Structures of the Escherichia coli PutA Proline Dehydrogenase Domain in Complex with Competitive Inhibitors
Proline dehydrogenase (PRODH) catalyzes the first step of proline catabolism, the flavin-dependent oxidation of proline to Δ1-pyrroline-5-carboxylate. Here we present a structure-based study of the PRODH active site of the multifunctional Escherichia coli proline utilization A (PutA) protein using X...
Saved in:
Published in | Biochemistry (Easton) Vol. 43; no. 39; pp. 12539 - 12548 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
05.10.2004
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Proline dehydrogenase (PRODH) catalyzes the first step of proline catabolism, the flavin-dependent oxidation of proline to Δ1-pyrroline-5-carboxylate. Here we present a structure-based study of the PRODH active site of the multifunctional Escherichia coli proline utilization A (PutA) protein using X-ray crystallography, enzyme kinetic measurements, and site-directed mutagenesis. Structures of the PutA PRODH domain complexed with competitive inhibitors acetate (K i = 30 mM), l-lactate (K i = 1 mM), and l-tetrahydro-2-furoic acid (l-THFA, K i = 0.2 mM) have been determined to high-resolution limits of 2.1−2.0 Å. The discovery of acetate as a competitive inhibitor suggests that the carboxyl is the minimum functional group recognized by the active site, and the structures show how the enzyme exploits hydrogen-bonding and nonpolar interactions to optimize affinity for the substrate. The PRODH/l-THFA complex is the first structure of PRODH with a five-membered ring proline analogue bound in the active site and thus provides new insights into substrate recognition and the catalytic mechanism. The ring of l-THFA is nearly parallel to the middle ring of the FAD isoalloxazine, with the inhibitor C5 atom 3.3 Å from the FAD N5. This geometry suggests direct hydride transfer as a plausible mechanism. Mutation of conserved active site residue Leu432 to Pro caused a 5-fold decrease in k cat and a severe loss in thermostability. These changes are consistent with the location of Leu432 in the hydrophobic core near residues that directly contact FAD. Our results suggest that the molecular basis for increased plasma proline levels in schizophrenic subjects carrying the missense mutation L441P is due to decreased stability of human PRODH2. |
---|---|
AbstractList | Proline dehydrogenase (PRODH) catalyzes the first step of proline catabolism, the flavin-dependent oxidation of proline to Delta(1)-pyrroline-5-carboxylate. Here we present a structure-based study of the PRODH active site of the multifunctional Escherichia coli proline utilization A (PutA) protein using X-ray crystallography, enzyme kinetic measurements, and site-directed mutagenesis. Structures of the PutA PRODH domain complexed with competitive inhibitors acetate (K(i) = 30 mM), L-lactate (K(i) = 1 mM), and L-tetrahydro-2-furoic acid (L-THFA, K(i) = 0.2 mM) have been determined to high-resolution limits of 2.1-2.0 A. The discovery of acetate as a competitive inhibitor suggests that the carboxyl is the minimum functional group recognized by the active site, and the structures show how the enzyme exploits hydrogen-bonding and nonpolar interactions to optimize affinity for the substrate. The PRODH/L-THFA complex is the first structure of PRODH with a five-membered ring proline analogue bound in the active site and thus provides new insights into substrate recognition and the catalytic mechanism. The ring of L-THFA is nearly parallel to the middle ring of the FAD isoalloxazine, with the inhibitor C5 atom 3.3 A from the FAD N5. This geometry suggests direct hydride transfer as a plausible mechanism. Mutation of conserved active site residue Leu432 to Pro caused a 5-fold decrease in k(cat) and a severe loss in thermostability. These changes are consistent with the location of Leu432 in the hydrophobic core near residues that directly contact FAD. Our results suggest that the molecular basis for increased plasma proline levels in schizophrenic subjects carrying the missense mutation L441P is due to decreased stability of human PRODH2. Proline dehydrogenase (PRODH) catalyzes the first step of proline catabolism, the flavin-dependent oxidation of proline to Delta(1)-pyrroline-5-carboxylate. Here we present