Alkanethiol Monolayer End Groups Affect the Long-Term Operational Stability and Signaling of Electrochemical, Aptamer-Based Sensors in Biological Fluids

Electrochemical aptamer-based (E-AB) sensors achieve highly precise measurements of specific molecular targets in untreated biological fluids. This unique ability, together with their measurement frequency of seconds or faster, has enabled the real-time monitoring of drug pharmacokinetics in live an...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 12; no. 9; pp. 11214 - 11223
Main Authors Shaver, Alexander, Curtis, Samuel D, Arroyo-Currás, Netzahualcóyotl
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 04.03.2020
Subjects
Online AccessGet full text
ISSN1944-8244
1944-8252
1944-8252
DOI10.1021/acsami.9b22385

Cover

Abstract Electrochemical aptamer-based (E-AB) sensors achieve highly precise measurements of specific molecular targets in untreated biological fluids. This unique ability, together with their measurement frequency of seconds or faster, has enabled the real-time monitoring of drug pharmacokinetics in live animals with unprecedented temporal resolution. However, one important weakness of E-AB sensors is that their bioelectronic interface degrades upon continuous electrochemical interrogationa process typically seen as a drop in faradaic and an increase in charging currents over time. This progressive degradation limits their in vivo operational life to 12 h at best, a period that is much shorter than the elimination half-life of the vast majority of drugs in humans. Thus, there is a critical need to develop novel E-AB interfaces that resist continuous electrochemical interrogation in biological fluids for prolonged periods. In response, our group is pursuing the development of better packed, more stable self-assembled monolayers (SAMs) to improve the signaling and extend the operational life of in vivo E-AB sensors from hours to days. By invoking hydrophobicity arguments, we have created SAMs that do not desorb from the electrode surface in aqueous physiological solutions and biological fluids. These SAMs, formed from 1-hexanethiol solutions, decrease the voltammetric charging currents of E-AB sensors by 3-fold relative to standard monolayers of 6-mercapto-1-hexanol, increase the total faradaic current, and alter the electron transfer kinetics of the platform. Moreover, the stability of our new SAMs enables uninterrupted, continuous E-AB interrogation for several days in biological fluids, like undiluted serum, at a physiological temperature of 37 °C.
AbstractList Electrochemical aptamer-based (E-AB) sensors achieve highly precise measurements of specific molecular targets in untreated biological fluids. This unique ability, together with their measurement frequency of seconds or faster, has enabled the real-time monitoring of drug pharmacokinetics in live animals with unprecedented temporal resolution. However, one important weakness of E-AB sensors is that their bioelectronic interface degrades upon continuous electrochemical interrogation-a process typically seen as a drop in faradaic and an increase in charging currents over time. This progressive degradation limits their in vivo operational life to 12 h at best, a period that is much shorter than the elimination half-life of the vast majority of drugs in humans. Thus, there is a critical need to develop novel E-AB interfaces that resist continuous electrochemical interrogation in biological fluids for prolonged periods. In response, our group is pursuing the development of better packed, more stable self-assembled monolayers (SAMs) to improve the signaling and extend the operational life of in vivo E-AB sensors from hours to days. By invoking hydrophobicity arguments, we have created SAMs that do not desorb from the electrode surface in aqueous physiological solutions and biological fluids. These SAMs, formed from 1-hexanethiol solutions, decrease the voltammetric charging currents of E-AB sensors by 3-fold relative to standard monolayers of 6-mercapto-1-hexanol, increase the total faradaic current, and alter the electron transfer kinetics of the platform. Moreover, the stability of our new SAMs enables uninterrupted, continuous E-AB interrogation for several days in biological fluids, like undiluted serum, at a physiological temperature of 37 °C.
