016_j_surfin_2024_105308
crossref_primary_10_1016_j_apsusc_2019_144716
crossref_primary_10_1039_D3EN00987D
crossref_primary_10_1007_s12274_015_0968_7
crossref_primary_10_1016_j_chemosphere_2017_12_074
crossref_primary_10_1021_acs_est_9b05469
crossref_primary_10_1007_s10965_021_02820_7
crossref_primary_10_1039_C8GC00854J
crossref_primary_10_1016_j_seppur_2023_124980
crossref_primary_10_1016_j_jhazmat_2020_123081
crossref_primary_10_1016_j_scitotenv_2022_154939
crossref_primary_10_1016_j_jhazmat_2024_134429
crossref_primary_10_3390_su151310617
crossref_primary_10_1016_j_chemosphere_2012_06_003
crossref_primary_10_1016_j_desal_2024_118457
crossref_primary_10_1016_j_cej_2020_126852
crossref_primary_10_1016_j_envres_2023_116102
crossref_primary_10_1016_j_proenv_2013_04_063
crossref_primary_10_1007_s10924_022_02737_2
crossref_primary_10_1016_j_apsusc_2020_146579
crossref_primary_10_1016_j_seppur_2025_132089
crossref_primary_10_1016_j_jpowsour_2018_08_050
crossref_primary_10_1016_j_chemosphere_2013_01_093
crossref_primary_10_1016_j_chemosphere_2017_05_033
crossref_primary_10_1016_j_scitotenv_2022_160836
crossref_primary_10_1016_j_envpol_2019_01_045
crossref_primary_10_1007_s11356_024_32449_0
crossref_primary_10_1016_j_electacta_2016_07_005
crossref_primary_10_1016_j_biortech_2013_09_107
crossref_primary_10_1002_cjce_23625
crossref_primary_10_4028_www_scientific_net_AMR_878_199
crossref_primary_10_1016_j_carbpol_2021_118165
crossref_primary_10_1016_j_cej_2022_137019
crossref_primary_10_1016_j_eti_2020_100915
crossref_primary_10_1016_j_cej_2021_129585
crossref_primary_10_1016_j_jcis_2014_07_041
crossref_primary_10_1016_j_scitotenv_2019_133606
crossref_primary_10_1016_j_jece_2024_114894
crossref_primary_10_1016_j_watres_2014_08_030
crossref_primary_10_1016_j_chemosphere_2014_03_050
crossref_primary_10_1021_es5039479
crossref_primary_10_1021_acsaenm_3c00686
crossref_primary_10_1016_j_chemosphere_2015_12_012
crossref_primary_10_1016_j_chempr_2022_09_004
crossref_primary_10_1016_j_chemosphere_2024_141164
crossref_primary_10_1021_acsomega_1c00044
crossref_primary_10_1080_09593330_2014_912253
crossref_primary_10_1016_j_jece_2021_105784
crossref_primary_10_3390_molecules29174229
crossref_primary_10_1016_j_cej_2021_129070
crossref_primary_10_1021_acs_est_0c03800
crossref_primary_10_1016_j_colsurfa_2015_01_069
crossref_primary_10_1021_acssuschemeng_7b02186
crossref_primary_10_1021_acsomega_8b03275
crossref_primary_10_1002_adma_202410720
crossref_primary_10_4236_gep_2017_56001
crossref_primary_10_1016_j_jhazmat_2014_04_038
crossref_primary_10_1021_acs_est_6b02100
crossref_primary_10_1007_s00449_015_1533_1
crossref_primary_10_1021_acs_est_3c01266
crossref_primary_10_1016_j_desal_2015_03_025
crossref_primary_10_1016_j_jwpe_2024_105756
crossref_primary_10_1016_j_cej_2024_157222
crossref_primary_10_1016_j_jhazmat_2022_129051
crossref_primary_10_1021_acsapm_2c01580
crossref_primary_10_1089_ees_2016_0233
crossref_primary_10_1007_s10450_013_9496_5
crossref_primary_10_1016_j_chemosphere_2015_06_095
crossref_primary_10_1016_j_apcatb_2017_02_084
crossref_primary_10_1016_j_chemosphere_2023_138268
crossref_primary_10_1007_s11434_014_0322_6
crossref_primary_10_1016_j_apcatb_2018_09_058
crossref_primary_10_1016_j_jhazmat_2021_125866
crossref_primary_10_1007_s11783_023_1618_z
crossref_primary_10_1016_j_colsurfa_2014_10_044
crossref_primary_10_1039_D2EW00721E
crossref_primary_10_1016_j_seppur_2025_131882
crossref_primary_10_1016_j_chemosphere_2020_128520
crossref_primary_10_1039_D2EN00545J
crossref_primary_10_1007_s11164_021_04603_7
crossref_primary_10_1016_j_molliq_2017_06_090
crossref_primary_10_3390_jcs4030135
