A subject-specific musculoskeletal modeling framework to predict in vivo mechanics of total knee arthroplasty
Musculoskeletal (MS) models should be able to integrate patient-specific MS architecture and undergo thorough validation prior to their introduction into clinical practice. We present a methodology to develop subject-specific models able to simultaneously predict muscle, ligament, and knee joint con...
Saved in:
Published in | Journal of biomechanical engineering Vol. 137; no. 2; p. 020904 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.02.2015
|
Subjects | |
Online Access | Get more information |
ISSN | 1528-8951 |
DOI | 10.1115/1.4029258 |
Cover
Loading…
Abstract | Musculoskeletal (MS) models should be able to integrate patient-specific MS architecture and undergo thorough validation prior to their introduction into clinical practice. We present a methodology to develop subject-specific models able to simultaneously predict muscle, ligament, and knee joint contact forces along with secondary knee kinematics. The MS architecture of a generic cadaver-based model was scaled using an advanced morphing technique to the subject-specific morphology of a patient implanted with an instrumented total knee arthroplasty (TKA) available in the fifth "grand challenge competition to predict in vivo knee loads" dataset. We implemented two separate knee models, one employing traditional hinge constraints, which was solved using an inverse dynamics technique, and another one using an 11-degree-of-freedom (DOF) representation of the tibiofemoral (TF) and patellofemoral (PF) joints, which was solved using a combined inverse dynamic and quasi-static analysis, called force-dependent kinematics (FDK). TF joint forces for one gait and one right-turn trial and secondary knee kinematics for one unloaded leg-swing trial were predicted and evaluated using experimental data available in the grand challenge dataset. Total compressive TF contact forces were predicted by both hinge and FDK knee models with a root-mean-square error (RMSE) and a coefficient of determination (R2) smaller than 0.3 body weight (BW) and equal to 0.9 in the gait trial simulation and smaller than 0.4 BW and larger than 0.8 in the right-turn trial simulation, respectively. Total, medial, and lateral TF joint contact force predictions were highly similar, regardless of the type of knee model used. Medial (respectively lateral) TF forces were over- (respectively, under-) predicted with a magnitude error of M < 0.2 (respectively > -0.4) in the gait trial, and under- (respectively, over-) predicted with a magnitude error of M > -0.4 (respectively < 0.3) in the right-turn trial. Secondary knee kinematics from the unloaded leg-swing trial were overall better approximated using the FDK model (average Sprague and Geers' combined error C = 0.06) than when using a hinged knee model (C = 0.34). The proposed modeling approach allows detailed subject-specific scaling and personalization and does not contain any nonphysiological parameters. This modeling framework has potential applications in aiding the clinical decision-making in orthopedics procedures and as a tool for virtual implant design. |
---|---|