Electrochemical aptamer-based (E-AB) sensors achieve highly precise measurements of specific molecular targets in untreated biological fluids. This unique ability, together with their measurement frequency of seconds or faster, has enabled the real-time monitoring of drug pharmacokinetics in live animals with unprecedented temporal resolution. However, one important weakness of E-AB sensors is that their bioelectronic interface degrades upon continuous electrochemical interrogation-a process typically seen as a drop in faradaic and an increase in charging currents over time. This progressive degradation limits their in vivo operational life to 12 h at best, a period that is much shorter than the elimination half-life of the vast majority of drugs in humans. Thus, there is a critical need to develop novel E-AB interfaces that resist continuous electrochemical interrogation in biological fluids for prolonged periods. In response, our group is pursuing the development of better packed, more stable self-assembled monolayers (SAMs) to improve the signaling and extend the operational life of in vivo E-AB sensors from hours to days. By invoking hydrophobicity arguments, we have created SAMs that do not desorb from the electrode surface in aqueous physiological solutions and biological fluids. These SAMs, formed from 1-hexanethiol solutions, decrease the voltammetric charging currents of E-AB sensors by 3-fold relative to standard monolayers of 6-mercapto-1-hexanol, increase the total faradaic current, and alter the electron transfer kinetics of the platform. Moreover, the stability of our new SAMs enables uninterrupted, continuous E-AB interrogation for several days in biological fluids, like undiluted serum, at a physiological temperature of 37 °C.Electrochemical aptamer-based (E-AB) sensors achieve highly precise measurements of specific molecular targets in untreated biological fluids. This unique ability, together with their measurement frequency of seconds or faster, has enabled the real-time monitoring of drug pharmacokinetics in live animals with unprecedented temporal resolution. However, one important weakness of E-AB sensors is that their bioelectronic interface degrades upon continuous electrochemical interrogation-a process typically seen as a drop in faradaic and an increase in charging currents over time. This progressive degradation limits their in vivo operational life to 12 h at best, a period that is much shorter than the elimination half-life of the vast majority of drugs in humans. Thus, there is a critical need to develop novel E-AB interfaces that resist continuous electrochemical interrogation in biological fluids for prolonged periods. In response, our group is pursuing the development of better packed, more stable self-assembled monolayers (SAMs) to improve the signaling and extend the operational life of in vivo E-AB sensors from hours to days. By invoking hydrophobicity arguments, we have created SAMs that do not desorb from the electrode surface in aqueous physiological solutions and biological fluids. These SAMs, formed from 1-hexanethiol solutions, decrease the voltammetric charging currents of E-AB sensors by 3-fold relative to standard monolayers of 6-mercapto-1-hexanol, increase the total faradaic current, and alter the electron transfer kinetics of the platform. Moreover, the stability of our new SAMs enables uninterrupted, continuous E-AB interrogation for several days in biological fluids, like undiluted serum, at a physiological temperature of 37 °C.
Electrochemical aptamer-based (E-AB) sensors achieve highly precise measurements of specific molecular targets in untreated biological fluids. This unique ability, together with their measurement frequency of seconds or faster, has enabled the real-time monitoring of drug pharmacokinetics in live animals with unprecedented temporal resolution. However, one important weakness of E-AB sensors is that their bioelectronic interface degrades upon continuous electrochemical interrogationa process typically seen as a drop in faradaic and an increase in charging currents over time. This progressive degradation limits their in vivo operational life to 12 h at best, a period that is much shorter than the elimination half-life of the vast majority of drugs in humans. Thus, there is a critical need to develop novel E-AB interfaces that resist continuous electrochemical interrogation in biological fluids for prolonged periods. In response, our group is pursuing the development of better packed, more stable self-assembled monolayers (SAMs) to improve the signaling and extend the operational life of in vivo E-AB sensors from hours to days. By invoking hydrophobicity arguments, we have created SAMs that do not desorb from the electrode surface in aqueous physiological solutions and biological fluids. These SAMs, formed from 1-hexanethiol solutions, decrease the voltammetric charging currents of E-AB sensors by 3-fold relative to standard monolayers of 6-mercapto-1-hexanol, increase the total faradaic current, and alter the electron transfer kinetics of the platform. Moreover, the stability of our new SAMs enables uninterrupted, continuous E-AB interrogation for several days in biological fluids, like undiluted serum, at a physiological temperature of 37 °C.
