A subject-specific musculoskeletal modeling framework to predict in vivo mechanics of total knee arthroplasty

Musculoskeletal (MS) models should be able to integrate patient-specific MS architecture and undergo thorough validation prior to their introduction into clinical practice. We present a methodology to develop subject-specific models able to simultaneously predict muscle, ligament, and knee joint con...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomechanical engineering Vol. 137; no. 2; p. 020904
Main Authors Marra, Marco A, Vanheule, Valentine, Fluit, René, Koopman, Bart H F J M, Rasmussen, John, Verdonschot, Nico, Andersen, Michael S
Format Journal Article
LanguageEnglish
Published United States 01.02.2015
Subjects
Online AccessGet more information
ISSN1528-8951
DOI10.1115/1.4029258

Cover

Loading…
Abstract Musculoskeletal (MS) models should be able to integrate patient-specific MS architecture and undergo thorough validation prior to their introduction into clinical practice. We present a methodology to develop subject-specific models able to simultaneously predict muscle, ligament, and knee joint contact forces along with secondary knee kinematics. The MS architecture of a generic cadaver-based model was scaled using an advanced morphing technique to the subject-specific morphology of a patient implanted with an instrumented total knee arthroplasty (TKA) available in the fifth "grand challenge competition to predict in vivo knee loads" dataset. We implemented two separate knee models, one employing traditional hinge constraints, which was solved using an inverse dynamics technique, and another one using an 11-degree-of-freedom (DOF) representation of the tibiofemoral (TF) and patellofemoral (PF) joints, which was solved using a combined inverse dynamic and quasi-static analysis, called force-dependent kinematics (FDK). TF joint forces for one gait and one right-turn trial and secondary knee kinematics for one unloaded leg-swing trial were predicted and evaluated using experimental data available in the grand challenge dataset. Total compressive TF contact forces were predicted by both hinge and FDK knee models with a root-mean-square error (RMSE) and a coefficient of determination (R2) smaller than 0.3 body weight (BW) and equal to 0.9 in the gait trial simulation and smaller than 0.4 BW and larger than 0.8 in the right-turn trial simulation, respectively. Total, medial, and lateral TF joint contact force predictions were highly similar, regardless of the type of knee model used. Medial (respectively lateral) TF forces were over- (respectively, under-) predicted with a magnitude error of M < 0.2 (respectively > -0.4) in the gait trial, and under- (respectively, over-) predicted with a magnitude error of M > -0.4 (respectively < 0.3) in the right-turn trial. Secondary knee kinematics from the unloaded leg-swing trial were overall better approximated using the FDK model (average Sprague and Geers' combined error C = 0.06) than when using a hinged knee model (C = 0.34). The proposed modeling approach allows detailed subject-specific scaling and personalization and does not contain any nonphysiological parameters. This modeling framework has potential applications in aiding the clinical decision-making in orthopedics procedures and as a tool for virtual implant design.
AbstractList Musculoskeletal (MS) models should be able to integrate patient-specific MS architecture and undergo thorough validation prior to their introduction into clinical practice. We present a methodology to develop subject-specific models able to simultaneously predict muscle, ligament, and knee joint contact forces along with secondary knee kinematics. The MS architecture of a generic cadaver-based model was scaled using an advanced morphing technique to the subject-specific morphology of a patient implanted with an instrumented total knee arthroplasty (TKA) available in the fifth "grand challenge competition to predict in vivo knee loads" dataset. We implemented two separate knee models, one employing traditional hinge constraints, which was solved using an inverse dynamics technique, and another one using an 11-degree-of-freedom (DOF) representation of the tibiofemoral (TF) and patellofemoral (PF) joints, which was solved using a combined inverse dynamic and quasi-static analysis, called force-dependent kinematics (FDK). TF joint forces for one gait and one right-turn trial and secondary knee kinematics for one unloaded leg-swing trial were predicted and evaluated using experimental data available in the grand challenge dataset. Total compressive TF contact forces were predicted by both hinge and FDK knee models with a root-mean-square error (RMSE) and a coefficient of determination (R2) smaller than 0.3 body weight (BW) and equal to 0.9 in the gait trial simulation and smaller than 0.4 BW and larger than 0.8 in the right-turn trial simulation, respectively. Total, medial, and lateral TF joint contact force predictions were highly similar, regardless of the type of knee model used. Medial (respectively lateral) TF forces were over- (respectively, under-) predicted with a magnitude error of M < 0.2 (respectively > -0.4) in the gait trial, and under- (respectively, over-) predicted with a magnitude error of M > -0.4 (respectively < 0.3) in the right-turn trial. Secondary knee kinematics from the unloaded leg-swing trial were overall better approximated using the FDK model (average Sprague and Geers' combined error C = 0.06) than when using a hinged knee model (C = 0.34). The proposed modeling approach allows detailed subject-specific scaling and personalization and does not contain any nonphysiological parameters. This modeling framework has potential applications in aiding the clinical decision-making in orthopedics procedures and as a tool for virtual implant design.
