Structures of the Escherichia coli PutA Proline Dehydrogenase Domain in Complex with Competitive Inhibitors

Proline dehydrogenase (PRODH) catalyzes the first step of proline catabolism, the flavin-dependent oxidation of proline to Δ1-pyrroline-5-carboxylate. Here we present a structure-based study of the PRODH active site of the multifunctional Escherichia coli proline utilization A (PutA) protein using X...

Full description

Saved in:
Bibliographic Details
Published inBiochemistry (Easton) Vol. 43; no. 39; pp. 12539 - 12548
Main Authors Zhang, Min, White, Tommi A, Schuermann, Jonathan P, Baban, Berevan A, Becker, Donald F, Tanner, John J
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 05.10.2004
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Proline dehydrogenase (PRODH) catalyzes the first step of proline catabolism, the flavin-dependent oxidation of proline to Δ1-pyrroline-5-carboxylate. Here we present a structure-based study of the PRODH active site of the multifunctional Escherichia coli proline utilization A (PutA) protein using X-ray crystallography, enzyme kinetic measurements, and site-directed mutagenesis. Structures of the PutA PRODH domain complexed with competitive inhibitors acetate (K i = 30 mM), l-lactate (K i = 1 mM), and l-tetrahydro-2-furoic acid (l-THFA, K i = 0.2 mM) have been determined to high-resolution limits of 2.1−2.0 Å. The discovery of acetate as a competitive inhibitor suggests that the carboxyl is the minimum functional group recognized by the active site, and the structures show how the enzyme exploits hydrogen-bonding and nonpolar interactions to optimize affinity for the substrate. The PRODH/l-THFA complex is the first structure of PRODH with a five-membered ring proline analogue bound in the active site and thus provides new insights into substrate recognition and the catalytic mechanism. The ring of l-THFA is nearly parallel to the middle ring of the FAD isoalloxazine, with the inhibitor C5 atom 3.3 Å from the FAD N5. This geometry suggests direct hydride transfer as a plausible mechanism. Mutation of conserved active site residue Leu432 to Pro caused a 5-fold decrease in k cat and a severe loss in thermostability. These changes are consistent with the location of Leu432 in the hydrophobic core near residues that directly contact FAD. Our results suggest that the molecular basis for increased plasma proline levels in schizophrenic subjects carrying the missense mutation L441P is due to decreased stability of human PRODH2.
AbstractList Proline dehydrogenase (PRODH) catalyzes the first step of proline catabolism, the flavin-dependent oxidation of proline to Delta(1)-pyrroline-5-carboxylate. Here we present a structure-based study of the PRODH active site of the multifunctional Escherichia coli proline utilization A (PutA) protein using X-ray crystallography, enzyme kinetic measurements, and site-directed mutagenesis. Structures of the PutA PRODH domain complexed with competitive inhibitors acetate (K(i) = 30 mM), L-lactate (K(i) = 1 mM), and L-tetrahydro-2-furoic acid (L-THFA, K(i) = 0.2 mM) have been determined to high-resolution limits of 2.1-2.0 A. The discovery of acetate as a competitive inhibitor suggests that the carboxyl is the minimum functional group recognized by the active site, and the structures show how the enzyme exploits hydrogen-bonding and nonpolar interactions to optimize affinity for the substrate. The PRODH/L-THFA complex is the first structure of PRODH with a five-membered ring proline analogue bound in the active site and thus provides new insights into substrate recognition and the catalytic mechanism. The ring of L-THFA is nearly parallel to the middle ring of the FAD isoalloxazine, with the inhibitor C5 atom 3.3 A from the FAD N5. This geometry suggests direct hydride transfer as a plausible mechanism. Mutation of conserved active site residue Leu432 to Pro caused a 5-fold decrease in k(cat) and a severe loss in thermostability. These changes are consistent with the location of Leu432 in the hydrophobic core near residues that directly contact FAD. Our results suggest that the molecular basis for increased plasma proline levels in schizophrenic subjects carrying the missense mutation L441P is due to decreased stability of human PRODH2.
Proline dehydrogenase (PRODH) catalyzes the first step of proline catabolism, the flavin-dependent oxidation of proline to Delta(1)-pyrroline-5-carboxylate. Here we present a structure-based study of the PRODH active site of the multifunctional Escherichia coli proline utilization A (PutA) protein using X-ray crystallography, enzyme kinetic measurements, and site-directed mutagenesis. Structures of the PutA PRODH domain complexed with competitive inhibitors acetate (K(i) = 30 mM), L-lactate (K(i) = 1 mM), and L-tetrahydro-2-furoic acid (L-THFA, K(i) = 0.2 mM) have been determined to high-resolution limits of 2.1-2.0 A. The discovery of acetate as a competitive inhibitor suggests that the carboxyl is the minimum functional group recognized by the active site, and the structures show how the enzyme exploits hydrogen-bonding and nonpolar interactions to optimize affinity for the substrate. The PRODH/L-THFA complex is the first structure of PRODH with a five-membered ring proline analogue bound in the active site and thus provides new insights into substrate recognition and the catalytic mechanism. The ring of L-THFA is nearly parallel to the middle ring of the FAD isoalloxazine, with the inhibitor C5 atom 3.3 A from the FAD N5. This geometry suggests direct hydride transfer as a plausible mechanism. Mutation of conserved active site residue Leu432 to Pro caused a 5-fold decrease in k(cat) and a severe loss in thermostability. These changes are consistent with the location of Leu432 in the hydrophobic core near residues that directly contact FAD. Our results suggest that the molecular basis for increased plasma proline levels in schizophrenic subjects carrying the missense mutation L441P is due to decreased stability of human PRODH2.Proline dehydrogenase (PRODH) catalyzes the first step of proline catabolism, the flavin-dependent oxidation of proline to Delta(1)-pyrroline-5-carboxylate. Here we present a structure-based study of the PRODH active site of the multifunctional Escherichia coli proline utilization A (PutA) protein using X-ray crystallography, enzyme kinetic measurements, and site-directed mutagenesis. Structures of the PutA PRODH domain complexed with competitive inhibitors acetate (K(i) = 30 mM), L-lactate (K(i) = 1 mM), and L-tetrahydro-2-furoic acid (L-THFA, K(i) = 0.2 mM) have been determined to high-resolution limits of 2.1-2.0 A. The discovery of acetate as a competitive inhibitor suggests that the carboxyl is the minimum functional group recognized by the active site, and the structures show how the enzyme exploits hydrogen-bonding and nonpolar interactions to optimize affinity for the substrate. The PRODH/L-THFA complex is the first structure of PRODH with a five-membered ring proline analogue bound in the active site and thus provides new insights into substrate recognition and the catalytic mechanism. The ring of L-THFA is nearly parallel to the middle ring of the FAD isoalloxazine, with the inhibitor C5 atom 3.3 A from the FAD N5. This geometry suggests direct hydride transfer as a plausible mechanism. Mutation of conserved active site residue Leu432 to Pro caused a 5-fold decrease in k(cat) and a severe loss in thermostability. These changes are consistent with the location of Leu432 in the hydrophobic core near residues that directly contact FAD. Our results suggest that the molecular basis for increased plasma proline levels in schizophrenic subjects carrying the missense mutation L441P is due to decreased stability of human PRODH2.
Proline dehydrogenase (PRODH) catalyzes the first step of proline catabolism, the flavin-dependent oxidation of proline to Δ1-pyrroline-5-carboxylate. Here we present a structure-based study of the PRODH active site of the multifunctional Escherichia coli proline utilization A (PutA) protein using X-ray crystallography, enzyme kinetic measurements, and site-directed mutagenesis. Structures of the PutA PRODH domain complexed with competitive inhibitors acetate (K i = 30 mM), l-lactate (K i = 1 mM), and l-tetrahydro-2-furoic acid (l-THFA, K i = 0.2 mM) have been determined to high-resolution limits of 2.1−2.0 Å. The discovery of acetate as a competitive inhibitor suggests that the carboxyl is the minimum functional group recognized by the active site, and the structures show how the enzyme exploits hydrogen-bonding and nonpolar interactions to optimize affinity for the substrate. The PRODH/l-THFA complex is the first structure of PRODH with a five-membered ring proline analogue bound in the active site and thus provides new insights into substrate recognition and the catalytic mechanism. The ring of l-THFA is nearly parallel to the middle ring of the FAD isoalloxazine, with the inhibitor C5 atom 3.3 Å from the FAD N5. This geometry suggests direct hydride transfer as a plausible mechanism. Mutation of conserved active site residue Leu432 to Pro caused a 5-fold decrease in k cat and a severe loss in thermostability. These changes are consistent with the location of Leu432 in the hydrophobic core near residues that directly contact FAD. Our results suggest that the molecular basis for increased plasma proline levels in schizophrenic subjects carrying the missense mutation L441P is due to decreased stability of human PRODH2.
Proline dehydrogenase (PRODH) catalyzes the first step of proline catabolism, the flavin-dependent oxidation of proline to Δ 1 -pyrroline-5-carboxylate. Here we present a structure-based study of the PRODH active site of the multifunctional E. coli Proline Utilization A (PutA) protein using X-ray crystallography, enzyme kinetic measurements, and site-directed mutagenesis. Structures of the PutA PRODH domain complexed with competitive inhibitors acetate ( K i = 30 mM), L-lactate ( K i = 1 mM), and L- tetrahydro-2-furoic acid (L-THFA, K i = 0.2 mM) have been determined to high-resolution limits of 2.1-2.0 Å. The discovery of acetate as a competitive inhibitor suggests the carboxyl is the minimum functional group recognized by the active site, and the structures show how the enzyme exploits hydrogen bonding and non-polar interactions to optimize affinity for the substrate. The PRODH/L-THFA complex is the first structure of PRODH with a 5-membered ring proline analogue bound in the active site, and thus provides new insights into substrate recognition and the catalytic mechanism. The ring of L-THFA is nearly parallel to the middle ring of the FAD isoalloxazine, with the inhibitor C5 atom 3.3 Å from the FAD N5. This geometry suggests direct hydride transfer as a plausible mechanism. Mutation of conserved active site residue Leu432 to Pro caused a 5-fold decrease in k cat and a severe loss in thermostability. These changes are consistent with the location of Leu432 in the hydrophobic core near residues that directly contact FAD. Our results suggest that the molecular basis for increased plasma proline levels in schizophrenic subjects carrying the missense mutation L441P is due to decreased stability of human PRODH2.
