Carbon release through abrupt permafrost thaw

The permafrost zone is expected to be a substantial carbon source to the atmosphere, yet large-scale models currently only simulate gradual changes in seasonally thawed soil. Abrupt thaw will probably occur in <20% of the permafrost zone but could affect half of permafrost carbon through collapsi...

Full description

Saved in:
Bibliographic Details
Published inNature geoscience Vol. 13; no. 2; pp. 138 - 143
Main Authors Turetsky, Merritt R., Abbott, Benjamin W., Jones, Miriam C., Anthony, Katey Walter, Olefeldt, David, Schuur, Edward A. G., Grosse, Guido, Kuhry, Peter, Hugelius, Gustaf, Koven, Charles, Lawrence, David M., Gibson, Carolyn, Sannel, A. Britta K., McGuire, A. David
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.02.2020
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The permafrost zone is expected to be a substantial carbon source to the atmosphere, yet large-scale models currently only simulate gradual changes in seasonally thawed soil. Abrupt thaw will probably occur in <20% of the permafrost zone but could affect half of permafrost carbon through collapsing ground, rapid erosion and landslides. Here, we synthesize the best available information and develop inventory models to simulate abrupt thaw impacts on permafrost carbon balance. Emissions across 2.5 million km 2 of abrupt thaw could provide a similar climate feedback as gradual thaw emissions from the entire 18 million km 2 permafrost region under the warming projection of Representative Concentration Pathway 8.5. While models forecast that gradual thaw may lead to net ecosystem carbon uptake under projections of Representative Concentration Pathway 4.5, abrupt thaw emissions are likely to offset this potential carbon sink. Active hillslope erosional features will occupy 3% of abrupt thaw terrain by 2300 but emit one-third of abrupt thaw carbon losses. Thaw lakes and wetlands are methane hot spots but their carbon release is partially offset by slowly regrowing vegetation. After considering abrupt thaw stabilization, lake drainage and soil carbon uptake by vegetation regrowth, we conclude that models considering only gradual permafrost thaw are substantially underestimating carbon emissions from thawing permafrost. Analyses of inventory models under two climate change projection scenarios suggest that carbon emissions from abrupt thaw of permafrost through ground collapse, erosion and landslides could contribute significantly to the overall permafrost carbon balance.
AbstractList The permafrost zone is expected to be a substantial carbon source to the atmosphere, yet large-scale models currently only simulate gradual changes in seasonally thawed soil. Abrupt thaw will probably occur in <20% of the permafrost zone but could affect half of permafrost carbon through collapsing ground, rapid erosion and landslides. Here, we synthesize the best available information and develop inventory models to simulate abrupt thaw impacts on permafrost carbon balance. Emissions across 2.5 million km2 of abrupt thaw could provide a similar climate feedback as gradual thaw emissions from the entire 18 million km2 permafrost region under the warming projection of Representative Concentration Pathway 8.5. While models forecast that gradual thaw may lead to net ecosystem carbon uptake under projections of Representative Concentration Pathway 4.5, abrupt thaw emissions are likely to offset this potential carbon sink. Active hillslope erosional features will occupy 3% of abrupt thaw terrain by 2300 but emit one-third of abrupt thaw carbon losses. Thaw lakes and wetlands are methane hot spots but their carbon release is partially offset by slowly regrowing vegetation. After considering abrupt thaw stabilization, lake drainage and soil carbon uptake by vegetation regrowth, we conclude that models considering only gradual permafrost thaw are substantially underestimating carbon emissions from thawing permafrost.Analyses of inventory models under two climate change projection scenarios suggest that carbon emissions from abrupt thaw of permafrost through ground collapse, erosion and landslides could contribute significantly to the overall permafrost carbon balance.
The permafrost zone is expected to be a substantial carbon source to the atmosphere, yet large-scale models currently only simulate gradual changes in seasonally thawed soil. Abrupt thaw will probably occur in <20% of the permafrost zone but could affect half of permafrost carbon through collapsing ground, rapid erosion and landslides. Here, we synthesize the best available information and develop inventory models to simulate abrupt thaw impacts on permafrost carbon balance. Emissions across 2.5 million km 2 of abrupt thaw could provide a similar climate feedback as gradual thaw emissions from the entire 18 million km 2 permafrost region under the warming projection of Representative Concentration Pathway 8.5. While models forecast that gradual thaw may lead to net ecosystem carbon uptake under projections of Representative Concentration Pathway 4.5, abrupt thaw emissions are likely to offset this potential carbon sink. Active hillslope erosional features will occupy 3% of abrupt thaw terrain by 2300 but emit one-third of abrupt thaw carbon losses. Thaw lakes and wetlands are methane hot spots but their carbon release is partially offset by slowly regrowing vegetation. After considering abrupt thaw stabilization, lake drainage and soil carbon uptake by vegetation regrowth, we conclude that models considering only gradual permafrost thaw are substantially underestimating carbon emissions from thawing permafrost. Analyses of inventory models under two climate change projection scenarios suggest that carbon emissions from abrupt thaw of permafrost through ground collapse, erosion and landslides could contribute significantly to the overall permafrost carbon balance.
The permafrost zone is expected to be a substantial carbon source to the atmosphere, yet large-scale models currently only simulate gradual changes in seasonally thawed soil. Abrupt thaw will probably occur in &lt;20% of the permafrost zone but could affect half of permafrost carbon through collapsing ground, rapid erosion and landslides. Here, we synthesize the best available information and develop inventory models to simulate abrupt thaw impacts on permafrost carbon balance. Emissions across 2.5 million km(2) of abrupt thaw could provide a similar climate feedback as gradual thaw emissions from the entire 18 million km(2) permafrost region under the warming projection of Representative Concentration Pathway 8.5. While models forecast that gradual thaw may lead to net ecosystem carbon uptake under projections of Representative Concentration Pathway 4.5, abrupt thaw emissions are likely to offset this potential carbon sink. Active hillslope erosional features will occupy 3% of abrupt thaw terrain by 2300 but emit one-third of abrupt thaw carbon losses. Thaw lakes and wetlands are methane hot spots but their carbon release is partially offset by slowly regrowing vegetation. After considering abrupt thaw stabilization, lake drainage and soil carbon uptake by vegetation regrowth, we conclude that models considering only gradual permafrost thaw are substantially underestimating carbon emissions from thawing permafrost.
Author Kuhry, Peter
Jones, Miriam C.
Turetsky, Merritt R.
McGuire, A. David
Schuur, Edward A. G.
Lawrence, David M.
Gibson, Carolyn
Anthony, Katey Walter
Grosse, Guido
Abbott, Benjamin W.
Koven, Charles
Olefeldt, David
Hugelius, Gustaf
Sannel, A. Britta K.
Author_xml – sequence: 1
  givenname: Merritt R.
  orcidid: 0000-0003-0155-8666
  surname: Turetsky
  fullname: Turetsky, Merritt R.
  email: merritt.turetsky@colorado.edu
  organization: Department of Integrative Biology, University of Guelph, Institute of Arctic and Alpine Research (INSTAAR), University of Colorado Boulder
– sequence: 2
  givenname: Benjamin W.
  orcidid: 0000-0001-5861-3481
  surname: Abbott
  fullname: Abbott, Benjamin W.
  organization: Department of Plant and Wildlife Sciences, Brigham Young University
– sequence: 3
  givenname: Miriam C.
  orcidid: 0000-0002-6650-7619
  surname: Jones
  fullname: Jones, Miriam C.
  organization: United States Geological Survey
– sequence: 4
  givenname: Katey Walter
  orcidid: 0000-0003-2079-2896
  surname: Anthony
  fullname: Anthony, Katey Walter
  organization: Water and Environmental Research Center, University of Alaska
– sequence: 5
  givenname: David
  orcidid: 0000-0002-5976-1475
  surname: Olefeldt
  fullname: Olefeldt, David
  organization: Department of Renewable Resources, University of Alberta
– sequence: 6
  givenname: Edward A. G.
  orcidid: 0000-0002-1096-2436
  surname: Schuur
  fullname: Schuur, Edward A. G.
  organization: Center for Ecosystem Science and Society and Department of Biological Sciences, Northern Arizona University
– sequence: 7
  givenname: Guido
  orcidid: 0000-0001-5895-2141
  surname: Grosse
  fullname: Grosse, Guido
  organization: Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Institute of Geosciences, University of Potsdam
– sequence: 8
  givenname: Peter
  surname: Kuhry
  fullname: Kuhry, Peter
  organization: Department of Physical Geography, Stockholm University, Bolin Centre for Climate Research, Stockholm University
– sequence: 9
  givenname: Gustaf
  orcidid: 0000-0002-8096-1594
  surname: Hugelius
  fullname: Hugelius, Gustaf
  organization: Department of Physical Geography, Stockholm University, Bolin Centre for Climate Research, Stockholm University
– sequence: 10
  givenname: Charles
  orcidid: 0000-0002-3367-0065
  surname: Koven
  fullname: Koven, Charles
  organization: Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory
– sequence: 11
  givenname: David M.