AbstractList | Musculoskeletal (MS) models should be able to integrate patient-specific MS architecture and undergo thorough validation prior to their introduction into clinical practice. We present a methodology to develop subject-specific models able to simultaneously predict muscle, ligament, and knee joint contact forces along with secondary knee kinematics. The MS architecture of a generic cadaver-based model was scaled using an advanced morphing technique to the subject-specific morphology of a patient implanted with an instrumented total knee arthroplasty (TKA) available in the fifth "grand challenge competition to predict in vivo knee loads" dataset. We implemented two separate knee models, one employing traditional hinge constraints, which was solved using an inverse dynamics technique, and another one using an 11-degree-of-freedom (DOF) representation of the tibiofemoral (TF) and patellofemoral (PF) joints, which was solved using a combined inverse dynamic and quasi-static analysis, called force-dependent kinematics (FDK). TF joint forces for one gait and one right-turn trial and secondary knee kinematics for one unloaded leg-swing trial were predicted and evaluated using experimental data available in the grand challenge dataset. Total compressive TF contact forces were predicted by both hinge and FDK knee models with a root-mean-square error (RMSE) and a coefficient of determination (R2) smaller than 0.3 body weight (BW) and equal to 0.9 in the gait trial simulation and smaller than 0.4 BW and larger than 0.8 in the right-turn trial simulation, respectively. Total, medial, and lateral TF joint contact force predictions were highly similar, regardless of the type of knee model used. Medial (respectively lateral) TF forces were over- (respectively, under-) predicted with a magnitude error of M < 0.2 (respectively > -0.4) in the gait trial, and under- (respectively, over-) predicted with a magnitude error of M > -0.4 (respectively < 0.3) in the right-turn trial. Secondary knee kinematics from the unloaded leg-swing trial were overall better approximated using the FDK model (average Sprague and Geers' combined error C = 0.06) than when using a hinged knee model (C = 0.34). The proposed modeling approach allows detailed subject-specific scaling and personalization and does not contain any nonphysiological parameters. This modeling framework has potential applications in aiding the clinical decision-making in orthopedics procedures and as a tool for virtual implant design. |
Author | Fluit, René Verdonschot, Nico Rasmussen, John Andersen, Michael S Koopman, Bart H F J M Vanheule, Valentine Marra, Marco A |
Author_xml | – sequence: 1 givenname: Marco A surname: Marra fullname: Marra, Marco A – sequence: 2 givenname: Valentine surname: Vanheule fullname: Vanheule, Valentine – sequence: 3 givenname: René surname: Fluit fullname: Fluit, René – sequence: 4 givenname: Bart H F J M surname: Koopman fullname: Koopman, Bart H F J M – sequence: 5 givenname: John surname: Rasmussen fullname: Rasmussen, John – sequence: 6 givenname: Nico surname: Verdonschot fullname: Verdonschot, Nico – sequence: 7 givenname: Michael S surname: Andersen fullname: Andersen, Michael S |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25429519$$D View this record in MEDLINE/PubMed |
BookMark | eNo1j8tKAzEYhYMo9qILX0DyAlOTNJlJlqV4g4IbXZdc_rFpJ5MhyVT69lbU1YHzcT44M3TZxx4QuqNkQSkVD3TBCVNMyAs0pYLJSipBJ2iW854QSiUn12jCBGfnWk1RWOE8mj3YUuUBrG-9xWHMduxiPkAHRXc4RAed7z9xm3SAr5gOuEQ8JHDeFux7fPTHiAPYne69zTi2Z_4zPPQAWKeyS3HodC6nG3TV6i7D7V_O0cfT4_v6pdq8Pb-uV5tK84aUihnlGi4VW4paUSMkZ7p2sl4609BWCct44xqqa0KMaaWBJZeSOKKpqZkAxubo_tc7jCaA2w7JB51O2__f7BvAWVpN |