Proline dehydrogenase (PRODH) catalyzes the first step of proline catabolism, the flavin-dependent oxidation of proline to Delta super(1)-pyrroline-5-carboxylate. Here we present a structure-based study of the PRODH active site of the multifunctional Escherichia coli proline utilization A (PutA) protein using X-ray crystallography, enzyme kinetic measurements, and site-directed mutagenesis. Structures of the PutA PRODH domain complexed with competitive inhibitors acetate (K sub(i) = 30 mM), L-lactate (K sub(i) = 1 mM), and L-tetrahydro-2-furoic acid (L-THFA, K sub(i) = 0.2 mM) have been determined to high-resolution limits of 2.1-2.0 AA. The discovery of acetate as a competitive inhibitor suggests that the carboxyl is the minimum functional group recognized by the active site, and the structures show how the enzyme exploits hydrogen-bonding and nonpolar interactions to optimize affinity for the substrate. The PRODH/L-THFA complex is the first structure of PRODH with a five-membered ring proline analogue bound in the active site and thus provides new insights into substrate recognition and the catalytic mechanism. The ring of L-THFA is nearly parallel to the middle ring of the FAD isoalloxazine, with the inhibitor C5 atom 3.3 AA from the FAD N5. This geometry suggests direct hydride transfer as a plausible mechanism. Mutation of conserved active site residue Leu432 to Pro caused a 5-fold decrease in k sub(cat) and a severe loss in thermostability. These changes are consistent with the location of Leu432 in the hydrophobic core near residues that directly contact FAD. Our results suggest that the molecular basis for increased plasma proline levels in schizophrenic subjects carrying the missense mutation L441P is due to decreased stability of human PRODH2.
Author White, Tommi A
Becker, Donald F
Schuermann, Jonathan P
Tanner, John J
Baban, Berevan A
Zhang, Min
Author_xml – sequence: 1
  givenname: Min
  surname: Zhang
  fullname: Zhang, Min
– sequence: 2
  givenname: Tommi A
  surname: White
  fullname: White, Tommi A
– sequence: 3
  givenname: Jonathan P
  surname: Schuermann
  fullname: Schuermann, Jonathan P
– sequence: 4
  givenname: Berevan A
  surname: Baban
  fullname: Baban, Berevan A
– sequence: 5
  givenname: Donald F
  surname: Becker
  fullname: Becker, Donald F
– sequence: 6
  givenname: John J
  surname: Tanner
  fullname: Tanner, John J
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15449943$$D View this record in MEDLINE/PubMed
BookMark eNqFkdFqFDEUhoNU7LZ64QtIbhS8GJtMMjM7N0IZWy1WXGn1NmQzJ53TziZrkqnt25u6dVEpCIHkJ9_5OPDvkR3nHRDynLM3nJX8YIlMzhvRwCMy41XJCtm21Q6ZMcbqomxrtkv2YrzMUbJGPiG7vJIZkWJGrs5SmEyaAkTqLU0D0KNoBghoBtTU-BHpYkqHdBHy0wF9B8NtH_wFOB1z8iuNjubT-dV6hBv6A9PwK0DChNdAT9yAS0w-xKfksdVjhGf39z75enx03n0oTj-_P-kOTwstG5YKbrW1RvdSVtZyYKzipi11PbeSG9EL3pcWtK1sBaY3rRWW99LIli1ZL-asEfvk7ca7npYr6A24FPSo1gFXOtwqr1H9_eNwUBf-WommbEopsuDVvSD47xPEpFYYDYyjduCnqOq65YLNy_-CPAtly-sMvvhzpe0uv4vIwMEGMMHHGMAqg0kn9Hcb4qg4U3dVq23VeeL1PxNb6QNssWExJrjZgjpcqToDlTpfnKlv3Ufx6Ys8Vl3mX254baK69FNwua8HvD8B-BHHPA
CitedBy_id crossref_primary_10_1002_prot_22217
crossref_primary_10_1021_acs_biochem_8b00215
crossref_primary_10_1021_acs_biochem_7b00046
crossref_primary_10_1093_protein_gzac016
crossref_primary_10_1021_bi400396g
crossref_primary_10_1039_D1OB02328D
crossref_primary_10_1016_j_bpj_2018_04_046
crossref_primary_10_1086_428142
crossref_primary_10_1016_j_abb_2025_110319
crossref_primary_10_1021_bi802094k
crossref_primary_10_1371_journal_pone_0290901
crossref_primary_10_1007_s00726_021_02961_5
crossref_primary_10_1021_bi200960j
crossref_primary_10_1074_jbc_M700912200
crossref_primary_10_1074_jbc_M116_756965
crossref_primary_10_1110_ps_062425706
crossref_primary_10_1007_s00253_011_3682_8
crossref_primary_10_1074_jbc_M117_786855
crossref_primary_10_3390_molecules23010032
crossref_primary_10_1371_journal_pone_0096423
crossref_primary_10_1158_1535_7163_MCT_18_1323
crossref_primary_10_1021_acschembio_1c00427
crossref_primary_10_1016_j_jmb_2008_05_084
crossref_primary_10_1111_j_1758_2229_2010_00214_x
crossref_primary_10_1073_pnas_1321621111