crossref_primary_10_2166_wst_2021_484
crossref_primary_10_1016_j_electacta_2016_04_082
crossref_primary_10_3390_nano5020981
crossref_primary_10_1080_10643389_2019_1700751
crossref_primary_10_1016_j_jhazmat_2020_124384
crossref_primary_10_1021_acsestengg_4c00418
crossref_primary_10_1016_j_cej_2013_08_027
crossref_primary_10_1016_j_scitotenv_2020_143719
crossref_primary_10_1016_j_scitotenv_2024_172184
crossref_primary_10_1093_nsr_nwad191
crossref_primary_10_1016_j_chemosphere_2025_144282
crossref_primary_10_1088_1757_899X_191_1_012008
crossref_primary_10_1016_j_watres_2015_10_043
crossref_primary_10_1039_D0TA07708A
crossref_primary_10_1016_j_cej_2017_07_033
crossref_primary_10_1016_S1001_0742_12_60161_2
crossref_primary_10_3390_molecules21050628
crossref_primary_10_1007_s10934_014_9788_5
crossref_primary_10_1016_j_cej_2020_124230
crossref_primary_10_1021_acsestwater_3c00486
crossref_primary_10_1016_j_cej_2023_144354
crossref_primary_10_1016_j_ecoenv_2016_11_026
crossref_primary_10_1016_j_hazadv_2023_100252
crossref_primary_10_1016_j_jclepro_2020_121546
crossref_primary_10_1016_j_scitotenv_2022_155652
crossref_primary_10_1016_j_apcatb_2019_118442
crossref_primary_10_1021_acsestengg_1c00015
crossref_primary_10_1016_j_jwpe_2024_104854
crossref_primary_10_1039_C8EW00621K
crossref_primary_10_1016_j_electacta_2021_139635
crossref_primary_10_1016_j_jcis_2013_10_021
crossref_primary_10_1016_j_memsci_2015_12_049
crossref_primary_10_1007_s11356_022_21513_2
crossref_primary_10_1016_j_seppur_2023_125494
crossref_primary_10_1021_acs_est_9b04352
crossref_primary_10_1016_j_chemosphere_2018_04_173
crossref_primary_10_1021_acs_est_0c07927
crossref_primary_10_1038_s41467_019_13775_1
crossref_primary_10_1016_j_memsci_2020_117821
crossref_primary_10_1016_j_jelechem_2017_07_018
crossref_primary_10_1016_j_scitotenv_2021_147041
crossref_primary_10_1021_acscatal_2c03551
crossref_primary_10_1021_acsomega_2c07134
crossref_primary_10_1016_j_seppur_2022_122411
crossref_primary_10_1016_j_chemosphere_2020_126316
crossref_primary_10_1002_aic_15185
crossref_primary_10_1007_s11783_015_0790_1
crossref_primary_10_1016_j_envpol_2015_08_032
crossref_primary_10_1007_s10570_023_05090_2
crossref_primary_10_1016_j_watres_2019_115381
crossref_primary_10_1021_acs_est_8b05186
crossref_primary_10_1016_j_envpol_2017_12_075
crossref_primary_10_1016_j_microc_2024_112557
crossref_primary_10_1021_es502312t
crossref_primary_10_1016_j_cej_2012_04_092
crossref_primary_10_1016_j_eti_2020_100816
crossref_primary_10_1016_j_jhazmat_2018_12_066
crossref_primary_10_1016_j_cej_2017_03_073
crossref_primary_10_1007_s11356_018_1578_1
crossref_primary_10_1016_j_jhazmat_2023_132959
crossref_primary_10_1016_j_jcis_2013_03_065
crossref_primary_10_1016_j_scitotenv_2014_02_129
Cites_doi 10.1021/es0112745
10.1016/j.jelechem.2011.01.012
10.1023/A:1017528002713
10.1016/j.apsusc.2008.06.168
10.1016/0040-6031(75)85095-7
10.1016/S0022-0728(02)01206-8
10.1021/es8001184
10.1016/j.jhazmat.2010.11.012
10.1021/es101888j
10.1021/es0517419
10.1016/j.cplett.2009.12.031
10.1016/j.jhazmat.2009.05.057
10.1021/es703273s
10.1063/1.2335614
10.1021/es900637a
10.1021/es801777n
10.1021/la001527s
10.1016/j.jhazmat.2010.11.025
10.1021/es803268b
10.1021/es101177k
10.1021/es040342v
10.1002/adma.200802560
10.1016/j.watres.2008.09.026
10.1080/10408440490464705
10.1021/es900464a
10.1021/es049719n
10.1016/S0022-0728(83)80398-2
10.1016/j.envpol.2008.11.007
10.1021/es060831q
10.1039/b907703k
10.1089/109287503768335959
10.1021/es00158a006
10.1021/es8013858
ContentType Journal Article
Copyright Copyright © 2011 American Chemical Society
2014 INIST-CNRS