CitedBy_id | crossref_primary_10_1115_1_4064550 crossref_primary_10_3389_fbioe_2021_679360 crossref_primary_10_1007_s12541_017_0148_7 crossref_primary_10_1002_jor_25425 crossref_primary_10_1016_j_jbiomech_2017_08_025 crossref_primary_10_3390_app10207255 crossref_primary_10_1016_j_artmed_2020_101811 crossref_primary_10_1016_j_knee_2017_04_004 crossref_primary_10_1016_j_medengphy_2017_11_008 crossref_primary_10_1177_09544119211011827 crossref_primary_10_1371_journal_pone_0227272 crossref_primary_10_1080_10255842_2020_1789119 crossref_primary_10_1115_1_4050027 crossref_primary_10_1080_23335432_2018_1499442 crossref_primary_10_12677_MOS_2020_91009 crossref_primary_10_1016_j_jbiomech_2019_01_029 crossref_primary_10_3390_ijerph17072226 crossref_primary_10_1302_2046_3758_811_BJR_2019_0103_R1 crossref_primary_10_1302_2046_3758_61_BJR_2016_0184_R1 crossref_primary_10_1016_j_jbiomech_2018_03_039 crossref_primary_10_3390_bioengineering10030284 crossref_primary_10_3390_mca27030036 crossref_primary_10_3389_fbioe_2022_914990 crossref_primary_10_1016_j_jbiomech_2024_112387 crossref_primary_10_3389_fbioe_2023_1250937 crossref_primary_10_1177_20556683221131557 crossref_primary_10_1186_s12984_024_01490_y crossref_primary_10_1007_s10237_020_01367_8 crossref_primary_10_3390_life12040527 crossref_primary_10_1016_j_jbiomech_2020_110186 crossref_primary_10_1016_j_medengphy_2021_103747 crossref_primary_10_1002_jor_25686 crossref_primary_10_1080_10255842_2020_1851367 crossref_primary_10_1007_s10439_023_03216_y crossref_primary_10_1016_j_medengphy_2023_104074 crossref_primary_10_1177_0954411920947204 crossref_primary_10_1123_jab_2017_0262 crossref_primary_10_1080_10255842_2024_2399038 crossref_primary_10_3390_ma12101597 crossref_primary_10_1115_1_4033480 crossref_primary_10_1049_bsbt_2019_0012 crossref_primary_10_1016_j_gaitpost_2019_06_001 crossref_primary_10_1007_s12541_020_00319_7 crossref_primary_10_1038_s41598_020_59602_2 crossref_primary_10_3390_app11052356 crossref_primary_10_1016_j_jbiomech_2019_04_037 crossref_primary_10_1177_0954411917693880 crossref_primary_10_1007_s10439_020_02490_4 crossref_primary_10_1007_s11044_017_9573_8 crossref_primary_10_1016_j_arthro_2017_02_011 crossref_primary_10_1007_s10237_023_01726_1 crossref_primary_10_1115_1_4048707 crossref_primary_10_1016_j_knee_2022_11_010 crossref_primary_10_1038_s41598_017_17228_x crossref_primary_10_3389_fbioe_2023_1255625 crossref_primary_10_1016_j_jbiomech_2018_02_032 crossref_primary_10_1080_10255842_2016_1206531 crossref_primary_10_1007_s11044_017_9564_9 crossref_primary_10_1049_bsbt_2017_0003 crossref_primary_10_4236_wjet_2020_83036 crossref_primary_10_1109_TBME_2019_2917415 crossref_primary_10_1302_0301_620X_106B11_BJJ_2023_1357_R1 crossref_primary_10_1186_s12938_024_01279_z crossref_primary_10_3390_bioengineering11121183 crossref_primary_10_1016_j_gaitpost_2024_09_011 crossref_primary_10_1016_j_clinbiomech_2015_11_008 crossref_primary_10_1016_j_joca_2017_08_010 crossref_primary_10_1016_j_medengphy_2024_104246 crossref_primary_10_1115_1_4036605 crossref_primary_10_1115_1_4032127 crossref_primary_10_1080_23335432_2018_1514278 crossref_primary_10_1016_j_jbiomech_2019_07_001 crossref_primary_10_1016_j_jbiomech_2015_11_006 crossref_primary_10_1016_j_bsbt_2016_08_002 crossref_primary_10_1109_TBME_2018_2800293 crossref_primary_10_1002_cnm_3396 crossref_primary_10_1115_1_4043356 crossref_primary_10_1109_TNSRE_2020_3003559 crossref_primary_10_3389_fbioe_2022_810560 crossref_primary_10_1142_S2810958923300056 crossref_primary_10_1080_02648725_2023_2186324 crossref_primary_10_1016_j_jbiomech_2019_02_018 crossref_primary_10_1007_s00167_017_4561_3 crossref_primary_10_3389_fbioe_2021_703508 crossref_primary_10_1186_s40634_016_0061_5 crossref_primary_10_1016_j_jot_2023_08_003 crossref_primary_10_1016_j_jbiomech_2018_01_021 crossref_primary_10_1007_s13534_025_00463_x crossref_primary_10_1016_j_clinbiomech_2018_11_009 crossref_primary_10_1177_0954411919886763 crossref_primary_10_1080_10255842_2016_1240789 crossref_primary_10_1007_s11044_022_09833_0 crossref_primary_10_1115_1_4032464 crossref_primary_10_1007_s10237_019_01245_y