a structure-based study of the PRODH active site of the multifunctional Escherichia coli proline utilization A (PutA) protein using X-ray crystallography, enzyme kinetic measurements, and site-directed mutagenesis. Structures of the PutA PRODH domain complexed with competitive inhibitors acetate (K(i) = 30 mM), L-lactate (K(i) = 1 mM), and L-tetrahydro-2-furoic acid (L-THFA, K(i) = 0.2 mM) have been determined to high-resolution limits of 2.1-2.0 A. The discovery of acetate as a competitive inhibitor suggests that the carboxyl is the minimum functional group recognized by the active site, and the structures show how the enzyme exploits hydrogen-bonding and nonpolar interactions to optimize affinity for the substrate. The PRODH/L-THFA complex is the first structure of PRODH with a five-membered ring proline analogue bound in the active site and thus provides new insights into substrate recognition and the catalytic mechanism. The ring of L-THFA is nearly parallel to the middle ring of the FAD isoalloxazine, with the inhibitor C5 atom 3.3 A from the FAD N5. This geometry suggests direct hydride transfer as a plausible mechanism. Mutation of conserved active site residue Leu432 to Pro caused a 5-fold decrease in k(cat) and a severe loss in thermostability. These changes are consistent with the location of Leu432 in the hydrophobic core near residues that directly contact FAD. Our results suggest that the molecular basis for increased plasma proline levels in schizophrenic subjects carrying the missense mutation L441P is due to decreased stability of human PRODH2.Proline dehydrogenase (PRODH) catalyzes the first step of proline catabolism, the flavin-dependent oxidation of proline to Delta(1)-pyrroline-5-carboxylate. Here we present a structure-based study of the PRODH active site of the multifunctional Escherichia coli proline utilization A (PutA) protein using X-ray crystallography, enzyme kinetic measurements, and site-directed mutagenesis. Structures of the PutA PRODH domain complexed with competitive inhibitors acetate (K(i) = 30 mM), L-lactate (K(i) = 1 mM), and L-tetrahydro-2-furoic acid (L-THFA, K(i) = 0.2 mM) have been determined to high-resolution limits of 2.1-2.0 A. The discovery of acetate as a competitive inhibitor suggests that the carboxyl is the minimum functional group recognized by the active site, and the structures show how the enzyme exploits hydrogen-bonding and nonpolar interactions to optimize affinity for the substrate. The PRODH/L-THFA complex is the first structure of PRODH with a five-membered ring proline analogue bound in the active site and thus provides new insights into substrate recognition and the catalytic mechanism. The ring of L-THFA is nearly parallel to the middle ring of the FAD isoalloxazine, with the inhibitor C5 atom 3.3 A from the FAD N5. This geometry suggests direct hydride transfer as a plausible mechanism. Mutation of conserved active site residue Leu432 to Pro caused a 5-fold decrease in k(cat) and a severe loss in thermostability. These changes are consistent with the location of Leu432 in the hydrophobic core near residues that directly contact FAD. Our results suggest that the molecular basis for increased plasma proline levels in schizophrenic subjects carrying the missense mutation L441P is due to decreased stability of human PRODH2. Proline dehydrogenase (PRODH) catalyzes the first step of proline catabolism, the flavin-dependent oxidation of proline to Δ1-pyrroline-5-carboxylate. Here we present a structure-based study of the PRODH active site of the multifunctional Escherichia coli proline utilization A (PutA) protein using X-ray crystallography, enzyme kinetic measurements, and site-directed mutagenesis. Structures of the PutA PRODH domain complexed with competitive inhibitors acetate (K i = 30 mM), l-lactate (K i = 1 mM), and l-tetrahydro-2-furoic acid (l-THFA, K i = 0.2 mM) have been determined to high-resolution limits of 2.1−2.0 Å. The discovery of acetate as a competitive inhibitor suggests that the carboxyl is the minimum functional group recognized by the active site, and the structures show how the enzyme exploits hydrogen-bonding and nonpolar interactions to optimize affinity for the substrate. The PRODH/l-THFA complex is the first structure of PRODH with a five-membered