Author Fluit, René
Verdonschot, Nico
Rasmussen, John
Andersen, Michael S
Koopman, Bart H F J M
Vanheule, Valentine
Marra, Marco A
Author_xml – sequence: 1
  givenname: Marco A
  surname: Marra
  fullname: Marra, Marco A
– sequence: 2
  givenname: Valentine
  surname: Vanheule
  fullname: Vanheule, Valentine
– sequence: 3
  givenname: René
  surname: Fluit
  fullname: Fluit, René
– sequence: 4
  givenname: Bart H F J M
  surname: Koopman
  fullname: Koopman, Bart H F J M
– sequence: 5
  givenname: John
  surname: Rasmussen
  fullname: Rasmussen, John
– sequence: 6
  givenname: Nico
  surname: Verdonschot
  fullname: Verdonschot, Nico
– sequence: 7
  givenname: Michael S
  surname: Andersen
  fullname: Andersen, Michael S
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25429519$$D View this record in MEDLINE/PubMed
BookMark eNo1j8tKAzEYhYMo9qILX0DyAlOTNJlJlqV4g4IbXZdc_rFpJ5MhyVT69lbU1YHzcT44M3TZxx4QuqNkQSkVD3TBCVNMyAs0pYLJSipBJ2iW854QSiUn12jCBGfnWk1RWOE8mj3YUuUBrG-9xWHMduxiPkAHRXc4RAed7z9xm3SAr5gOuEQ8JHDeFux7fPTHiAPYne69zTi2Z_4zPPQAWKeyS3HodC6nG3TV6i7D7V_O0cfT4_v6pdq8Pb-uV5tK84aUihnlGi4VW4paUSMkZ7p2sl4609BWCct44xqqa0KMaaWBJZeSOKKpqZkAxubo_tc7jCaA2w7JB51O2__f7BvAWVpN
CitedBy_id crossref_primary_10_1115_1_4064550
crossref_primary_10_3389_fbioe_2021_679360
crossref_primary_10_1007_s12541_017_0148_7
crossref_primary_10_1002_jor_25425
crossref_primary_10_1016_j_jbiomech_2017_08_025
crossref_primary_10_3390_app10207255
crossref_primary_10_1016_j_artmed_2020_101811
crossref_primary_10_1016_j_knee_2017_04_004
crossref_primary_10_1016_j_medengphy_2017_11_008
crossref_primary_10_1177_09544119211011827
crossref_primary_10_1371_journal_pone_0227272
crossref_primary_10_1080_10255842_2020_1789119
crossref_primary_10_1115_1_4050027
crossref_primary_10_1080_23335432_2018_1499442
crossref_primary_10_12677_MOS_2020_91009
crossref_primary_10_1016_j_jbiomech_2019_01_029
crossref_primary_10_3390_ijerph17072226
crossref_primary_10_1302_2046_3758_811_BJR_2019_0103_R1
crossref_primary_10_1302_2046_3758_61_BJR_2016_0184_R1
crossref_primary_10_1016_j_jbiomech_2018_03_039
crossref_primary_10_3390_bioengineering10030284
crossref_primary_10_3390_mca27030036
crossref_primary_10_3389_fbioe_2022_914990
crossref_primary_10_1016_j_jbiomech_2024_112387
crossref_primary_10_3389_fbioe_2023_1250937
crossref_primary_10_1177_20556683221131557
crossref_primary_10_1186_s12984_024_01490_y
crossref_primary_10_1007_s10237_020_01367_8
crossref_primary_10_3390_life12040527
crossref_primary_10_1016_j_jbiomech_2020_110186
crossref_primary_10_1016_j_medengphy_2021_103747
crossref_primary_10_1002_jor_25686
crossref_primary_10_1080_10255842_2020_1851367
crossref_primary_10_1007_s10439_023_03216_y
crossref_primary_10_1016_j_medengphy_2023_104074
crossref_primary_10_1177_0954411920947204
crossref_primary_10_1123_jab_2017_0262
crossref_primary_10_1080_10255842_2024_2399038
crossref_primary_10_3390_ma12101597
crossref_primary_10_1115_1_4033480
crossref_primary_10_1049_bsbt_2019_0012
crossref_primary_10_1016_j_gaitpost_2019_06_001
crossref_primary_10_1007_s12541_020_00319_7
crossref_primary_10_1038_s41598_020_59602_2
crossref_primary_10_3390_app11052356
crossref_primary_10_1016_j_jbiomech_2019_04_037
crossref_primary_10_1177_0954411917693880
crossref_primary_10_1007_s10439_020_02490_4
crossref_primary_10_1007_s11044_017_9573_8
crossref_primary_10_1016_j_arthro_2017_02_011
crossref_primary_10_1007_s10237_023_01726_1
crossref_primary_10_1115_1_4048707
crossref_primary_10_1016_j_knee_2022_11_010
crossref_primary_10_1038_s41598_017_17228_x
crossref_primary_10_3389_fbioe_2023_1255625
crossref_primary_10_1016_j_jbiomech_2018_02_032
crossref_primary_10_1080_10255842_2016_1206531
crossref_primary_10_1007_s11044_017_9564_9
crossref_primary_10_1049_bsbt_2017_0003
crossref_primary_10_4236_wjet_2020_83036
crossref_primary_10_1109_TBME_2019_2917415
crossref_primary_10_1302_0301_620X_106B11_BJJ_2023_1357_R1
crossref_primary_10_1186_s12938_024_01279_z
crossref_primary_10_3390_bioengineering11121183
crossref_primary_10_1016_j_gaitpost_2024_09_011
crossref_primary_10_1016_j_clinbiomech_2015_11_008
crossref_primary_10_1016_j_joca_2017_08_010
crossref_primary_10_1016_j_medengphy_2024_104246
crossref_primary_10_1115_1_4036605
crossref_primary_10_1115_1_4032127
crossref_primary_10_1080_23335432_2018_1514278
crossref_primary_10_1016_j_jbiomech_2019_07_001
crossref_primary_10_1016_j_jbiomech_2015_11_006
crossref_primary_10_1016_j_bsbt_2016_08_002
crossref_primary_10_1109_TBME_2018_2800293
crossref_primary_10_1002_cnm_3396
crossref_primary_10_1115_1_4043356
crossref_primary_10_1109_TNSRE_2020_3003559
crossref_primary_10_3389_fbioe_2022_810560
crossref_primary_10_1142_S2810958923300056
crossref_primary_10_1080_02648725_2023_2186324
crossref_primary_10_1016_j_jbiomech_2019_02_018
crossref_primary_10_1007_s00167_017_4561_3
crossref_primary_10_3389_fbioe_2021_703508
crossref_primary_10_1186_s40634_016_0061_5
crossref_primary_10_1016_j_jot_2023_08_003
crossref_primary_10_1016_j_jbiomech_2018_01_021
crossref_primary_10_1007_s13534_025_00463_x
crossref_primary_10_1016_j_clinbiomech_2018_11_009
crossref_primary_10_1177_0954411919886763
crossref_primary_10_1080_10255842_2016_1240789
crossref_primary_10_1007_s11044_022_09833_0
crossref_primary_10_1115_1_4032464
crossref_primary_10_1007_s10237_019_01245_y
crossref_primary_10_3390_bioengineering10101178
crossref_primary_10_1515_bams_2016_0022
crossref_primary_10_3233_THC_235014
crossref_primary_10_1186_s12891_023_07000_w
crossref_primary_10_1080_10255842_2022_2101889
crossref_primary_10_1016_j_gaitpost_2021_06_014
crossref_primary_10_1016_j_medengphy_2022_103889
crossref_primary_10_3390_ma13102365
crossref_primary_10_1016_j_jbiomech_2018_12_009
crossref_primary_10_3390_bioengineering12020153
crossref_primary_10_3390_app11188348
crossref_primary_10_1007_s11071_021_06949_4
crossref_primary_10_3390_app11052423
crossref_primary_10_1016_j_medengphy_2022_103871
crossref_primary_10_1115_1_4037100
crossref_primary_10_1177_0954411916634750
crossref_primary_10_3389_fbioe_2022_851495
crossref_primary_10_1002_jor_23871
crossref_primary_10_1007_s10439_021_02774_3
crossref_primary_10_3390_s23198268
crossref_primary_10_3389_fbioe_2021_648356
crossref_primary_10_3390_app11167516
crossref_primary_10_1109_TNSRE_2020_3037411
crossref_primary_10_1177_0954411918811855
crossref_primary_10_1016_j_jbiomech_2015_06_007
crossref_primary_10_1016_j_jbiomech_2023_111758
crossref_primary_10_3390_lubricants10100238
crossref_primary_10_1016_j_jmbbm_2016_08_026
crossref_primary_10_3390_s23249836
crossref_primary_10_1177_0954411918767695
crossref_primary_10_1002_jor_24751
crossref_primary_10_3389_fbioe_2024_1347720
crossref_primary_10_1371_journal_pone_0282186
crossref_primary_10_1115_1_4032412
crossref_primary_10_1115_1_4032414
crossref_primary_10_1016_j_artd_2022_03_001
crossref_primary_10_1016_j_compbiomed_2022_106099
crossref_primary_10_1016_j_jbiomech_2020_110117
crossref_primary_10_1007_s00167_018_4900_z
crossref_primary_10_1016_j_medengphy_2018_12_021
crossref_primary_10_1115_1_4051847
crossref_primary_10_1007_s10237_022_01668_0
crossref_primary_10_1038_s41598_024_78618_6
crossref_primary_10_1115_1_4038768
crossref_primary_10_1080_23335432_2015_1132638
crossref_primary_10_3389_fbioe_2023_1055860
crossref_primary_10_1016_j_clinbiomech_2022_105651
crossref_primary_10_1123_jab_2017_0159
crossref_primary_10_1016_j_jbiomech_2016_09_027
crossref_primary_10_1007_s10439_022_03048_2
crossref_primary_10_1016_j_triboint_2016_10_050
crossref_primary_10_1115_1_4040943
crossref_primary_10_1115_1_4056172
crossref_primary_10_1016_j_medengphy_2016_04_010
crossref_primary_10_1038_s41598_022_06909_x
crossref_primary_10_1007_s00132_015_3099_7
crossref_primary_10_1109_TBME_2019_2905956
crossref_primary_10_1016_j_medengphy_2018_02_002
crossref_primary_10_3389_fncom_2017_00096
crossref_primary_10_1016_j_humov_2019_04_002
crossref_primary_10_3390_biomimetics9050255
crossref_primary_10_1016_j_gaitpost_2020_05_017
crossref_primary_10_1080_10255842_2015_1034115
crossref_primary_10_1109_TBME_2022_3156018
crossref_primary_10_1002_jor_25850
crossref_primary_10_3390_bioengineering10050543
crossref_primary_10_1016_j_jbiomech_2016_10_021
crossref_primary_10_1016_j_imu_2020_100415
crossref_primary_10_1007_s11517_025_03335_9
crossref_primary_10_1115_1_4038507
crossref_primary_10_1016_j_jmbbm_2024_106479
crossref_primary_10_1016_j_jbiomech_2023_111711
crossref_primary_10_1016_j_gaitpost_2018_12_030
crossref_primary_10_1007_s11044_016_9537_4
crossref_primary_10_3390_bioengineering9110716
crossref_primary_10_1016_j_jbiomech_2023_111834
crossref_primary_10_1115_1_4038741
crossref_primary_10_3390_app10062100
crossref_primary_10_1371_journal_pone_0214496
crossref_primary_10_1080_10255842_2019_1705798
crossref_primary_10_1016_j_arth_2019_05_037
crossref_primary_10_1016_j_joca_2018_04_011
crossref_primary_10_1080_23335432_2019_1629839
crossref_primary_10_1109_TNSRE_2022_3159685
crossref_primary_10_1177_23259671221084970
crossref_primary_10_1016_j_gaitpost_2022_03_020
crossref_primary_10_4028_www_scientific_net_DDF_404_77
crossref_primary_10_1007_s11548_016_1519_8
crossref_primary_10_1016_j_medengphy_2019_08_001
crossref_primary_10_1016_j_clinbiomech_2023_105985
crossref_primary_10_1115_1_4065879
crossref_primary_10_1016_j_medengphy_2020_09_004
crossref_primary_10_1016_j_jse_2020_07_007
crossref_primary_10_3389_fbioe_2025_1533001
crossref_primary_10_1115_1_4031417
crossref_primary_10_3390_biomechanics5010008
crossref_primary_10_1016_j_jbiomech_2018_07_008
crossref_primary_10_3390_s19071681
crossref_primary_10_1371_journal_pone_0204109
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1115/1.4029258
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
Engineering
Forestry
EISSN 1528-8951
ExternalDocumentID 25429519
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.DC
29J
4.4
5AI
5GY
ABJNI
ACBEA
ACGFO
ACGFS
ACKMT
ADPDT
AGNGV
ALMA_UNASSIGNED_HOLDINGS
CGR
CS3
CUY
CVF
EBS
ECM
EIF
EJD
F5P
H~9
L7B
NPM
P2P
RAI
RNS
RXW
TAE
TN5
UKR
ID FETCH-LOGICAL-a470t-2b9d7489235691b5842a6d863db71f95c247d71a600bbf8be34880d0a1b625e22
IngestDate Mon Jul 21 06:08:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a470t-2b9d7489235691b5842a6d863db71f95c247d71a600bbf8be34880d0a1b625e22
PMID 25429519
ParticipantIDs pubmed_primary_25429519
PublicationCentury 2000
PublicationDate 2015-Feb-01
PublicationDateYYYYMMDD 2015-02-01
PublicationDate_xml – month: 02
  year: 2015
  text: 2015-Feb-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of biomechanical engineering
PublicationTitleAlternate J Biomech Eng
PublicationYear 2015
SSID ssj0011840
Score 2.5328426
Snippet Musculoskeletal (MS) models should be able to integrate patient-specific MS architecture and undergo thorough validation prior to their introduction into...
SourceID pubmed
SourceType Index Database
StartPage 020904
SubjectTerms Aged, 80 and over
Arthroplasty, Replacement, Knee
Biomechanical Phenomena
Gait
Humans
Knee Joint - physiology
Knee Joint - surgery
Male
Mechanical Phenomena
Patient-Specific Modeling
Title A subject-specific musculoskeletal modeling framework to predict in vivo mechanics of total knee arthroplasty
URI https://www.ncbi.nlm.nih.gov/pubmed/25429519
Volume 137
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELaWIlXlUBX6grbIB26R6cabZJ3jtupqhQQnQNxQ_Ii6ohuvIOHAP-JfMmM72bCiqPQSRba8sjLfjsfz-IaQAxGXSo5UxtJhkbNEK8NEqRRD5pexAKUsXCjm-CSbnSVHF-nFYHDfy1pqanmo7p6sK_kfqcIYyBWrZF8g2e5HYQDeQb7wBAnD859kPIluGomOFIYFk5j0Ey0azCy1N1dwnGCdo-t047Il2ywstDaX1xifcd0Bbue3NloYLABGwmZMGbC48KoyBhmQsI0CWNj1o_Bvz4x19ft-NQyYFb3hytd97XoZYVmQsivf6XlR_TaNz2Y-L_Dw64X4p3-aee3FX_lYfncyWNsWTPyA7UWzaBodBZ9u8F7EaZvwjIdP0LhcMJEH1tlWJXsimIA93lOwYN3mvl_xE7ofaTLiQ7gR59zzwfcwsFw4EHDsz5V6Lf387BoNdzu1QTbgQoIdVtEtFMJVeE0OtFWwi-_dHpBqOqxbu7Y48-X0HXkbBEYnHkTbZGCqHbLVY6PcIa-xTSv2_oPX45By8Z4sJnQdZHQNZLQFGe1ARmtLA8jovKIIMtqBjNqSOpBRBBntg-wDOZv-Ov05Y6FHByuS8bBmXOYaCYz4KM3yWII5y4tMiwxpu-MyTxVPxnocF2BXS1kKaUZ4YuhhEUu4eRvOP5JXla3MZ0LLTBsjkSJRwrGieSGSZGQyneihKVOV75JP_gteLj0Ry2X7bff-OvOFvFmh7ivZLOGfb76BGVnLfSfCB1UgdjE
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+subject-specific+musculoskeletal+modeling+framework+to+predict+in+vivo+mechanics+of+total+knee+arthroplasty&rft.jtitle=Journal+of+biomechanical+engineering&rft.au=Marra%2C+Marco+A&rft.au=Vanheule%2C+Valentine&rft.au=Fluit%2C+Ren%C3%A9&rft.au=Koopman%2C+Bart+H+F+J+M&rft.date=2015-02-01&rft.eissn=1528-8951&rft.volume=137&rft.issue=2&rft.spage=020904&rft_id=info:doi/10.1115%2F1.4029258&rft_id=info%3Apmid%2F25429519&rft_id=info%3Apmid%2F25429519&rft.externalDocID=25429519