crossref_primary_10_3390_bioengineering10101178 crossref_primary_10_1515_bams_2016_0022 crossref_primary_10_3233_THC_235014 crossref_primary_10_1186_s12891_023_07000_w crossref_primary_10_1080_10255842_2022_2101889 crossref_primary_10_1016_j_gaitpost_2021_06_014 crossref_primary_10_1016_j_medengphy_2022_103889 crossref_primary_10_3390_ma13102365 crossref_primary_10_1016_j_jbiomech_2018_12_009 crossref_primary_10_3390_bioengineering12020153 crossref_primary_10_3390_app11188348 crossref_primary_10_1007_s11071_021_06949_4 crossref_primary_10_3390_app11052423 crossref_primary_10_1016_j_medengphy_2022_103871 crossref_primary_10_1115_1_4037100 crossref_primary_10_1177_0954411916634750 crossref_primary_10_3389_fbioe_2022_851495 crossref_primary_10_1002_jor_23871 crossref_primary_10_1007_s10439_021_02774_3 crossref_primary_10_3390_s23198268 crossref_primary_10_3389_fbioe_2021_648356 crossref_primary_10_3390_app11167516 crossref_primary_10_1109_TNSRE_2020_3037411 crossref_primary_10_1177_0954411918811855 crossref_primary_10_1016_j_jbiomech_2015_06_007 crossref_primary_10_1016_j_jbiomech_2023_111758 crossref_primary_10_3390_lubricants10100238 crossref_primary_10_1016_j_jmbbm_2016_08_026 crossref_primary_10_3390_s23249836 crossref_primary_10_1177_0954411918767695 crossref_primary_10_1002_jor_24751 crossref_primary_10_3389_fbioe_2024_1347720 crossref_primary_10_1371_journal_pone_0282186 crossref_primary_10_1115_1_4032412 crossref_primary_10_1115_1_4032414 crossref_primary_10_1016_j_artd_2022_03_001 crossref_primary_10_1016_j_compbiomed_2022_106099 crossref_primary_10_1016_j_jbiomech_2020_110117 crossref_primary_10_1007_s00167_018_4900_z crossref_primary_10_1016_j_medengphy_2018_12_021 crossref_primary_10_1115_1_4051847 crossref_primary_10_1007_s10237_022_01668_0 crossref_primary_10_1038_s41598_024_78618_6 crossref_primary_10_1115_1_4038768 crossref_primary_10_1080_23335432_2015_1132638 crossref_primary_10_3389_fbioe_2023_1055860 crossref_primary_10_1016_j_clinbiomech_2022_105651 crossref_primary_10_1123_jab_2017_0159 crossref_primary_10_1016_j_jbiomech_2016_09_027 crossref_primary_10_1007_s10439_022_03048_2 crossref_primary_10_1016_j_triboint_2016_10_050 crossref_primary_10_1115_1_4040943 crossref_primary_10_1115_1_4056172 crossref_primary_10_1016_j_medengphy_2016_04_010 crossref_primary_10_1038_s41598_022_06909_x crossref_primary_10_1007_s00132_015_3099_7 crossref_primary_10_1109_TBME_2019_2905956 crossref_primary_10_1016_j_medengphy_2018_02_002 crossref_primary_10_3389_fncom_2017_00096 crossref_primary_10_1016_j_humov_2019_04_002 crossref_primary_10_3390_biomimetics9050255 crossref_primary_10_1016_j_gaitpost_2020_05_017 crossref_primary_10_1080_10255842_2015_1034115 crossref_primary_10_1109_TBME_2022_3156018 crossref_primary_10_1002_jor_25850 crossref_primary_10_3390_bioengineering10050543 crossref_primary_10_1016_j_jbiomech_2016_10_021 crossref_primary_10_1016_j_imu_2020_100415 crossref_primary_10_1007_s11517_025_03335_9 crossref_primary_10_1115_1_4038507 crossref_primary_10_1016_j_jmbbm_2024_106479 crossref_primary_10_1016_j_jbiomech_2023_111711 crossref_primary_10_1016_j_gaitpost_2018_12_030 crossref_primary_10_1007_s11044_016_9537_4 crossref_primary_10_3390_bioengineering9110716 crossref_primary_10_1016_j_jbiomech_2023_111834 crossref_primary_10_1115_1_4038741 crossref_primary_10_3390_app10062100 crossref_primary_10_1371_journal_pone_0214496 crossref_primary_10_1080_10255842_2019_1705798 crossref_primary_10_1016_j_arth_2019_05_037 crossref_primary_10_1016_j_joca_2018_04_011 crossref_primary_10_1080_23335432_2019_1629839 crossref_primary_10_1109_TNSRE_2022_3159685 crossref_primary_10_1177_23259671221084970 crossref_primary_10_1016_j_gaitpost_2022_03_020 crossref_primary_10_4028_www_scientific_net_DDF_404_77 crossref_primary_10_1007_s11548_016_1519_8 crossref_primary_10_1016_j_medengphy_2019_08_001 crossref_primary_10_1016_j_clinbiomech_2023_105985 crossref_primary_10_1115_1_4065879 crossref_primary_10_1016_j_medengphy_2020_09_004 crossref_primary_10_1016_j_jse_2020_07_007 crossref_primary_10_3389_fbioe_2025_1533001 crossref_primary_10_1115_1_4031417 crossref_primary_10_3390_biomechanics5010008 crossref_primary_10_1016_j_jbiomech_2018_07_008 crossref_primary_10_3390_s19071681 crossref_primary_10_1371_journal_pone_0204109 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM |
DOI | 10.1115/1.4029258 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Medicine Engineering Forestry |
EISSN | 1528-8951 |
ExternalDocumentID | 25429519 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X .DC 29J 4.4 5AI 5GY ABJNI ACBEA ACGFO ACGFS ACKMT ADPDT AGNGV ALMA_UNASSIGNED_HOLDINGS CGR CS3 CUY CVF EBS ECM EIF EJD F5P H~9 L7B NPM P2P RAI RNS RXW TAE TN5 UKR |
ID | FETCH-LOGICAL-a470t-2b9d7489235691b5842a6d863db71f95c247d71a600bbf8be34880d0a1b625e22 |
IngestDate | Mon Jul 21 06:08:45 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a470t-2b9d7489235691b5842a6d863db71f95c247d71a600bbf8be34880d0a1b625e22 |
PMID | 25429519 |
ParticipantIDs | pubmed_primary_25429519 |
PublicationCentury | 2000 |
PublicationDate | 2015-Feb-01 |
PublicationDateYYYYMMDD | 2015-02-01 |
PublicationDate_xml | – month: 02 year: 2015 text: 2015-Feb-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of biomechanical engineering |
PublicationTitleAlternate | J Biomech Eng |
PublicationYear | 2015 |
SSID | ssj0011840 |
Score | 2.5328426 |
Snippet | Musculoskeletal (MS) models should be able to integrate patient-specific MS architecture and undergo thorough validation prior to their introduction into... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 020904 |
SubjectTerms | Aged, 80 and over Arthroplasty, Replacement, Knee Biomechanical Phenomena Gait Humans Knee Joint - physiology Knee Joint - surgery Male Mechanical Phenomena Patient-Specific Modeling |
Title | A subject-specific musculoskeletal modeling framework to predict in vivo mechanics of total knee arthroplasty |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25429519 |
Volume | 137 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELaWIlXlUBX6grbIB26R6cabZJ3jtupqhQQnQNxQ_Ii6ohuvIOHAP-JfMmM72bCiqPQSRba8sjLfjsfz-IaQAxGXSo5UxtJhkbNEK8NEqRRD5pexAKUsXCjm-CSbnSVHF-nFYHDfy1pqanmo7p6sK_kfqcIYyBWrZF8g2e5HYQDeQb7wBAnD859kPIluGomOFIYFk5j0Ey0azCy1N1dwnGCdo-t047Il2ywstDaX1xifcd0Bbue3NloYLABGwmZMGbC48KoyBhmQsI0CWNj1o_Bvz4x19ft-NQyYFb3hytd97XoZYVmQsivf6XlR_TaNz2Y-L_Dw64X4p3-aee3FX_lYfncyWNsWTPyA7UWzaBodBZ9u8F7EaZvwjIdP0LhcMJEH1tlWJXsimIA93lOwYN3mvl_xE7ofaTLiQ7gR59zzwfcwsFw4EHDsz5V6Lf387BoNdzu1QTbgQoIdVtEtFMJVeE0OtFWwi-_dHpBqOqxbu7Y48-X0HXkbBEYnHkTbZGCqHbLVY6PcIa-xTSv2_oPX45By8Z4sJnQdZHQNZLQFGe1ARmtLA8jovKIIMtqBjNqSOpBRBBntg-wDOZv-Ov05Y6FHByuS8bBmXOYaCYz4KM3yWII5y4tMiwxpu-MyTxVPxnocF2BXS1kKaUZ4YuhhEUu4eRvOP5JXla3MZ0LLTBsjkSJRwrGieSGSZGQyneihKVOV75JP_gteLj0Ry2X7bff-OvOFvFmh7ivZLOGfb76BGVnLfSfCB1UgdjE |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+subject-specific+musculoskeletal+modeling+framework+to+predict+in+vivo+mechanics+of+total+knee+arthroplasty&rft.jtitle=Journal+of+biomechanical+engineering&rft.au=Marra%2C+Marco+A&rft.au=Vanheule%2C+Valentine&rft.au=Fluit%2C+Ren%C3%A9&rft.au=Koopman%2C+Bart+H+F+J+M&rft.date=2015-02-01&rft.eissn=1528-8951&rft.volume=137&rft.issue=2&rft.spage=020904&rft_id=info:doi/10.1115%2F1.4029258&rft_id=info%3Apmid%2F25429519&rft_id=info%3Apmid%2F25429519&rft.externalDocID=25429519 |