  orcidid: 0000-0002-2968-3023
  surname: Lawrence
  fullname: Lawrence, David M.
  organization: National Center for Atmospheric Research
– sequence: 12
  givenname: Carolyn
  surname: Gibson
  fullname: Gibson, Carolyn
  organization: Department of Integrative Biology, University of Guelph
– sequence: 13
  givenname: A. Britta K.
  orcidid: 0000-0002-1350-6516
  surname: Sannel
  fullname: Sannel, A. Britta K.
  organization: Department of Physical Geography, Stockholm University, Bolin Centre for Climate Research, Stockholm University
– sequence: 14
  givenname: A. David
  orcidid: 0000-0003-4646-0750
  surname: McGuire
  fullname: McGuire, A. David
  organization: Institute of Arctic Biology, University of Alaska Fairbanks
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-180440$$DView record from Swedish Publication Index
BookMark eNp9kF9LwzAUxYNMcJt-AN8Gvhq9SZM2fRzzLwx8UV9D0qZbx9bUJGX47U3phiC4p3vhnnM55zdBo8Y2BqFrAncEEnHvGeEpwUByDJymGM7QmGScYshBjI67yNkFmni_AUiBZXyM8EI5bZuZM1ujvJmFtbPdaj1T2nVtmLXG7VTlrA_xovaX6LxSW2-uDnOKPp4e3xcvePn2_LqYL7FiGQRMKE1MUuWFEppBRY3mvGDCcC1MTklZUs3KKs05LVPBgSqaCiBFScusNJWmyRTdDn_93rSdlq2rd8p9S6tq-VB_zqV1K-k7SQQwBlF-M8hbZ78644Pc2M41MaGksSVAxgk5qUp4ZEOztP-VDaoitvbOVLKogwq1bYJT9VYSkD1wOQCXEbjsgcveSf44j7FPeeihaNQ2K-N-M_1v-gGpW5LE
CitedBy_id crossref_primary_10_1021_acs_est_0c07267
crossref_primary_10_1016_j_funeco_2024_101409
crossref_primary_10_3390_rs15020455
crossref_primary_10_1017_qua_2023_60
crossref_primary_10_1038_s41467_020_17169_6
crossref_primary_10_3390_nitrogen3020023
crossref_primary_10_1016_j_scitotenv_2022_157385
crossref_primary_10_1016_j_geoderma_2021_115302
crossref_primary_10_1016_j_scitotenv_2023_165289
crossref_primary_10_3390_su151713249
crossref_primary_10_1177_29768659241293272
crossref_primary_10_1038_s41598_024_58998_5
crossref_primary_10_1016_j_scitotenv_2023_166132
crossref_primary_10_5194_acp_22_6347_2022
crossref_primary_10_1029_2021JG006262
crossref_primary_10_1038_s41467_021_21759_3
crossref_primary_10_1088_1748_9326_ac8be6
crossref_primary_10_1017_sus_2021_2
crossref_primary_10_1038_s41564_024_01691_0
crossref_primary_10_1088_1748_9326_abb0b1
crossref_primary_10_1371_journal_pclm_0000570
crossref_primary_10_1016_j_agrformet_2021_108451
crossref_primary_10_3390_su151310291
crossref_primary_10_5194_esurf_10_421_2022
crossref_primary_10_1016_j_coldregions_2023_104004
crossref_primary_10_1038_s41561_023_01128_z
crossref_primary_10_31857_S2076673424010101
crossref_primary_10_3390_rs16244645
crossref_primary_10_1029_2022GB007589
crossref_primary_10_5194_esurf_11_227_2023
crossref_primary_10_3390_en14133784
crossref_primary_10_1016_j_scitotenv_2022_160202
crossref_primary_10_3389_fmicb_2024_1523084
crossref_primary_10_5194_bg_18_3263_2021
crossref_primary_10_1016_j_catena_2022_106434
crossref_primary_10_1016_j_catena_2022_106797
crossref_primary_10_1029_2022GL101210
crossref_primary_10_1126_sciadv_abb6546
crossref_primary_10_1111_gcb_15758
crossref_primary_10_1016_j_rineng_2023_101118
crossref_primary_10_1029_2020GL087917
crossref_primary_10_3390_atmos15091046
crossref_primary_10_1016_j_scitotenv_2024_176557
crossref_primary_10_3390_su15021183
crossref_primary_10_5194_cp_19_159_2023
crossref_primary_10_1088_1748_9326_ab9a6d
crossref_primary_10_1016_j_oneear_2021_12_008
crossref_primary_10_1016_j_earscirev_2020_103446
crossref_primary_10_1139_facets_2023_0053
crossref_primary_10_5194_tc_16_3601_2022
crossref_primary_10_3390_jof10010020
crossref_primary_10_1038_s41467_020_18768_z
crossref_primary_10_1139_as_2021_0007
crossref_primary_10_1029_2021JG006485
crossref_primary_10_1038_s41558_023_01903_1
crossref_primary_10_1111_gcb_15507
crossref_primary_10_1007_s40641_023_00190_4
crossref_primary_10_1038_s41467_024_51471_x
crossref_primary_10_3389_fmicb_2024_1462941
crossref_primary_10_5194_bg_19_3051_2022
crossref_primary_10_1088_1748_9326_abfc79
crossref_primary_10_5194_tc_18_3723_2024
crossref_primary_10_1016_j_jhydrol_2024_130832
crossref_primary_10_1016_j_geoderma_2022_115738
crossref_primary_10_1029_2023JF007156
crossref_primary_10_3389_fenvs_2022_986879
crossref_primary_10_1002_wat2_1495
crossref_primary_10_3389_fclim_2021_716464
crossref_primary_10_1029_2023AV000942
crossref_primary_10_3390_en15031195
crossref_primary_10_1038_s41558_021_01011_y
crossref_primary_10_1007_s11629_022_7693_y
crossref_primary_10_1007_s10346_021_01684_8
crossref_primary_10_1016_j_jag_2025_104419
crossref_primary_10_1038_s41561_021_00790_5
crossref_primary_10_1016_j_scitotenv_2021_149433
crossref_primary_10_1111_nph_20436
crossref_primary_10_1038_s41561_020_00668_y
crossref_primary_10_3390_nitrogen3030031
crossref_primary_10_3390_f15081456
crossref_primary_10_1038_s43017_022_00362_0
crossref_primary_10_1038_s43247_023_00886_3
crossref_primary_10_3389_fenvs_2022_893478
crossref_primary_10_1016_j_geomorph_2022_108501
crossref_primary_10_1038_s41561_023_01354_5
crossref_primary_10_1088_2752_5295_adb3c0
crossref_primary_10_1016_j_scib_2024_05_022
crossref_primary_10_1016_j_isprsjprs_2023_10_008
crossref_primary_10_1029_2021EA002093
crossref_primary_10_1021_acs_est_3c03303
crossref_primary_10_1007_s12517_020_06242_5
crossref_primary_10_1016_j_catena_2023_107505
crossref_primary_10_1029_2022GL100285
crossref_primary_10_5194_bg_19_5059_2022
crossref_primary_10_1080_01431161_2021_1897187
crossref_primary_10_1038_s41561_021_00715_2
crossref_primary_10_1139_cjfas_2021_0280
crossref_primary_10_3389_feart_2020_00336
crossref_primary_10_3390_rs14174132
crossref_primary_10_1016_j_fmre_2023_06_014
crossref_primary_10_1016_j_soilbio_2023_108959
crossref_primary_10_1038_s41561_020_00645_5
crossref_primary_10_3389_feart_2021_699365
crossref_primary_10_3390_w13223189
crossref_primary_10_1029_2021GL097347
crossref_primary_10_1016_j_earscirev_2021_103689
crossref_primary_10_1029_2020JG006222
crossref_primary_10_1016_j_earscirev_2020_103365
crossref_primary_10_1038_s43247_021_00238_z
crossref_primary_10_1039_D1EM00547B
crossref_primary_10_1126_science_abn9768
crossref_primary_10_3390_atmos12111425
crossref_primary_10_1073_pnas_2307072120
crossref_primary_10_1038_s41558_024_02011_4
crossref_primary_10_1088_1748_9326_ad2b2b
crossref_primary_10_1038_s41598_024_76292_2
crossref_primary_10_5194_tc_18_1443_2024
crossref_primary_10_1088_1748_9326_abe00b
crossref_primary_10_1038_s41558_024_02057_4
crossref_primary_10_1016_j_ecoinf_2022_101601
crossref_primary_10_1038_s41558_022_01296_7