crossref_primary_10_1007_s00253_012_4201_2
crossref_primary_10_1016_j_plaphy_2020_04_019
crossref_primary_10_1074_jbc_M114_625483
crossref_primary_10_1021_bi301312f
crossref_primary_10_1093_gbe_evaa210
crossref_primary_10_3390_molecules23010184
crossref_primary_10_1089_ars_2010_3417
crossref_primary_10_1007_s00726_021_03032_5
crossref_primary_10_1016_j_ijfoodmicro_2008_09_012
crossref_primary_10_1021_bi400338f
crossref_primary_10_1007_s00726_021_03012_9
crossref_primary_10_1042_BJ20141159
crossref_primary_10_1007_s10482_018_1148_z
crossref_primary_10_1016_j_watres_2024_122885
crossref_primary_10_1021_bi800055w
crossref_primary_10_1063_1_5063683
crossref_primary_10_1371_journal_pone_0152363
crossref_primary_10_1007_s00726_008_0062_5
crossref_primary_10_1074_jbc_M111_292474
crossref_primary_10_1016_j_bbapap_2014_10_020
crossref_primary_10_1371_journal_pgen_1007976
crossref_primary_10_1038_srep43880
crossref_primary_10_1021_bi201603f
crossref_primary_10_1021_bi901717s
crossref_primary_10_1128_JB_188_4_1227_1235_2006
crossref_primary_10_1016_j_abb_2010_04_020
crossref_primary_10_1038_nchembio847
crossref_primary_10_1016_j_abb_2011_10_011
crossref_primary_10_3390_ijms23042354
crossref_primary_10_1073_pnas_0906101107
crossref_primary_10_1111_febs_12821
crossref_primary_10_1155_2020_7245782
crossref_primary_10_1089_ars_2017_7374
crossref_primary_10_1111_febs_14165
Cites_doi 10.1107/S0021889892009944
10.1016/S0968-0004(99)01533-9
10.1146/annurev.bi.49.070180.005041
10.1038/nsb878
10.1016/0167-4838(93)90065-Y
10.1016/S0022-2836(03)00856-8
10.1038/38525
10.1016/0022-2836(81)90233-3
10.1007/BF00355047
10.1016/S0021-9258(17)34569-6
ContentType Journal Article
Copyright Copyright © 2004 American Chemical Society
Copyright_xml – notice: Copyright © 2004 American Chemical Society
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
C1K
7X8
5PM
DOI 10.1021/bi048737e
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Environmental Sciences and Pollution Management
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Bacteriology Abstracts (Microbiology B)
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic


Bacteriology Abstracts (Microbiology B)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1520-4995
EndPage 12548
ExternalDocumentID PMC3727243
15449943
10_1021_bi048737e
ark_67375_TPS_VCK3MQ4F_C
b327018750
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, U.S. Gov't, P.H.S
Comparative Study
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: GM061068
– fundername: NIGMS NIH HHS
  grantid: GM065546
– fundername: NIGMS NIH HHS
  grantid: R01 GM065546
– fundername: NIGMS NIH HHS
  grantid: R01 GM061068
– fundername: National Institute of General Medical Sciences : NIGMS
  grantid: R01 GM061068 || GM
– fundername: National Institute of General Medical Sciences : NIGMS
  grantid: R01 GM065546 || GM
GroupedDBID -
.K2
02
08R
23N
3O-
4.4
53G
55
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABOCM
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
AFFDN
AFFNX
AFMIJ
AIDAL
AJYGW
ALMA_UNASSIGNED_HOLDINGS
ANTXH
AQSVZ
BAANH
CS3
D0L
DU5
DZ
EBS
ED
ED~
EJD
F5P
GJ
GNL
IH9
IHE
JG
JG~
K2
K78
KM
L7B
LG6
MVM
NHB
OHT
P2P
ROL
TN5
UI2
UNC
UQL
VF5
VG9
VQA
W1F
WH7
X
X7M
YZZ
ZA5
ZGI
ZXP
---
-DZ
-~X
.55
.GJ
6TJ
ABJNI
ABQRX
ADHLV
AGXLV
AHGAQ
BSCLL
CUPRZ
GGK
XOL
XSW
ZCA
~02
~KM
AAYXX
ABBLG
ABLBI
ACRPL
ADNMO
AEYZD
AGQPQ
ANPPW
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
7QL
C1K
7X8
5PM
ID FETCH-LOGICAL-a470t-1faffcad445ff1e0051c92a68f41c3d31d2feaf5f5ecdc9f3f1d4c490b0d38073
IEDL.DBID ACS
ISSN 0006-2960
IngestDate Thu Aug 21 18:26:06 EDT 2025
Thu Jul 10 22:25:53 EDT 2025
Fri Jul 11 12:25:52 EDT 2025
Wed Feb 19 02:36:26 EST 2025
Thu Apr 24 23:04:05 EDT 2025
Tue Jul 01 01:55:50 EDT 2025
Wed Oct 30 09:18:37 EDT 2024
Thu Aug 27 13:42:00 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 39
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a470t-1faffcad445ff1e0051c92a68f41c3d31d2feaf5f5ecdc9f3f1d4c490b0d38073
Notes Coordinates and structure factors have been deposited in the Protein Data Bank under Accession Numbers 1TJ1, 1TJ2, 1TJ0, and 1TIW.
