Modeling for Postyield Buckling of Reinforcement

Finite element microanalysis using fiber technique was carried out to study the buckling mechanism of reinforcing bars. It was found that reinforcing bars under inelastic axial compression exhibit lateral deformation defined as buckling due to the geometrical nonlinearity. Further investigation reve...

Full description

Saved in:
Bibliographic Details
Published inJournal of structural engineering (New York, N.Y.) Vol. 128; no. 9; pp. 1139 - 1147
Main Authors Dhakal, Rajesh Prasad, Maekawa, Koichi
Format Journal Article
LanguageEnglish
Published American Society of Civil Engineers 01.09.2002
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Finite element microanalysis using fiber technique was carried out to study the buckling mechanism of reinforcing bars. It was found that reinforcing bars under inelastic axial compression exhibit lateral deformation defined as buckling due to the geometrical nonlinearity. Further investigation revealed that the postbuckling average compressive stress is less than the local stress corresponding to the same strain due primarily to the different stiffness for loading and unloading fibers in the laterally deformed section. It was clarified that the average compressive stress-strain relationship including the softening in the postbuckling range can be completely described in terms of the product of square root of yield strength and the slenderness ratio of the reinforcing bar. Moreover, a unique relationship between the average stress and average strain of reinforcing bars including the effect of buckling is established through various parametric analyses. The comparison of the analytical results and proposed model with some experimental results showed good agreement, thus verifying the reliability of the microanalysis and proposed computational model.
AbstractList Finite element microanalysis using fiber technique was carried out to study the buckling mechanism of reinforcing bars. It was found that reinforcing bars under inelastic axial compression exhibit later deformation defined as buckling due to the geometrical nolinearity. Further investigation revealed that the postbuckling average compressive stress is less than the local stress corresponding to the same strain due to the different striffness for loading and unloading fibers in the laterally deformed section. It was clarified that the average compressive stress-strain relationship including the softening in the postbuckling range can be completely described in terms of the product of square root of yield strength and the slenderness ration of the reinforcing bar. Moreover, a unique relationship between the average stress and average strain of reinforcing bars including the effect of buckling is established through various parametric analyses. The comparison of the analytical results and proposed model with some experimental results showed good agreement, thus verifying the reliability of the microanalysis and proposed computational model.
Finite element microanalysis using fiber technique was carried out to study the buckling mechanism of reinforcing bars. It was found that reinforcing bars under inelastic axial compression exhibit lateral deformation defined as buckling due to the geometrical nonlinearity. Further investigation revealed that the postbuckling average compressive stress is less than the local stress corresponding to the same strain due primarily to the different stiffness for loading and unloading fibers in the laterally deformed section. It was clarified that the average compressive stress-strain relationship including the softening in the postbuckling range can be completely described in terms of the product of square root of yield strength and the slenderness ratio of the reinforcing bar. Moreover, a unique relationship between the average stress and average strain of reinforcing bars including the effect of buckling is established through various parametric analyses. The comparison of the analytical results and proposed model with some experimental results showed good agreement, thus verifying the reliability of the microanalysis and proposed computational model.
Finite element microanalysis using the fiber technique was carried out to study the buckling mechanism of reinforcing bars. It was found that reinforcing bars under inelastic axial compression exhibit lateral deformation defined as buckling due to the geometrical nonlinearity. Further investigation revealed that the post-buckling average compressive stress is less than the local stress corresponding to the same strain due primarily to the different stiffness for loading and unloading fibers in the laterally deformed section. It was clarified that the average compressive stress-strain relationship including the softening in the post-buckling range can be completely described in terms of the product of the square root of the yield strength and the slenderness ratio of the reinforcing bar. Moreover, a unique relationship between the average stress and average strain of reinforcing bars including the effect of buckling is established through various parametric analyses. The comparison of the analytical results and proposed model with experimental results showed good agreement, thus verifying the reliability of the microanalysis and proposed computational model.
Author Dhakal, Rajesh Prasad
Maekawa, Koichi
Author_xml – sequence: 1
  givenname: Rajesh Prasad
  surname: Dhakal
  fullname: Dhakal, Rajesh Prasad
  organization: Research Fellow, School of Civil and Structural Engineering, Nanyang Technological Univ., 50 Nanyang Ave., Singapore 639798
– sequence: 2
  givenname: Koichi
  surname: Maekawa
  fullname: Maekawa, Koichi
  organization: Professor, School of Civil Engineering, Univ. of Tokyo, Hongo 7-3-1, Bunkyo-Ku, Tokyo 113, Japan
BookMark eNqNkE1PgzAYgBszE7fpf-Bk2AF9WwqlXsyc02nmR5wmempaKIbJ6KRw2L-3bOpVe-mb9snzJs8A9SpTaYR8DCcYYnzqjxeT6QhYGAac0sgnAGSESXLGfYxDPtpDfcxpGEQUv_ZQ_xc8QANrlwDAIpz0EdyZTJdF9e7lpvYejW02hS4z76JNP7bPJveedFG531SvdNUcov1cllYffd9D9HI1fZ7MgvnD9c1kPA8kZdAEinEmU4YVS2SW8TDGSkkOmWRcaZCMYc4TLeM8CWUCgClRKs55omJKs4ipcIiOd951bT5bbRuxKmyqy1JW2rRWEGdIgPB_gVFIiAPPd2BaG2trnYt1XaxkvREYRNdUiK6p6FKJLpXomgrXVHDRNXWGt51BugViadq6cgnE7WJ6fzlzSR0K3eFudPx2xj_yP9xfZGSD_A
CitedBy_id crossref_primary_10_1007_s10518_023_01836_2
crossref_primary_10_1016_j_istruc_2020_12_048
crossref_primary_10_1080_13632469_2021_2001395
crossref_primary_10_1088_1757_899X_471_5_052024
crossref_primary_10_1002_suco_202100257
crossref_primary_10_1080_24705314_2018_1492669
crossref_primary_10_1080_13632469_2020_1859002
crossref_primary_10_1142_S0219455415500285
crossref_primary_10_1016_j_engstruct_2012_09_034
crossref_primary_10_1016_j_tws_2023_110815
crossref_primary_10_1016_j_engstruct_2014_05_026
crossref_primary_10_3390_civileng3040048
crossref_primary_10_1016_j_engstruct_2022_115476
crossref_primary_10_1016_j_istruc_2022_11_117
crossref_primary_10_1016_j_compstruc_2015_04_005
crossref_primary_10_1016_j_istruc_2022_01_083
crossref_primary_10_1016_j_engstruct_2018_05_027
crossref_primary_10_1016_j_jobe_2023_107350
crossref_primary_10_14359_51688193
crossref_primary_10_1061__ASCE_CC_1943_5614_0001252
crossref_primary_10_1016_j_engstruct_2007_10_013
crossref_primary_10_12989_sem_2011_37_6_649
crossref_primary_10_3390_ma13163473
crossref_primary_10_1016_j_conbuildmat_2017_02_149
crossref_primary_10_1016_j_engstruct_2016_05_013
crossref_primary_10_1016_j_engstruct_2016_09_043
crossref_primary_10_1016_j_conbuildmat_2018_07_015
crossref_primary_10_1016_j_engstruct_2012_05_011
crossref_primary_10_1016_j_engstruct_2014_02_031
crossref_primary_10_1193_063017EQS136M
crossref_primary_10_1016_j_engstruct_2023_116711
crossref_primary_10_1016_j_engstruct_2022_114032
crossref_primary_10_1016_j_istruc_2024_106272
crossref_primary_10_1016_j_engstruct_2024_118193
crossref_primary_10_1016_j_engstruct_2021_111927
crossref_primary_10_1061_JSENDH_STENG_12718
crossref_primary_10_3390_buildings11040161
crossref_primary_10_1080_13632469_2011_653297
crossref_primary_10_1016_j_cscm_2022_e01185
crossref_primary_10_14359_51711143
crossref_primary_10_1016_j_conbuildmat_2023_134634
crossref_primary_10_1007_s12205_014_1211_x
crossref_primary_10_1617_s11527_018_1174_3
crossref_primary_10_1016_j_soildyn_2021_106791
crossref_primary_10_1002_best_201900048
crossref_primary_10_1016_j_ijmecsci_2020_105525
crossref_primary_10_1007_s13369_020_04748_4
crossref_primary_10_1061__ASCE_EM_1943_7889_0002030
crossref_primary_10_1061__ASCE_ST_1943_541X_0000808
crossref_primary_10_3390_su15108257
crossref_primary_10_1088_1757_899X_245_3_032058
crossref_primary_10_1016_j_engstruct_2020_110923
crossref_primary_10_14359_51710865
crossref_primary_10_1061__ASCE_CC_1943_5614_0000180
crossref_primary_10_1142_S1793431112500157
crossref_primary_10_3151_jact_2_301
crossref_primary_10_1007_s10518_020_01024_6
crossref_primary_10_1016_j_istruc_2024_106739
crossref_primary_10_1016_j_engstruct_2008_11_019
crossref_primary_10_1061_JSENDH_STENG_11880
crossref_primary_10_1061_JSENDH_STENG_13147
crossref_primary_10_1016_j_soildyn_2023_108363
crossref_primary_10_1002_eqe_2891
crossref_primary_10_1061_JSENDH_STENG_11769
crossref_primary_10_1016_j_engfailanal_2024_108410
crossref_primary_10_1680_jmacr_16_00495
crossref_primary_10_1016_j_engstruct_2017_01_045
crossref_primary_10_2174_1874836801610010065
crossref_primary_10_1016_j_matdes_2014_01_079
crossref_primary_10_3390_app12157451
crossref_primary_10_1080_19648189_2022_2066185
crossref_primary_10_1061__ASCE_CC_1943_5614_0000879
crossref_primary_10_1007_s10518_023_01684_0
crossref_primary_10_1016_j_istruc_2023_07_057
crossref_primary_10_1016_j_engstruct_2021_111871
crossref_primary_10_1061__ASCE_ST_1943_541X_0002801
crossref_primary_10_1016_j_mtcomm_2019_100874
crossref_primary_10_1007_s13369_023_07647_6
crossref_primary_10_1142_S0219455416400058
crossref_primary_10_12989_sem_2006_22_3_311
crossref_primary_10_1680_jbren_21_00006
crossref_primary_10_1617_s11527_017_1054_2
crossref_primary_10_1007_s10518_015_9727_0
crossref_primary_10_1016_j_soildyn_2024_108519
crossref_primary_10_1061__ASCE_ST_1943_541X_0001048
crossref_primary_10_1016_j_engstruct_2021_112820
crossref_primary_10_1061__ASCE_ST_1943_541X_0000871
crossref_primary_10_1061__ASCE_ST_1943_541X_0000197
crossref_primary_10_1061__ASCE_ST_1943_541X_0002013
crossref_primary_10_1007_s40999_017_0249_9
crossref_primary_10_1016_j_istruc_2024_106115
crossref_primary_10_1016_j_engstruct_2022_114872
crossref_primary_10_1016_j_jobe_2022_104211
crossref_primary_10_1002_eqe_2470
crossref_primary_10_1016_j_engstruct_2017_06_034
crossref_primary_10_1002_eqe_3324
crossref_primary_10_1002_suco_202000731
crossref_primary_10_1061__ASCE_ST_1943_541X_0001729
crossref_primary_10_4028_www_scientific_net_KEM_400_402_301
crossref_primary_10_1016_j_cscm_2022_e01589
crossref_primary_10_1061__ASCE_MT_1943_5533_0001853
crossref_primary_10_1680_jstbu_17_00208
crossref_primary_10_5459_bnzsee_54_3_228_242
crossref_primary_10_1016_j_conbuildmat_2019_03_027
crossref_primary_10_1680_jbren_15_00023
crossref_primary_10_1007_s10518_018_0429_2
crossref_primary_10_1016_j_compstruct_2023_116857
crossref_primary_10_3151_jact_5_409
crossref_primary_10_1617_s11527_008_9351_4
crossref_primary_10_1007_s40999_021_00648_2
crossref_primary_10_1016_j_istruc_2023_04_108
crossref_primary_10_14359_51734616
crossref_primary_10_1016_j_conbuildmat_2018_06_031
crossref_primary_10_1193_122317EQS263M
crossref_primary_10_3390_buildings12101603
crossref_primary_10_1061__ASCE_IS_1943_555X_0000510
crossref_primary_10_3151_jact_4_179
crossref_primary_10_1016_j_soildyn_2023_108315
crossref_primary_10_1617_s11527_013_0146_x
crossref_primary_10_1016_j_engstruct_2006_05_016
crossref_primary_10_1016_j_engstruct_2022_114974
crossref_primary_10_1016_j_engstruct_2022_115029
crossref_primary_10_1016_j_engstruct_2021_112378
crossref_primary_10_1007_s10518_017_0184_9
crossref_primary_10_1016_j_engstruct_2022_115384
crossref_primary_10_1016_j_engstruct_2023_116772
crossref_primary_10_1007_s12205_016_0928_0
crossref_primary_10_1002_tal_1752
crossref_primary_10_1002_eqe_3423
crossref_primary_10_1177_8755293020936707
crossref_primary_10_1016_j_jobe_2024_109968
crossref_primary_10_1007_s10518_023_01772_1
crossref_primary_10_1016_j_compstruc_2021_106706
crossref_primary_10_1002_eqe_2944
crossref_primary_10_3151_jact_2_257
crossref_primary_10_1016_j_engstruct_2021_112876
crossref_primary_10_1016_j_compstruct_2019_110915
crossref_primary_10_1061__ASCE_ST_1943_541X_0003014
crossref_primary_10_1080_10168664_2022_2132897
crossref_primary_10_1016_j_oceaneng_2024_118054
crossref_primary_10_1016_j_engstruct_2017_02_043
crossref_primary_10_1016_j_istruc_2019_10_018
crossref_primary_10_1007_s10518_019_00639_8
crossref_primary_10_1016_j_cscm_2022_e01792
crossref_primary_10_1016_j_istruc_2021_03_110
crossref_primary_10_1007_s11803_017_0390_0
crossref_primary_10_1088_1757_899X_431_12_122005
crossref_primary_10_1016_j_compstruct_2023_117839
crossref_primary_10_1016_j_conbuildmat_2016_09_016
crossref_primary_10_1016_j_conbuildmat_2006_07_008
crossref_primary_10_1016_j_engstruct_2015_05_032
crossref_primary_10_1080_19648189_2021_1896582
crossref_primary_10_1061_JSENDH_STENG_11349
crossref_primary_10_1016_j_jobe_2022_104413
crossref_primary_10_1016_j_istruc_2020_09_031
crossref_primary_10_1061__ASCE_MT_1943_5533_0003831
crossref_primary_10_1193_1_4000059
crossref_primary_10_3390_ma15134601
crossref_primary_10_1177_13694332221125828
crossref_primary_10_1016_j_engstruct_2022_114757
crossref_primary_10_1061__ASCE_ST_1943_541X_0000088
crossref_primary_10_1007_s10518_023_01723_w
crossref_primary_10_1016_j_engstruct_2013_05_049
crossref_primary_10_1016_j_istruc_2024_106100
crossref_primary_10_1016_S0734_743X_02_00157_4
crossref_primary_10_1061__ASCE_MT_1943_5533_0002637
crossref_primary_10_1002_eqe_2243
crossref_primary_10_1016_j_engstruct_2014_12_025
crossref_primary_10_1016_j_compstruct_2017_09_007
crossref_primary_10_1016_j_engstruct_2015_09_007
crossref_primary_10_1016_j_conbuildmat_2015_07_102
crossref_primary_10_1016_j_istruc_2022_10_068
crossref_primary_10_1007_s00707_013_0970_7
crossref_primary_10_3390_app122110910
crossref_primary_10_1002_tal_1670
crossref_primary_10_1061__ASCE_ST_1943_541X_0000414
crossref_primary_10_1016_j_engstruct_2019_01_033
crossref_primary_10_1016_j_conbuildmat_2024_135181
crossref_primary_10_1016_j_engstruct_2010_04_045
crossref_primary_10_1016_j_prostr_2020_06_050
crossref_primary_10_1007_s10518_020_00868_2
crossref_primary_10_1061__ASCE_ST_1943_541X_0001554
crossref_primary_10_1016_j_engstruct_2022_113920
crossref_primary_10_5459_bnzsee_48_3_157_169
crossref_primary_10_1002_best_202000009
crossref_primary_10_1016_j_jobe_2021_103476
crossref_primary_10_1177_87552930211053345
crossref_primary_10_3151_jact_9_315
crossref_primary_10_3390_ma15207127
crossref_primary_10_1002_tal_1566
crossref_primary_10_3390_app14062546
crossref_primary_10_1016_j_engstruct_2019_04_097
crossref_primary_10_12989_eas_2014_7_5_667
crossref_primary_10_14359_51738834
crossref_primary_10_1016_j_conbuildmat_2012_12_011
crossref_primary_10_1007_s12540_020_00839_x
crossref_primary_10_1016_j_istruc_2020_03_059
crossref_primary_10_1002_suco_202200965
crossref_primary_10_1016_j_engstruct_2020_111116
crossref_primary_10_14359_51689245
crossref_primary_10_1016_j_engstruct_2021_112302
crossref_primary_10_1016_j_engstruct_2021_112792
crossref_primary_10_1016_j_compstruc_2019_01_002
crossref_primary_10_1016_j_engstruct_2023_115822
crossref_primary_10_1061__ASCE_ST_1943_541X_0000119
crossref_primary_10_1617_s11527_015_0624_4
crossref_primary_10_5459_bnzsee_51_1_23_33
crossref_primary_10_1007_s11803_014_0241_1
crossref_primary_10_12989_cac_2016_17_5_567
crossref_primary_10_1080_13632469_2018_1475314
crossref_primary_10_1193_1_4000095
crossref_primary_10_1080_01694243_2022_2159292
crossref_primary_10_1002_eqe_3018
crossref_primary_10_1002_suco_202000309
crossref_primary_10_1061__ASCE_0733_9445_2009_135_4_335
crossref_primary_10_1061__ASCE_ST_1943_541X_0003278
crossref_primary_10_1016_j_istruc_2022_12_023
crossref_primary_10_1061__ASCE_ST_1943_541X_0002505
crossref_primary_10_1016_j_engstruct_2014_02_023
crossref_primary_10_1680_jstbu_18_00010
crossref_primary_10_1061__ASCE_0733_9445_2008_134_11_1733
crossref_primary_10_1016_j_tws_2023_111055
crossref_primary_10_1007_s10518_019_00641_0
crossref_primary_10_1016_j_engstruct_2019_109663
crossref_primary_10_1016_j_engstruct_2019_109544
crossref_primary_10_3390_su11041118
crossref_primary_10_1016_j_engstruct_2021_112098
crossref_primary_10_1061__ASCE_CC_1943_5614_0000823
crossref_primary_10_1016_j_conbuildmat_2018_09_192
crossref_primary_10_1016_j_engstruct_2017_10_050
crossref_primary_10_1016_j_soildyn_2019_106007
crossref_primary_10_1002_stc_409
crossref_primary_10_1016_j_engstruct_2016_02_051
crossref_primary_10_52547_nmce_6_3_51
crossref_primary_10_3390_buildings12101681
crossref_primary_10_1186_s40069_024_00671_2
Cites_doi 10.1061/(ASCE)0733-9399(1989)115:1(1)
10.1061/(ASCE)0733-9445(1995)121:3(433)
10.1061/(ASCE)0733-9445(1999)125:6(605)
10.1061/(ASCE)0733-9445(1992)118:12(3268)
ContentType Journal Article
Copyright Copyright © 2002 American Society of Civil Engineers
Copyright_xml – notice: Copyright © 2002 American Society of Civil Engineers
DBID AAYXX
CITATION
8FD
FR3
KR7
7SM
DOI 10.1061/(ASCE)0733-9445(2002)128:9(1139)
DatabaseName CrossRef
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Earthquake Engineering Abstracts
DatabaseTitle CrossRef
Technology Research Database
Civil Engineering Abstracts
Engineering Research Database
Earthquake Engineering Abstracts
DatabaseTitleList Technology Research Database

Earthquake Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1943-541X
EndPage 1147
ExternalDocumentID 10_1061__ASCE_0733_9445_2002_128_9_1139
JSENDH00012800000900113900000110_1061_ASCE_0733_9445_2002_128_9_1139
GroupedDBID -0O
02
08R
0O
0R
29L
4.4
4S
5GY
6KP
A
AAYJJ
ABBOT
ABDBF
ABEFU
ABFLS
ABFSI
ABPTK
ACDCL
ACIWK
ACNET
ACVYA
ADZKS
AENEX
AFDAS
ALMA_UNASSIGNED_HOLDINGS
ARCSS
ARKUK
CS3
DL
E.L
E70
EAD
EAP
EAS
EBS
EDO
EJD
EMK
EST
ESX
G8K
HZ
I-F
L7B
O9-
O~X
P2P
RAC
RNS
RXW
TAE
TAF
TN5
TUS
VH1
X
ZY4
-~X
.4S
.DC
0R~
6TJ
AAELQ
AAIKC
AAMNW
AAYOK
AAYXX
ABTAH
ADVLX
AI.
ALNAR
CITATION
GQVBS
HZ~
WHG
XSW
XXG
~02
~A~
8FD
FR3
KR7
7SM
ID FETCH-LOGICAL-a470t-b797ac71b78add9361bba90da79be0a771998ea6f83a800142bb6f98b644d57b3
ISSN 0733-9445
IngestDate Fri Oct 25 03:01:22 EDT 2024
Fri Oct 25 07:49:10 EDT 2024
Fri Aug 23 02:27:58 EDT 2024
Tue Jan 05 18:38:37 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a470t-b797ac71b78add9361bba90da79be0a771998ea6f83a800142bb6f98b644d57b3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://ir.canterbury.ac.nz/bitstream/10092/4199/1/12587352_2002_ASCESTR_1__Modeling.pdf
PQID 27195322
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_27198029
proquest_miscellaneous_27195322
crossref_primary_10_1061__ASCE_0733_9445_2002_128_9_1139
asce_journals_JSENDH00012800000900113900000110_1061_ASCE_0733_9445_2002_128_9_1139
ProviderPackageCode ABBOT
RAC
ACNET
ARKUK
ADZKS
-0O
E70
PublicationCentury 2000
PublicationDate 2002-09-01
PublicationDateYYYYMMDD 2002-09-01
PublicationDate_xml – month: 09
  year: 2002
  text: 2002-09-01
  day: 01
PublicationDecade 2000
PublicationTitle Journal of structural engineering (New York, N.Y.)
PublicationYear 2002
Publisher American Society of Civil Engineers
Publisher_xml – name: American Society of Civil Engineers
References Dodd, L. L.; Restrepo-Posada, J. I. 1995; 121
Mau, S. T.; El-Mabsout, M. 1989; 115
Mau, S. T. 1990; 87
Monti, G.; Nuti, C. 1992; 118
Rodriguez, M. E.; Botero, J. C.; Villa, J. 1999; 125
Tsuchiya, S.; Ogasawara, M.; Tsuno, K.; Ichikawa, H.; Maekawa, K. 1999; 634
e_1_2_1_7_1
e_1_2_1_8_1
e_1_2_1_5_1
e_1_2_1_3_1
e_1_2_1_4_1
Mau S. T. (e_1_2_1_6_1) 1990; 87
e_1_2_1_10_1
e_1_2_1_2_1
e_1_2_1_11_1
Tsuchiya S. (e_1_2_1_12_1) 1999; 634
e_1_2_1_9_1
References_xml – volume: 118
  start-page: 3268
  issn: 0733-9445
  year: 1992
  end-page: 3284
  article-title: Nonlinear cyclic behavior of reinforcing bars including buckling.
  publication-title: J. Struct. Eng.
  contributor:
    fullname: Monti, G.; Nuti, C.
– volume: 115
  start-page: 1
  issn: 0733-9399
  year: 1989
  end-page: 17
  article-title: Inelastic buckling of reinforcing bars.
  publication-title: J. Eng. Mech.
  contributor:
    fullname: Mau, S. T.; El-Mabsout, M.
– volume: 121
  start-page: 433
  issn: 0733-9445
  year: 1995
  end-page: 445
  article-title: Model for predicting cyclic behavior of reinforcing steel.
  publication-title: J. Struct. Eng.
  contributor:
    fullname: Dodd, L. L.; Restrepo-Posada, J. I.
– volume: 87
  start-page: 671
  issn: 0889-3241
  year: 1990
  end-page: 678
  article-title: Effect of tie spacing on inelastic buckling of reinforcing bars.
  publication-title: ACI Struct. J.
  contributor:
    fullname: Mau, S. T.
– volume: 125
  start-page: 605
  issn: 0733-9445
  year: 1999
  end-page: 612
  article-title: Cyclic stress-strain behavior of reinforcing steel including the effect of buckling.
  publication-title: J. Struct. Eng.
  contributor:
    fullname: Rodriguez, M. E.; Botero, J. C.; Villa, J.
– volume: 634
  start-page: 131
  year: 1999
  end-page: 144
  article-title: Multiaxial flexura behavior and nonlinear analysis of RC columns subjected to eccentric axial forces.
  publication-title: J. Mater., Concr. Struct. Pavements, JSCE
  contributor:
    fullname: Tsuchiya, S.; Ogasawara, M.; Tsuno, K.; Ichikawa, H.; Maekawa, K.
– ident: e_1_2_1_2_1
– ident: e_1_2_1_7_1
  doi: 10.1061/(ASCE)0733-9399(1989)115:1(1)
– ident: e_1_2_1_5_1
– volume: 634
  start-page: 131
  issue: 45
  year: 1999
  ident: e_1_2_1_12_1
  article-title: Multiaxial flexura behavior and nonlinear analysis of RC columns subjected to eccentric axial forces.
  publication-title: J. Mater., Concr. Struct. Pavements, JSCE
  contributor:
    fullname: Tsuchiya S.
– ident: e_1_2_1_4_1
  doi: 10.1061/(ASCE)0733-9445(1995)121:3(433)
– ident: e_1_2_1_10_1
  doi: 10.1061/(ASCE)0733-9445(1999)125:6(605)
– ident: e_1_2_1_3_1
– volume: 87
  start-page: 671
  issue: 6
  year: 1990
  ident: e_1_2_1_6_1
  article-title: Effect of tie spacing on inelastic buckling of reinforcing bars.
  publication-title: ACI Struct. J.
  contributor:
    fullname: Mau S. T.
– ident: e_1_2_1_9_1
  doi: 10.1061/(ASCE)0733-9445(1992)118:12(3268)
– ident: e_1_2_1_8_1
– ident: e_1_2_1_11_1
SSID ssj0007518
Score 2.2414448
Snippet Finite element microanalysis using fiber technique was carried out to study the buckling mechanism of reinforcing bars. It was found that reinforcing bars...
Finite element microanalysis using the fiber technique was carried out to study the buckling mechanism of reinforcing bars. It was found that reinforcing bars...
SourceID proquest
crossref
asce
SourceType Aggregation Database
Publisher
StartPage 1139
SubjectTerms TECHNICAL PAPERS
Title Modeling for Postyield Buckling of Reinforcement
URI http://ascelibrary.org/doi/abs/10.1061/(ASCE)0733-9445(2002)128:9(1139)
https://search.proquest.com/docview/27195322
https://search.proquest.com/docview/27198029
Volume 128
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1dixMxMOgdiD6In3h-7oMPLbK6m_1IxrfetaUcdxV6LfQtJLspwkkrtCL6653Jbna3WDz1ZVmySSY7M5lMkvlg7K0oS6F5mYTSQhai9DMhQFmENhY5pIVcpSn5Dl9O88kiPV9mS5-zvfYu2Zn3xc-DfiX_Q1UsQ7qSl-w_ULbpFAvwHemLT6QwPv-KxpTI7Is3haS0uz_IHq26r62tmWfWhUYtWguX3zXRKoasi79h2_CEh_L0dM4Nhp_1tUsW8G7W-ohdanutv-v2-NSfJ_DGYMqLHZEkIaRVkMdGRnLZYQboSLw4roIR1asnbq_EQcmMegOiE0c-uDob4WgbMFjEXRhYQCCIX6AAVdip_6O9ENnTT2q8uLhQ89Fyfpsdc5QuKNaOB6fD03GzANNNkou-WkO4w3r1CD70CHq_-dIjyH2E-xF6BLOPC7Pe0k6lq6Tsr9FO8Zg_YPdrOgWDivwP2S27fsTudeJIPmaRZ4QASR00jBB4Rgg2q2CPEZ6wxXg0P5uEdSqMUKci2oVGgNAFziQhcUHCn46N0RCVWoCxkRaCXCWtzlcy0ZK2vdyYfAXSoLpbZsIkT9nRerO2z1iQmwyklLlERS41WKdApToXNotKLiKbnbAZoUDVfL5V51ej6XDijiyl21MC7SMScO-xM2LIY0WIVYRYRYil7KZcYQMFiuqeMOkRqr5WYVSUb3lj0zeeAApFH91n6bXdfNsqLugOmPM_15ARh-c39vGC3W0nw0t2hBPPvkJ1c2de1-z1C_Y7bgg
link.rule.ids 315,783,787,27936,27937
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+for+Postyield+Buckling+of+Reinforcement&rft.jtitle=Journal+of+structural+engineering+%28New+York%2C+N.Y.%29&rft.au=Dhakal%2C+R+P&rft.au=Maekawa%2C+K&rft.date=2002-09-01&rft.issn=0733-9445&rft.volume=128&rft.issue=9&rft.spage=1139&rft.epage=1147&rft_id=info:doi/10.1061%2F%28ASCE%290733-9445%282002%29128%3A9%281139%29&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0733-9445&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0733-9445&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0733-9445&client=summon