crossref_primary_10_1016_j_scitotenv_2022_158340
crossref_primary_10_1029_2021RG000757
crossref_primary_10_1016_j_geomorph_2024_109183
crossref_primary_10_1002_esp_6021
crossref_primary_10_1016_j_catena_2024_107901
crossref_primary_10_1021_acs_est_1c06937
crossref_primary_10_5194_tc_18_4743_2024
crossref_primary_10_1016_j_rse_2022_113258
crossref_primary_10_1016_j_geoderma_2022_116195
crossref_primary_10_1139_as_2022_0021
crossref_primary_10_1016_j_geoderma_2023_116355
crossref_primary_10_1016_j_earscirev_2022_103996
crossref_primary_10_1088_1748_9326_ace9ed
crossref_primary_10_1088_1748_9326_ad50ed
crossref_primary_10_1029_2021JG006420
crossref_primary_10_1029_2021JG006662
crossref_primary_10_1029_2021JG006543
crossref_primary_10_1029_2022JG007137
crossref_primary_10_1109_JSTARS_2024_3368039
crossref_primary_10_3389_fmars_2022_968583
crossref_primary_10_3389_feart_2021_703339
crossref_primary_10_1007_s13280_021_01666_z
crossref_primary_10_1038_s43017_024_00627_w
crossref_primary_10_1088_1748_9326_ac41fb
crossref_primary_10_1038_s41558_021_01027_4
crossref_primary_10_1139_as_2022_0033
crossref_primary_10_1016_j_ejrh_2024_101903
crossref_primary_10_3389_fenvs_2022_948529
crossref_primary_10_1016_j_scitotenv_2024_174321
crossref_primary_10_1111_gcb_15566
crossref_primary_10_59717_j_xinn_geo_2024_100118
crossref_primary_10_1088_1748_9326_ab87d3
crossref_primary_10_1016_j_earscirev_2024_104717
crossref_primary_10_3103_S1068373920050015
crossref_primary_10_1080_15230430_2023_2195518
crossref_primary_10_3390_rs13245059
crossref_primary_10_1088_1748_9326_ac1222
crossref_primary_10_3390_rs14030444
crossref_primary_10_1038_s41558_023_01715_3
crossref_primary_10_5194_gmd_15_8059_2022
crossref_primary_10_26848_rbgf_v16_6_p3204_3224
crossref_primary_10_1016_j_geoderma_2023_116572
crossref_primary_10_5194_bg_20_1829_2023
crossref_primary_10_1016_j_scitotenv_2024_176713
crossref_primary_10_1029_2020GB006719
crossref_primary_10_5194_tc_16_2819_2022
crossref_primary_10_1007_s11104_021_05273_5
crossref_primary_10_1016_j_earscirev_2024_104820
crossref_primary_10_5194_bg_18_3657_2021
crossref_primary_10_1016_j_scitotenv_2023_167962
crossref_primary_10_1029_2020JG005977
crossref_primary_10_1029_2021AV000619
crossref_primary_10_1088_1748_9326_ac98d7
crossref_primary_10_3389_fevo_2021_679673
crossref_primary_10_1080_15230430_2022_2062102
crossref_primary_10_1016_j_jag_2025_104428
crossref_primary_10_1016_j_geoderma_2023_116443
crossref_primary_10_1029_2021AV000515
crossref_primary_10_1002_lno_12349
crossref_primary_10_1007_s40641_020_00169_5
crossref_primary_10_1016_j_accre_2020_07_002
crossref_primary_10_1016_j_catena_2024_108479
crossref_primary_10_5194_tc_15_1907_2021
crossref_primary_10_3389_feart_2021_703304
crossref_primary_10_1038_s41558_023_01923_x
crossref_primary_10_1088_1748_9326_abee4b
crossref_primary_10_3390_biology13110863
crossref_primary_10_1111_gcb_15659
crossref_primary_10_1038_s41558_024_02233_6
crossref_primary_10_1038_s41558_021_01245_w
crossref_primary_10_1029_2019JG005528
crossref_primary_10_1038_s43247_023_00930_2
crossref_primary_10_1029_2022WR032426
crossref_primary_10_1038_s41561_022_00952_z
crossref_primary_10_1007_s10021_020_00577_6
crossref_primary_10_1029_2020JG005872
crossref_primary_10_1038_s41561_024_01614_y
crossref_primary_10_1029_2022GL102053
crossref_primary_10_1029_2022JG007330
crossref_primary_10_1098_rsfs_2019_0129
crossref_primary_10_1080_15230430_2023_2250035
crossref_primary_10_1088_1748_9326_acde8e
crossref_primary_10_1126_sciadv_adn8819
crossref_primary_10_1088_1748_9326_ad97d2
crossref_primary_10_1038_s41467_021_23010_5
crossref_primary_10_5194_esd_15_1319_2024
crossref_primary_10_1016_j_ecolind_2024_112066
crossref_primary_10_1016_j_scib_2022_05_022
crossref_primary_10_3389_feart_2021_642675
crossref_primary_10_1038_s41467_023_43207_0
crossref_primary_10_1038_s44168_024_00181_7
crossref_primary_10_3389_feart_2020_582103
crossref_primary_10_1080_15230430_2024_2371534
crossref_primary_10_1007_s12665_022_10640_1
crossref_primary_10_1016_j_scitotenv_2021_150828
crossref_primary_10_1016_j_rse_2023_113495
crossref_primary_10_1029_2021EA001950
crossref_primary_10_1088_1748_9326_ad1433
crossref_primary_10_1016_j_palaeo_2023_111821
crossref_primary_10_1038_s43247_022_00407_8
crossref_primary_10_1029_2020MS002396
crossref_primary_10_1146_annurev_environ_012220_011847
crossref_primary_10_1016_j_fmre_2024_05_002
crossref_primary_10_34133_2022_9765087
crossref_primary_10_1016_j_geodrs_2023_e00753
crossref_primary_10_1093_femsec_fiad123
crossref_primary_10_5194_esd_14_39_2023
crossref_primary_10_3389_fsci_2023_1170744
crossref_primary_10_1038_s43247_024_01838_1
crossref_primary_10_1029_2020GB006922
crossref_primary_10_3390_rs16132361
crossref_primary_10_1007_s10533_021_00853_0
crossref_primary_10_1038_s43017_021_00238_9
crossref_primary_10_1016_j_ecz_2024_100010
crossref_primary_10_1186_s40645_020_00345_z
crossref_primary_10_1038_s41561_024_01527_w
crossref_primary_10_1038_s43247_024_01343_5
crossref_primary_10_1016_j_scitotenv_2024_173491
crossref_primary_10_1029_2022GB007403
crossref_primary_10_1038_s41467_025_57745_2
crossref_primary_10_1029_2022GB007644
crossref_primary_10_1016_j_scitotenv_2023_167999
crossref_primary_10_1029_2021JF006104
crossref_primary_10_1038_s41467_020_18331_w
crossref_primary_10_1002_vzj2_20252
crossref_primary_10_1080_19475683_2024_2380678
crossref_primary_10_1016_j_accre_2023_04_002
crossref_primary_10_5194_gmd_14_4751_2021
crossref_primary_10_1007_s11430_022_1073_y
crossref_primary_10_1016_j_accre_2023_04_005
crossref_primary_10_5194_essd_14_95_2022
crossref_primary_10_1038_s41558_020_00944_0
crossref_primary_10_1002_ppp_2057
crossref_primary_10_1002_lno_11862
crossref_primary_10_3390_w16071069
crossref_primary_10_1029_2021GL094776
crossref_primary_10_3390_rs13040558
crossref_primary_10_1088_1748_9326_abc444
crossref_primary_10_1109_JSTARS_2025_3538897
crossref_primary_10_3389_feart_2021_704141
crossref_primary_10_1016_j_rcar_2023_11_006
crossref_primary_10_1088_1748_9326_ac6c9d
crossref_primary_10_5194_bg_18_2649_2021
crossref_primary_10_1016_j_chemosphere_2020_128953
crossref_primary_10_5194_tc_18_1773_2024
crossref_primary_10_1126_science_abn1479
crossref_primary_10_1016_j_atmosres_2022_106195
crossref_primary_10_1002_lno_11634
crossref_primary_10_3390_rs13132539
crossref_primary_10_1088_1748_9326_abcc29
crossref_primary_10_1146_annurev_environ_012220_125703
crossref_primary_10_1016_j_geoderma_2023_116629
crossref_primary_10_1111_gcb_15283
crossref_primary_10_1088_1748_9326_acf50b
crossref_primary_10_3389_feart_2021_759085
crossref_primary_10_1039_D1GC03262C
crossref_primary_10_1016_j_rse_2021_112752
crossref_primary_10_3389_fenvs_2022_892925
crossref_primary_10_1016_j_scitotenv_2022_154761
crossref_primary_10_1016_j_earscirev_2022_104104
crossref_primary_10_1016_j_geoderma_2022_116256
crossref_primary_10_1016_j_scitotenv_2024_178176
crossref_primary_10_1029_2023MS003749
crossref_primary_10_3389_frym_2022_719051
crossref_primary_10_1029_2021GL096616
crossref_primary_10_5194_bg_18_4937_2021
crossref_primary_10_1088_1748_9326_ad3bcf
crossref_primary_10_5194_gmd_15_3603_2022
crossref_primary_10_1016_j_pocean_2022_102903
crossref_primary_10_1016_j_oneear_2022_03_010
crossref_primary_10_1038_s41467_023_38907_6
crossref_primary_10_1039_D2EM00456A
crossref_primary_10_1038_s41598_024_83556_4
crossref_primary_10_1016_j_jhydrol_2022_128678
crossref_primary_10_1109_ACCESS_2022_3193402
crossref_primary_10_1126_sciadv_abe3596
crossref_primary_10_5194_tc_18_4703_2024
crossref_primary_10_1016_j_aeaoa_2023_100223
crossref_primary_10_1002_ldr_3945
crossref_primary_10_1080_15230430_2022_2118639
crossref_primary_10_5194_esd_13_1641_2022
crossref_primary_10_1080_15230430_2024_2366333
crossref_primary_10_1016_j_catena_2025_108936
crossref_primary_10_1029_2022JG007322
crossref_primary_10_1016_j_catena_2025_108938
crossref_primary_10_5194_tc_17_1431_2023
crossref_primary_10_1002_esp_5890
crossref_primary_10_1038_s41467_023_39432_2
crossref_primary_10_1002_lno_11660
crossref_primary_10_3390_hydrology9020024
crossref_primary_10_1126_science_abn4419
crossref_primary_10_1016_j_jhydrol_2021_127354
crossref_primary_10_1016_j_syapm_2024_126544
crossref_primary_10_1016_j_catena_2023_107291
crossref_primary_10_1016_j_earscirev_2022_104247
crossref_primary_10_1088_1748_9326_ace637
crossref_primary_10_3390_w12061817
crossref_primary_10_5194_tc_17_3157_2023
crossref_primary_10_1038_s41558_022_01455_w
crossref_primary_10_1088_1748_9326_abac36
crossref_primary_10_1016_j_scitotenv_2023_166615
crossref_primary_10_1007_s43630_020_00001_x
crossref_primary_10_5194_essd_14_5093_2022
crossref_primary_10_1002_ppp_2269
crossref_primary_10_1016_j_scitotenv_2022_155660
crossref_primary_10_1038_s41467_022_29011_2
crossref_primary_10_1038_s41467_022_33794_9
crossref_primary_10_3389_fenvs_2022_889428
crossref_primary_10_1016_j_catena_2024_108658
crossref_primary_10_1016_j_geoderma_2024_116966
crossref_primary_10_1029_2020GB006659
crossref_primary_10_1016_j_geoderma_2021_115083
crossref_primary_10_1016_j_geoderma_2023_116652
crossref_primary_10_1029_2022EF003293
crossref_primary_10_1038_s41598_024_67947_1
crossref_primary_10_1021_acs_est_1c07575
crossref_primary_10_5194_tc_18_363_2024
crossref_primary_10_1111_1758_5899_12867
crossref_primary_10_1016_j_gloplacha_2020_103394
crossref_primary_10_1029_2021GL093306
crossref_primary_10_3390_rs15184396
crossref_primary_10_1007_s00382_021_05991_7
crossref_primary_10_3390_c9020058
crossref_primary_10_1038_s41467_024_53470_4
crossref_primary_10_1088_1748_9326_ad820f
crossref_primary_10_1029_2023GB007750
crossref_primary_10_1038_s43017_024_00600_7
crossref_primary_10_3389_feart_2021_704447
crossref_primary_10_1029_2023EF004297
crossref_primary_10_1038_s43247_023_01013_y
crossref_primary_10_1016_j_scitotenv_2022_155886
crossref_primary_10_1016_j_accre_2025_01_003
crossref_primary_10_1016_j_scitotenv_2024_174741
crossref_primary_10_1088_1748_9326_ad0993
crossref_primary_10_1016_j_scitotenv_2021_145542
crossref_primary_10_1029_2023GL102974
crossref_primary_10_1016_j_scitotenv_2021_146877
crossref_primary_10_1038_s41558_022_01466_7
crossref_primary_10_5194_essd_14_3875_2022
crossref_primary_10_1016_j_soilbio_2025_109735
crossref_primary_10_1038_s41598_020_75481_z
crossref_primary_10_5194_bg_18_6093_2021
crossref_primary_10_51867_ajernet4_1_15
crossref_primary_10_1029_2020GB006871
crossref_primary_10_5194_bg_19_4779_2022
crossref_primary_10_1038_s41558_023_01909_9
crossref_primary_10_5194_tc_17_2095_2023
crossref_primary_10_1016_j_catena_2024_108553
crossref_primary_10_1016_j_catena_2025_108850
crossref_primary_10_5194_tc_15_3423_2021
crossref_primary_10_1016_j_quascirev_2023_108355
crossref_primary_10_1029_2020EA001630
crossref_primary_10_1088_1748_9326_abb62d
crossref_primary_10_1029_2020EA001631
crossref_primary_10_3390_f15030501
crossref_primary_10_1016_j_earscirev_2020_103500
crossref_primary_10_1021_acs_est_4c08569
crossref_primary_10_1088_1748_9326_acbe52
crossref_primary_10_3390_rs13091626
crossref_primary_10_1016_j_nhres_2023_10_001
crossref_primary_10_1029_2022EF002779
crossref_primary_10_1093_femsml_uqac003
crossref_primary_10_1029_2021EF002598
crossref_primary_10_1088_1748_9326_abc848
crossref_primary_10_3389_feart_2020_00152
crossref_primary_10_1088_1748_9326_ab80f1
crossref_primary_10_3390_rs15071894
crossref_primary_10_1007_s10482_022_01767_z
crossref_primary_10_1016_j_earscirev_2024_105020
crossref_primary_10_3390_land11091594
crossref_primary_10_1016_j_oneear_2021_11_011
crossref_primary_10_1088_2752_664X_adacee
crossref_primary_10_3390_land13111902
crossref_primary_10_5194_bg_19_2079_2022
crossref_primary_10_1007_s10533_024_01132_4
crossref_primary_10_1038_s41598_024_52558_7
crossref_primary_10_3389_feart_2021_737237
crossref_primary_10_3389_fenvs_2024_1460155
crossref_primary_10_1002_fee_2437
crossref_primary_10_1038_s43017_021_00253_w
crossref_primary_10_1016_j_accre_2021_06_004
crossref_primary_10_1186_s13213_022_01707_2
crossref_primary_10_3390_nitrogen3040040
crossref_primary_10_1016_j_rse_2024_114047
crossref_primary_10_1038_s41467_022_35676_6
crossref_primary_10_1007_s10584_022_03366_3
crossref_primary_10_3390_en15062076
crossref_primary_10_5194_bg_19_1871_2022
crossref_primary_10_1038_s41597_025_04372_7
crossref_primary_10_1016_j_palaeo_2025_112879
crossref_primary_10_1038_s41467_023_38806_w
crossref_primary_10_1029_2021GB007113
crossref_primary_10_1007_s10653_024_02161_6
crossref_primary_10_1038_s41558_024_02074_3
crossref_primary_10_1007_s11356_022_22283_7
crossref_primary_10_1016_j_rse_2024_114299
crossref_primary_10_1080_15481603_2024_2427309
crossref_primary_10_5194_gmd_14_521_2021
crossref_primary_10_1098_rsta_2021_0022
crossref_primary_10_5194_esd_15_653_2024
crossref_primary_10_1007_s10533_022_00914_y
crossref_primary_10_1016_j_dsr_2023_103981
crossref_primary_10_1038_s41467_022_33293_x
crossref_primary_10_1038_s43247_022_00547_x
crossref_primary_10_1021_acs_est_3c08219
crossref_primary_10_1073_pnas_2100163118
crossref_primary_10_1021_acs_est_4c06014
crossref_primary_10_1038_s43247_024_01511_7
crossref_primary_10_1038_s41561_024_01440_2
crossref_primary_10_1038_s43705_023_00326_5
crossref_primary_10_5194_bg_20_4241_2023
crossref_primary_10_5194_tc_14_3155_2020
crossref_primary_10_1038_s41561_020_0607_0
crossref_primary_10_3390_rs16162979
crossref_primary_10_1038_s43247_022_00621_4
crossref_primary_10_5194_tc_16_1_2022
crossref_primary_10_1126_science_abn7950
crossref_primary_10_3390_rs12152471
crossref_primary_10_1016_j_coldregions_2023_103901
crossref_primary_10_1038_s43017_023_00500_2
crossref_primary_10_1016_j_jag_2022_103163
crossref_primary_10_1360_N072022_0210
crossref_primary_10_5194_tc_15_1399_2021
crossref_primary_10_3389_feart_2021_637899
crossref_primary_10_1007_s11368_020_02815_9
crossref_primary_10_1016_j_scitotenv_2023_162889
crossref_primary_10_3390_f15122133
crossref_primary_10_1088_1748_9326_ad69a6
crossref_primary_10_1016_j_catena_2023_107454
crossref_primary_10_1016_j_pedsph_2024_09_006
crossref_primary_10_1029_2021GB007255
crossref_primary_10_1038_s41467_022_33541_0
crossref_primary_10_1038_s41467_020_15725_8
crossref_primary_10_1029_2022GL100559
crossref_primary_10_5194_tc_15_3059_2021
crossref_primary_10_3390_w14030372
crossref_primary_10_1038_s41467_022_32711_4
crossref_primary_10_1039_D4VA00240G
crossref_primary_10_1073_pnas_1916387117
crossref_primary_10_5194_bg_17_5163_2020
crossref_primary_10_3389_frsen_2023_1095275
crossref_primary_10_1029_2022JF006817
crossref_primary_10_1038_s41467_023_37766_5
crossref_primary_10_1073_pnas_2212171120
crossref_primary_10_1088_1748_9326_abf6f5
crossref_primary_10_1038_s41558_022_01281_0
crossref_primary_10_1088_1748_9326_acfdbb
crossref_primary_10_1016_j_catena_2023_107342
crossref_primary_10_1029_2020EA001538
crossref_primary_10_1038_s41558_021_01162_y
crossref_primary_10_1016_j_catena_2022_106194
crossref_primary_10_1016_j_earscirev_2020_103433
crossref_primary_10_3389_fpls_2020_00759
crossref_primary_10_3389_fenvs_2020_00118
crossref_primary_10_5194_bg_18_3917_2021
crossref_primary_10_1139_er_2024_0070
crossref_primary_10_1029_2022JG006941
crossref_primary_10_5194_bg_20_4221_2023
crossref_primary_10_1038_s43017_021_00230_3
crossref_primary_10_1088_1748_9326_abf28b
crossref_primary_10_1038_s41467_025_57356_x
crossref_primary_10_3390_agronomy13061483
crossref_primary_10_1007_s41748_024_00491_0
crossref_primary_10_1080_15230430_2022_2154985
crossref_primary_10_1088_1748_9326_ac541c
crossref_primary_10_5194_bg_17_3797_2020
crossref_primary_10_5194_tc_16_1057_2022
crossref_primary_10_1088_1748_9326_abfa4c
crossref_primary_10_1088_1748_9326_ac2288
crossref_primary_10_1016_j_agrformet_2020_108271
crossref_primary_10_1109_ACCESS_2023_3241686
crossref_primary_10_1016_j_fmre_2021_04_005
crossref_primary_10_1038_s41467_024_50346_5
crossref_primary_10_1088_1748_9326_ac4f8d
crossref_primary_10_1088_1748_9326_abf7f0
crossref_primary_10_3390_rs14235989
crossref_primary_10_1016_j_jhydrol_2025_133009
crossref_primary_10_1007_s40641_021_00171_5
crossref_primary_10_3390_rs15184561
crossref_primary_10_3389_fmicb_2022_787146
crossref_primary_10_1088_1748_9326_abc913
crossref_primary_10_1007_s11427_023_2601_1
crossref_primary_10_1139_as_2021_0034
crossref_primary_10_1029_2020EF001858
Cites_doi 10.1111/gcb.12349
10.1088/1748-9326/aad5f0
10.1073/pnas.1719903115
10.1029/2019GL082187
10.1007/s10584-013-0730-7
10.5194/bg-12-3725-2015
10.1038/s41561-018-0218-1
10.1111/j.1600-0889.2007.00336.x
10.2307/1942531
10.5194/bg-15-7155-2018
10.1088/1748-9326/10/9/094011
10.1038/ncomms13043
10.1007/s10021-011-9504-0
10.1002/grl.50348
10.1002/2015JG003061
10.1111/j.1365-2486.2007.01339.x
10.1038/d41586-019-01313-4
10.5194/bg-16-1211-2019
10.1038/nature14338
10.1088/1748-9326/ab12fd
10.18637/jss.v033.i03
10.5194/bg-11-6573-2014
10.1088/1748-9326/9/8/085003
10.1038/nclimate3054
10.1641/B580807
10.1098/rsta.2014.0423
10.1111/gcb.13403
10.1038/nature23316
10.1038/ngeo1573
10.1002/(SICI)1099-1530(199907/09)10:3<251::AID-PPP323>3.0.CO;2-5
10.5194/bg-15-5287-2018
10.1038/s41467-018-07663-3
10.1029/2010JG001507
10.1002/2013JF002889
10.1038/nature13560
10.1130/G38626.1
10.1029/2006GL027484
10.1088/1748-9326/aad824
10.5194/bg-12-3469-2015
10.1088/1748-9326/11/3/034014
10.1002/ppp.1779
10.1038/s41467-018-05738-9
10.1038/ngeo2795
10.1038/s41467-019-09314-7
10.1016/j.scitotenv.2016.12.152
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2020
2020© The Author(s), under exclusive licence to Springer Nature Limited 2020
The Author(s), under exclusive licence to Springer Nature Limited 2020.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020
– notice: 2020© The Author(s), under exclusive licence to Springer Nature Limited 2020
– notice: The Author(s), under exclusive licence to Springer Nature Limited 2020.
DBID AAYXX
CITATION
7SN
7TG
7TN
7UA
8FE
8FH
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H96
HCIFZ
KL.
L.G
LK8
M7P
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ADTPV
AOWAS
DG7
DOI 10.1038/s41561-019-0526-0
DatabaseName CrossRef
Ecology Abstracts
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection (ProQuest)
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Biological Sciences
Biological Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
SwePub
SwePub Articles
SWEPUB Stockholms universitet
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Biological Science Database
ProQuest SciTech Collection
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional


Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1752-0908
EndPage 143
ExternalDocumentID oai_DiVA_org_su_180440
10_1038_s41561_019_0526_0
GroupedDBID 0R~
123
29M
39C
5BI
5S5
70F
8FE
8FH
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJNI
ABLJU
ACBWK
ACGFS
ACPRK
ACUHS
ADBBV
AENEX
AEUYN
AFKRA
AFLOW
AFRAH
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHOSX
AHSBF
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BHPHI
BKKNO
BKSAR
CCPQU
CS3
DB5
EBS
EE.
EJD
EXGXG
F5P
FEDTE
FQGFK
FSGXE
HCIFZ
HVGLF
HZ~
LK5
M7P
M7R
N9A
NNMJJ
O9-
ODYON
P2P
PCBAR
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
Y6R
~02
AAYXX
ABFSG
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
7SN
7TG
7TN
7UA
AZQEC
C1K
DWQXO
F1W
GNUQQ
H96
KL.
