Patterning Multiplex Protein Microarrays in a Single Microfluidic Channel
The development of versatile biofunctional surfaces is a fundamental prerequisite in designing Lab on a Chip (LOC) devices for applications in biosensing interfaces and microbioreactors. The current paper presents a rapid combinatorial approach to create multiplex protein patterns in a single microf...
Saved in:
Published in | Analytical chemistry (Washington) Vol. 84; no. 2; pp. 1012 - 1018 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
17.01.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The development of versatile biofunctional surfaces is a fundamental prerequisite in designing Lab on a Chip (LOC) devices for applications in biosensing interfaces and microbioreactors. The current paper presents a rapid combinatorial approach to create multiplex protein patterns in a single microfluidic channel. This approach consists of coupling microcontact printing with microfluidic patterning, where microcontact printing is employed for silanization using (3-Aminopropyl) triethoxysilane (APTES), followed by microfluidic patterning of multiple antibodies. As a result, the biomolecules of choice could be covalently attached to the microchannel surface, thus creating a durable and highly resistant functional interface. Moreover, the experimental procedure was designed to create a microfluidic platform that maintains functionality at high flow rates. The functionalized surfaces were characterized using X-ray photoelectron spectroscopy (XPS) and monitored with fluorescence microscopy at each step of functionalization. To illustrate the possibility of patterning multiple biomolecules along the cross section of a single microfluidic channel, microarrays of five different primary antibodies were patterned onto a single channel and their functionality was evaluated accordingly through a multiplex immunoassay using secondary antibodies specific to each patterned primary antibody. The resulting patterns remained stable at shear stresses of up to 50 dyn/cm2. The overall findings suggest that the developed multiplex functional interface on a single channel can successfully lead to highly resistant multiplex functional surfaces for high throughput biological assays. |
---|---|
AbstractList | The development of versatile biofunctional surfaces is a fundamental prerequisite in designing Lab on a Chip (LOC) devices for applications in biosensing interfaces and microbioreactors. The current paper presents a rapid combinatorial approach to create multiplex protein patterns in a single microfluidic channel. This approach consists of coupling microcontact printing with microfluidic patterning, where microcontact printing is employed for silanization using (3-Aminopropyl) triethoxysilane (APTES), followed by microfluidic patterning of multiple antibodies. As a result, the biomolecules of choice could be covalently attached to the microchannel surface, thus creating a durable and highly resistant functional interface. Moreover, the experimental procedure was designed to create a microfluidic platform that maintains functionality at high flow rates. The functionalized surfaces were characterized using X-ray photoelectron spectroscopy (XPS) and monitored with fluorescence microscopy at each step of functionalization. To illustrate the possibility of patterning multiple biomolecules along the cross section of a single microfluidic channel, microarrays of five different primary antibodies were patterned onto a single channel and their functionality was evaluated accordingly through a multiplex immunoassay using secondary antibodies specific to each patterned primary antibody. The resulting patterns remained stable at shear stresses of up to 50 dyn/cm(2). The overall findings suggest that the developed multiplex functional interface on a single channel can successfully lead to highly resistant multiplex functional surfaces for high throughput biological assays.The development of versatile biofunctional surfaces is a fundamental prerequisite in designing Lab on a Chip (LOC) devices for applications in biosensing interfaces and microbioreactors. The current paper presents a rapid combinatorial approach to create multiplex protein patterns in a single microfluidic channel. This approach consists of coupling microcontact printing with microfluidic patterning, where microcontact printing is employed for silanization using (3-Aminopropyl) triethoxysilane (APTES), followed by microfluidic patterning of multiple antibodies. As a result, the biomolecules of choice could be covalently attached to the microchannel surface, thus creating a durable and highly resistant functional interface. Moreover, the experimental procedure was designed to create a microfluidic platform that maintains functionality at high flow rates. The functionalized surfaces were characterized using X-ray photoelectron spectroscopy (XPS) and monitored with fluorescence microscopy at each step of functionalization. To illustrate the possibility of patterning multiple biomolecules along the cross section of a single microfluidic channel, microarrays of five different primary antibodies were patterned onto a single channel and their functionality was evaluated accordingly through a multiplex immunoassay using secondary antibodies specific to each patterned primary antibody. The resulting patterns remained stable at shear stresses of up to 50 dyn/cm(2). The overall findings suggest that the developed multiplex functional interface on a single channel can successfully lead to highly resistant multiplex functional surfaces for high throughput biological assays. The development of versatile biofunctional surfaces is a fundamental prerequisite in designing Lab on a Chip (LOC) devices for applications in biosensing interfaces and microbioreactors. The current paper presents a rapid combinatorial approach to create multiplex protein patterns in a single microfluidic channel. This approach consists of coupling microcontact printing with microfluidic patterning, where microcontact printing is employed for silanization using (3-Aminopropyl) triethoxysilane (APTES), followed by microfluidic patterning of multiple antibodies. As a result, the biomolecules of choice could be covalently attached to the microchannel surface, thus creating a durable and highly resistant functional interface. Moreover, the experimental procedure was designed to create a microfluidic platform that maintains functionality at high flow rates. The functionalized surfaces were characterized using X-ray photoelectron spectroscopy (XPS) and monitored with fluorescence microscopy at each step of functionalization. To illustrate the possibility of patterning multiple biomolecules along the cross section of a single microfluidic channel, microarrays of five different primary antibodies were patterned onto a single channel and their functionality was evaluated accordingly through a multiplex immunoassay using secondary antibodies specific to each patterned primary antibody. The resulting patterns remained stable at shear stresses of up to 50 dyn/cm². The overall findings suggest that the developed multiplex functional interface on a single channel can successfully lead to highly resistant multiplex functional surfaces for high throughput biological assays. The development of versatile biofunctional surfaces is a fundamental prerequisite in designing Lab on a Chip (LOC) devices for applications in biosensing interfaces and microbioreactors. The current paper presents a rapid combinatorial approach to create multiplex protein patterns in a single microfluidic channel. This approach consists of coupling microcontact printing with microfluidic patterning, where microcontact printing is employed for silanization using (3-Aminopropyl) triethoxysilane (APTES), followed by microfluidic patterning of multiple antibodies. As a result, the biomolecules of choice could be covalently attached to the microchannel surface, thus creating a durable and highly resistant functional interface. Moreover, the experimental procedure was designed to create a microfluidic platform that maintains functionality at high flow rates. The functionalized surfaces were characterized using X-ray photoelectron spectroscopy (XPS) and monitored with fluorescence microscopy at each step of functionalization. To illustrate the possibility of patterning multiple biomolecules along the cross section of a single microfluidic channel, microarrays of five different primary antibodies were patterned onto a single channel and their functionality was evaluated accordingly through a multiplex immunoassay using secondary antibodies specific to each patterned primary antibody. The resulting patterns remained stable at shear stresses of up to 50 dyn/cm... The overall findings suggest that the developed multiplex functional interface on a single channel can successfully lead to highly resistant multiplex functional surfaces for high throughput biological assays. (ProQuest: ... denotes formulae/symbols omitted.) The development of versatile biofunctional surfaces is a fundamental prerequisite in designing Lab on a Chip (LOC) devices for applications in biosensing interfaces and microbioreactors. The current paper presents a rapid combinatorial approach to create multiplex protein patterns in a single microfluidic channel. This approach consists of coupling microcontact printing with microfluidic patterning, where microcontact printing is employed for silanization using (3-Aminopropyl) triethoxysilane (APTES), followed by microfluidic patterning of multiple antibodies. As a result, the biomolecules of choice could be covalently attached to the microchannel surface, thus creating a durable and highly resistant functional interface. Moreover, the experimental procedure was designed to create a microfluidic platform that maintains functionality at high flow rates. The functionalized surfaces were characterized using X-ray photoelectron spectroscopy (XPS) and monitored with fluorescence microscopy at each step of functionalization. To illustrate the possibility of patterning multiple biomolecules along the cross section of a single microfluidic channel, microarrays of five different primary antibodies were patterned onto a single channel and their functionality was evaluated accordingly through a multiplex immunoassay using secondary antibodies specific to each patterned primary antibody. The resulting patterns remained stable at shear stresses of up to 50 dyn/cm2. The overall findings suggest that the developed multiplex functional interface on a single channel can successfully lead to highly resistant multiplex functional surfaces for high throughput biological assays. The development of versatile biofunctional surfaces is a fundamental prerequisite in designing Lab on a Chip (LOC) devices for applications in biosensing interfaces and microbioreactors. The current paper presents a rapid combinatorial approach to create multiplex protein patterns in a single microfluidic channel. This approach consists of coupling microcontact printing with microfluidic patterning, where microcontact printing is employed for silanization using (3-Aminopropyl) triethoxysilane (APTES), followed by microfluidic patterning of multiple antibodies. As a result, the biomolecules of choice could be covalently attached to the microchannel surface, thus creating a durable and highly resistant functional interface. Moreover, the experimental procedure was designed to create a microfluidic platform that maintains functionality at high flow rates. The functionalized surfaces were characterized using X-ray photoelectron spectroscopy (XPS) and monitored with fluorescence microscopy at each step of functionalization. To illustrate the possibility of patterning multiple biomolecules along the cross section of a single microfluidic channel, microarrays of five different primary antibodies were patterned onto a single channel and their functionality was evaluated accordingly through a multiplex immunoassay using secondary antibodies specific to each patterned primary antibody. The resulting patterns remained stable at shear stresses of up to 50 dyn/cm(2). The overall findings suggest that the developed multiplex functional interface on a single channel can successfully lead to highly resistant multiplex functional surfaces for high throughput biological assays. |
Author | Didar, Tohid Fatanat Foudeh, Amir M Tabrizian, Maryam |
AuthorAffiliation | Department of Biomedical Engineering Faculty of Dentistry McGill University |
AuthorAffiliation_xml | – name: Department of Biomedical Engineering – name: McGill University – name: Faculty of Dentistry |
Author_xml | – sequence: 1 givenname: Tohid Fatanat surname: Didar fullname: Didar, Tohid Fatanat – sequence: 2 givenname: Amir M surname: Foudeh fullname: Foudeh, Amir M – sequence: 3 givenname: Maryam surname: Tabrizian fullname: Tabrizian, Maryam email: maryam.tabrizian@mcgill.ca |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25482213$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22124457$$D View this record in MEDLINE/PubMed |
BookMark | eNp90V9rFDEQAPAgFXutPvgFZBGk-rB2kuxuso_lsFposaA-L7PJrKbksmeSBfvtTbmrhSo-hQm_GebPETsIcyDGXnJ4z0HwUzQCRKuVesJWvBVQd1qLA7YCAFkLBXDIjlK6AeAcePeMHQrBRdO0asUurjFnisGF79XV4rPbevpVXcc5kwvVlTNxxhjxNlUlxOpLcZ52_5NfnHWmWv_AEMg_Z08n9Ile7N9j9u38w9f1p_ry88eL9dlljY2CXDeqNb0dR24lEYfSKEo79kYRWW0laJh0A5KKEop0x-0ku7FFTsYqoRp5zE52dbdx_rlQysPGJUPeY6B5SUPPVat6qdsi3_5Xirv9CK47UejrR_RmXmIoc5R6mreqEX1Br_ZoGTdkh210G4y3w_02C3izB5gM-iliMC49uLbRxcriTneubDGlSNNgXMbs5pAjOj9wGO7uOvy5a8l49yjjvui_7L4LNOlhjL_db4aoqxQ |
CODEN | ANCHAM |
CitedBy_id | crossref_primary_10_1021_cr5000943 crossref_primary_10_1088_0960_1317_25_7_075008 crossref_primary_10_1002_polb_23275 crossref_primary_10_1016_j_bios_2016_09_041 crossref_primary_10_1007_s10854_017_7610_2 crossref_primary_10_1021_acsbiomaterials_9b01062 crossref_primary_10_1021_la502742r crossref_primary_10_1016_j_jcis_2012_10_040 crossref_primary_10_1021_acsapm_2c00163 crossref_primary_10_1016_j_apsusc_2017_03_100 crossref_primary_10_1039_C4LC00487F crossref_primary_10_1371_journal_pone_0068918 crossref_primary_10_1016_j_bios_2016_06_033 crossref_primary_10_2116_analsci_30_7 crossref_primary_10_1039_D1LC00288K crossref_primary_10_1021_acsami_6b05453 crossref_primary_10_1002_asia_201700358 crossref_primary_10_1039_C9LC00608G crossref_primary_10_3390_s140509132 crossref_primary_10_1063_1_4944741 crossref_primary_10_1016_j_talanta_2015_10_018 crossref_primary_10_1039_C6LC00751A crossref_primary_10_1021_acsnano_7b08010 crossref_primary_10_1039_c2an35967g crossref_primary_10_1146_annurev_anchem_062012_092616 crossref_primary_10_1039_C9LC00364A crossref_primary_10_1002_apj_1864 crossref_primary_10_1063_1_4816934 crossref_primary_10_1002_admi_201800659 crossref_primary_10_1002_mds3_10085 crossref_primary_10_1002_smll_201905562 crossref_primary_10_1002_adhm_201300099 crossref_primary_10_1021_acsami_5b01058 crossref_primary_10_1007_s11426_013_4909_6 crossref_primary_10_1039_C7AN00273D crossref_primary_10_1039_c2lc40630f crossref_primary_10_1002_admi_201900940 crossref_primary_10_1021_acsnano_8b03938 crossref_primary_10_1177_2211068213491408 crossref_primary_10_1016_j_biomaterials_2018_12_006 crossref_primary_10_1007_s00216_014_8244_3 crossref_primary_10_1007_s10544_016_0036_4 crossref_primary_10_1063_1_4991550 crossref_primary_10_1016_j_trac_2022_116827 crossref_primary_10_1039_C8AY02641F crossref_primary_10_1016_j_lfs_2023_121506 crossref_primary_10_1063_1_4953140 crossref_primary_10_1016_j_colsurfb_2013_07_021 crossref_primary_10_1115_1_4033432 crossref_primary_10_1016_j_cocis_2013_07_005 crossref_primary_10_1021_acssensors_9b00440 |
Cites_doi | 10.1016/S0006-3495(01)76003-1 10.1039/c0ib00017e 10.1073/pnas.1001515107 10.1002/bit.23029 10.1021/la048047b 10.1016/j.biomaterials.2009.09.040 10.1016/S1369-5274(00)00093-X 10.1002/1521-3773(20020703)41:13<2320::AID-ANIE2320>3.0.CO;2-Z 10.1080/07388550600978358 10.1063/1.126351 10.1074/mcp.M800291-MCP200 10.1039/B9PY00281B 10.1016/j.biomaterials.2010.11.036 10.1039/b210621n 10.1021/la0531751 10.1038/nature05058 10.1021/la1014253 10.1021/nl903968s 10.1016/S0039-9140(01)00501-X 10.1016/j.aca.2005.12.051 10.1073/pnas.96.10.5545 10.1021/ja0735709 10.1016/j.bios.2006.06.017 10.1016/S0142-9612(01)00244-7 10.1021/la061240g 10.1039/b417245k 10.1039/c0lc00130a 10.1002/bp070070a 10.1163/156856208784522092 10.1021/ac800912f 10.1016/j.bios.2005.11.003 10.1002/anie.200500633 10.1016/j.snb.2006.09.034 10.1021/ac060304p 10.1021/la200102z 10.1021/ac048440m 10.1039/B813516A 10.1021/ja00142a031 10.1021/ac035415s |
ContentType | Journal Article |
Copyright | Copyright © 2011 American Chemical Society 2015 INIST-CNRS Copyright American Chemical Society Jan 17, 2012 |
Copyright_xml | – notice: Copyright © 2011 American Chemical Society – notice: 2015 INIST-CNRS – notice: Copyright American Chemical Society Jan 17, 2012 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7S9 L.6 7X8 |
DOI | 10.1021/ac2025877 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Toxicology Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts AIDS and Cancer Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Toxicology Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA Materials Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1520-6882 |
EndPage | 1018 |
ExternalDocumentID | 2571638981 22124457 25482213 10_1021_ac2025877 c946739225 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | - .K2 02 1AW 23M 4.4 53G 53T 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABOCM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACNCT ACPRK ACS AEESW AENEX AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 D0L DZ EBS ED ED~ EJD F20 F5P GNL IH9 IHE JG JG~ K2 LG6 P2P PQEST PQQKQ ROL RXW TAE TAF TN5 UHB UI2 UKR VF5 VG9 VQA W1F WH7 X X6Y XFK YZZ --- -DZ -~X .DC 6J9 AAHBH AAYXX ABBLG ABHFT ABHMW ABJNI ABLBI ABQRX ACBEA ACGFO ACKOT ADHLV AGXLV AHGAQ CITATION CUPRZ GGK KZ1 LMP XSW ZCA ~02 .GJ .HR 186 1WB 2KS 3EH 3O- 6TJ AAUTI ABDPE ACKIV ACPVT ACQAM ACRPL ADNMO ADXHL AETEA AEYZD AFFDN AFFNX AGQPQ AIDAL ANPPW ANTXH IQODW MVM NHB OHT OMK RNS UBC UBX VOH XOL YQI YQJ YR5 YXE YYP ZCG ZE2 ZGI CGR CUY CVF ECM EIF NPM YIN 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7S9 L.6 7X8 |
ID | FETCH-LOGICAL-a470t-475c9dbb1d3ee10882a3db9c7eed8d3080f8403e5c927e861df36b5a1ecd72743 |
IEDL.DBID | ACS |
ISSN | 0003-2700 1520-6882 |
IngestDate | Fri Jul 11 01:27:32 EDT 2025 Fri Jul 11 02:46:48 EDT 2025 Mon Jun 30 08:36:56 EDT 2025 Wed Feb 19 01:49:07 EST 2025 Mon Jul 21 09:15:46 EDT 2025 Thu Apr 24 23:11:54 EDT 2025 Tue Jul 01 03:06:09 EDT 2025 Thu Aug 27 13:42:24 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Chemical analysis Choice Cross section Microanalysis X ray Immunological method Functionalization Lead Photoelectron spectrometry Coupling Printing Fluid mechanics Antibody Device X ray spectrometry System on a chip Chemical sensor Protein Experimental design Biosensor Sensor array Application Interface Microfluidics Fluorescence microscopy |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a470t-475c9dbb1d3ee10882a3db9c7eed8d3080f8403e5c927e861df36b5a1ecd72743 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 22124457 |
PQID | 918157429 |
PQPubID | 45400 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_917579385 proquest_miscellaneous_2000321862 proquest_journals_918157429 pubmed_primary_22124457 pascalfrancis_primary_25482213 crossref_citationtrail_10_1021_ac2025877 crossref_primary_10_1021_ac2025877 acs_journals_10_1021_ac2025877 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-01-17 |
PublicationDateYYYYMMDD | 2012-01-17 |
PublicationDate_xml | – month: 01 year: 2012 text: 2012-01-17 day: 17 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States – name: Washington |
PublicationTitle | Analytical chemistry (Washington) |
PublicationTitleAlternate | Anal. Chem |
PublicationYear | 2012 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Whitesides G. M. (ref1/cit1) 2006; 442 Kim D. J. (ref16/cit16) 2011; 108 Howarter J. A. (ref29/cit29) 2006; 22 Kirby B. J. (ref8/cit8) 2003; 3 Renault J. P. (ref22/cit22) 2002; 41 Petty R. T. (ref33/cit33) 2007; 129 Walter G. (ref6/cit6) 2000; 3 Kamholz A. E. (ref36/cit36) 2001; 80 Nakajima H. (ref5/cit5) 2006; 562 Takayama S. (ref10/cit10) 1999; 96 Maraldo D. (ref30/cit30) 2007; 123 Mandal S. (ref27/cit27) 2007; 23 Shi J. (ref20/cit20) 2008; 80 Hu G. (ref39/cit39) 2007; 22 Lee N. Y. (ref3/cit3) 2006; 21 Green J. V. (ref31/cit31) 2009; 9 Walker G. M. (ref37/cit37) 2005; 5 Fricke R. (ref11/cit11) 2011; 32 Jiang X. (ref24/cit24) 2005; 77 Onclin S. (ref35/cit35) 2005; 44 Wu P. (ref14/cit14) 2008; 19 Tan C. P. (ref17/cit17) 2010; 10 Didar T. F. (ref12/cit12) 2010; 10 Rosengren Å. (ref25/cit25) 2002; 23 Shamansky L. M. (ref2/cit2) 2001; 55 Saliba A. E. (ref13/cit13) 2010; 107 Barbulovic-Nad I. (ref15/cit15) 2006; 26 Murthy S. K. (ref28/cit28) 2004; 20 Khademhosseini A. (ref7/cit7) 2004; 76 Kaji H. (ref21/cit21) 2006; 78 Fiddes L. K. (ref4/cit4) 2010; 31 Yin Z. (ref19/cit19) 2010; 2 Ismagilov R. F. (ref38/cit38) 2000; 76 Hosseinidoust Z. (ref26/cit26) 2011; 27 Kaufmann T. (ref23/cit23) 2010; 1 Cheong R. (ref32/cit32) 2009; 8 Patrito N. (ref9/cit9) 2006; 22 Xia Y. (ref34/cit34) 1995; 117 Kim M. (ref18/cit18) 2010; 26 |
References_xml | – volume: 80 start-page: 155 issue: 1 year: 2001 ident: ref36/cit36 publication-title: Biophys. J. doi: 10.1016/S0006-3495(01)76003-1 – volume: 2 start-page: 416 issue: 9 year: 2010 ident: ref19/cit19 publication-title: Integr. Biol. doi: 10.1039/c0ib00017e – volume: 107 start-page: 14524 issue: 33 year: 2010 ident: ref13/cit13 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1001515107 – volume: 108 start-page: 1194 issue: 5 year: 2011 ident: ref16/cit16 publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.23029 – volume: 20 start-page: 11649 issue: 26 year: 2004 ident: ref28/cit28 publication-title: Langmuir doi: 10.1021/la048047b – volume: 31 start-page: 315 issue: 2 year: 2010 ident: ref4/cit4 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.09.040 – volume: 3 start-page: 298 issue: 3 year: 2000 ident: ref6/cit6 publication-title: Curr. Opin. Microbiol. doi: 10.1016/S1369-5274(00)00093-X – volume: 41 start-page: 2320 issue: 13 year: 2002 ident: ref22/cit22 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/1521-3773(20020703)41:13<2320::AID-ANIE2320>3.0.CO;2-Z – volume: 26 start-page: 237 issue: 4 year: 2006 ident: ref15/cit15 publication-title: Crit. Rev. Biotechnol. doi: 10.1080/07388550600978358 – volume: 76 start-page: 2376 issue: 17 year: 2000 ident: ref38/cit38 publication-title: Appl. Phys. Lett. doi: 10.1063/1.126351 – volume: 8 start-page: 433 issue: 3 year: 2009 ident: ref32/cit32 publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M800291-MCP200 – volume: 1 start-page: 371 issue: 4 year: 2010 ident: ref23/cit23 publication-title: Polymer Chem. doi: 10.1039/B9PY00281B – volume: 32 start-page: 2070 issue: 8 year: 2011 ident: ref11/cit11 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.11.036 – volume: 3 start-page: 5 issue: 1 year: 2003 ident: ref8/cit8 publication-title: Lab Chip doi: 10.1039/b210621n – volume: 22 start-page: 3453 issue: 8 year: 2006 ident: ref9/cit9 publication-title: Langmuir doi: 10.1021/la0531751 – volume: 442 start-page: 368 issue: 7101 year: 2006 ident: ref1/cit1 publication-title: Nature doi: 10.1038/nature05058 – volume: 26 start-page: 12112 issue: 14 year: 2010 ident: ref18/cit18 publication-title: Langmuir doi: 10.1021/la1014253 – volume: 10 start-page: 719 issue: 2 year: 2010 ident: ref17/cit17 publication-title: Nano Lett. doi: 10.1021/nl903968s – volume: 55 start-page: 909 issue: 5 year: 2001 ident: ref2/cit2 publication-title: Talanta doi: 10.1016/S0039-9140(01)00501-X – volume: 562 start-page: 103 issue: 1 year: 2006 ident: ref5/cit5 publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2005.12.051 – volume: 96 start-page: 5545 issue: 10 year: 1999 ident: ref10/cit10 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.96.10.5545 – volume: 129 start-page: 8966 issue: 29 year: 2007 ident: ref33/cit33 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0735709 – volume: 22 start-page: 1403 issue: 7 year: 2007 ident: ref39/cit39 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2006.06.017 – volume: 23 start-page: 1237 issue: 4 year: 2002 ident: ref25/cit25 publication-title: Biomaterials doi: 10.1016/S0142-9612(01)00244-7 – volume: 22 start-page: 11142 issue: 26 year: 2006 ident: ref29/cit29 publication-title: Langmuir doi: 10.1021/la061240g – volume: 5 start-page: 611 issue: 6 year: 2005 ident: ref37/cit37 publication-title: Lab Chip doi: 10.1039/b417245k – volume: 10 start-page: 3043 issue: 22 year: 2010 ident: ref12/cit12 publication-title: Lab Chip doi: 10.1039/c0lc00130a – volume: 23 start-page: 972 issue: 4 year: 2007 ident: ref27/cit27 publication-title: Biotechnol. Prog. doi: 10.1002/bp070070a – volume: 19 start-page: 725 issue: 6 year: 2008 ident: ref14/cit14 publication-title: J. Biomater. Sci., Polymer Ed. doi: 10.1163/156856208784522092 – volume: 80 start-page: 6078 issue: 15 year: 2008 ident: ref20/cit20 publication-title: Anal. Chem. doi: 10.1021/ac800912f – volume: 21 start-page: 2188 issue: 11 year: 2006 ident: ref3/cit3 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2005.11.003 – volume: 44 start-page: 6282 issue: 39 year: 2005 ident: ref35/cit35 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200500633 – volume: 123 start-page: 474 issue: 1 year: 2007 ident: ref30/cit30 publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2006.09.034 – volume: 78 start-page: 5469 issue: 15 year: 2006 ident: ref21/cit21 publication-title: Anal. Chem. doi: 10.1021/ac060304p – volume: 27 start-page: 5472 issue: 9 year: 2011 ident: ref26/cit26 publication-title: Langmuir doi: 10.1021/la200102z – volume: 77 start-page: 2338 issue: 8 year: 2005 ident: ref24/cit24 publication-title: Anal. Chem. doi: 10.1021/ac048440m – volume: 9 start-page: 677 issue: 5 year: 2009 ident: ref31/cit31 publication-title: Lab Chip doi: 10.1039/B813516A – volume: 117 start-page: 9576 issue: 37 year: 1995 ident: ref34/cit34 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00142a031 – volume: 76 start-page: 3675 issue: 13 year: 2004 ident: ref7/cit7 publication-title: Anal. Chem. doi: 10.1021/ac035415s |
SSID | ssj0011016 |
Score | 2.2883465 |
Snippet | The development of versatile biofunctional surfaces is a fundamental prerequisite in designing Lab on a Chip (LOC) devices for applications in biosensing... |
SourceID | proquest pubmed pascalfrancis crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1012 |
SubjectTerms | Analytical chemistry antibodies bioassays biochemical compounds Biological and medical sciences Biosensors Biotechnology Chemistry Exact sciences and technology Flow rates Fluorescence Fluorescence microscopy Fundamental and applied biological sciences. Psychology General, instrumentation High flow Immunoassay immunoassays Methods. Procedures. Technologies microarray technology Microfluidic Analytical Techniques - instrumentation Microfluidics Microscopy, Fluorescence Miscellaneous Photoelectron Spectroscopy Protein Array Analysis Proteins Proteins - chemistry Shear stress Spectrometric and optical methods Spectrum analysis Surface Properties Various methods and equipments X-ray photoelectron spectroscopy |
Title | Patterning Multiplex Protein Microarrays in a Single Microfluidic Channel |
URI | http://dx.doi.org/10.1021/ac2025877 https://www.ncbi.nlm.nih.gov/pubmed/22124457 https://www.proquest.com/docview/918157429 https://www.proquest.com/docview/2000321862 https://www.proquest.com/docview/917579385 |
Volume | 84 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwEB7xOEBVFQqUprQrFzhwyRbHcZwc0bYIKm2FBEjcVn5FWnUV0GZXov31nckLUFm45TFREo-d-SZjfx_AYYYZV5bKOMyM82FsuQwzaVwotEly3FJJVcEf_krOruOfN_JmCQ4WVPAj_o04BCOZKrUMq1GCg5fwz-CyKxVQ-tnK4lEVtaUPenwphR5bPgk9b-90ia2Q1_IVi_FlFWdON-B7u1qnnl7yuz-fmb79-z9540uvsAnvGpzJTuqO8R6WfLEFa4NW3m0L3jxiItyG84uKZ5N-krBhM8fwnl0QicO4YEOataenU_2nZLir2SXaTXx9PJ_Mx25sGa1TKPxkB65Pf1wNzsJGZSHUsTqehbGSNnPGcCe854S4tXAmswqjZ-oEIsock0Dh0SpSPk24y0VipObeOgQ_sfgAK8Vt4T8CIw0ik9g8kdrGKeanThIdvrdcIO4UcQA9dMOoGSXlqCqAR3zUtU8AR62HRrbhKCepjMlzpvud6V1NzPGcUe-JmztLTIsRGXERwF7r94fHyhD1SIWBOoCv3Vn0DpVSdOFv5yWJdx4LkvOKAmALbDARlvj1S2UAu3WPerh9RLBKqk-vNcgerCNCo8kzIVefYWU2nfsviIJmpleNgn-i5fy7 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bT9RAFD5RfEBjFBChostofPClyHQ6nfaRbCSLsIQESHhr5tZk46aQ7W4C_nrP6W3BQPStl9N2Opee7_TMfB_A1wwjriyVcZgZ58PYchlm0rhQaJMUuKWSOoM_Pk1Gl_HPK3nV0uTQWhgsRIV3quok_pJdgH8nKsFIpko9hxcIQiLqzQfD8z5jQFFop45HydSORej-peSBbPXAA72-0RVWRtGoWDwNM2t3c_i20S2qC1rPMvm1t5ibPfv7Lw7H_3uTNXjTok520HSTdXjmyw1YHXZibxvw6h4v4Ts4OqtZN-mXCRu3Mw5v2RlROkxKNqY5fHo203cVw13NztFu6pvjxXQxcRPLaNVC6aebcHn442I4ClvNhVDHan8exkrazBnDnfCeE_7WwpnMKvSlqROILwsMCYVHq0j5NOGuEImRmnvrEArF4j2slNel3wZGikQmsUUitY1TjFadJHJ8b7lAFCriAAZYPXk7Zqq8TodHPO_rJ4BvXUPltmUsJ-GM6WOmX3rTm4am4zGjwYPW7i0xSEacxEUAO13zL4uVIQaSCt12AJ_7s9g6lFjRpb9eVCTluS9I3CsKgD1hg2GxxG9hKgPYajrW8vERgSypPvyrQnZhdXQxPslPjk6Pd-AlYjeaVhNy9RFW5rOF_4T4aG4G9cD4A47TBSs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9RAEJ8oJH6EoKJoRc_V-MBLke12u-0jOb2AengJkvDW7FeTC5dyud4l6l_PTL8AA9G3fkzb7exu5zed2d8AfMzQ48pSGYeZcT6MLZdhJo0LhTZJgVsqqSP44-Pk8DT-eibPWkeR1sJgIyq8U1UH8WlWz13RMgzwT0QnGMlUqfuwTuE6GtEHw5M-akCeaFchjwKqHZPQ9UvJCtnqhhXamOsKFVI0lSzuhpq1yRk9gR99Y-tMk_O91dLs2T9_8Tj-_9s8hc0WfbKDZrg8g3u-3IKHw67o2xY8vsZP-ByOJjX7Jv06YeM28_AXmxC1w7RkY8rl04uF_l0x3NXsBOVmvjlezFZTN7WMVi-UfvYCTkdffg4Pw7b2Qqhjtb8MYyVt5ozhTnjPCYdr4UxmFdrU1AnEmQW6hsKjVKR8mnBXiMRIzb11CIlisQ1r5UXpXwGjykQmsUUitY1T9FqdJJJ8b7lANCriAAaoorydO1Veh8Ujnvf6CWC366zctszlVEBjdpvoh1503tB13CY0uNHjvSQ6y4iXuAhgpxsCV83KEAtJheY7gPf9WewdCrDo0l-sKirpuS-oyFcUALtDBt1jid_EVAbwshlcV4-PCGxJ9fpfCnkHDyafR_n3o-NvO_AIIRxl14RcvYG15WLl3yJMWppBPTcuASvGB64 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Patterning+multiplex+protein+microarrays+in+a+single+microfluidic+channel&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Didar%2C+Tohid+Fatanat&rft.au=Foudeh%2C+Amir+M&rft.au=Tabrizian%2C+Maryam&rft.date=2012-01-17&rft.eissn=1520-6882&rft.volume=84&rft.issue=2&rft.spage=1012&rft_id=info:doi/10.1021%2Fac2025877&rft_id=info%3Apmid%2F22124457&rft.externalDocID=22124457 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2700&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2700&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2700&client=summon |