Author Arroyo-Currás, Netzahualcóyotl
Shaver, Alexander
Curtis, Samuel D
AuthorAffiliation Department of Chemical and Biomolecular Engineering, Whiting School of Engineering
Department of Pharmacology and Molecular Sciences
AuthorAffiliation_xml – name: Department of Pharmacology and Molecular Sciences
– name: Department of Chemical and Biomolecular Engineering, Whiting School of Engineering
Author_xml – sequence: 1
  givenname: Alexander
  orcidid: 0000-0002-5478-5291
  surname: Shaver
  fullname: Shaver, Alexander
  organization: Department of Pharmacology and Molecular Sciences
– sequence: 2
  givenname: Samuel D
  surname: Curtis
  fullname: Curtis, Samuel D
  organization: Department of Pharmacology and Molecular Sciences
– sequence: 3
  givenname: Netzahualcóyotl
  orcidid: 0000-0002-2740-6276
  surname: Arroyo-Currás
  fullname: Arroyo-Currás, Netzahualcóyotl
  email: netzarroyo@jhmi.edu
  organization: Department of Chemical and Biomolecular Engineering, Whiting School of Engineering
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32040915$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAQhi1URD_gyhH5iBBZHMdO4uO22hakRT20nKOJd7Lr4tjBdg77T_i5uN2lB6SK01jj5xnL856TE-cdEvK-ZIuS8fIL6AijWaie86qVr8hZqYQoWi75yfNZiFNyHuMDY3XFmXxDTnMRTJXyjPxe2p_gMO2Mt_S7d97CHgNduQ29CX6eIl0OA-pE0w7p2rttcY9hpLcTBkjGO7D0LkFvrEl7Ctm6M9vcNG5L_UBXNqvB6x2ORoP9TJdTghFDcQkRM4su-hCpcfQyv--3jxC9trPZxLfk9QA24rtjvSA_rlf3V1-L9e3Nt6vlugBRq1SgQjmIWtbAUbSy6aXmTambHkEpJbmuGtnWWNci_wKHgZdMYK1ls2l4W-XrC_LxMHcK_teMMXWjiRqtzVvxc-y4YEzIPLn5P1rJSrZcPaEfjujcj7jppmBGCPvu7-IzsDgAOvgYAw7PSMm6x2S7Q7LdMdksiH8EbdJTBCmAsS9rnw5a7ncPfg45nPgS_Afvyrgi
CitedBy_id crossref_primary_10_1016_j_bbrc_2023_05_032
crossref_primary_10_1146_annurev_anchem_061417_125655
crossref_primary_10_1002_anie_202312975
crossref_primary_10_1002_chem_202303681
crossref_primary_10_1021_acsami_2c22741
crossref_primary_10_1021_acsami_3c06148
crossref_primary_10_1021_acsami_4c21790
crossref_primary_10_1039_D2AN01901A
crossref_primary_10_1021_acssensors_0c01085
crossref_primary_10_1021_acssensors_0c02455
crossref_primary_10_1021_acssensors_2c01428
crossref_primary_10_1016_j_coelec_2022_101123
crossref_primary_10_1039_D4MA00648H
crossref_primary_10_1016_j_snb_2023_133903
crossref_primary_10_1021_acs_langmuir_1c00166
crossref_primary_10_1149_2754_2726_accd7e
crossref_primary_10_1002_agt2_186
crossref_primary_10_1016_j_snb_2021_131086
crossref_primary_10_1021_acs_analchem_1c00085
crossref_primary_10_1016_j_coelec_2023_101361
crossref_primary_10_1016_j_bios_2025_117229
crossref_primary_10_1021_acsapm_1c00575
crossref_primary_10_1016_j_bios_2022_114374
crossref_primary_10_1016_j_talanta_2023_125026
crossref_primary_10_1007_s00216_022_04015_5