L.G
LK8
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ADTPV
AOWAS
DG7
NFIDA
ID FETCH-LOGICAL-a470t-1223e3f9ca8b40f2eb55c48e5b8e921dd2b4df6952d68502a26801cd2d7defb23
IEDL.DBID BENPR
ISSN 1752-0894
1752-0908
IngestDate Thu Aug 21 06:43:23 EDT 2025
Wed Jul 16 16:19:47 EDT 2025
Wed Jul 16 16:27:09 EDT 2025
Tue Jul 01 01:37:43 EDT 2025
Thu Apr 24 23:00:34 EDT 2025
Fri Feb 21 02:39:23 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a470t-1223e3f9ca8b40f2eb55c48e5b8e921dd2b4df6952d68502a26801cd2d7defb23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1096-2436
0000-0002-3367-0065
0000-0002-6650-7619
0000-0001-5861-3481
0000-0003-0155-8666
0000-0003-2079-2896
0000-0002-2968-3023
0000-0002-5976-1475
0000-0002-1350-6516
0000-0001-5895-2141
0000-0003-4646-0750
0000-0002-8096-1594
PQID 2350892760
PQPubID 546301
PageCount 6
ParticipantIDs swepub_primary_oai_DiVA_org_su_180440
proquest_journals_2475007511
proquest_journals_2350892760
crossref_citationtrail_10_1038_s41561_019_0526_0
crossref_primary_10_1038_s41561_019_0526_0
springer_journals_10_1038_s41561_019_0526_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature geoscience
PublicationTitleAbbrev Nat. Geosci
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Lewkowicz, Way (CR23) 2019; 10
Schuur (CR30) 2013; 119
Tanski (CR43) 2017; 581
Frolking, Roulet, Fuglestvedt (CR50) 2006; 111
Koven (CR12) 2015; 373
Sannel, Kuhry (CR29) 2011; 116
Walter Anthony (CR37) 2016; 9
Frolking, Roulet (CR49) 2007; 13
CR32
Zimov (CR8) 2006; 33
Petrenko (CR38) 2017; 548
Farquharson (CR25) 2019; 46
McGuire (CR2) 2018; 115
Schaefer, Lantuit, Romanovsky, Schuur, Witt (CR9) 2014; 9
CR4
Kokelj, Jorgenson (CR16) 2013; 24
Kruse (CR40) 2019; 16
Walter Anthony (CR17) 2014; 511
Vonk (CR28) 2013; 40
Grosse (CR15) 2011; 116
Abbott, Jones, Godsey, Larouche, Bowden (CR42) 2015; 12
O’Donnell (CR45) 2012; 15
CR48
CR47
Treat (CR22) 2016; 121
Loranty (CR34) 2018; 15
Abbott (CR10) 2016; 11
Kokelj, Lantz, Tunnicliffe, Segal, Lacelle (CR36) 2017; 45
Estop-Aragones (CR44) 2018; 13
Turetsky (CR20) 2019; 569
Houghton (CR21) 1983; 53
Schuur (CR1) 2015; 520
Olefeldt (CR14) 2016; 7
Serikova (CR27) 2018; 11
Tarnocai (CR7) 1999; 10
Schuur (CR5) 2008; 58
Schneider von Deimling (CR19) 2015; 12
Jones (CR46) 2017; 23
Lawrence, Koven, Swenson, Riley, Slater (CR11) 2015; 10
Khvorostyanov (CR6) 2007; 60
Baltzer, Veness, Chasmer, Sniderhan, Quinton (CR35) 2014; 20
Kleinen, Brovkin (CR31) 2018; 13
Walter Anthony (CR18) 2018; 9
Hugelius (CR3) 2014; 11
MacDougall, Avis, Weaver (CR13) 2012; 5
Balser, Jones, Gens (CR33) 2014; 119
Jones, Pollard, Jones (CR24) 2019; 14
Beck (CR39) 2018; 15
Schädel (CR26) 2016; 6
Nitze, Grosse, Jones, Romanovsky, Boike (CR41) 2018; 9
C Estop-Aragones (526_CR44) 2018; 13
MKW Jones (526_CR24) 2019; 14
SV Kokelj (526_CR36) 2017; 45
JA O’Donnell (526_CR45) 2012; 15
C Tarnocai (526_CR7) 1999; 10
I Nitze (526_CR41) 2018; 9
G Hugelius (526_CR3) 2014; 11
EAG Schuur (526_CR1) 2015; 520
CD Koven (526_CR12) 2015; 373
J Beck (526_CR39) 2018; 15
KM Walter Anthony (526_CR37) 2016; 9
SV Kokelj (526_CR16) 2013; 24
MM Loranty (526_CR34) 2018; 15
T Kleinen (526_CR31) 2018; 13
T Schneider von Deimling (526_CR19) 2015; 12
AH MacDougall (526_CR13) 2012; 5
C Schädel (526_CR26) 2016; 6
MC Jones (526_CR46) 2017; 23
D Olefeldt (526_CR14) 2016; 7
AG Lewkowicz (526_CR23) 2019; 10
MR Turetsky (526_CR20) 2019; 569
G Grosse (526_CR15) 2011; 116
JE Vonk (526_CR28) 2013; 40
V Petrenko (526_CR38) 2017; 548
RA Houghton (526_CR21) 1983; 53
DV Khvorostyanov (526_CR6) 2007; 60
526_CR4
526_CR32
KM Walter Anthony (526_CR18) 2018; 9
AW Balser (526_CR33) 2014; 119
JL Baltzer (526_CR35) 2014; 20
S Serikova (526_CR27) 2018; 11
K Schaefer (526_CR9) 2014; 9
G Tanski (526_CR43) 2017; 581
BW Abbott (526_CR10) 2016; 11
CC Treat (526_CR22) 2016; 121
S Frolking (526_CR49) 2007; 13
ABK Sannel (526_CR29) 2011; 116
SA Zimov (526_CR8) 2006; 33
526_CR48
526_CR47
BW Abbott (526_CR42) 2015; 12
S Kruse (526_CR40) 2019; 16
DM Lawrence (526_CR11) 2015; 10
KM Walter Anthony (526_CR17) 2014; 511
AD McGuire (526_CR2) 2018; 115
EAG Schuur (526_CR30) 2013; 119
EAG Schuur (526_CR5) 2008; 58
S Frolking (526_CR50) 2006; 111
LM Farquharson (526_CR25) 2019; 46
References_xml – volume: 46
  start-page: 6681
  year: 2019
  end-page: 6689
  ident: CR25
  article-title: Climate change drives widespread and rapid thermokarst development in very cold permafrost in the Canadian High Arctic.
  publication-title: Geophys. Res. Lett.
– volume: 9
  start-page: 085003
  year: 2014
  ident: CR9
  article-title: The impact of the permafrost carbon feedback on global climate
  publication-title: Environ. Res. Lett.
– volume: 53
  start-page: 235
  year: 1983
  end-page: 262
  ident: CR21
  article-title: Changes in the carbon content of terrestrial biota and soils between 1860–1980
  publication-title: Ecol. Monogr.
– ident: CR4
– volume: 13
  start-page: 1079
  year: 2007
  end-page: 1088
  ident: CR49
  article-title: Holocene radiative forcing impact of northern peatland carbon accumulation and methane emissions
  publication-title: Glob. Change Biol.
– volume: 121
  start-page: 78
  year: 2016
  end-page: 94
  ident: CR22
  article-title: Effects of permafrost aggradation on peat properties as determined from a pan-Arctic synthesis of plant macrofossils
  publication-title: J. Geophys. Res.
– volume: 6
  start-page: 950
  year: 2016
  end-page: 953
  ident: CR26
  article-title: Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils
  publication-title: Nat. Clim. Change
– volume: 119
  start-page: 359
  year: 2013
  end-page: 374
  ident: CR30
  article-title: Expert assessment of vulnerability of permafrost carbon to climate change
  publication-title: Clim. Change
– volume: 10
  year: 2019
  ident: CR23
  article-title: Extremes of summer climate trigger thousands of thermokarst landslides in a High Arctic environment
  publication-title: Nat. Commun.
– volume: 13
  start-page: 085002
  year: 2018
  ident: CR44
  article-title: Respiration of aged soil carbon during fall in permafrost peatlands enhanced by active layer deepening following wildfire but limited following thermokarst
  publication-title: Environ. Res. Lett.
– volume: 24
  start-page: 108
  year: 2013
  end-page: 119
  ident: CR16
  article-title: Advances in thermokarst research
  publication-title: Permafrost Periglac. Process.
– volume: 11
  start-page: 6573
  year: 2014
  end-page: 6593
  ident: CR3
  article-title: Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps
  publication-title: Biogeosciences
– volume: 9
  start-page: 679
  year: 2016
  end-page: 682
  ident: CR37
  article-title: Methane emissions proportional to permafrost carbon thawed in arctic lakes since the 1950s
  publication-title: Nat. Geosci.
– volume: 116
  start-page: G03035
  year: 2011
  ident: CR29
  article-title: Warming-induced destabilization of peat plateau/thermokarst lake complexes
  publication-title: J. Geophys. Res.
– volume: 115
  start-page: 3882
  year: 2018
  end-page: 3887
  ident: CR2
  article-title: Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change
  publication-title: Proc. Natl Acad. Sci. USA
– ident: CR32
– volume: 5
  start-page: 719
  year: 2012
  end-page: 721
  ident: CR13
  article-title: Significant existing commitment to warming from the permafrost carbon feedback
  publication-title: Nat. Geosci.
– volume: 20
  start-page: 824
  year: 2014
  end-page: 834
  ident: CR35
  article-title: Forests on thawing permafrost: fragmentation, edge effects, and net forest loss
  publication-title: Glob. Change Biol.
– volume: 9
  start-page: 3262
  year: 2018
  ident: CR18
  article-title: 21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes
  publication-title: Nat. Commun.
– volume: 373
  start-page: 20140423
  year: 2015
  ident: CR12
  article-title: A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback
  publication-title: Phil. Trans. R. Soc. A Math. Phys. Eng. Sci.
– volume: 119
  start-page: 1106
  year: 2014
  end-page: 1120
  ident: CR33
  article-title: Timing of retrogressive thaw slump initiation in the Noatak Basin, northwest Alaska, USA.
  publication-title: J. Geophys. Res.
– volume: 14
  start-page: 055006
  year: 2019
  ident: CR24
  article-title: Rapid initialization of retrogressive thaw slumps in the Canadian High Arctic and their response to climate and terrain factors
  publication-title: Environ. Res Lett.
– volume: 511
  start-page: 452
  year: 2014
  end-page: 456
  ident: CR17
  article-title: A shift of thermokarst lakes from carbon sources to sinks during the holocene epoch
  publication-title: Nature
– ident: CR47
– volume: 33
  start-page: L20502
  year: 2006
  ident: CR8
  article-title: Permafrost carbon: stock and decomposability of a globally significant carbon pool
  publication-title: Geophys. Res. Lett.