ring proline analogue bound in the active site and thus provides new insights into substrate recognition and the catalytic mechanism. The ring of l-THFA is nearly parallel to the middle ring of the FAD isoalloxazine, with the inhibitor C5 atom 3.3 Å from the FAD N5. This geometry suggests direct hydride transfer as a plausible mechanism. Mutation of conserved active site residue Leu432 to Pro caused a 5-fold decrease in k cat and a severe loss in thermostability. These changes are consistent with the location of Leu432 in the hydrophobic core near residues that directly contact FAD. Our results suggest that the molecular basis for increased plasma proline levels in schizophrenic subjects carrying the missense mutation L441P is due to decreased stability of human PRODH2. Proline dehydrogenase (PRODH) catalyzes the first step of proline catabolism, the flavin-dependent oxidation of proline to Δ 1 -pyrroline-5-carboxylate. Here we present a structure-based study of the PRODH active site of the multifunctional E. coli Proline Utilization A (PutA) protein using X-ray crystallography, enzyme kinetic measurements, and site-directed mutagenesis. Structures of the PutA PRODH domain complexed with competitive inhibitors acetate ( K i = 30 mM), L-lactate ( K i = 1 mM), and L- tetrahydro-2-furoic acid (L-THFA, K i = 0.2 mM) have been determined to high-resolution limits of 2.1-2.0 Å. The discovery of acetate as a competitive inhibitor suggests the carboxyl is the minimum functional group recognized by the active site, and the structures show how the enzyme exploits hydrogen bonding and non-polar interactions to optimize affinity for the substrate. The PRODH/L-THFA complex is the first structure of PRODH with a 5-membered ring proline analogue bound in the active site, and thus provides new insights into substrate recognition and the catalytic mechanism. The ring of L-THFA is nearly parallel to the middle ring of the FAD isoalloxazine, with the inhibitor C5 atom 3.3 Å from the FAD N5. This geometry suggests direct hydride transfer as a plausible mechanism. Mutation of conserved active site residue Leu432 to Pro caused a 5-fold decrease in k cat and a severe loss in thermostability. These changes are consistent with the location of Leu432 in the hydrophobic core near residues that directly contact FAD. Our results suggest that the molecular basis for increased plasma proline levels in schizophrenic subjects carrying the missense mutation L441P is due to decreased stability of human PRODH2. Proline dehydrogenase (PRODH) catalyzes the first step of proline catabolism, the flavin-dependent oxidation of proline to Delta super(1)-pyrroline-5-carboxylate. Here we present a structure-based study of the PRODH active site of the multifunctional Escherichia coli proline utilization A (PutA) protein using X-ray crystallography, enzyme kinetic measurements, and site-directed mutagenesis. Structures of the PutA PRODH domain complexed with competitive inhibitors acetate (K sub(i) = 30 mM), L-lactate (K sub(i) = 1 mM), and L-tetrahydro-2-furoic acid (L-THFA, K sub(i) = 0.2 mM) have been determined to high-resolution limits of 2.1-2.0 AA. The discovery of acetate as a competitive inhibitor suggests that the carboxyl is the minimum functional group recognized by the active site, and the structures show how the enzyme exploits hydrogen-bonding and nonpolar interactions to optimize affinity for the substrate. The PRODH/L-THFA complex is the first structure of PRODH with a five-membered ring proline analogue bound in the active site and thus provides new insights into substrate recognition and the catalytic mechanism. The ring of L-THFA is nearly parallel to the middle ring of the FAD isoalloxazine, with the inhibitor C5 atom 3.3 AA from the FAD N5. This geometry suggests direct hydride transfer as a plausible mechanism. Mutation of conserved active site residue Leu432 to Pro caused a 5-fold decrease in k sub(cat) and a severe loss in thermostability. These changes are consistent with the location of Leu432 in the hydrophobic core near residues that directly contact FAD. Our results suggest that the molecular basis for increased plasma proline levels in schizophrenic subjects carrying the missense mutation L441P is due to decreased stability of human PRODH2. |