crossref_primary_10_1021_acssensors_4c00861
crossref_primary_10_1016_j_coelec_2021_100902
crossref_primary_10_1039_D3TC03733A
crossref_primary_10_1002_bio_4511
crossref_primary_10_1016_j_ijbiomac_2024_137325
crossref_primary_10_1016_j_electacta_2025_146097
crossref_primary_10_1021_acsapm_3c02206
crossref_primary_10_2174_1389201021999200918152721
crossref_primary_10_1016_j_ijoes_2024_100858
crossref_primary_10_1021_acs_analchem_1c04697
crossref_primary_10_1021_acssensors_2c02469
crossref_primary_10_1002_adfm_202208534
crossref_primary_10_1002_ange_202410076
crossref_primary_10_1039_D3EW00684K
crossref_primary_10_1002_elan_202300387
crossref_primary_10_1021_acs_analchem_2c00829
crossref_primary_10_1021_acs_analchem_2c00069
crossref_primary_10_1109_TBME_2022_3203026
crossref_primary_10_1021_acs_langmuir_4c00972
crossref_primary_10_1021_acselectrochem_4c00068
crossref_primary_10_1039_D0AY02256J
crossref_primary_10_1002_adsr_202300132
crossref_primary_10_1002_adhm_202201501
crossref_primary_10_1021_acssensors_2c00995
crossref_primary_10_1021_acs_analchem_0c03109
crossref_primary_10_1021_acs_jpcc_1c00336
crossref_primary_10_1016_j_bios_2023_115783
crossref_primary_10_1002_anie_202410076
crossref_primary_10_1002_ange_202312975
crossref_primary_10_1038_s41587_023_02059_1
crossref_primary_10_2174_0115734110286784231221054217
crossref_primary_10_1021_acs_analchem_0c05024
crossref_primary_10_1016_j_bioelechem_2023_108479
crossref_primary_10_1021_acs_langmuir_4c00585
crossref_primary_10_1073_pnas_2311279121
crossref_primary_10_3390_chemosensors13030092
crossref_primary_10_1021_acssensors_3c01624
crossref_primary_10_1038_s41557_021_00644_y
crossref_primary_10_1039_D4CS00001C
crossref_primary_10_1149_2754_2726_acc4d9
crossref_primary_10_1039_D4AN00241E
crossref_primary_10_1007_s00216_023_05047_1
crossref_primary_10_1002_advs_202306716
crossref_primary_10_1021_acs_analchem_2c05158
crossref_primary_10_1021_acssensors_2c01910
crossref_primary_10_1021_acssensors_2c02403
crossref_primary_10_1016_j_microc_2024_110450
crossref_primary_10_1149_2754_2726_ad304a
crossref_primary_10_1016_j_aca_2021_339377
crossref_primary_10_1016_j_talanta_2024_127250
Cites_doi 10.1021/la00016a036
10.1002/anie.200500989
10.1063/1.472078
10.1016/j.bioelechem.2009.03.007
10.1126/science.252.5009.1164
10.1021/acs.analchem.6b02376
10.1021/ja056957p
10.1021/la00093a026
10.1021/ac4029054
10.1021/ac902595f
10.1016/j.colsurfa.2011.09.020
10.1021/acs.langmuir.5b01418
10.1021/acs.analchem.9b02553
10.1002/anie.201700748
10.1021/acs.jpcb.8b05075
10.1021/jacs.6b08671
10.1021/la020649c
10.1021/acssensors.9b01616
10.1021/cr960074m
10.1038/nprot.2007.413
10.1146/annurev-anchem-071015-041446
10.1021/acs.langmuir.7b00226
10.1016/0013-4686(95)00097-X
10.1021/ja000774f
10.1126/science.272.5265.1145
10.1073/pnas.2035257100
10.1021/acs.langmuir.9b00541
10.1021/ja00079a029
10.1021/ja038611p
10.1021/ac8021983
10.1073/pnas.1613458114
10.1115/1.4007698
10.1021/la00075a024
10.1002/pssa.200983321
10.1021/ja00076a032
10.1039/c39950001655
10.1016/0022-0728(88)85089-7
10.1021/acs.langmuir.8b01004
10.1021/la0611817
10.1021/jacs.7b05412
10.1126/scitranslmed.3007095
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1021/acsami.9b22385
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 11223
ExternalDocumentID 32040915
10_1021_acsami_9b22385
a4095779
Genre Evaluation Study
Journal Article
GroupedDBID -
23M
53G
55A
5GY
5VS
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
ED~
F5P
GNL
IH9
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
---
.K2
4.4
5ZA
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a469t-e9e5f4656a2e4857b5c271c7bea99952c37586e664feceff2104e6c57d72832c3
IEDL.DBID ACS
ISSN 1944-8244
1944-8252
IngestDate Thu Jul 10 18:35:19 EDT 2025
Fri Jul 11 04:11:36 EDT 2025
Thu Jan 02 22:57:35 EST 2025
Thu Apr 24 22:52:13 EDT 2025
Tue Jul 01 01:48:30 EDT 2025
Fri Feb 12 03:48:35 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords voltammetry
biosensor
DNA
self-assembled monolayer
hexanethiol
Language English
License http://pubs.acs.org/page/policy/authorchoice_termsofuse.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a469t-e9e5f4656a2e4857b5c271c7bea99952c37586e664feceff2104e6c57d72832c3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ORCID 0000-0002-5478-5291
0000-0002-2740-6276
OpenAccessLink https://pubs.acs.org/doi/pdf/10.1021/acsami.9b22385
PMID 32040915
PQID 2353582977
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2400458577
proquest_miscellaneous_2353582977
pubmed_primary_32040915
crossref_primary_10_1021_acsami_9b22385
crossref_citationtrail_10_1021_acsami_9b22385
acs_journals_10_1021_acsami_9b22385
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-04
PublicationDateYYYYMMDD 2020-03-04
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-04
  day: 04
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref7/cit7
References_xml – ident: ref6/cit6
  doi: 10.1021/la00016a036
– ident: ref25/cit25
  doi: 10.1002/anie.200500989
– ident: ref30/cit30
  doi: 10.1063/1.472078
– ident: ref28/cit28
  doi: 10.1016/j.bioelechem.2009.03.007
– ident: ref3/cit3
  doi: 10.1126/science.252.5009.1164
– ident: ref12/cit12
  doi: 10.1021/acs.analchem.6b02376
– ident: ref13/cit13
  doi: 10.1021/ja056957p
– ident: ref16/cit16
  doi: 10.1021/la00093a026
– ident: ref14/cit14
  doi: 10.1021/ac4029054
– ident: ref23/cit23
  doi: 10.1021/ac902595f
– ident: ref18/cit18
  doi: 10.1016/j.colsurfa.2011.09.020
– ident: ref21/cit21
  doi: 10.1021/acs.langmuir.5b01418
– ident: ref32/cit32
  doi: 10.1021/acs.analchem.9b02553
– ident: ref4/cit4
  doi: 10.1002/anie.201700748
– ident: ref40/cit40
  doi: 10.1021/acs.jpcb.8b05075
– ident: ref22/cit22
  doi: 10.1021/jacs.6b08671
– ident: ref39/cit39
  doi: 10.1021/la020649c
– ident: ref35/cit35
  doi: 10.1021/acssensors.9b01616
– ident: ref29/cit29
  doi: 10.1021/cr960074m
– ident: ref41/cit41
  doi: 10.1038/nprot.2007.413
– ident: ref11/cit11
  doi: 10.1146/annurev-anchem-071015-041446
– ident: ref34/cit34
  doi: 10.1021/acs.langmuir.7b00226
– ident: ref38/cit38
  doi: 10.1016/0013-4686(95)00097-X
– ident: ref1/cit1
  doi: 10.1021/ja000774f
– ident: ref33/cit33
  doi: 10.1126/science.272.5265.1145
– ident: ref26/cit26
  doi: 10.1073/pnas.2035257100
– ident: ref31/cit31
  doi: 10.1021/acs.langmuir.9b00541
– ident: ref9/cit9
  doi: 10.1021/ja00079a029
– ident: ref5/cit5
  doi: 10.1021/ja038611p
– ident: ref15/cit15
  doi: 10.1021/ac8021983
– ident: ref20/cit20
  doi: 10.1073/pnas.1613458114
– ident: ref7/cit7
  doi: 10.1115/1.4007698
– ident: ref8/cit8
  doi: 10.1021/la00075a024
– ident: ref10/cit10
  doi: 10.1002/pssa.200983321
– ident: ref2/cit2
  doi: 10.1021/ja00076a032
– ident: ref27/cit27
  doi: 10.1039/c39950001655
– ident: ref37/cit37
  doi: 10.1016/0022-0728(88)85089-7
– ident: ref17/cit17
  doi: 10.1021/acs.langmuir.8b01004
– ident: ref19/cit19
  doi: 10.1021/la0611817
– ident: ref36/cit36
  doi: 10.1021/jacs.7b05412
– ident: ref24/cit24
  doi: 10.1126/scitranslmed.3007095
SSID ssj0063205
Score 2.5607162
Snippet Electrochemical aptamer-based (E-AB) sensors achieve highly precise measurements of specific molecular targets in untreated biological fluids. This unique...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 11214
SubjectTerms Aptamers, Nucleotide - chemistry
Biosensing Techniques - instrumentation
Biosensing Techniques - methods
blood serum
drugs
Electrochemical Techniques - instrumentation
Electrochemical Techniques - methods
electrochemistry
Electrodes
electron transfer
half life
Hexanols - chemistry
Humans
hydrophobicity
monitoring
pharmacokinetics
Serum - chemistry
Sulfhydryl Compounds - chemistry
temperature
thiols
voltammetry
Title Alkanethiol Monolayer End Groups Affect the Long-Term Operational Stability and Signaling of Electrochemical, Aptamer-Based Sensors in Biological Fluids
URI http://dx.doi.org/10.1021/acsami.9b22385
https://www.ncbi.nlm.nih.gov/pubmed/32040915
https://www.proquest.com/docview/2353582977
https://www.proquest.com/docview/2400458577