Copyright American Chemical Society Oct 1, 2011
Copyright_xml – notice: Copyright © 2011 American Chemical Society
– notice: 2014 INIST-CNRS
– notice: Copyright American Chemical Society Oct 1, 2011
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
DOI 10.1021/es202026v
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList Biotechnology Research Abstracts
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
Applied Sciences
EISSN 1520-5851
EndPage 8505
ExternalDocumentID 2494047961
21861476
24566992
10_1021_es202026v
a2788130
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID -
.K2
1AW
3R3
4.4
4R4
53G
55A
5GY
5VS
63O
7~N
85S
AABXI
ABFLS
ABMVS
ABOGM
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACPRK
ACS
AEESW
AENEX
AFEFF
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
K2
LG6
MS
PQEST
PQQKQ
ROL
RXW
TN5
TWZ
U5U
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
XZL
YZZ
---
-DZ
-~X
..I
.DC
6TJ
AAHBH
AAYOK
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
ADMHC
ADUKH
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
MS~
MW2
XSW
ZCA
.HR
186
1WB
42X
8WZ
A6W
ABHMW
ABTAH
ACKIV
ACRPL
ADNMO
AETEA
AEYZD
ANPPW
ANTXH
IHE
IQODW
MVM
NHB
OHT
RNS
TAE
UBC
UBX
UBY
UQL
VJK
VOH
YV5
ZCG
ZY4
~A~
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
ID FETCH-LOGICAL-a470t-ba03250da090ef1bd0d7c7bac14ab6fe8262ba934cf18b17e147c5016db7c3113
IEDL.DBID ACS
ISSN 0013-936X
1520-5851
IngestDate Mon Jul 21 09:35:49 EDT 2025
Fri Jul 25 06:00:25 EDT 2025
Mon Jul 21 06:03:49 EDT 2025
Wed Apr 02 07:26:17 EDT 2025
Tue Jul 01 02:10:37 EDT 2025
Thu Apr 24 22:51:16 EDT 2025
Thu Aug 27 13:41:53 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 19
Keywords Emerging contaminant
Carbon nanotubes
Endocrine disruptor
Electrode material
Persistent organic pollutant
Perfluorooctanoic acid
Adsorption
Decontamination
Multiwalled nanotube
Carboxylic acid
Organic fluorine compounds
Poison
Water pollution
Perfluorooctane sulfonate
Electrochemical reaction
Nanostructured materials
Organic compounds
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a470t-ba03250da090ef1bd0d7c7bac14ab6fe8262ba934cf18b17e147c5016db7c3113
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 21861476
PQID 900376018
PQPubID 45412
PageCount 8
ParticipantIDs proquest_miscellaneous_895853826
proquest_journals_900376018
pubmed_primary_21861476
pascalfrancis_primary_24566992
crossref_primary_10_1021_es202026v
crossref_citationtrail_10_1021_es202026v
acs_journals_10_1021_es202026v
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-10-01
PublicationDateYYYYMMDD 2011-10-01
PublicationDate_xml – month: 10
  year: 2011
  text: 2011-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
– name: Easton
PublicationTitle Environmental science & technology
PublicationTitleAlternate Environ. Sci. Technol
PublicationYear 2011
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Milonjic S. K. (ref26/cit26) 1975; 11
Schultz M. M. (ref5/cit5) 2003; 20
Moriwaki H. (ref9/cit9) 2005; 39
Kennedy G. L. (ref7/cit7) 2004; 34
Salam M. A. (ref33/cit33) 2008; 255
Tobias H. (ref24/cit24) 1983; 148
Vincent C. H. (ref32/cit32) 1987; 21
ref11/cit11
ref25/cit25
Li H. B. (ref28/cit28) 2009; 19
Cheng J. (ref3/cit3) 2008; 42
Wang X. Z. (ref19/cit19) 2006; 89
Wang T. H. (ref6/cit6) 2009; 43
Hori H. (ref8/cit8) 2004; 38
Li H. B. (ref29/cit29) 2011; 653
Li H. B. (ref15/cit15) 2010; 44
Li X. N. (ref21/cit21) 2011; 186
Li H. B. (ref16/cit16) 2008; 42
Liu Y. X. (ref20/cit20) 2011; 186
Wu Z. S. (ref22/cit22) 2009; 21
Yang K. (ref14/cit14) 2009; 157
Li H. B. (ref27/cit27) 2010; 485
Foo K. Y. (ref18/cit18) 2009; 170
Carter K. E. (ref10/cit10) 2008; 42