Author | White, Tommi A Becker, Donald F Schuermann, Jonathan P Tanner, John J Baban, Berevan A Zhang, Min |
Author_xml | – sequence: 1 givenname: Min surname: Zhang fullname: Zhang, Min – sequence: 2 givenname: Tommi A surname: White fullname: White, Tommi A – sequence: 3 givenname: Jonathan P surname: Schuermann fullname: Schuermann, Jonathan P – sequence: 4 givenname: Berevan A surname: Baban fullname: Baban, Berevan A – sequence: 5 givenname: Donald F surname: Becker fullname: Becker, Donald F – sequence: 6 givenname: John J surname: Tanner fullname: Tanner, John J |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15449943$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkdFqFDEUhoNU7LZ64QtIbhS8GJtMMjM7N0IZWy1WXGn1NmQzJ53TziZrkqnt25u6dVEpCIHkJ9_5OPDvkR3nHRDynLM3nJX8YIlMzhvRwCMy41XJCtm21Q6ZMcbqomxrtkv2YrzMUbJGPiG7vJIZkWJGrs5SmEyaAkTqLU0D0KNoBghoBtTU-BHpYkqHdBHy0wF9B8NtH_wFOB1z8iuNjubT-dV6hBv6A9PwK0DChNdAT9yAS0w-xKfksdVjhGf39z75enx03n0oTj-_P-kOTwstG5YKbrW1RvdSVtZyYKzipi11PbeSG9EL3pcWtK1sBaY3rRWW99LIli1ZL-asEfvk7ca7npYr6A24FPSo1gFXOtwqr1H9_eNwUBf-WommbEopsuDVvSD47xPEpFYYDYyjduCnqOq65YLNy_-CPAtly-sMvvhzpe0uv4vIwMEGMMHHGMAqg0kn9Hcb4qg4U3dVq23VeeL1PxNb6QNssWExJrjZgjpcqToDlTpfnKlv3Ufx6Ys8Vl3mX254baK69FNwua8HvD8B-BHHPA |
CitedBy_id | crossref_primary_10_1002_prot_22217 crossref_primary_10_1021_acs_biochem_8b00215 crossref_primary_10_1021_acs_biochem_7b00046 crossref_primary_10_1093_protein_gzac016 crossref_primary_10_1021_bi400396g crossref_primary_10_1039_D1OB02328D crossref_primary_10_1016_j_bpj_2018_04_046 crossref_primary_10_1086_428142 crossref_primary_10_1016_j_abb_2025_110319 crossref_primary_10_1021_bi802094k crossref_primary_10_1371_journal_pone_0290901 crossref_primary_10_1007_s00726_021_02961_5 crossref_primary_10_1021_bi200960j crossref_primary_10_1074_jbc_M700912200 crossref_primary_10_1074_jbc_M116_756965 crossref_primary_10_1110_ps_062425706 crossref_primary_10_1007_s00253_011_3682_8 crossref_primary_10_1074_jbc_M117_786855 crossref_primary_10_3390_molecules23010032 crossref_primary_10_1371_journal_pone_0096423 crossref_primary_10_1158_1535_7163_MCT_18_1323 crossref_primary_10_1021_acschembio_1c00427 crossref_primary_10_1016_j_jmb_2008_05_084 crossref_primary_10_1111_j_1758_2229_2010_00214_x crossref_primary_10_1073_pnas_1321621111 crossref_primary_10_1007_s00253_012_4201_2 crossref_primary_10_1016_j_plaphy_2020_04_019 crossref_primary_10_1074_jbc_M114_625483 crossref_primary_10_1021_bi301312f crossref_primary_10_1093_gbe_evaa210 crossref_primary_10_3390_molecules23010184 crossref_primary_10_1089_ars_2010_3417 crossref_primary_10_1007_s00726_021_03032_5 crossref_primary_10_1016_j_ijfoodmicro_2008_09_012 crossref_primary_10_1021_bi400338f crossref_primary_10_1007_s00726_021_03012_9 crossref_primary_10_1042_BJ20141159 crossref_primary_10_1007_s10482_018_1148_z crossref_primary_10_1016_j_watres_2024_122885 crossref_primary_10_1021_bi800055w crossref_primary_10_1063_1_5063683 crossref_primary_10_1371_journal_pone_0152363 crossref_primary_10_1007_s00726_008_0062_5 crossref_primary_10_1074_jbc_M111_292474 crossref_primary_10_1016_j_bbapap_2014_10_020 crossref_primary_10_1371_journal_pgen_1007976 crossref_primary_10_1038_srep43880 crossref_primary_10_1021_bi201603f crossref_primary_10_1021_bi901717s crossref_primary_10_1128_JB_188_4_1227_1235_2006 crossref_primary_10_1016_j_abb_2010_04_020 crossref_primary_10_1038_nchembio847 crossref_primary_10_1016_j_abb_2011_10_011 crossref_primary_10_3390_ijms23042354 crossref_primary_10_1073_pnas_0906101107 crossref_primary_10_1111_febs_12821 crossref_primary_10_1155_2020_7245782 crossref_primary_10_1089_ars_2017_7374 crossref_primary_10_1111_febs_14165 |
Cites_doi | 10.1107/S0021889892009944 10.1016/S0968-0004(99)01533-9 10.1146/annurev.bi.49.070180.005041 10.1038/nsb878 10.1016/0167-4838(93)90065-Y 10.1016/S0022-2836(03)00856-8 10.1038/38525 10.1016/0022-2836(81)90233-3 10.1007/BF00355047 10.1016/S0021-9258(17)34569-6 |
ContentType | Journal Article |
Copyright | Copyright © 2004 American Chemical Society |
Copyright_xml | – notice: Copyright © 2004 American Chemical Society |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL C1K 7X8 5PM |