– volume: 13
  start-page: 094001
  year: 2018
  ident: CR31
  article-title: Pathway-dependent fate of permafrost region carbon
  publication-title: Environ. Res. Lett.
– volume: 7
  year: 2016
  ident: CR14
  article-title: Circumpolar distribution and carbon storage of thermokarst landscapes
  publication-title: Nat. Commun.
– volume: 58
  start-page: 701
  year: 2008
  end-page: 714
  ident: CR5
  article-title: Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle
  publication-title: Bioscience
– volume: 15
  start-page: 7155
  year: 2018
  end-page: 7175
  ident: CR39
  article-title: Bipolar carbon and hydrogen isotope constraints on the Holocene methane budget
  publication-title: Biogeosciences
– volume: 15
  start-page: 213
  year: 2012
  end-page: 229
  ident: CR45
  article-title: The effects of permafrost thaw on soil hydrologic, thermal, and carbon dynamics in an Alaskan peatland
  publication-title: Ecosystems
– volume: 40
  start-page: 2689
  year: 2013
  end-page: 2693
  ident: CR28
  article-title: High biolability of ancient permafrost carbon upon thaw
  publication-title: Geophys. Res. Lett.
– volume: 10
  start-page: 094011
  year: 2015
  ident: CR11
  article-title: Permafrost thaw and resulting soil moisture changes regulate projected high-latitude CO and CH emissions
  publication-title: Environ. Res. Lett.
– volume: 12
  start-page: 3469
  year: 2015
  end-page: 3488
  ident: CR19
  article-title: Observation-based modelling of permafrost carbon fluxes with accounting for deep carbon deposits and thermokarst activity
  publication-title: Biogeosciences
– volume: 45
  start-page: 371
  year: 2017
  end-page: 374
  ident: CR36
  article-title: Climate-driven thaw of permafrost preserved glacial landscapes, northwestern Canada
  publication-title: Geology
– volume: 16
  start-page: 1211
  year: 2019
  end-page: 1224
  ident: CR40
  article-title: Dispersal distances and migration rates at the arctic treeline in Siberia—a genetic and simulation-based study
  publication-title: Biogeosciences
– volume: 116
  start-page: G00K06
  year: 2011
  ident: CR15
  article-title: Vulnerability of high-latitude soil organic carbon in North America to disturbance
  publication-title: J. Geophys. Res.
– volume: 12
  start-page: 3725
  year: 2015
  end-page: 3740
  ident: CR42
  article-title: Patterns and persistence of hydrologic carbon and nutrient export from collapsing upland permafrost
  publication-title: Biogeosciences
– volume: 11
  start-page: 825
  year: 2018
  end-page: 829
  ident: CR27
  article-title: High riverine CO emissions at the permafrost boundary of western Siberia
  publication-title: Nat. Geosci.
– ident: CR48
– volume: 9
  year: 2018
  ident: CR41
  article-title: Remote sensing quantifies widespread abundance of permafrost region disturbances across the Arctic and Subarctic
  publication-title: Nat. Commun.
– volume: 581
  start-page: 434
  year: 2017
  end-page: 447
  ident: CR43
  article-title: Transformation of terrestrial organic matter along thermokarst-affected permafrost coasts in the Arctic
  publication-title: Sci. Total Environ.
– volume: 23
  start-page: 1109
  year: 2017
  end-page: 1127
  ident: CR46
  article-title: Rapid carbon loss and slow recovery following permafrost thaw in boreal peatlands
  publication-title: Glob. Change Biol.
– volume: 15
  start-page: 5287
  year: 2018
  end-page: 5313
  ident: CR34
  article-title: Reviews and syntheses: changing ecosystem influences on soil thermal regimes in northern high-latitude permafrost regions
  publication-title: Biogeosciences
– volume: 10
  start-page: 251
  year: 1999
  end-page: 263
  ident: CR7
  article-title: The effect of climate warming on the carbon balance of cryosols in Canada
  publication-title: Permafrost Periglac. Process.
– volume: 111
  start-page: G01008
  year: 2006
  ident: CR50
  article-title: How northern peatlands influence the Earth’s radiative budget: sustained methane emission versus sustained carbon sequestration
  publication-title: J. Geophys. Res.
– volume: 569
  start-page: 32
  year: 2019
  end-page: 34
  ident: CR20
  article-title: Permafrost collapse is accelerating carbon release
  publication-title: Nature
– volume: 60
  start-page: 265
  year: 2007
  end-page: 275
  ident: CR6
  article-title: Vulnerability of permafrost carbon to global warming. Part II: sensitivity of permafrost carbon stock to global warming
  publication-title: Tellus B Chem. Phys. Meteorol.
– volume: 520
  start-page: 171
  year: 2015
  end-page: 179
  ident: CR1
  article-title: Climate change and the permafrost carbon feedback
  publication-title: Nature
– volume: 11
  start-page: 034014
  year: 2016
  ident: CR10
  article-title: Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment
  publication-title: Environ. Res. Lett.
– volume: 548
  start-page: 443
  year: 2017
  end-page: 446
  ident: CR38
  article-title: Minimal geological methane emissions during the younger dryas–preboreal abrupt warming event
  publication-title: Nature
– volume: 20
  start-page: 824
  year: 2014
  ident: 526_CR35
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.12349
– volume: 13
  start-page: 085002
  year: 2018
  ident: 526_CR44
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/aad5f0
– volume: 115
  start-page: 3882
  year: 2018
  ident: 526_CR2
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1719903115
– volume: 46
  start-page: 6681
  year: 2019
  ident: 526_CR25
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2019GL082187
– volume: 119
  start-page: 359
  year: 2013
  ident: 526_CR30
  publication-title: Clim. Change
  doi: 10.1007/s10584-013-0730-7
– volume: 12
  start-page: 3725
  year: 2015
  ident: 526_CR42
  publication-title: Biogeosciences
  doi: 10.5194/bg-12-3725-2015
– volume: 11
  start-page: 825
  year: 2018
  ident: 526_CR27
  publication-title: Nat. Geosci.
  doi: 10.1038/s41561-018-0218-1
– volume: 60
  start-page: 265
  year: 2007
  ident: 526_CR6
  publication-title: Tellus B Chem. Phys. Meteorol.
  doi: 10.1111/j.1600-0889.2007.00336.x
– volume: 53
  start-page: 235
  year: 1983
  ident: 526_CR21
  publication-title: Ecol. Monogr.
  doi: 10.2307/1942531
– volume: 15
  start-page: 7155
  year: 2018
  ident: 526_CR39
  publication-title: Biogeosciences
  doi: 10.5194/bg-15-7155-2018
– volume: 10
  start-page: 094011
  year: 2015
  ident: 526_CR11
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/10/9/094011
– volume: 7
  year: 2016
  ident: 526_CR14
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13043
– volume: 15
  start-page: 213
  year: 2012
  ident: 526_CR45
  publication-title: Ecosystems
  doi: 10.1007/s10021-011-9504-0
– volume: 40
  start-page: 2689
  year: 2013
  ident: 526_CR28
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/grl.50348
– ident: 526_CR4
– volume: 121
  start-page: 78
  year: 2016
  ident: 526_CR22
  publication-title: J. Geophys. Res.
  doi: 10.1002/2015JG003061
– volume: 13
  start-page: 1079
  year: 2007
  ident: 526_CR49
  publication-title: Glob. Change Biol.
  doi: 10.1111/j.1365-2486.2007.01339.x
– volume: 569
  start-page: 32
  year: 2019
  ident: 526_CR20
  publication-title: Nature
  doi: 10.1038/d41586-019-01313-4
– ident: 526_CR48
– volume: 16
  start-page: 1211
  year: 2019
  ident: 526_CR40
  publication-title: Biogeosciences
  doi: 10.5194/bg-16-1211-2019
– volume: 520
  start-page: 171
  year: 2015
  ident: 526_CR1
  publication-title: Nature
  doi: 10.1038/nature14338
– volume: 14
  start-page: 055006
  year: 2019
  ident: 526_CR24
  publication-title: Environ. Res Lett.
  doi: 10.1088/1748-9326/ab12fd
– ident: 526_CR47
  doi: 10.18637/jss.v033.i03
– volume: 11
  start-page: 6573
  year: 2014
  ident: 526_CR3
  publication-title: Biogeosciences
  doi: 10.5194/bg-11-6573-2014
– volume: 9
  start-page: 085003
  year: 2014
  ident: 526_CR9
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/9/8/085003
– volume: 6
  start-page: 950
  year: 2016
  ident: 526_CR26
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate3054
– volume: 58
  start-page: 701
  year: 2008
  ident: 526_CR5
  publication-title: Bioscience
  doi: 10.1641/B580807
– volume: 373
  start-page: 20140423
  year: 2015
  ident: 526_CR12
  publication-title: Phil. Trans. R. Soc. A Math. Phys. Eng. Sci.
  doi: 10.1098/rsta.2014.0423
– volume: 23
  start-page: 1109
  year: 2017
  ident: 526_CR46
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.13403
– volume: 548
  start-page: 443
  year: 2017
  ident: 526_CR38
  publication-title: Nature
  doi: 10.1038/nature23316
– volume: 5
  start-page: 719
  year: 2012
  ident: 526_CR13
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo1573
– volume: 10
  start-page: 251
  year: 1999
  ident: 526_CR7
  publication-title: Permafrost Periglac. Process.
  doi: 10.1002/(SICI)1099-1530(199907/09)10:3<251::AID-PPP323>3.0.CO;2-5
– ident: 526_CR32
– volume: 15
  start-page: 5287
  year: 2018
  ident: 526_CR34
  publication-title: Biogeosciences
  doi: 10.5194/bg-15-5287-2018
– volume: 9
  year: 2018
  ident: 526_CR41
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07663-3
– volume: 116
  start-page: G00K06
  year: 2011
  ident: 526_CR15
  publication-title: J. Geophys. Res.
  doi: 10.1029/2010JG001507
– volume: 116
  start-page: G03035
  year: 2011
  ident: 526_CR29
  publication-title: J. Geophys. Res.
– volume: 119
  start-page: 1106
  year: 2014
  ident: 526_CR33
  publication-title: J. Geophys. Res.
  doi: 10.1002/2013JF002889
– volume: 511
  start-page: 452
  year: 2014
  ident: 526_CR17
  publication-title: Nature
  doi: 10.1038/nature13560
– volume: 45
  start-page: 371
  year: 2017
  ident: 526_CR36
  publication-title: Geology
  doi: 10.1130/G38626.1
– volume: 33
  start-page: L20502
  year: 2006
  ident: 526_CR8
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2006GL027484
– volume: 13
  start-page: 094001
  year: 2018
  ident: 526_CR31
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/aad824
– volume: 12
  start-page: 3469
  year: 2015
  ident: 526_CR19
  publication-title: Biogeosciences
  doi: 10.5194/bg-12-3469-2015
– volume: 111
  start-page: G01008
  year: 2006
  ident: 526_CR50
  publication-title: J. Geophys. Res.
– volume: 11
  start-page: 034014
  year: 2016
  ident: 526_CR10
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/11/3/034014
– volume: 24
  start-page: 108
  year: 2013
  ident: 526_CR16
  publication-title: Permafrost Periglac. Process.
  doi: 10.1002/ppp.1779
– volume: 9
  start-page: 3262
  year: 2018
  ident: 526_CR18
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05738-9
– volume: 9
  start-page: 679
  year: 2016
  ident: 526_CR37
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo2795
– volume: 10
  year: 2019
  ident: 526_CR23
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09314-7
– volume: 581
  start-page: 434
  year: 2017
  ident: 526_CR43
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.12.152
SSID ssj0060475
Score 2.70378
Snippet The permafrost zone is expected to be a substantial carbon source to the atmosphere, yet large-scale models currently only simulate gradual changes in...
SourceID swepub
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 138
SubjectTerms 704/106
704/158
704/242
704/4111
704/47
Atmospheric models
Carbon
Carbon emissions
Carbon sinks
Carbon sources
Carbon uptake
Climate change
Climate models
Computer simulation
Earth and Environmental Science
Earth Sciences
Earth System Sciences
Emissions
Forecasting
Geochemistry
Geology
Geophysics/Geodesy
Lakes
Landslides
Large-scale models
Permafrost
Permafrost thaws
Regrowth
Scale models
Soil
Soil stabilization
Soils
Thawing
Uptake
Vegetation
Vegetation regrowth
Wetlands
Title Carbon release through abrupt permafrost thaw
URI https://link.springer.com/article/10.1038/s41561-019-0526-0
https://www.proquest.com/docview/2350892760
https://www.proquest.com/docview/2475007511
https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-180440
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ZSwMxEA4eCL6IJ9aLfdAXJZjNsZt9Eo9WESwiVnwLySYRQdraA_HfO9lmWxTpczZsmNnMN5PJfh9Cx7n3knoicJGHoxvPYM9pDqWKt7nNvTCmItN5aGd3HX7_Kl7jgdswXqusY2IVqG2vDGfk55RBKlHQPCMX_U8cVKNCdzVKaCyiZQjBEoqv5atm-_GpjsUZ4RXVLmAkxTCd131NJs-HoXQJpXSBA-cJJr-RaZZuTjukf9hEKwRqraO1mDomlxNfb6AF191EK7eVNO_3FsLXemB63SSooAA0JVGBJ9FmMO6Pkn4IwT784wEj-msbdVrN5-s7HMUQsOY5GeEUcNwxX5RaGk48dUaIkksnjHQFTa2lhlufFYLaTApCNc0AfEpLwebOG8p20FK313W7KPFMOAM7V_PSAhx5QxzTnvHSmNTYLG8gUhtClZEpPAhWfKiqY82kmthOge1UsJ0iDXQ6ndKf0GTMe_igtq6KO2aoZv79fxgcGdKbNG2gs9ohs-E57zqZ-Gy6rMCnffP-cql6gzc1HKtUBtXtvflr2kerNBTa1XXtA7Q0GozdIWQjI3MUP7kff17Z7A
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZaxRBEC7CBtEX8cQ1UefBvChNevqY40Ek5nBjkkUkkby13dPdQZDdzR6E_Cl_o1Vz7KLIvuW5Z5iiqrqOqe7vA3ibx1iIyDUrc_p1EyXuOauwVYk-93nUztVgOmfDbHChvlzqyw343d2FoWOVXUysA7UfV_SPfFdILCVKkWf84-SaEWsUTVc7Co3GLU7C7Q22bLMPxwdo3x0hjg7P9wesZRVgVuV8zlJMiEHGsrKFUzyK4LSuVBG0K0IpUu-FUz5mpRY-KzQXVmQYxSsvUPgQHQEdYMjfVBJbmR5sfjocfv3Wxf6MqxraF3OyYCiu6uaostidUatErXvJCGOF8b8z4aq8XU5k_0EvrTPe0SN42JaqyV7jW49hI4yewL3PNRXw7VNg-3bqxqOEWFcwFSYt409i3XQxmScTCvmR7pTgir15Bhd3oqbn0BuNR-EFJFHq4DBSWFV5TH_R8SBtlKpyLnU-y_vAO0WYqkUmJ4KMX6aekMvCNLozqDtDujO8D--Wr0waWI51D2932jXtDp2ZlT_9fxkNSeVUmvbhfWeQ1fKab-00NluKRfjdBz-_75nx9MrMFiYtiOX75XqZ3sD9wfnZqTk9Hp5swQNBTX59VHwbevPpIrzCSmjuXrful8CPu_b4PyEIF04
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB5VqUBcEE-R0sIe6KXIitdr7-OAUGkaWkqjClHUm7HXdlUJJSEPVf1r_LrO7CNRK5Rbz97VemfG8_DY3wfwIQshF4ErVmS0dRMSXHNGYqkSXOayoKytwHROh-nRufx2oS424F97F4aOVbY-sXLUblzSHnlPJJhKFCJLeS80xyLO-oPPk7-MGKSo09rSadQmcuJvrrF8m3067qOud4UYHP48OGINwwAzMuNzFmNw9EkoSpNbyYPwVqlS5l7Z3Bcidk5Y6UJaKOHSXHFhRIoevXQCf8QHS6AH6P43M6yKeAc2vxwOz360cSDlsoL5xfgsGE5dtj3VJO_NqGyiMr5ghLfC-N2ouEp1l93Ze0imVfQbPIOnTdoa7dd29hw2_OgFPPpa0QLfvAR2YKZ2PIqIgQXDYtSw_0TGTheTeTQh9x_ofgmOmOtXcP4gYnoNndF45N9AFBLlLXoNI0uHoTBY7hMTEllaG1uXZl3grSB02aCUE1nGH111y5Nc17LTKDtNstO8C3vLVyY1RMe6h7db6epmtc70yrb-P4yKpNQqjrvwsVXIanjNt3ZrnS2nRVje_atf-3o8vdSzhY5zYvzeWj-n9_AYLV1_Px6evIUngur96tT4NnTm04XfwaRobt811hfB74c2-FsrIxuD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carbon+release+through+abrupt+permafrost+thaw&rft.jtitle=Nature+geoscience&rft.au=Turetsky%2C+Merritt+R.&rft.au=Abbott%2C+Benjamin+W.&rft.au=Jones%2C+Miriam+C.&rft.au=Anthony%2C+Katey+Walter&rft.date=2020-02-01&rft.issn=1752-0894&rft.volume=13&rft.issue=2&rft.spage=138&rft_id=info:doi/10.1038%2Fs41561-019-0526-0&rft.externalDocID=oai_DiVA_org_su_180440
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1752-0894&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1752-0894&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1752-0894&client=summon