This work was supported by NIH Grants GM065546 (to J.J.T.) and GM061068 (to D.F.B.) and the Nebraska Agricultural Research Division, Journal Series No. 14681.
ark:/67375/TPS-VCK3MQ4F-C
istex:A3DBA1AA147AEE3A83F4D15F49DF30FCCF9A83CC
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
University of Missouri-Columbia
University of Nebraska
Present address: Department of Anatomy and Neurobiology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8108, St. Louis, MO 63110
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3727243
PMID 15449943
PQID 17274916
PQPubID 23462
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3727243
proquest_miscellaneous_66913082
proquest_miscellaneous_17274916
pubmed_primary_15449943
crossref_citationtrail_10_1021_bi048737e
crossref_primary_10_1021_bi048737e
istex_primary_ark_67375_TPS_VCK3MQ4F_C
acs_journals_10_1021_bi048737e
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ANTXH
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2004-10-05
PublicationDateYYYYMMDD 2004-10-05
PublicationDate_xml – month: 10
  year: 2004
  text: 2004-10-05
  day: 05
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Biochemistry (Easton)
PublicationTitleAlternate Biochemistry
PublicationYear 2004
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Ostrovsky De Spicer P. (bi048737eb00020/bi048737eb00020_1) 1993
Zhang M. (bi048737eb00031/bi048737eb00031_1) 2004
bi048737eb00004/bi048737eb00004_1
Winn M. D. (bi048737eb00035/bi048737eb00035_1) 2001
Karayiorgou M. (bi048737eb00011/bi048737eb00011_1) 2003
Becker D. F. (bi048737eb00014/bi048737eb00014_1) 2001
Williams H. J. (bi048737eb00009/bi048737eb00009_1) 2003; 120
DeLano W. L. (bi048737eb00038/bi048737eb00038_1) 2002
Zhu W. (bi048737eb00047/bi048737eb00047_1) 2003
Laskowski R. A. (bi048737eb00049/bi048737eb00049_1) 1993; 26
Menzel R. (bi048737eb00016/bi048737eb00016_1) 1981; 256
Tritsch D. (bi048737eb00023/bi048737eb00023_1) 1993; 1202
Brown E. D. (bi048737eb00012/bi048737eb00012_1) 1993; 268
Fraaije M. W. (bi048737eb00045/bi048737eb00045_1) 2000; 25
Kowaloff E. M. (bi048737eb00024/bi048737eb00024_1) 1977
Scarpulla R. C. (bi048737eb00025/bi048737eb00025_1) 1978; 253
Sobolev V. (bi048737eb00039/bi048737eb00039_1) 1999
Wood J. (bi048737eb00018/bi048737eb00018_1) 1987
Andreeva A. (bi048737eb00042/bi048737eb00042_1) 2004
Vinod M. P. (bi048737eb00028/bi048737eb00028_1) 2002
Harrison P. J. (bi048737eb00010/bi048737eb00010_1) 2003
Surber M. W. (bi048737eb00017/bi048737eb00017_1) 1999; 1421
Matthews B. W. (bi048737eb00033/bi048737eb00033_1) 1968; 33
Donald S. P. (bi048737eb00003/bi048737eb00003_1) 2001
Nadaraia S. (bi048737eb00029/bi048737eb00029_1) 2001
Otwinowski Z. (bi048737eb00032/bi048737eb00032_1) 1997
Baban B. A. (bi048737eb00040/bi048737eb00040_1) 2004; 1701
Phang J. M. (bi048737eb00001/bi048737eb00001_1) 1985; 25
Wood J. M. (bi048737eb00021/bi048737eb00021_1) 1981; 146
Project C. C. (bi048737eb00036/bi048737eb00036_1) 1994
Shindyalov I. N. (bi048737eb00050/bi048737eb00050_1) 1998
Abbreviations A (bi048737en00001/bi048737en00001_1)
Brown E. (bi048737eb00013/bi048737eb00013_1) 1992; 267
Menzel R. (bi048737eb00019/bi048737eb00019_1) 1981; 148
Engh R. A. (bi048737eb00048/bi048737eb00048_1) 1991; 47
Mooers B. H. (bi048737eb00046/bi048737eb00046_1) 2003; 332
Menzel R. (bi048737eb00015/bi048737eb00015_1) 1981; 256
Zhu W. (bi048737eb00026/bi048737eb00026_1) 2002
Brünger A. T. (bi048737eb00034/bi048737eb00034_1) 1998
Krissinel E. (bi048737eb00044/bi048737eb00044_1) 2003
Liu H. (bi048737eb00006/bi048737eb00006_1) 2002
Abrahamson J. L. A. (bi048737eb00030/bi048737eb00030_1) 1983; 134
Rehmann H. (bi048737eb00041/bi048737eb00041_1) 2003; 10
Maxwell S. A. (bi048737eb00005/bi048737eb00005_1) 2000
van Aalten D. M. (bi048737eb00037/bi048737eb00037_1) 1996; 10
Gu D. (bi048737eb00022/bi048737eb00022_1) 2004; 279
Liu H. (bi048737eb00007/bi048737eb00007_1) 2002
Guenther B. D. (bi048737eb00043/bi048737eb00043_1) 1999
Lee Y. H. (bi048737eb00027/bi048737eb00027_1) 2003
Adams E. (bi048737eb00002/bi048737eb00002_1) 1980; 49
Jacquet H. (bi048737eb00008/bi048737eb00008_1) 2002
References_xml – volume: 26
  year: 1993
  ident: bi048737eb00049/bi048737eb00049_1
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889892009944
– volume-title: Proc. Natl. Acad. Sci. U.S.A. 99
  year: 2002
  ident: bi048737eb00006/bi048737eb00006_1
– volume-title: Lancet 361
  year: 2003
  ident: bi048737eb00011/bi048737eb00011_1
– volume-title: Methods Enzymol. 276, 307−326.
  year: 1997
  ident: bi048737eb00032/bi048737eb00032_1
– volume: 47
  year: 1991
  ident: bi048737eb00048/bi048737eb00048_1
  publication-title: Acta Crystallogr.