DOI | 10.1021/bi048737e |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Environmental Sciences and Pollution Management MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Bacteriology Abstracts (Microbiology B) Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Bacteriology Abstracts (Microbiology B) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1520-4995 |
EndPage | 12548 |
ExternalDocumentID | PMC3727243 15449943 10_1021_bi048737e ark_67375_TPS_VCK3MQ4F_C b327018750 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, U.S. Gov't, P.H.S Comparative Study Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: GM061068 – fundername: NIGMS NIH HHS grantid: GM065546 – fundername: NIGMS NIH HHS grantid: R01 GM065546 – fundername: NIGMS NIH HHS grantid: R01 GM061068 – fundername: National Institute of General Medical Sciences : NIGMS grantid: R01 GM061068 || GM – fundername: National Institute of General Medical Sciences : NIGMS grantid: R01 GM065546 || GM |
GroupedDBID | - .K2 02 08R 23N 3O- 4.4 53G 55 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABOCM ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF AFFDN AFFNX AFMIJ AIDAL AJYGW ALMA_UNASSIGNED_HOLDINGS ANTXH AQSVZ BAANH CS3 D0L DU5 DZ EBS ED ED~ EJD F5P GJ GNL IH9 IHE JG JG~ K2 K78 KM L7B LG6 MVM NHB OHT P2P ROL TN5 UI2 UNC UQL VF5 VG9 VQA W1F WH7 X X7M YZZ ZA5 ZGI ZXP --- -DZ -~X .55 .GJ 6TJ ABJNI ABQRX ADHLV AGXLV AHGAQ BSCLL CUPRZ GGK XOL XSW ZCA ~02 ~KM AAYXX ABBLG ABLBI ACRPL ADNMO AEYZD AGQPQ ANPPW CITATION CGR CUY CVF ECM EIF NPM VXZ 7QL C1K 7X8 5PM |
ID | FETCH-LOGICAL-a470t-1faffcad445ff1e0051c92a68f41c3d31d2feaf5f5ecdc9f3f1d4c490b0d38073 |
IEDL.DBID | ACS |
ISSN | 0006-2960 |
IngestDate | Thu Aug 21 18:26:06 EDT 2025 Thu Jul 10 22:25:53 EDT 2025 Fri Jul 11 12:25:52 EDT 2025 Wed Feb 19 02:36:26 EST 2025 Thu Apr 24 23:04:05 EDT 2025 Tue Jul 01 01:55:50 EDT 2025 Wed Oct 30 09:18:37 EDT 2024 Thu Aug 27 13:42:00 EDT 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 39 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a470t-1faffcad445ff1e0051c92a68f41c3d31d2feaf5f5ecdc9f3f1d4c490b0d38073 |
Notes | Coordinates and structure factors have been deposited in the Protein Data Bank under Accession Numbers 1TJ1, 1TJ2, 1TJ0, and 1TIW. This work was supported by NIH Grants GM065546 (to J.J.T.) and GM061068 (to D.F.B.) and the Nebraska Agricultural Research Division, Journal Series No. 14681. ark:/67375/TPS-VCK3MQ4F-C istex:A3DBA1AA147AEE3A83F4D15F49DF30FCCF9A83CC ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 University of Missouri-Columbia University of Nebraska Present address: Department of Anatomy and Neurobiology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8108, St. Louis, MO 63110 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3727243 |
PMID | 15449943 |
PQID | 17274916 |
PQPubID | 23462 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3727243 proquest_miscellaneous_66913082 proquest_miscellaneous_17274916 pubmed_primary_15449943 crossref_citationtrail_10_1021_bi048737e crossref_primary_10_1021_bi048737e istex_primary_ark_67375_TPS_VCK3MQ4F_C acs_journals_10_1021_bi048737e |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ANTXH ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2004-10-05 |
PublicationDateYYYYMMDD | 2004-10-05 |
PublicationDate_xml | – month: 10 year: 2004 text: 2004-10-05 day: 05 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Biochemistry (Easton) |
PublicationTitleAlternate | Biochemistry |
PublicationYear | 2004 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Ostrovsky De Spicer P. (bi048737eb00020/bi048737eb00020_1) 1993 Zhang M. (bi048737eb00031/bi048737eb00031_1) 2004 bi048737eb00004/bi048737eb00004_1 Winn M. D. (bi048737eb00035/bi048737eb00035_1) 2001 Karayiorgou M. (bi048737eb00011/bi048737eb00011_1) 2003 Becker D. F. (bi048737eb00014/bi048737eb00014_1) 2001 Williams H. J. (bi048737eb00009/bi048737eb00009_1) 2003; 120 DeLano W. L. (bi048737eb00038/bi048737eb00038_1) 2002 Zhu W. (bi048737eb00047/bi048737eb00047_1) 2003 Laskowski R. A. (bi048737eb00049/bi048737eb00049_1) 1993; 26 Menzel R. (bi048737eb00016/bi048737eb00016_1) 1981; 256 Tritsch D. (bi048737eb00023/bi048737eb00023_1) 1993; 1202 Brown E. D. (bi048737eb00012/bi048737eb00012_1) 1993; 268 Fraaije M. W. (bi048737eb00045/bi048737eb00045_1) 2000; 25 Kowaloff E. M. (bi048737eb00024/bi048737eb00024_1) 1977 Scarpulla R. C. (bi048737eb00025/bi048737eb00025_1) 1978; 253 Sobolev