Ayranci E. (ref34/cit34) 2001; 31
Niu J. J. (ref30/cit30) 2002; 536
Hori H. (ref1/cit1) 2006; 40
Yang K. L. (ref23/cit23) 2001; 17
Tang C. Y. Y. (ref4/cit4) 2006; 40
Pan B. (ref13/cit13) 2008; 42
Ji L. L. (ref31/cit31) 2009; 43
Mak Y. L. (ref2/cit2) 2009; 43
Gabelich C. J. (ref35/cit35) 2002; 36
Bayram E. (ref17/cit17) 2010; 44
Pan B. (ref12/cit12) 2008; 42
References_xml – volume: 36
  start-page: 3010
  issue: 13
  year: 2002
  ident: ref35/cit35
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0112745
– ident: ref25/cit25
– volume: 653
  start-page: 40
  issue: 1
  year: 2011
  ident: ref29/cit29
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2011.01.012
– volume: 31
  start-page: 257
  issue: 3
  year: 2001
  ident: ref34/cit34
  publication-title: J. Appl. Electrochem.
  doi: 10.1023/A:1017528002713
– volume: 255
  start-page: 1975
  issue: 5
  year: 2008
  ident: ref33/cit33
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2008.06.168
– volume: 11
  start-page: 261
  issue: 3
  year: 1975
  ident: ref26/cit26
  publication-title: Thermochim. Acta
  doi: 10.1016/0040-6031(75)85095-7
– volume: 536
  start-page: 83
  issue: 1
  year: 2002
  ident: ref30/cit30
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/S0022-0728(02)01206-8
– volume: 42
  start-page: 5480
  issue: 15
  year: 2008
  ident: ref13/cit13
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es8001184
– ident: ref11/cit11
– volume: 186
  start-page: 407
  issue: 1
  year: 2011
  ident: ref21/cit21
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2010.11.012
– volume: 44
  start-page: 8692
  issue: 22
  year: 2010
  ident: ref15/cit15
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es101888j
– volume: 40
  start-page: 1049
  issue: 3
  year: 2006
  ident: ref1/cit1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0517419
– volume: 485
  start-page: 161
  issue: 1
  year: 2010
  ident: ref27/cit27
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2009.12.031
– volume: 170
  start-page: 552
  issue: 2
  year: 2009
  ident: ref18/cit18
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2009.05.057
– volume: 42
  start-page: 6111
  issue: 16
  year: 2008
  ident: ref10/cit10
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es703273s
– volume: 89
  start-page: 053127
  issue: 5
  year: 2006
  ident: ref19/cit19
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2335614
– volume: 43
  start-page: 4824
  issue: 13
  year: 2009
  ident: ref2/cit2
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es900637a
– volume: 42
  start-page: 9005
  issue: 24
  year: 2008
  ident: ref12/cit12
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es801777n
– volume: 17
  start-page: 1961
  issue: 6
  year: 2001
  ident: ref23/cit23
  publication-title: Langmuir
  doi: 10.1021/la001527s
– volume: 186
  start-page: 473
  issue: 1
  year: 2011
  ident: ref20/cit20
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2010.11.025
– volume: 43
  start-page: 2322
  issue: 7
  year: 2009
  ident: ref31/cit31
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es803268b
– volume: 44
  start-page: 6331
  issue: 16
  year: 2010
  ident: ref17/cit17
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es101177k
– volume: 39
  start-page: 3388
  issue: 9
  year: 2005
  ident: ref9/cit9
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es040342v
– volume: 21
  start-page: 1756
  issue: 17
  year: 2009
  ident: ref22/cit22
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200802560
– volume: 42
  start-page: 4923
  issue: 20
  year: 2008
  ident: ref16/cit16
  publication-title: Water Res.
  doi: 10.1016/j.watres.2008.09.026
– volume: 34
  start-page: 351
  issue: 4
  year: 2004
  ident: ref7/cit7
  publication-title: Crit. Rev. Toxicol.
  doi: 10.1080/10408440490464705
– volume: 43
  start-page: 5171
  issue: 14
  year: 2009
  ident: ref6/cit6
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es900464a
– volume: 38
  start-page: 6118
  issue: 22
  year: 2004
  ident: ref8/cit8
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es049719n
– volume: 148
  start-page: 221
  issue: 2
  year: 1983
  ident: ref24/cit24
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/S0022-0728(83)80398-2
– volume: 157
  start-page: 1095
  issue: 4
  year: 2009
  ident: ref14/cit14
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2008.11.007
– volume: 40
  start-page: 7343
  issue: 23
  year: 2006
  ident: ref4/cit4
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es060831q
– volume: 19
  start-page: 6773
  issue: 37
  year: 2009
  ident: ref28/cit28
  publication-title: J. Mater. Chem.
  doi: 10.1039/b907703k
– volume: 20
  start-page: 487
  issue: 5
  year: 2003
  ident: ref5/cit5
  publication-title: Environ. Eng. Sci.
  doi: 10.1089/109287503768335959
– volume: 21
  start-page: 370
  issue: 4
  year: 1987
  ident: ref32/cit32
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00158a006
– volume: 42
  start-page: 8057
  issue: 21
  year: 2008
  ident: ref3/cit3
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es8013858
SSID ssj0002308
Score 2.4515975
Snippet Removal of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from aqueous solution has attracted wide attention in light of their...
SourceID proquest
pubmed
pascalfrancis
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8498
SubjectTerms Adsorption
Alkanesulfonic Acids - chemistry
Applied sciences
Aqueous solutions
Biological and physicochemical phenomena
Caprylates - chemistry
Carbon
Earth sciences
Earth, ocean, space
Electrochemical Techniques - methods
Electrodes
Electrolytes - chemistry
Engineering and environment geology. Geothermics
Exact sciences and technology
Fluorocarbons - chemistry
Hydrogen-Ion Concentration
Kinetics
Models, Chemical
Nanotubes
Nanotubes, Carbon - chemistry
Nanotubes, Carbon - ultrastructure
Natural water pollution
Pollution
Pollution, environment geology
Recycling
Remediation and Control Technologies
Temperature
Water treatment
Water treatment and pollution
Title Enhanced Adsorption of PFOA and PFOS on Multiwalled Carbon Nanotubes under Electrochemical Assistance
URI http://dx.doi.org/10.1021/es202026v
https://www.ncbi.nlm.nih.gov/pubmed/21861476
https://www.proquest.com/docview/900376018
https://www.proquest.com/docview/895853826