– volume: 25
  start-page: 126
  year: 2000
  ident: bi048737eb00045/bi048737eb00045_1
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/S0968-0004(99)01533-9
– volume: 49
  year: 1980
  ident: bi048737eb00002/bi048737eb00002_1
  publication-title: Rev. Biochem.
  doi: 10.1146/annurev.bi.49.070180.005041
– volume-title: Proc. Natl. Acad. Sci. U.S.A. 90
  year: 1993
  ident: bi048737eb00020/bi048737eb00020_1
– volume: 33
  year: 1968
  ident: bi048737eb00033/bi048737eb00033_1
  publication-title: J. Mol. Biol.
– volume-title: Proc. Natl. Acad. Sci. U.S.A. 99
  year: 2002
  ident: bi048737eb00007/bi048737eb00007_1
– volume-title: Cancer Res. 61
  year: 2001
  ident: bi048737eb00003/bi048737eb00003_1
– volume: 120
  start-page: 46
  year: 2003
  ident: bi048737eb00009/bi048737eb00009_1
  publication-title: Am. J. Med. Genet.
– volume-title: Int. Conf. Mol. Struct. Biol., 5th, 88
  year: 2003
  ident: bi048737eb00044/bi048737eb00044_1
– volume-title: Hum. Mol. Genet. 11, 2243−2249.
  year: 2002
  ident: bi048737eb00008/bi048737eb00008_1
– volume-title: Protein Eng. 11, 739−747.
  year: 1998
  ident: bi048737eb00050/bi048737eb00050_1
– volume-title: Acta Crystallogr. D57, 122−133.
  year: 2001
  ident: bi048737eb00035/bi048737eb00035_1
– volume-title: Proc. Natl. Acad. Sci. U.S.A. 97
  year: 2000
  ident: bi048737eb00005/bi048737eb00005_1
– volume-title: Lancet 361, 417−419.
  year: 2003
  ident: bi048737eb00010/bi048737eb00010_1
– volume: 10
  start-page: 32
  year: 2003
  ident: bi048737eb00041/bi048737eb00041_1
  publication-title: Nat. Struct. Biol.
  doi: 10.1038/nsb878
– volume: 267
  year: 1992
  ident: bi048737eb00013/bi048737eb00013_1
  publication-title: J. Biol. Chem.
– volume-title: Bioinformatics 15, 327−332.
  year: 1999
  ident: bi048737eb00039/bi048737eb00039_1
– volume-title: Nucleic Acids Res. 32 (database issue, D226−D229).
  year: 2004
  ident: bi048737eb00042/bi048737eb00042_1
– volume-title: Acta Crystallogr. D57
  year: 2001
  ident: bi048737eb00029/bi048737eb00029_1
– volume-title: Proc. Natl. Acad. Sci. U.S.A. 74
  year: 1977
  ident: bi048737eb00024/bi048737eb00024_1
– volume: 146
  year: 1981
  ident: bi048737eb00021/bi048737eb00021_1
  publication-title: J. Bacteriol.
– volume: 256
  year: 1981
  ident: bi048737eb00015/bi048737eb00015_1
  publication-title: J. Biol. Chem.
– volume: 1202
  start-page: 81
  year: 1993
  ident: bi048737eb00023/bi048737eb00023_1
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0167-4838(93)90065-Y
– volume-title: Nat. Struct. Biol. 6, 359−365.
  year: 1999
  ident: bi048737eb00043/bi048737eb00043_1
– volume: 256
  year: 1981
  ident: bi048737eb00016/bi048737eb00016_1
  publication-title: J. Biol. Chem.
– volume: 332
  year: 2003
  ident: bi048737eb00046/bi048737eb00046_1
  publication-title: J. Mol. Biol.
  doi: 10.1016/S0022-2836(03)00856-8
– volume-title: The PyMOL Molecular Graphics System (http://www.pymol.org)
  year: 2002
  ident: bi048737eb00038/bi048737eb00038_1
– volume: 1701
  start-page: 59
  year: 2004
  ident: bi048737eb00040/bi048737eb00040_1
  publication-title: Biochim. Biophys. Acta
– volume-title: Biochemistry 40, 4714−4722.
  year: 2001
  ident: bi048737eb00014/bi048737eb00014_1
– volume-title: Biochemistry 42, 5469−5477.
  year: 2003
  ident: bi048737eb00047/bi048737eb00047_1
– volume-title: Arch. Biochem. Biophys. 408, 131−136.
  year: 2002
  ident: bi048737eb00026/bi048737eb00026_1
– volume-title: proline utilization A
  ident: bi048737en00001/bi048737en00001_1
– volume: 268
  year: 1993
  ident: bi048737eb00012/bi048737eb00012_1
  publication-title: J. Biol. Chem.
– volume-title: Proc. Natl. Acad. Sci. U.S.A. 84
  year: 1987
  ident: bi048737eb00018/bi048737eb00018_1
– volume-title: Nat. Struct. Biol. 10, 109−114.
  year: 2003
  ident: bi048737eb00027/bi048737eb00027_1
– ident: bi048737eb00004/bi048737eb00004_1
  doi: 10.1038/38525
– volume: 148
  start-page: 44
  year: 1981
  ident: bi048737eb00019/bi048737eb00019_1
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(81)90233-3
– volume-title: Acta Crystallogr. D60, 985−986.
  year: 2004
  ident: bi048737eb00031/bi048737eb00031_1
– volume-title: Acta Crystallogr. D50, 760−763.
  year: 1994
  ident: bi048737eb00036/bi048737eb00036_1
– volume: 10
  year: 1996
  ident: bi048737eb00037/bi048737eb00037_1
  publication-title: J. Comput.-Aided Mol. Des.
  doi: 10.1007/BF00355047
– volume: 134
  start-page: 82
  year: 1983
  ident: bi048737eb00030/bi048737eb00030_1
  publication-title: Eur. J. Biochem.
– volume-title: Acta Crystallogr. D54, 905−921.
  year: 1998
  ident: bi048737eb00034/bi048737eb00034_1
– volume: 1421
  start-page: 18
  year: 1999
  ident: bi048737eb00017/bi048737eb00017_1
  publication-title: Biochim. Biophys. Acta
– volume: 279
  year: 2004
  ident: bi048737eb00022/bi048737eb00022_1
  publication-title: J. Biol. Chem.
– volume: 253
  year: 1978
  ident: bi048737eb00025/bi048737eb00025_1
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)34569-6
– volume: 25
  start-page: 132
  year: 1985
  ident: bi048737eb00001/bi048737eb00001_1
  publication-title: Curr. Top. Cell Regul.
– volume-title: Biochemistry 41, 6525−6532.
  year: 2002
  ident: bi048737eb00028/bi048737eb00028_1
SSID ssj0004074
Score 2.066004
Snippet Proline dehydrogenase (PRODH) catalyzes the first step of proline catabolism, the flavin-dependent oxidation of proline to Δ1-pyrroline-5-carboxylate. Here we...
Proline dehydrogenase (PRODH) catalyzes the first step of proline catabolism, the flavin-dependent oxidation of proline to Delta(1)-pyrroline-5-carboxylate....
Proline dehydrogenase (PRODH) catalyzes the first step of proline catabolism, the flavin-dependent oxidation of proline to Delta...
Proline dehydrogenase (PRODH) catalyzes the first step of proline catabolism, the flavin-dependent oxidation of proline to Δ 1 -pyrroline-5-carboxylate. Here...
SourceID pubmedcentral
proquest
pubmed
crossref
istex
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12539
SubjectTerms Bacterial Proteins - antagonists & inhibitors
Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Binding, Competitive - genetics
Cloning, Molecular
Crystallography, X-Ray
Enzyme Inhibitors - chemistry
Enzyme Inhibitors - metabolism
Enzyme Stability - genetics
Escherichia coli
Escherichia coli Proteins - antagonists & inhibitors
Escherichia coli Proteins - chemistry
Escherichia coli Proteins - genetics
Escherichia coli Proteins - metabolism
Flavin-Adenine Dinucleotide - chemistry
Flavin-Adenine Dinucleotide - metabolism
Furans - chemistry
Furans - metabolism
Humans
Leucine - genetics
Macromolecular Substances
Membrane Proteins - antagonists & inhibitors
Membrane Proteins - chemistry
Membrane Proteins - genetics
Membrane Proteins - metabolism
Methylenetetrahydrofolate Reductase (NADPH2) - chemistry
Models, Molecular
Mutagenesis, Site-Directed
Peptide Fragments - antagonists & inhibitors
Peptide Fragments - chemistry
Peptide Fragments - genetics
Proline - genetics
Proline Oxidase - antagonists & inhibitors
Proline Oxidase - chemistry
Proline Oxidase - genetics
Proline Oxidase - metabolism
Protein Binding - genetics
Protein Structure, Secondary
Protein Structure, Tertiary - genetics
Title Structures of the Escherichia coli PutA Proline Dehydrogenase Domain in Complex with Competitive Inhibitors
URI http://dx.doi.org/10.1021/bi048737e
https://api.istex.fr/ark:/67375/TPS-VCK3MQ4F-C/fulltext.pdf
https://www.ncbi.nlm.nih.gov/pubmed/15449943
https://www.proquest.com/docview/17274916
https://www.proquest.com/docview/66913082
https://pubmed.ncbi.nlm.nih.gov/PMC3727243
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9NAEB6V9gAXHi0PFygrQBUXF693_TpGTqMCKgpKi3qz7H0oVlq7ahKp5dczY8dpAylIPtjyWFrvfrMzuzvzDcDHKEAnHPXGNWiMXBlqz41zqV0ZKCJ4QoupKd_5-Ht4dCq_ngVnG_DhnhN8n38uSgRZJCLzALb8EJWX_J90dJv86C2olnFp7KM_3tEH3f2UTI-arpieLerF63V-5Z_hkXfszeAJ9LusnTbMZHIwnxUH6tffJI7_-pWn8Hjhb7JeC5BnsGGqbdjpVbjWvrhh-6yJAG221rfhYdpVf9uByaghlp3japzVlqGbyA6nNMAlBUczhE_JhvNZjw2bsj-G9c34Rl_ViEe0i6xfX-RlxfCiCefcXDPa8G0eKK0Np1j2pRqXRUnFfp7D6eDwJD1yF4UZ3FxG3szlNrdW5VrKwFpuSLFV4udhbCVXQguufWtyG9jAKK0SKyzXUsnEKzxNBPfiBWxWdWVeAfNjLoNYWS5CLW1UxIWPN4mRhZKUVuzAHo5ctlCsadacmfs8W3alA5-6Qc3UgtacqmucrxN9vxS9bLk81gntN8hYSuRXEwp-i4LsZDjKfqbfxPEPOchSB9510MlwbOicJa9MPcc2IsIlut33S4RhwoknyIGXLdRu2xNIXINK4UC0AsKlANGBr76pynFDCy7oTF2K3f_12Gt41LJVUhTEG9hEOJm36FnNir1Gs34D8y0fMg
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb5tAEF61ySG99JH0QR_JqqqiXkhZdgFztEgsp4kjV3aq3BDsQ0ZOoAq2lPTXd2bBdhy5aiUOIAa07H7LzOzOfEPIlygAIxzmjatBGbkiVJ7byYRyRSCR4Ak0psJ858FF2L8U36-Cq5YmB3NhoBE1vKm2m_grdgH2LS8AaxGP9FOyDUaIj2juJqNVDqTXMi6Dh-yDWb5gEXr4KGogWa9poG3szLtN5uXjKMkHaqf3oqlfZBtso02mR_NZfiR_P-Jy_L8vekmet9Yn7TZweUWe6HKX7HVL8Lxv7ukhtfGgdqF9l-wki1pwe2Q6sjSzc_DNaWUoGI30pMbhLjBUmgKYCjqcz7p0aIsAaXqsJ_fqtgJ0gpakx9VNVpQUDvz9XOs7isu_9gKT3OCHS0_LSZEXWPrnNbnsnYyTvtuWaXAzEXkzl5nMGJkpIQJjmMZpLmM_CztGMMkVZ8o3OjOBCbRUMjbcMCWkiL3cU0h3z9-QrbIq9TtC_Q4TQUcaxkMlTJR3ch9OYi1yKTDJ2CH70JNpO83q1O6g-yxddqVDvi7GNpUtyTnW2rjeJPp5KfqrYfbYJHRoAbKUyG6nGAoXBel4OEp_Jmd88EP00sQhBwsEpTA2uOuSlbqaQxsB7wKM8L9LhGHMkDXIIW8bxK3aEwjwSAV3SLSGxaUAkoOv3ymLiSUJ57jDLvj7f_XYAdnpjwfn6fnpxdkH8qzhscT4iI9kC6ClP4HNNcv37WT7A0M_J5M
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZT9tAEF61ILV96QE93ANWVYX6YvB619dj5BBBKTRVoOLNsvdQrICNcCJBf31nNo4hKFUr5SFRJtF69xvPjGfmG0K-RAE44aA3rgZj5IpQeW6cC-WKQCLBE1hMhf3OxyfhwZn4dh6ct4Ei9sLAIhr4p8Ym8VGrr5RpGQbYXlEC3iIe6cdkHdN1iOheOrrrg_Ra1mWIkn1wzRdMQvd_ilZINktWaB039GaVi_mwUvKe6Rm8ID-6RduKk8nubFrsyt8P-Bz__6pekuetF0p7c9i8Io90tUE2exVE4Je3dIfaulD7wH2DPE0XM-E2yWRk6WZnEKPT2lBwHul-g8deYsk0BVCVdDib9ujQDgPStK_Ht-q6BpSCtaT9-jIvKwovvA1d6BuKj4HtB2x2gxsvPazGZVHiCKDX5Gywf5oeuO24BjcXkTd1mcmNkbkSIjCGaVR3mfh5GBvBJFecKd_o3AQm0FLJxHDDlJAi8QpPIe09f0PWqrrS7wj1YyaCWBrGQyVMVMSFD28SLQopsNnYIVuwm1mrbk1mM-k-y7qtdMjXxflmsiU7x5kbF6tEP3eiV3OGj1VCOxYknUR-PcGSuCjIToej7Fd6xI9_ikGWOmR7gaIMzgazL3ml6xmsEXAvwBn_u0QYJgzZgxzydo66u_UEAiJTwR0SLeGxE0CS8OVvqnJsycI5ZtoFf_-vHdsmT4b9Qfb98OToA3k2p7PEMomPZA2QpT-B6zUttqy-_QGtvCoW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structures+of+the+Escherichia+coli+PutA+proline+dehydrogenase+domain+in+complex+with+competitive+inhibitors&rft.jtitle=Biochemistry+%28Easton%29&rft.au=Zhang%2C+Min&rft.au=White%2C+Tommi+A.&rft.au=Schuermann%2C+Jonathan+P.&rft.au=Baban%2C+Berevan+A.&rft.date=2004-10-05&rft.issn=0006-2960&rft.eissn=1520-4995&rft.volume=43&rft.issue=39&rft.spage=12539&rft.epage=12548&rft_id=info:doi/10.1021%2Fbi048737e&rft_id=info%3Apmid%2F15449943&rft.externalDocID=PMC3727243
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-2960&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-2960&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-2960&client=summon