V. (bi048737eb00039/bi048737eb00039_1) 1999 Wood J. (bi048737eb00018/bi048737eb00018_1) 1987 Andreeva A. (bi048737eb00042/bi048737eb00042_1) 2004 Vinod M. P. (bi048737eb00028/bi048737eb00028_1) 2002 Harrison P. J. (bi048737eb00010/bi048737eb00010_1) 2003 Surber M. W. (bi048737eb00017/bi048737eb00017_1) 1999; 1421 Matthews B. W. (bi048737eb00033/bi048737eb00033_1) 1968; 33 Donald S. P. (bi048737eb00003/bi048737eb00003_1) 2001 Nadaraia S. (bi048737eb00029/bi048737eb00029_1) 2001 Otwinowski Z. (bi048737eb00032/bi048737eb00032_1) 1997 Baban B. A. (bi048737eb00040/bi048737eb00040_1) 2004; 1701 Phang J. M. (bi048737eb00001/bi048737eb00001_1) 1985; 25 Wood J. M. (bi048737eb00021/bi048737eb00021_1) 1981; 146 Project C. C. (bi048737eb00036/bi048737eb00036_1) 1994 Shindyalov I. N. (bi048737eb00050/bi048737eb00050_1) 1998 Abbreviations A (bi048737en00001/bi048737en00001_1) Brown E. (bi048737eb00013/bi048737eb00013_1) 1992; 267 Menzel R. (bi048737eb00019/bi048737eb00019_1) 1981; 148 Engh R. A. (bi048737eb00048/bi048737eb00048_1) 1991; 47 Mooers B. H. (bi048737eb00046/bi048737eb00046_1) 2003; 332 Menzel R. (bi048737eb00015/bi048737eb00015_1) 1981; 256 Zhu W. (bi048737eb00026/bi048737eb00026_1) 2002 Brünger A. T. (bi048737eb00034/bi048737eb00034_1) 1998 Krissinel E. (bi048737eb00044/bi048737eb00044_1) 2003 Liu H. (bi048737eb00006/bi048737eb00006_1) 2002 Abrahamson J. L. A. (bi048737eb00030/bi048737eb00030_1) 1983; 134 Rehmann H. (bi048737eb00041/bi048737eb00041_1) 2003; 10 Maxwell S. A. (bi048737eb00005/bi048737eb00005_1) 2000 van Aalten D. M. (bi048737eb00037/bi048737eb00037_1) 1996; 10 Gu D. (bi048737eb00022/bi048737eb00022_1) 2004; 279 Liu H. (bi048737eb00007/bi048737eb00007_1) 2002 Guenther B. D. (bi048737eb00043/bi048737eb00043_1) 1999 Lee Y. H. (bi048737eb00027/bi048737eb00027_1) 2003 Adams E. (bi048737eb00002/bi048737eb00002_1) 1980; 49 Jacquet H. (bi048737eb00008/bi048737eb00008_1) 2002 |
References_xml | – volume: 26 year: 1993 ident: bi048737eb00049/bi048737eb00049_1 publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889892009944 – volume-title: Proc. Natl. Acad. Sci. U.S.A. 99 year: 2002 ident: bi048737eb00006/bi048737eb00006_1 – volume-title: Lancet 361 year: 2003 ident: bi048737eb00011/bi048737eb00011_1 – volume-title: Methods Enzymol. 276, 307−326. year: 1997 ident: bi048737eb00032/bi048737eb00032_1 – volume: 47 year: 1991 ident: bi048737eb00048/bi048737eb00048_1 publication-title: Acta Crystallogr. – volume: 25 start-page: 126 year: 2000 ident: bi048737eb00045/bi048737eb00045_1 publication-title: Trends Biochem. Sci. doi: 10.1016/S0968-0004(99)01533-9 – volume: 49 year: 1980 ident: bi048737eb00002/bi048737eb00002_1 publication-title: Rev. Biochem. doi: 10.1146/annurev.bi.49.070180.005041 – volume-title: Proc. Natl. Acad. Sci. U.S.A. 90 year: 1993 ident: bi048737eb00020/bi048737eb00020_1 – volume: 33 year: 1968 ident: bi048737eb00033/bi048737eb00033_1 publication-title: J. Mol. Biol. – volume-title: Proc. Natl. Acad. Sci. U.S.A. 99 year: 2002 ident: bi048737eb00007/bi048737eb00007_1 – volume-title: Cancer Res. 61 year: 2001 ident: bi048737eb00003/bi048737eb00003_1 – volume: 120 start-page: 46 year: 2003 ident: bi048737eb00009/bi048737eb00009_1 publication-title: Am. J. Med. Genet. – volume-title: Int. Conf. Mol. Struct. Biol., 5th, 88 year: 2003 ident: bi048737eb00044/bi048737eb00044_1 – volume-title: Hum. Mol. Genet. 11, 2243−2249. year: 2002 ident: bi048737eb00008/bi048737eb00008_1 – volume-title: Protein Eng. 11, 739−747. year: 1998 ident: bi048737eb00050/bi048737eb00050_1 – volume-title: Acta Crystallogr. D57, 122−133. year: 2001 ident: bi048737eb00035/bi048737eb00035_1 – volume-title: Proc. Natl. Acad. Sci. U.S.A. 97 year: 2000 ident: bi048737eb00005/bi048737eb00005_1 – volume-title: Lancet 361, 417−419. year: 2003 ident: bi048737eb00010/bi048737eb00010_1 – volume: 10 start-page: 32 year: 2003 ident: bi048737eb00041/bi048737eb00041_1 publication-title: Nat. Struct. Biol. doi: 10.1038/nsb878 – volume: 267 year: 1992 ident: bi048737eb00013/bi048737eb00013_1 publication-title: J. Biol. Chem. – volume-title: Bioinformatics 15, 327−332. year: 1999 ident: bi048737eb00039/bi048737eb00039_1 – volume-title: Nucleic Acids Res. 32 (database issue, D226−D229). year: 2004 ident: bi048737eb00042/bi048737eb00042_1 – volume-title: Acta Crystallogr. D57 year: 2001 ident: bi048737eb00029/bi048737eb00029_1 – volume-title: Proc. Natl. Acad. Sci. U.S.A. 74 year: 1977 ident: bi048737eb00024/bi048737eb00024_1 – volume: 146 year: 1981 ident: bi048737eb00021/bi048737eb00021_1 publication-title: J. Bacteriol. – volume: 256 year: 1981 ident: bi048737eb00015/bi048737eb00015_1 publication-title: J. Biol. Chem. – volume: 1202 start-page: 81 year: 1993 ident: bi048737eb00023/bi048737eb00023_1 publication-title: Biochim. Biophys. Acta doi: 10.1016/0167-4838(93)90065-Y – volume-title: Nat. Struct. Biol. 6, 359−365. year: 1999 ident: bi048737eb00043/bi048737eb00043_1 – volume: 256 year: 1981 ident: bi048737eb00016/bi048737eb00016_1 publication-title: J. Biol. Chem. – volume: 332 year: 2003 ident: bi048737eb00046/bi048737eb00046_1 publication-title: J. Mol. Biol. doi: 10.1016/S0022-2836(03)00856-8 – volume-title: The PyMOL Molecular Graphics System (http://www.pymol.org) year: 2002 ident: bi048737eb00038/bi048737eb00038_1 – volume: 1701 start-page: 59 year: 2004 ident: bi048737eb00040/bi048737eb00040_1 publication-title: Biochim. Biophys. Acta – volume-title: Biochemistry 40, 4714−4722. year: 2001 ident: bi048737eb00014/bi048737eb00014_1 – volume-title: Biochemistry 42, 5469−5477. year: 2003 ident: bi048737eb00047/bi048737eb00047_1 – volume-title: Arch. Biochem. Biophys. 408, 131−136. year: 2002 ident: bi048737eb00026/bi048737eb00026_1 – volume-title: proline utilization A ident: bi048737en00001/bi048737en00001_1 – volume: 268 year: 1993 ident: bi048737eb00012/bi048737eb00012_1 publication-title: J. Biol. Chem. – volume-title: Proc. Natl. Acad. Sci. U.S.A. 84 year: 1987 ident: bi048737eb00018/bi048737eb00018_1 – volume-title: Nat. Struct. Biol. 10, 109−114. year: 2003 ident: bi048737eb00027/bi048737eb00027_1 – ident: bi048737eb00004/bi048737eb00004_1 doi: 10.1038/38525 – volume: 148 start-page: 44 year: 1981 ident: bi048737eb00019/bi048737eb00019_1 publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(81)90233-3 – volume-title: Acta Crystallogr. D60, 985−986. year: 2004 ident: bi048737eb00031/bi048737eb00031_1 – volume-title: Acta Crystallogr. D50, 760−763. year: 1994 ident: bi048737eb00036/bi048737eb00036_1 – volume: 10 year: 1996 ident: bi048737eb00037/bi048737eb00037_1 publication-title: J. Comput.-Aided Mol. Des. doi: 10.1007/BF00355047 – volume: 134 start-page: 82 year: 1983 ident: bi048737eb00030/bi048737eb00030_1 publication-title: Eur. J. Biochem. – volume-title: Acta Crystallogr. D54, 905−921. year: 1998 ident: bi048737eb00034/bi048737eb00034_1 – volume: 1421 start-page: 18 year: 1999 ident: bi048737eb00017/bi048737eb00017_1 publication-title: Biochim. Biophys. Acta – volume: 279 year: 2004 ident: bi048737eb00022/bi048737eb00022_1 publication-title: J. Biol. Chem. – volume: 253 year: 1978 ident: bi048737eb00025/bi048737eb00025_1 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)34569-6 – volume: 25 start-page: 132 year: 1985 ident: bi048737eb00001/bi048737eb00001_1 publication-title: Curr. Top. Cell Regul. – volume-title: Biochemistry 41, 6525−6532. year: 2002 ident: bi048737eb00028/bi048737eb00028_1 |
SSID | ssj0004074 |
Score | 2.066004 |
Snippet | Proline dehydrogenase (PRODH) catalyzes the first step of proline catabolism, the flavin-dependent oxidation of proline to Δ1-pyrroline-5-carboxylate. Here we... Proline dehydrogenase (PRODH) catalyzes the first step of proline catabolism, the flavin-dependent oxidation of proline to Delta(1)-pyrroline-5-carboxylate.... Proline dehydrogenase (PRODH) catalyzes the first step of proline catabolism, the flavin-dependent oxidation of proline to Delta... Proline dehydrogenase (PRODH) catalyzes the first step of proline catabolism, the flavin-dependent oxidation of proline to Δ 1 -pyrroline-5-carboxylate. Here... |
SourceID | pubmedcentral proquest pubmed crossref istex acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 12539 |
SubjectTerms | Bacterial Proteins - antagonists & inhibitors Bacterial Proteins - chemistry Bacterial Proteins - genetics Bacterial Proteins - metabolism Binding, Competitive - genetics Cloning, Molecular Crystallography, X-Ray Enzyme Inhibitors - chemistry Enzyme Inhibitors - metabolism Enzyme Stability - genetics Escherichia coli Escherichia coli Proteins - antagonists & inhibitors Escherichia coli Proteins - chemistry Escherichia coli Proteins - genetics Escherichia coli Proteins - metabolism Flavin-Adenine Dinucleotide - chemistry Flavin-Adenine Dinucleotide - metabolism Furans - chemistry Furans - metabolism Humans Leucine - genetics Macromolecular Substances Membrane Proteins - antagonists & inhibitors Membrane Proteins - chemistry Membrane Proteins - genetics Membrane Proteins - metabolism Methylenetetrahydrofolate Reductase (NADPH2) - chemistry Models, Molecular Mutagenesis, Site-Directed Peptide Fragments - antagonists & inhibitors Peptide Fragments - chemistry Peptide Fragments - genetics Proline - genetics Proline Oxidase - antagonists & inhibitors Proline Oxidase - chemistry Proline Oxidase - genetics Proline Oxidase - metabolism Protein Binding - genetics Protein Structure, Secondary Protein Structure, Tertiary - genetics |
Title | Structures of the Escherichia coli PutA Proline Dehydrogenase Domain in Complex with Competitive Inhibitors |
URI | http://dx.doi.org/10.1021/bi048737e https://api.istex.fr/ark:/67375/TPS-VCK3MQ4F-C/fulltext.pdf https://www.ncbi.nlm.nih.gov/pubmed/15449943 https://www.proquest.com/docview/17274916 https://www.proquest.com/docview/66913082 https://pubmed.ncbi.nlm.nih.gov/PMC3727243 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9NAEB6V9gAXHi0PFygrQBUXF693_TpGTqMCKgpKi3qz7H0oVlq7ahKp5dczY8dpAylIPtjyWFrvfrMzuzvzDcDHKEAnHPXGNWiMXBlqz41zqV0ZKCJ4QoupKd_5-Ht4dCq_ngVnG_DhnhN8n38uSgRZJCLzALb8EJWX_J90dJv86C2olnFp7KM_3tEH3f2UTI-arpieLerF63V-5Z_hkXfszeAJ9LusnTbMZHIwnxUH6tffJI7_-pWn8Hjhb7JeC5BnsGGqbdjpVbjWvrhh-6yJAG221rfhYdpVf9uByaghlp3japzVlqGbyA6nNMAlBUczhE_JhvNZjw2bsj-G9c34Rl_ViEe0i6xfX-RlxfCiCefcXDPa8G0eKK0Np1j2pRqXRUnFfp7D6eDwJD1yF4UZ3FxG3szlNrdW5VrKwFpuSLFV4udhbCVXQguufWtyG9jAKK0SKyzXUsnEKzxNBPfiBWxWdWVeAfNjLoNYWS5CLW1UxIWPN4mRhZKUVuzAHo5ctlCsadacmfs8W3alA5-6Qc3UgtacqmucrxN9vxS9bLk81gntN8hYSuRXEwp-i4LsZDjKfqbfxPEPOchSB9510MlwbOicJa9MPcc2IsIlut33S4RhwoknyIGXLdRu2xNIXINK4UC0AsKlANGBr76pynFDCy7oTF2K3f_12Gt41LJVUhTEG9hEOJm36FnNir1Gs34D8y0fMg |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb5tAEF61ySG99JH0QR_JqqqiXkhZdgFztEgsp4kjV3aq3BDsQ0ZOoAq2lPTXd2bBdhy5aiUOIAa07H7LzOzOfEPIlygAIxzmjatBGbkiVJ7byYRyRSCR4Ak0psJ858FF2L8U36-Cq5YmB3NhoBE1vKm2m_grdgH2LS8AaxGP9FOyDUaIj2juJqNVDqTXMi6Dh-yDWb5gEXr4KGogWa9poG3szLtN5uXjKMkHaqf3oqlfZBtso02mR_NZfiR_P-Jy_L8vekmet9Yn7TZweUWe6HKX7HVL8Lxv7ukhtfGgdqF9l-wki1pwe2Q6sjSzc_DNaWUoGI30pMbhLjBUmgKYCjqcz7p0aIsAaXqsJ_fqtgJ0gpakx9VNVpQUDvz9XOs7isu_9gKT3OCHS0_LSZEXWPrnNbnsnYyTvtuWaXAzEXkzl5nMGJkpIQJjmMZpLmM_CztGMMkVZ8o3OjOBCbRUMjbcMCWkiL3cU0h3z9-QrbIq9TtC_Q4TQUcaxkMlTJR3ch9OYi1yKTDJ2CH70JNpO83q1O6g-yxddqVDvi7GNpUtyTnW2rjeJPp5KfqrYfbYJHRoAbKUyG6nGAoXBel4OEp_Jmd88EP00sQhBwsEpTA2uOuSlbqaQxsB7wKM8L9LhGHMkDXIIW8bxK3aEwjwSAV3SLSGxaUAkoOv3ymLiSUJ57jDLvj7f_XYAdnpjwfn6fnpxdkH8qzhscT4iI9kC6ClP4HNNcv37WT7A0M_J5M |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZT9tAEF61ILV96QE93ANWVYX6YvB619dj5BBBKTRVoOLNsvdQrICNcCJBf31nNo4hKFUr5SFRJtF69xvPjGfmG0K-RAE44aA3rgZj5IpQeW6cC-WKQCLBE1hMhf3OxyfhwZn4dh6ct4Ei9sLAIhr4p8Ym8VGrr5RpGQbYXlEC3iIe6cdkHdN1iOheOrrrg_Ra1mWIkn1wzRdMQvd_ilZINktWaB039GaVi_mwUvKe6Rm8ID-6RduKk8nubFrsyt8P-Bz__6pekuetF0p7c9i8Io90tUE2exVE4Je3dIfaulD7wH2DPE0XM-E2yWRk6WZnEKPT2lBwHul-g8deYsk0BVCVdDib9ujQDgPStK_Ht-q6BpSCtaT9-jIvKwovvA1d6BuKj4HtB2x2gxsvPazGZVHiCKDX5Gywf5oeuO24BjcXkTd1mcmNkbkSIjCGaVR3mfh5GBvBJFecKd_o3AQm0FLJxHDDlJAi8QpPIe09f0PWqrrS7wj1YyaCWBrGQyVMVMSFD28SLQopsNnYIVuwm1mrbk1mM-k-y7qtdMjXxflmsiU7x5kbF6tEP3eiV3OGj1VCOxYknUR-PcGSuCjIToej7Fd6xI9_ikGWOmR7gaIMzgazL3ml6xmsEXAvwBn_u0QYJgzZgxzydo66u_UEAiJTwR0SLeGxE0CS8OVvqnJsycI5ZtoFf_-vHdsmT4b9Qfb98OToA3k2p7PEMomPZA2QpT-B6zUttqy-_QGtvCoW |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structures+of+the+Escherichia+coli+PutA+proline+dehydrogenase+domain+in+complex+with+competitive+inhibitors&rft.jtitle=Biochemistry+%28Easton%29&rft.au=Zhang%2C+Min&rft.au=White%2C+Tommi+A.&rft.au=Schuermann%2C+Jonathan+P.&rft.au=Baban%2C+Berevan+A.&rft.date=2004-10-05&rft.issn=0006-2960&rft.eissn=1520-4995&rft.volume=43&rft.issue=39&rft.spage=12539&rft.epage=12548&rft_id=info:doi/10.1021%2Fbi048737e&rft_id=info%3Apmid%2F15449943&rft.externalDocID=PMC3727243 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-2960&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-2960&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-2960&client=summon |