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB6VcgEhHoXSUFhZwIFLSuwkjn1cLbuqkHhIpdLeIj-FBEqqTbZI_HrGeW0rWrhFziSK7ZnxN5kXwFtleSK9zGPLPIszI3isJVWhiYBEgG8zLkKC86fP_PQ8-7jO13vw5hYPPqPvXYP2OVoKl3fgLuMovAH_LM4mdYsYWoxtCmTK12P5oKuPhqPHNNeOngcXqsFV8H37itvxZXfOrB7BhzFbpw8v-XGybfWJ-f138cZ_TeExPBxwJpn3jPEE9lx1APevVB88gMPlLskNSQcpb56CW1bfu8AAMrdNvemUCqk9-br6MieqsuHijOBYl737K3RjsWShNhqHUFvX7Va7hoTstA1Z9m12zFCXgCA7BMSKb38G56vlt8VpPLRjiFVWJG2sVZIiYLIqkYnzVNvEFqbQytBMae4dGipMK5lmxlOhaeFoVpgcIaXVhUkpTQ9hv6ordwSE6UIq6p1jNs-85CLXDhWNSYTlztI8ghnuVzmIU1N2nnJGy2khI3g3bmVphmLmoafGz5tIX0-kF30Fj5uIZtf4YaIMfmEuJYvgeGSQ3WeFv8AhpkhEQKa7KJ7B56IqV2-bUki0x1Jcmgie92y1ezUViI0K_uJ_kz2Ge2yMPKQvYb_dbN0rhEKtnnWi8Ad4vwJN
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BOUCFeBRaQmGxEAcuaWMnceLjarWrBdqC1FbaW-RXhARKqnUWJH4947y2RUVwi5KJZU9mxt_E8wB4Jw2PRCnS0LCShYnOeagElb6JgECAbxKe-wTn0zO-vEw-rtJVXybH58LgJByO5NpD_G11AXpsHbrp6DD8uAv3EIQwL83T2flodRFK50O3AhHz1VBF6PqrfgfS7sYO9PBKOmRG2XWx-DvMbLebxeOub1E70TbK5NvRplFH-tcfNRz_byVP4FGPOsm0E5OncMdWe7B7rRbhHuzPtylvSNrrvHsGdl59bcMEyNS4et2aGFKX5Mvi85TIyviLc4L32lzen743iyEzuVZ4C2133WyUdcTnqq3JvGu6o_sqBQSFw-NXHP05XC7mF7Nl2DdnCGWSRU2oZBQjfDIyEpEtqTKRyXSmpKaJVLy06LYwJUWc6JLmimaWJplOEWAalemY0ngfdqq6si-AMJUJSUtrmUmTUvA8VRbNjo5yw62haQAT5GPRK5cr2nNzRouRkQG8H75oofvS5r7DxvfbSN-OpFddPY_biCY3xGKk9KfEXAgWwOEgJ9tp-X_CPsIoD4CMT1FZ_QmMrGy9cUUu0DuLkTUBHHTStR2a5oiUMv7yX4t9A_eXF6cnxcmHs0-H8IANMYn0Few06419jSCpUZNWO34Dx2IKrg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3ra9RAEB-0gljER7U1Vs9F_OCXtNk8NtmPx3lHfbWFWrhvYZ8ISnLc5hT8653N61qp6LeQTJbdyczubzIvgDdCs4hbnoU6tnGYqoKFklPhmwhwBPg6ZYVPcP58yk4u0w_LbNkbij4XBifhcCTXOvG9Vq-07SsM0GPj0FRHo-HHbbjj3XVeoqezi3HnRThdDB0LeMKWQyWhq6_6U0i5a6fQ_ZVwyBDbdbL4O9Rsj5zFQzgbJ9tGmnw72jTySP36o47j_6_mETzo0SeZduLyGG6Zag92r9Qk3IP9-Tb1DUl73XdPwMyrr224AJlqV6_brYbUlpwvzqZEVNpfXBC81-b0_vQ9WjSZibXEW7iH181GGkd8ztqazLvmO6qvVkBQSDyOxdGfwuVi_mV2EvZNGkKR5lETShElCKO0iHhkLJU60rnKpVA0FZJZg-ZLLAVPUmVpIWluaJqrDIGmlrlKKE32YaeqK_MMSCxzLqg1JtZZajkrMmlw-1FRoZnRNAtggrwseyVzZes_j2k5MjKAt8NXLVVf4tx32vh-E-nrkXTV1fW4iWhyTTRGSu8tZpzHARwOsrKdlv837CONigDI-BSV1ntiRGXqjSsLjlZagqwJ4KCTsO3QtEDElLPn_1rsK7h7_m5Rfnp_-vEQ7sVDaCJ9ATvNemNeIlZq5KRVkN9v7Q0x
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+adsorption+of+PFOA+and+PFOS+on+multiwalled+carbon+nanotubes+under+electrochemical+assistance&rft.jtitle=Environmental+science+%26+technology&rft.au=Li%2C+Xiaona&rft.au=Chen%2C+Shuo&rft.au=Quan%2C+Xie&rft.au=Zhang%2C+Yaobin&rft.date=2011-10-01&rft.eissn=1520-5851&rft.volume=45&rft.issue=19&rft.spage=8498&rft_id=info:doi/10.1021%2Fes202026v&rft_id=info%3Apmid%2F21861476&rft.externalDocID=21861476
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon