Patterning Multiplex Protein Microarrays in a Single Microfluidic Channel

The development of versatile biofunctional surfaces is a fundamental prerequisite in designing Lab on a Chip (LOC) devices for applications in biosensing interfaces and microbioreactors. The current paper presents a rapid combinatorial approach to create multiplex protein patterns in a single microf...

Full description

Saved in:
Bibliographic Details
Published inAnalytical chemistry (Washington) Vol. 84; no. 2; pp. 1012 - 1018
Main Authors Didar, Tohid Fatanat, Foudeh, Amir M, Tabrizian, Maryam
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 17.01.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The development of versatile biofunctional surfaces is a fundamental prerequisite in designing Lab on a Chip (LOC) devices for applications in biosensing interfaces and microbioreactors. The current paper presents a rapid combinatorial approach to create multiplex protein patterns in a single microfluidic channel. This approach consists of coupling microcontact printing with microfluidic patterning, where microcontact printing is employed for silanization using (3-Aminopropyl) triethoxysilane (APTES), followed by microfluidic patterning of multiple antibodies. As a result, the biomolecules of choice could be covalently attached to the microchannel surface, thus creating a durable and highly resistant functional interface. Moreover, the experimental procedure was designed to create a microfluidic platform that maintains functionality at high flow rates. The functionalized surfaces were characterized using X-ray photoelectron spectroscopy (XPS) and monitored with fluorescence microscopy at each step of functionalization. To illustrate the possibility of patterning multiple biomolecules along the cross section of a single microfluidic channel, microarrays of five different primary antibodies were patterned onto a single channel and their functionality was evaluated accordingly through a multiplex immunoassay using secondary antibodies specific to each patterned primary antibody. The resulting patterns remained stable at shear stresses of up to 50 dyn/cm2. The overall findings suggest that the developed multiplex functional interface on a single channel can successfully lead to highly resistant multiplex functional surfaces for high throughput biological assays.
AbstractList The development of versatile biofunctional surfaces is a fundamental prerequisite in designing Lab on a Chip (LOC) devices for applications in biosensing interfaces and microbioreactors. The current paper presents a rapid combinatorial approach to create multiplex protein patterns in a single microfluidic channel. This approach consists of coupling microcontact printing with microfluidic patterning, where microcontact printing is employed for silanization using (3-Aminopropyl) triethoxysilane (APTES), followed by microfluidic patterning of multiple antibodies. As a result, the biomolecules of choice could be covalently attached to the microchannel surface, thus creating a durable and highly resistant functional interface. Moreover, the experimental procedure was designed to create a microfluidic platform that maintains functionality at high flow rates. The functionalized surfaces were characterized using X-ray photoelectron spectroscopy (XPS) and monitored with fluorescence microscopy at each step of functionalization. To illustrate the possibility of patterning multiple biomolecules along the cross section of a single microfluidic channel, microarrays of five different primary antibodies were patterned onto a single channel and their functionality was evaluated accordingly through a multiplex immunoassay using secondary antibodies specific to each patterned primary antibody. The resulting patterns remained stable at shear stresses of up to 50 dyn/cm(2). The overall findings suggest that the developed multiplex functional interface on a single channel can successfully lead to highly resistant multiplex functional surfaces for high throughput biological assays.The development of versatile biofunctional surfaces is a fundamental prerequisite in designing Lab on a Chip (LOC) devices for applications in biosensing interfaces and microbioreactors. The current paper presents a rapid combinatorial approach to create multiplex protein patterns in a single microfluidic channel. This approach consists of coupling microcontact printing with microfluidic patterning, where microcontact printing is employed for silanization using (3-Aminopropyl) triethoxysilane (APTES), followed by microfluidic patterning of multiple antibodies. As a result, the biomolecules of choice could be covalently attached to the microchannel surface, thus creating a durable and highly resistant functional interface. Moreover, the experimental procedure was designed to create a microfluidic platform that maintains functionality at high flow rates. The functionalized surfaces were characterized using X-ray photoelectron spectroscopy (XPS) and monitored with fluorescence microscopy at each step of functionalization. To illustrate the possibility of patterning multiple biomolecules along the cross section of a single microfluidic channel, microarrays of five different primary antibodies were patterned onto a single channel and their functionality was evaluated accordingly through a multiplex immunoassay using secondary antibodies specific to each patterned primary antibody. The resulting patterns remained stable at shear stresses of up to 50 dyn/cm(2). The overall findings suggest that the developed multiplex functional interface on a single channel can successfully lead to highly resistant multiplex functional surfaces for high throughput biological assays.
The development of versatile biofunctional surfaces is a fundamental prerequisite in designing Lab on a Chip (LOC) devices for applications in biosensing interfaces and microbioreactors. The current paper presents a rapid combinatorial approach to create multiplex protein patterns in a single microfluidic channel. This approach consists of coupling microcontact printing with microfluidic patterning, where microcontact printing is employed for silanization using (3-Aminopropyl) triethoxysilane (APTES), followed by microfluidic patterning of multiple antibodies. As a result, the biomolecules of choice could be covalently attached to the microchannel surface, thus creating a durable and highly resistant functional interface. Moreover, the experimental procedure was designed to create a microfluidic platform that maintains functionality at high flow rates. The functionalized surfaces were characterized using X-ray photoelectron spectroscopy (XPS) and monitored with fluorescence microscopy at each step of functionalization. To illustrate the possibility of patterning multiple biomolecules along the cross section of a single microfluidic channel, microarrays of five different primary antibodies were patterned onto a single channel and their functionality was evaluated accordingly through a multiplex immunoassay using secondary antibodies specific to each patterned primary antibody. The resulting patterns remained stable at shear stresses of up to 50 dyn/cm². The overall findings suggest that the developed multiplex functional interface on a single channel can successfully lead to highly resistant multiplex functional surfaces for high throughput biological assays.
The development of versatile biofunctional surfaces is a fundamental prerequisite in designing Lab on a Chip (LOC) devices for applications in biosensing interfaces and microbioreactors. The current paper presents a rapid combinatorial approach to create multiplex protein patterns in a single microfluidic channel. This approach consists of coupling microcontact printing with microfluidic patterning, where microcontact printing is employed for silanization using (3-Aminopropyl) triethoxysilane (APTES), followed by microfluidic patterning of multiple antibodies. As a result, the biomolecules of choice could be covalently attached to the microchannel surface, thus creating a durable and highly resistant functional interface. Moreover, the experimental procedure was designed to create a microfluidic platform that maintains functionality at high flow rates. The functionalized surfaces were characterized using X-ray photoelectron spectroscopy (XPS) and monitored with fluorescence microscopy at each step of functionalization. To illustrate the possibility of patterning multiple biomolecules along the cross section of a single microfluidic channel, microarrays of five different primary antibodies were patterned onto a single channel and their functionality was evaluated accordingly through a multiplex immunoassay using secondary antibodies specific to each patterned primary antibody. The resulting patterns remained stable at shear stresses of up to 50 dyn/cm... The overall findings suggest that the developed multiplex functional interface on a single channel can successfully lead to highly resistant multiplex functional surfaces for high throughput biological assays. (ProQuest: ... denotes formulae/symbols omitted.)
The development of versatile biofunctional surfaces is a fundamental prerequisite in designing Lab on a Chip (LOC) devices for applications in biosensing interfaces and microbioreactors. The current paper presents a rapid combinatorial approach to create multiplex protein patterns in a single microfluidic channel. This approach consists of coupling microcontact printing with microfluidic patterning, where microcontact printing is employed for silanization using (3-Aminopropyl) triethoxysilane (APTES), followed by microfluidic patterning of multiple antibodies. As a result, the biomolecules of choice could be covalently attached to the microchannel surface, thus creating a durable and highly resistant functional interface. Moreover, the experimental procedure was designed to create a microfluidic platform that maintains functionality at high flow rates. The functionalized surfaces were characterized using X-ray photoelectron spectroscopy (XPS) and monitored with fluorescence microscopy at each step of functionalization. To illustrate the possibility of patterning multiple biomolecules along the cross section of a single microfluidic channel, microarrays of five different primary antibodies were patterned onto a single channel and their functionality was evaluated accordingly through a multiplex immunoassay using secondary antibodies specific to each patterned primary antibody. The resulting patterns remained stable at shear stresses of up to 50 dyn/cm2. The overall findings suggest that the developed multiplex functional interface on a single channel can successfully lead to highly resistant multiplex functional surfaces for high throughput biological assays.
The development of versatile biofunctional surfaces is a fundamental prerequisite in designing Lab on a Chip (LOC) devices for applications in biosensing interfaces and microbioreactors. The current paper presents a rapid combinatorial approach to create multiplex protein patterns in a single microfluidic channel. This approach consists of coupling microcontact printing with microfluidic patterning, where microcontact printing is employed for silanization using (3-Aminopropyl) triethoxysilane (APTES), followed by microfluidic patterning of multiple antibodies. As a result, the biomolecules of choice could be covalently attached to the microchannel surface, thus creating a durable and highly resistant functional interface. Moreover, the experimental procedure was designed to create a microfluidic platform that maintains functionality at high flow rates. The functionalized surfaces were characterized using X-ray photoelectron spectroscopy (XPS) and monitored with fluorescence microscopy at each step of functionalization. To illustrate the possibility of patterning multiple biomolecules along the cross section of a single microfluidic channel, microarrays of five different primary antibodies were patterned onto a single channel and their functionality was evaluated accordingly through a multiplex immunoassay using secondary antibodies specific to each patterned primary antibody. The resulting patterns remained stable at shear stresses of up to 50 dyn/cm(2). The overall findings suggest that the developed multiplex functional interface on a single channel can successfully lead to highly resistant multiplex functional surfaces for high throughput biological assays.
Author Didar, Tohid Fatanat
Foudeh, Amir M
Tabrizian, Maryam
AuthorAffiliation Department of Biomedical Engineering
Faculty of Dentistry
McGill University
AuthorAffiliation_xml – name: Department of Biomedical Engineering
– name: McGill University
– name: Faculty of Dentistry
Author_xml – sequence: 1
  givenname: Tohid Fatanat
  surname: Didar
  fullname: Didar, Tohid Fatanat
– sequence: 2
  givenname: Amir M
  surname: Foudeh
  fullname: Foudeh, Amir M
– sequence: 3
  givenname: Maryam
  surname: Tabrizian
  fullname: Tabrizian, Maryam
  email: maryam.tabrizian@mcgill.ca
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25482213$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22124457$$D View this record in MEDLINE/PubMed
BookMark eNp90V9rFDEQAPAgFXutPvgFZBGk-rB2kuxuso_lsFposaA-L7PJrKbksmeSBfvtTbmrhSo-hQm_GebPETsIcyDGXnJ4z0HwUzQCRKuVesJWvBVQd1qLA7YCAFkLBXDIjlK6AeAcePeMHQrBRdO0asUurjFnisGF79XV4rPbevpVXcc5kwvVlTNxxhjxNlUlxOpLcZ52_5NfnHWmWv_AEMg_Z08n9Ile7N9j9u38w9f1p_ry88eL9dlljY2CXDeqNb0dR24lEYfSKEo79kYRWW0laJh0A5KKEop0x-0ku7FFTsYqoRp5zE52dbdx_rlQysPGJUPeY6B5SUPPVat6qdsi3_5Xirv9CK47UejrR_RmXmIoc5R6mreqEX1Br_ZoGTdkh210G4y3w_02C3izB5gM-iliMC49uLbRxcriTneubDGlSNNgXMbs5pAjOj9wGO7uOvy5a8l49yjjvui_7L4LNOlhjL_db4aoqxQ
CODEN ANCHAM
CitedBy_id crossref_primary_10_1021_cr5000943
crossref_primary_10_1088_0960_1317_25_7_075008
crossref_primary_10_1002_polb_23275
crossref_primary_10_1016_j_bios_2016_09_041
crossref_primary_10_1007_s10854_017_7610_2
crossref_primary_10_1021_acsbiomaterials_9b01062
crossref_primary_10_1021_la502742r
crossref_primary_10_1016_j_jcis_2012_10_040
crossref_primary_10_1021_acsapm_2c00163
crossref_primary_10_1016_j_apsusc_2017_03_100
crossref_primary_10_1039_C4LC00487F
crossref_primary_10_1371_journal_pone_0068918
crossref_primary_10_1016_j_bios_2016_06_033
crossref_primary_10_2116_analsci_30_7
crossref_primary_10_1039_D1LC00288K
crossref_primary_10_1021_acsami_6b05453
crossref_primary_10_1002_asia_201700358
crossref_primary_10_1039_C9LC00608G
crossref_primary_10_3390_s140509132
crossref_primary_10_1063_1_4944741
crossref_primary_10_1016_j_talanta_2015_10_018
crossref_primary_10_1039_C6LC00751A
crossref_primary_10_1021_acsnano_7b08010
crossref_primary_10_1039_c2an35967g
crossref_primary_10_1146_annurev_anchem_062012_092616
crossref_primary_10_1039_C9LC00364A
crossref_primary_10_1002_apj_1864
crossref_primary_10_1063_1_4816934
crossref_primary_10_1002_admi_201800659
crossref_primary_10_1002_mds3_10085
crossref_primary_10_1002_smll_201905562
crossref_primary_10_1002_adhm_201300099
crossref_primary_10_1021_acsami_5b01058
crossref_primary_10_1007_s11426_013_4909_6
crossref_primary_10_1039_C7AN00273D
crossref_primary_10_1039_c2lc40630f
crossref_primary_10_1002_admi_201900940
crossref_primary_10_1021_acsnano_8b03938
crossref_primary_10_1177_2211068213491408
crossref_primary_10_1016_j_biomaterials_2018_12_006
crossref_primary_10_1007_s00216_014_8244_3
crossref_primary_10_1007_s10544_016_0036_4
crossref_primary_10_1063_1_4991550
crossref_primary_10_1016_j_trac_2022_116827
crossref_primary_10_1039_C8AY02641F
crossref_primary_10_1016_j_lfs_2023_121506
crossref_primary_10_1063_1_4953140
crossref_primary_10_1016_j_colsurfb_2013_07_021
crossref_primary_10_1115_1_4033432
crossref_primary_10_1016_j_cocis_2013_07_005
crossref_primary_10_1021_acssensors_9b00440
Cites_doi 10.1016/S0006-3495(01)76003-1
10.1039/c0ib00017e
10.1073/pnas.1001515107
10.1002/bit.23029
10.1021/la048047b
10.1016/j.biomaterials.2009.09.040
10.1016/S1369-5274(00)00093-X
10.1002/1521-3773(20020703)41:13<2320::AID-ANIE2320>3.0.CO;2-Z
10.1080/07388550600978358
10.1063/1.126351
10.1074/mcp.M800291-MCP200
10.1039/B9PY00281B
10.1016/j.biomaterials.2010.11.036
10.1039/b210621n
10.1021/la0531751
10.1038/nature05058
10.1021/la1014253
10.1021/nl903968s
10.1016/S0039-9140(01)00501-X
10.1016/j.aca.2005.12.051
10.1073/pnas.96.10.5545
10.1021/ja0735709
10.1016/j.bios.2006.06.017
10.1016/S0142-9612(01)00244-7
10.1021/la061240g
10.1039/b417245k
10.1039/c0lc00130a
10.1002/bp070070a
10.1163/156856208784522092
10.1021/ac800912f
10.1016/j.bios.2005.11.003
10.1002/anie.200500633
10.1016/j.snb.2006.09.034
10.1021/ac060304p
10.1021/la200102z
10.1021/ac048440m
10.1039/B813516A
10.1021/ja00142a031
10.1021/ac035415s
ContentType Journal Article
Copyright Copyright © 2011 American Chemical Society
2015 INIST-CNRS
Copyright American Chemical Society Jan 17, 2012
Copyright_xml – notice: Copyright © 2011 American Chemical Society
– notice: 2015 INIST-CNRS
– notice: Copyright American Chemical Society Jan 17, 2012
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7U5
7U7
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7S9
L.6
7X8
DOI 10.1021/ac2025877
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
AIDS and Cancer Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Toxicology Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA
Materials Research Database

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1520-6882
EndPage 1018
ExternalDocumentID 2571638981
22124457
25482213
10_1021_ac2025877
c946739225
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID -
.K2
02
1AW
23M
4.4
53G
53T
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABOCM
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACNCT
ACPRK
ACS
AEESW
AENEX
AFEFF
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
D0L
DZ
EBS
ED
ED~
EJD
F20
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
P2P
PQEST
PQQKQ
ROL
RXW
TAE
TAF
TN5
UHB
UI2
UKR
VF5
VG9
VQA
W1F
WH7
X
X6Y
XFK
YZZ
---
-DZ
-~X
.DC
6J9
AAHBH
AAYXX
ABBLG
ABHFT
ABHMW
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ACKOT
ADHLV
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
KZ1
LMP
XSW
ZCA
~02
.GJ
.HR
186
1WB
2KS
3EH
3O-
6TJ
AAUTI
ABDPE
ACKIV
ACPVT
ACQAM
ACRPL
ADNMO
ADXHL
AETEA
AEYZD
AFFDN
AFFNX
AGQPQ
AIDAL
ANPPW
ANTXH
IQODW
MVM
NHB
OHT
OMK
RNS
UBC
UBX
VOH
XOL
YQI
YQJ
YR5
YXE
YYP
ZCG
ZE2
ZGI
CGR
CUY
CVF
ECM
EIF
NPM
YIN
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7U5
7U7
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7S9
L.6
7X8
ID FETCH-LOGICAL-a470t-475c9dbb1d3ee10882a3db9c7eed8d3080f8403e5c927e861df36b5a1ecd72743
IEDL.DBID ACS
ISSN 0003-2700
1520-6882
IngestDate Fri Jul 11 01:27:32 EDT 2025
Fri Jul 11 02:46:48 EDT 2025
Mon Jun 30 08:36:56 EDT 2025
Wed Feb 19 01:49:07 EST 2025
Mon Jul 21 09:15:46 EDT 2025
Thu Apr 24 23:11:54 EDT 2025
Tue Jul 01 03:06:09 EDT 2025
Thu Aug 27 13:42:24 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Chemical analysis
Choice
Cross section
Microanalysis
X ray
Immunological method
Functionalization
Lead
Photoelectron spectrometry
Coupling
Printing
Fluid mechanics
Antibody
Device
X ray spectrometry
System on a chip
Chemical sensor
Protein
Experimental design
Biosensor
Sensor array
Application
Interface
Microfluidics
Fluorescence microscopy
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a470t-475c9dbb1d3ee10882a3db9c7eed8d3080f8403e5c927e861df36b5a1ecd72743
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 22124457
PQID 918157429
PQPubID 45400
PageCount 7
ParticipantIDs proquest_miscellaneous_917579385
proquest_miscellaneous_2000321862
proquest_journals_918157429
pubmed_primary_22124457
pascalfrancis_primary_25482213
crossref_citationtrail_10_1021_ac2025877
crossref_primary_10_1021_ac2025877
acs_journals_10_1021_ac2025877
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-01-17
PublicationDateYYYYMMDD 2012-01-17
PublicationDate_xml – month: 01
  year: 2012
  text: 2012-01-17
  day: 17
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
– name: Washington
PublicationTitle Analytical chemistry (Washington)
PublicationTitleAlternate Anal. Chem
PublicationYear 2012
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Whitesides G. M. (ref1/cit1) 2006; 442
Kim D. J. (ref16/cit16) 2011; 108
Howarter J. A. (ref29/cit29) 2006; 22
Kirby B. J. (ref8/cit8) 2003; 3
Renault J. P. (ref22/cit22) 2002; 41
Petty R. T. (ref33/cit33) 2007; 129
Walter G. (ref6/cit6) 2000; 3
Kamholz A. E. (ref36/cit36) 2001; 80
Nakajima H. (ref5/cit5) 2006; 562
Takayama S. (ref10/cit10) 1999; 96
Maraldo D. (ref30/cit30) 2007; 123
Mandal S. (ref27/cit27) 2007; 23
Shi J. (ref20/cit20) 2008; 80
Hu G. (ref39/cit39) 2007; 22
Lee N. Y. (ref3/cit3) 2006; 21
Green J. V. (ref31/cit31) 2009; 9
Walker G. M. (ref37/cit37) 2005; 5
Fricke R. (ref11/cit11) 2011; 32
Jiang X. (ref24/cit24) 2005; 77
Onclin S. (ref35/cit35) 2005; 44
Wu P. (ref14/cit14) 2008; 19
Tan C. P. (ref17/cit17) 2010; 10
Didar T. F. (ref12/cit12) 2010; 10
Rosengren Å. (ref25/cit25) 2002; 23
Shamansky L. M. (ref2/cit2) 2001; 55
Saliba A. E. (ref13/cit13) 2010; 107
Barbulovic-Nad I. (ref15/cit15) 2006; 26
Murthy S. K. (ref28/cit28) 2004; 20
Khademhosseini A. (ref7/cit7) 2004; 76
Kaji H. (ref21/cit21) 2006; 78
Fiddes L. K. (ref4/cit4) 2010; 31
Yin Z. (ref19/cit19) 2010; 2
Ismagilov R. F. (ref38/cit38) 2000; 76
Hosseinidoust Z. (ref26/cit26) 2011; 27
Kaufmann T. (ref23/cit23) 2010; 1
Cheong R. (ref32/cit32) 2009; 8
Patrito N. (ref9/cit9) 2006; 22
Xia Y. (ref34/cit34) 1995; 117
Kim M. (ref18/cit18) 2010; 26
References_xml – volume: 80
  start-page: 155
  issue: 1
  year: 2001
  ident: ref36/cit36
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(01)76003-1
– volume: 2
  start-page: 416
  issue: 9
  year: 2010
  ident: ref19/cit19
  publication-title: Integr. Biol.
  doi: 10.1039/c0ib00017e
– volume: 107
  start-page: 14524
  issue: 33
  year: 2010
  ident: ref13/cit13
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1001515107
– volume: 108
  start-page: 1194
  issue: 5
  year: 2011
  ident: ref16/cit16
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.23029
– volume: 20
  start-page: 11649
  issue: 26
  year: 2004
  ident: ref28/cit28
  publication-title: Langmuir
  doi: 10.1021/la048047b
– volume: 31
  start-page: 315
  issue: 2
  year: 2010
  ident: ref4/cit4
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.09.040
– volume: 3
  start-page: 298
  issue: 3
  year: 2000
  ident: ref6/cit6
  publication-title: Curr. Opin. Microbiol.
  doi: 10.1016/S1369-5274(00)00093-X
– volume: 41
  start-page: 2320
  issue: 13
  year: 2002
  ident: ref22/cit22
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/1521-3773(20020703)41:13<2320::AID-ANIE2320>3.0.CO;2-Z
– volume: 26
  start-page: 237
  issue: 4
  year: 2006
  ident: ref15/cit15
  publication-title: Crit. Rev. Biotechnol.
  doi: 10.1080/07388550600978358
– volume: 76
  start-page: 2376
  issue: 17
  year: 2000
  ident: ref38/cit38
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.126351
– volume: 8
  start-page: 433
  issue: 3
  year: 2009
  ident: ref32/cit32
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M800291-MCP200
– volume: 1
  start-page: 371
  issue: 4
  year: 2010
  ident: ref23/cit23
  publication-title: Polymer Chem.
  doi: 10.1039/B9PY00281B
– volume: 32
  start-page: 2070
  issue: 8
  year: 2011
  ident: ref11/cit11
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.11.036
– volume: 3
  start-page: 5
  issue: 1
  year: 2003
  ident: ref8/cit8
  publication-title: Lab Chip
  doi: 10.1039/b210621n
– volume: 22
  start-page: 3453
  issue: 8
  year: 2006
  ident: ref9/cit9
  publication-title: Langmuir
  doi: 10.1021/la0531751
– volume: 442
  start-page: 368
  issue: 7101
  year: 2006
  ident: ref1/cit1
  publication-title: Nature
  doi: 10.1038/nature05058
– volume: 26
  start-page: 12112
  issue: 14
  year: 2010
  ident: ref18/cit18
  publication-title: Langmuir
  doi: 10.1021/la1014253
– volume: 10
  start-page: 719
  issue: 2
  year: 2010
  ident: ref17/cit17
  publication-title: Nano Lett.
  doi: 10.1021/nl903968s
– volume: 55
  start-page: 909
  issue: 5
  year: 2001
  ident: ref2/cit2
  publication-title: Talanta
  doi: 10.1016/S0039-9140(01)00501-X
– volume: 562
  start-page: 103
  issue: 1
  year: 2006
  ident: ref5/cit5
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2005.12.051
– volume: 96
  start-page: 5545
  issue: 10
  year: 1999
  ident: ref10/cit10
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.96.10.5545
– volume: 129
  start-page: 8966
  issue: 29
  year: 2007
  ident: ref33/cit33
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0735709
– volume: 22
  start-page: 1403
  issue: 7
  year: 2007
  ident: ref39/cit39
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2006.06.017
– volume: 23
  start-page: 1237
  issue: 4
  year: 2002
  ident: ref25/cit25
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(01)00244-7
– volume: 22
  start-page: 11142
  issue: 26
  year: 2006
  ident: ref29/cit29
  publication-title: Langmuir
  doi: 10.1021/la061240g
– volume: 5
  start-page: 611
  issue: 6
  year: 2005
  ident: ref37/cit37
  publication-title: Lab Chip
  doi: 10.1039/b417245k
– volume: 10
  start-page: 3043
  issue: 22
  year: 2010
  ident: ref12/cit12
  publication-title: Lab Chip
  doi: 10.1039/c0lc00130a
– volume: 23
  start-page: 972
  issue: 4
  year: 2007
  ident: ref27/cit27
  publication-title: Biotechnol. Prog.
  doi: 10.1002/bp070070a
– volume: 19
  start-page: 725
  issue: 6
  year: 2008
  ident: ref14/cit14
  publication-title: J. Biomater. Sci., Polymer Ed.
  doi: 10.1163/156856208784522092
– volume: 80
  start-page: 6078
  issue: 15
  year: 2008
  ident: ref20/cit20
  publication-title: Anal. Chem.
  doi: 10.1021/ac800912f
– volume: 21
  start-page: 2188
  issue: 11
  year: 2006
  ident: ref3/cit3
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2005.11.003
– volume: 44
  start-page: 6282
  issue: 39
  year: 2005
  ident: ref35/cit35
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200500633
– volume: 123
  start-page: 474
  issue: 1
  year: 2007
  ident: ref30/cit30
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2006.09.034
– volume: 78
  start-page: 5469
  issue: 15
  year: 2006
  ident: ref21/cit21
  publication-title: Anal. Chem.
  doi: 10.1021/ac060304p
– volume: 27
  start-page: 5472
  issue: 9
  year: 2011
  ident: ref26/cit26
  publication-title: Langmuir
  doi: 10.1021/la200102z
– volume: 77
  start-page: 2338
  issue: 8
  year: 2005
  ident: ref24/cit24
  publication-title: Anal. Chem.
  doi: 10.1021/ac048440m
– volume: 9
  start-page: 677
  issue: 5
  year: 2009
  ident: ref31/cit31
  publication-title: Lab Chip
  doi: 10.1039/B813516A
– volume: 117
  start-page: 9576
  issue: 37
  year: 1995
  ident: ref34/cit34
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00142a031
– volume: 76
  start-page: 3675
  issue: 13
  year: 2004
  ident: ref7/cit7
  publication-title: Anal. Chem.
  doi: 10.1021/ac035415s
SSID ssj0011016
Score 2.2883465
Snippet The development of versatile biofunctional surfaces is a fundamental prerequisite in designing Lab on a Chip (LOC) devices for applications in biosensing...
SourceID proquest
pubmed
pascalfrancis
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1012
SubjectTerms Analytical chemistry
antibodies
bioassays
biochemical compounds
Biological and medical sciences
Biosensors
Biotechnology
Chemistry
Exact sciences and technology
Flow rates
Fluorescence
Fluorescence microscopy
Fundamental and applied biological sciences. Psychology
General, instrumentation
High flow
Immunoassay
immunoassays
Methods. Procedures. Technologies
microarray technology
Microfluidic Analytical Techniques - instrumentation
Microfluidics
Microscopy, Fluorescence
Miscellaneous
Photoelectron Spectroscopy
Protein Array Analysis
Proteins
Proteins - chemistry
Shear stress
Spectrometric and optical methods
Spectrum analysis
Surface Properties
Various methods and equipments
X-ray photoelectron spectroscopy
Title Patterning Multiplex Protein Microarrays in a Single Microfluidic Channel
URI http://dx.doi.org/10.1021/ac2025877
https://www.ncbi.nlm.nih.gov/pubmed/22124457
https://www.proquest.com/docview/918157429
https://www.proquest.com/docview/2000321862
https://www.proquest.com/docview/917579385
Volume 84
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwEB7xOEBVFQqUprQrFzhwyRbHcZwc0bYIKm2FBEjcVn5FWnUV0GZXov31nckLUFm45TFREo-d-SZjfx_AYYYZV5bKOMyM82FsuQwzaVwotEly3FJJVcEf_krOruOfN_JmCQ4WVPAj_o04BCOZKrUMq1GCg5fwz-CyKxVQ-tnK4lEVtaUPenwphR5bPgk9b-90ia2Q1_IVi_FlFWdON-B7u1qnnl7yuz-fmb79-z9540uvsAnvGpzJTuqO8R6WfLEFa4NW3m0L3jxiItyG84uKZ5N-krBhM8fwnl0QicO4YEOataenU_2nZLir2SXaTXx9PJ_Mx25sGa1TKPxkB65Pf1wNzsJGZSHUsTqehbGSNnPGcCe854S4tXAmswqjZ-oEIsock0Dh0SpSPk24y0VipObeOgQ_sfgAK8Vt4T8CIw0ik9g8kdrGKeanThIdvrdcIO4UcQA9dMOoGSXlqCqAR3zUtU8AR62HRrbhKCepjMlzpvud6V1NzPGcUe-JmztLTIsRGXERwF7r94fHyhD1SIWBOoCv3Vn0DpVSdOFv5yWJdx4LkvOKAmALbDARlvj1S2UAu3WPerh9RLBKqk-vNcgerCNCo8kzIVefYWU2nfsviIJmpleNgn-i5fy7
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bT9RAFD5RfEBjFBChostofPClyHQ6nfaRbCSLsIQESHhr5tZk46aQ7W4C_nrP6W3BQPStl9N2Opee7_TMfB_A1wwjriyVcZgZ58PYchlm0rhQaJMUuKWSOoM_Pk1Gl_HPK3nV0uTQWhgsRIV3quok_pJdgH8nKsFIpko9hxcIQiLqzQfD8z5jQFFop45HydSORej-peSBbPXAA72-0RVWRtGoWDwNM2t3c_i20S2qC1rPMvm1t5ibPfv7Lw7H_3uTNXjTok520HSTdXjmyw1YHXZibxvw6h4v4Ts4OqtZN-mXCRu3Mw5v2RlROkxKNqY5fHo203cVw13NztFu6pvjxXQxcRPLaNVC6aebcHn442I4ClvNhVDHan8exkrazBnDnfCeE_7WwpnMKvSlqROILwsMCYVHq0j5NOGuEImRmnvrEArF4j2slNel3wZGikQmsUUitY1TjFadJHJ8b7lAFCriAAZYPXk7Zqq8TodHPO_rJ4BvXUPltmUsJ-GM6WOmX3rTm4am4zGjwYPW7i0xSEacxEUAO13zL4uVIQaSCt12AJ_7s9g6lFjRpb9eVCTluS9I3CsKgD1hg2GxxG9hKgPYajrW8vERgSypPvyrQnZhdXQxPslPjk6Pd-AlYjeaVhNy9RFW5rOF_4T4aG4G9cD4A47TBSs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9RAEJ8oJH6EoKJoRc_V-MBLke12u-0jOb2AengJkvDW7FeTC5dyud4l6l_PTL8AA9G3fkzb7exu5zed2d8AfMzQ48pSGYeZcT6MLZdhJo0LhTZJgVsqqSP44-Pk8DT-eibPWkeR1sJgIyq8U1UH8WlWz13RMgzwT0QnGMlUqfuwTuE6GtEHw5M-akCeaFchjwKqHZPQ9UvJCtnqhhXamOsKFVI0lSzuhpq1yRk9gR99Y-tMk_O91dLs2T9_8Tj-_9s8hc0WfbKDZrg8g3u-3IKHw67o2xY8vsZP-ByOJjX7Jv06YeM28_AXmxC1w7RkY8rl04uF_l0x3NXsBOVmvjlezFZTN7WMVi-UfvYCTkdffg4Pw7b2Qqhjtb8MYyVt5ozhTnjPCYdr4UxmFdrU1AnEmQW6hsKjVKR8mnBXiMRIzb11CIlisQ1r5UXpXwGjykQmsUUitY1T9FqdJJJ8b7lANCriAAaoorydO1Veh8Ujnvf6CWC366zctszlVEBjdpvoh1503tB13CY0uNHjvSQ6y4iXuAhgpxsCV83KEAtJheY7gPf9WewdCrDo0l-sKirpuS-oyFcUALtDBt1jid_EVAbwshlcV4-PCGxJ9fpfCnkHDyafR_n3o-NvO_AIIRxl14RcvYG15WLl3yJMWppBPTcuASvGB64
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Patterning+multiplex+protein+microarrays+in+a+single+microfluidic+channel&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Didar%2C+Tohid+Fatanat&rft.au=Foudeh%2C+Amir+M&rft.au=Tabrizian%2C+Maryam&rft.date=2012-01-17&rft.eissn=1520-6882&rft.volume=84&rft.issue=2&rft.spage=1012&rft_id=info:doi/10.1021%2Fac2025877&rft_id=info%3Apmid%2F22124457&rft.externalDocID=22124457
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2700&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2700&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2700&client=summon