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELZaeqEH-qAP-tJUReKCKXHsJHvcol2hCtoDIHGLHHuyWrFNVpvsgf6S_tzOOFn6QEt7HyuOPfZ8nz3-RohdplylzqykbbGU2qKRmTscyBTRFd6XPnL83vn0S3J8oT9fmstf5x1_3-Cr6KN1DZfCGRQUyDJzXzxQCfkYg6Cjs9Wem8QqJCsSI9cyo4i1kme81Z6DkGv-DEJrkGWIMONHndxRE4QJObHk6mDZFgfu-23Zxn92_rHY6mEmDDu_eCLuYfVUPPxNfHBb_BjOriy_yZnWM6ClTRyX4DeMKg_hQKqBYcj1AIKIcFJXE3lOuzh8neOiP0AEQqoht_YaLLU6m04Y1VcTqEsYdeV1XK9HsA_DeWu_4UJ-orBJtsSe60UD0wq6aphsBOPZcuqbZ-JiPDo_OpZ9nQZpaaZbiQM0JeuuWYU6M2lhnEojlxZoCX4a5WIiJQkmiaZeY1kSy9SYOJP6lAslufi52KjqCl8KcKhS5dCybJvW3lMzfuMUYyiWduh3xAca0rxfZ00ertBVlHfjnPfjvCPkanpz10udc8WN2Vr7vRv7eSfysdby_cpbclqHfLlCM1Uvm1zFhh8dE5y-w4Y3TOJnbPOic7Wb75EHE9WOzKv_-sPXYlMx8edkOP1GbLSLJb4ldNQW78LC-Alqcgu-
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELaW5QAceC8sTyOQuODdjWMn6TGsWhXoLkjblfYWOfakqrYkVZMe4Jfwc5lxkvJSEVyjceLYY8839sw3jL0il6tQiRG4LRZCGdAisUcDEQPY3LnCBZbynU9Oo_G5en-hL3bYYZ8Lg52o8U21v8T_wS4QHOIzqogzyNGeJfoKu4pIRFKthvT4rN96o1D6mEV0zJVI0HD1LI1_tCdbZOtfbdEWgOkNzegW-7Tpoo8vuTxYN_mB_fobe-N__MNtdrMDnTxtteQO24HyLrvxExXhPfYtXVwaytCZVwuOCx09XgTjfFg67o-nap76yA-OgJFPqnImprin849LWHXHiRxxq4-0_cINtjqbzwjjlzNeFXzYFtuxHTvBG54uG_MZVuItGlGURV-6WtV8XvK2NiYJ8dFiPXf1fXY-Gk6Px6Kr2iAMznsjYAC6IBY2I0ElOs61lXFg4xwMglEtbYguSgRRpLDXUBTocyqIrI5dTGWTbLjHdsuqhIeMW5CxtGCIxE0p57AZZTyF4EunHbl99hKHNOtWXZ35C3UZZO04Z9047zPRz3JmO-Jzqr-x2Cr_eiO_bCk_tkq-6JUmw1VJVy04U9W6zmSoKQUZwfVfZGj7RG-NZB60Grf5HioyOt6BfvRPf_icXRtPTybZ5N3ph8fsuqQjAQqTU0_YbrNaw1PETU3-zK-V76OLFB8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdgSAgeGN-MDTACiRc8FsdO0sdstBowBtI6aW-RY1-qaiWpmvQB_hL-XO4ct-JDRfAanRPH9vl-Z9_9jrGX5HJVKjMCt8VKKANaZPZgIFIAWzpXuchSvvPH0-T4XL2_0Bchj5tyYbATLb6p9Zf4pNVzVwWGgegNPqeqOIMSbVqmr7JrdGdH9Rryo7PV9pvE0sctonOuRIbGa8XU-Ed7ske2_dUebQCZ3tiMttl43U0fY3K5v-zKffvtNwbH__yP2-xWAJ8871fLHXYF6rvs5k-UhPfY93x2aShTZ9rMOCo8er4IyvmwdtwfU7U89xEgHIEjP2nqiRjj3s4_zWERjhU54lcfcfuVG2x1Np0Q1q8nvKn4sC-6YwNLwWuezzvzBRbiEI0pyqJP3SxaPq15XyOThPhotpy69j47Hw3HR8ciVG8QBue_EzAAXREbm5GgMp2W2so0smkJBkGpljZGVyWBJFHYa6gq9D0VJFanLqXySTZ-wLbqpoZHjFuQqbRgiMxNKeewGWU-xeBLqB24HfYCh7QI2tcW_mJdRkU_zkUY5x0mVjNd2ECATnU4ZhvlX63l5z31x0bJ56uFU6B20pULzlSzbAsZa0pFRpD9FxnaRtFrI5mH_apbfw8XMzrgkX78T3_4jF3__HZUnLw7_bDLbkg6GaBoObXHtrrFEp4gfOrKp15dfgCCOBai
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alkanethiol+Monolayer+End+Groups+Affect+the+Long-Term+Operational+Stability+and+Signaling+of+Electrochemical%2C+Aptamer-Based+Sensors+in+Biological+Fluids&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Shaver%2C+Alexander&rft.au=Curtis%2C+Samuel+D&rft.au=Arroyo-Curr%C3%A1s%2C+Netzahualc%C3%B3yotl&rft.date=2020-03-04&rft.eissn=1944-8252&rft.volume=12&rft.issue=9&rft.spage=11214&rft_id=info:doi/10.1021%2Facsami.9b22385&rft_id=info%3Apmid%2F32040915&rft.externalDocID=32040915
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon