Alkanethiol Monolayer End Groups Affect the Long-Term Operational Stability and Signaling of Electrochemical, Aptamer-Based Sensors in Biological Fluids
Electrochemical aptamer-based (E-AB) sensors achieve highly precise measurements of specific molecular targets in untreated biological fluids. This unique ability, together with their measurement frequency of seconds or faster, has enabled the real-time monitoring of drug pharmacokinetics in live an...
Saved in:
Published in | ACS applied materials & interfaces Vol. 12; no. 9; pp. 11214 - 11223 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
04.03.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1944-8244 1944-8252 1944-8252 |
DOI | 10.1021/acsami.9b22385 |
Cover
Abstract | Electrochemical aptamer-based (E-AB) sensors achieve highly precise measurements of specific molecular targets in untreated biological fluids. This unique ability, together with their measurement frequency of seconds or faster, has enabled the real-time monitoring of drug pharmacokinetics in live animals with unprecedented temporal resolution. However, one important weakness of E-AB sensors is that their bioelectronic interface degrades upon continuous electrochemical interrogationa process typically seen as a drop in faradaic and an increase in charging currents over time. This progressive degradation limits their in vivo operational life to 12 h at best, a period that is much shorter than the elimination half-life of the vast majority of drugs in humans. Thus, there is a critical need to develop novel E-AB interfaces that resist continuous electrochemical interrogation in biological fluids for prolonged periods. In response, our group is pursuing the development of better packed, more stable self-assembled monolayers (SAMs) to improve the signaling and extend the operational life of in vivo E-AB sensors from hours to days. By invoking hydrophobicity arguments, we have created SAMs that do not desorb from the electrode surface in aqueous physiological solutions and biological fluids. These SAMs, formed from 1-hexanethiol solutions, decrease the voltammetric charging currents of E-AB sensors by 3-fold relative to standard monolayers of 6-mercapto-1-hexanol, increase the total faradaic current, and alter the electron transfer kinetics of the platform. Moreover, the stability of our new SAMs enables uninterrupted, continuous E-AB interrogation for several days in biological fluids, like undiluted serum, at a physiological temperature of 37 °C. |
---|---|
AbstractList | Electrochemical aptamer-based (E-AB) sensors achieve highly precise measurements of specific molecular targets in untreated biological fluids. This unique ability, together with their measurement frequency of seconds or faster, has enabled the real-time monitoring of drug pharmacokinetics in live animals with unprecedented temporal resolution. However, one important weakness of E-AB sensors is that their bioelectronic interface degrades upon continuous electrochemical interrogation-a process typically seen as a drop in faradaic and an increase in charging currents over time. This progressive degradation limits their in vivo operational life to 12 h at best, a period that is much shorter than the elimination half-life of the vast majority of drugs in humans. Thus, there is a critical need to develop novel E-AB interfaces that resist continuous electrochemical interrogation in biological fluids for prolonged periods. In response, our group is pursuing the development of better packed, more stable self-assembled monolayers (SAMs) to improve the signaling and extend the operational life of in vivo E-AB sensors from hours to days. By invoking hydrophobicity arguments, we have created SAMs that do not desorb from the electrode surface in aqueous physiological solutions and biological fluids. These SAMs, formed from 1-hexanethiol solutions, decrease the voltammetric charging currents of E-AB sensors by 3-fold relative to standard monolayers of 6-mercapto-1-hexanol, increase the total faradaic current, and alter the electron transfer kinetics of the platform. Moreover, the stability of our new SAMs enables uninterrupted, continuous E-AB interrogation for several days in biological fluids, like undiluted serum, at a physiological temperature of 37 °C. Electrochemical aptamer-based (E-AB) sensors achieve highly precise measurements of specific molecular targets in untreated biological fluids. This unique ability, together with their measurement frequency of seconds or faster, has enabled the real-time monitoring of drug pharmacokinetics in live animals with unprecedented temporal resolution. However, one important weakness of E-AB sensors is that their bioelectronic interface degrades upon continuous electrochemical interrogation-a process typically seen as a drop in faradaic and an increase in charging currents over time. This progressive degradation limits their in vivo operational life to 12 h at best, a period that is much shorter than the elimination half-life of the vast majority of drugs in humans. Thus, there is a critical need to develop novel E-AB interfaces that resist continuous electrochemical interrogation in biological fluids for prolonged periods. In response, our group is pursuing the development of better packed, more stable self-assembled monolayers (SAMs) to improve the signaling and extend the operational life of in vivo E-AB sensors from hours to days. By invoking hydrophobicity arguments, we have created SAMs that do not desorb from the electrode surface in aqueous physiological solutions and biological fluids. These SAMs, formed from 1-hexanethiol solutions, decrease the voltammetric charging currents of E-AB sensors by 3-fold relative to standard monolayers of 6-mercapto-1-hexanol, increase the total faradaic current, and alter the electron transfer kinetics of the platform. Moreover, the stability of our new SAMs enables uninterrupted, continuous E-AB interrogation for several days in biological fluids, like undiluted serum, at a physiological temperature of 37 °C.Electrochemical aptamer-based (E-AB) sensors achieve highly precise measurements of specific molecular targets in untreated biological fluids. This unique ability, together with their measurement frequency of seconds or faster, has enabled the real-time monitoring of drug pharmacokinetics in live animals with unprecedented temporal resolution. However, one important weakness of E-AB sensors is that their bioelectronic interface degrades upon continuous electrochemical interrogation-a process typically seen as a drop in faradaic and an increase in charging currents over time. This progressive degradation limits their in vivo operational life to 12 h at best, a period that is much shorter than the elimination half-life of the vast majority of drugs in humans. Thus, there is a critical need to develop novel E-AB interfaces that resist continuous electrochemical interrogation in biological fluids for prolonged periods. In response, our group is pursuing the development of better packed, more stable self-assembled monolayers (SAMs) to improve the signaling and extend the operational life of in vivo E-AB sensors from hours to days. By invoking hydrophobicity arguments, we have created SAMs that do not desorb from the electrode surface in aqueous physiological solutions and biological fluids. These SAMs, formed from 1-hexanethiol solutions, decrease the voltammetric charging currents of E-AB sensors by 3-fold relative to standard monolayers of 6-mercapto-1-hexanol, increase the total faradaic current, and alter the electron transfer kinetics of the platform. Moreover, the stability of our new SAMs enables uninterrupted, continuous E-AB interrogation for several days in biological fluids, like undiluted serum, at a physiological temperature of 37 °C. Electrochemical aptamer-based (E-AB) sensors achieve highly precise measurements of specific molecular targets in untreated biological fluids. This unique ability, together with their measurement frequency of seconds or faster, has enabled the real-time monitoring of drug pharmacokinetics in live animals with unprecedented temporal resolution. However, one important weakness of E-AB sensors is that their bioelectronic interface degrades upon continuous electrochemical interrogationa process typically seen as a drop in faradaic and an increase in charging currents over time. This progressive degradation limits their in vivo operational life to 12 h at best, a period that is much shorter than the elimination half-life of the vast majority of drugs in humans. Thus, there is a critical need to develop novel E-AB interfaces that resist continuous electrochemical interrogation in biological fluids for prolonged periods. In response, our group is pursuing the development of better packed, more stable self-assembled monolayers (SAMs) to improve the signaling and extend the operational life of in vivo E-AB sensors from hours to days. By invoking hydrophobicity arguments, we have created SAMs that do not desorb from the electrode surface in aqueous physiological solutions and biological fluids. These SAMs, formed from 1-hexanethiol solutions, decrease the voltammetric charging currents of E-AB sensors by 3-fold relative to standard monolayers of 6-mercapto-1-hexanol, increase the total faradaic current, and alter the electron transfer kinetics of the platform. Moreover, the stability of our new SAMs enables uninterrupted, continuous E-AB interrogation for several days in biological fluids, like undiluted serum, at a physiological temperature of 37 °C. |
Author | Arroyo-Currás, Netzahualcóyotl Shaver, Alexander Curtis, Samuel D |
AuthorAffiliation | Department of Chemical and Biomolecular Engineering, Whiting School of Engineering Department of Pharmacology and Molecular Sciences |
AuthorAffiliation_xml | – name: Department of Pharmacology and Molecular Sciences – name: Department of Chemical and Biomolecular Engineering, Whiting School of Engineering |
Author_xml | – sequence: 1 givenname: Alexander orcidid: 0000-0002-5478-5291 surname: Shaver fullname: Shaver, Alexander organization: Department of Pharmacology and Molecular Sciences – sequence: 2 givenname: Samuel D surname: Curtis fullname: Curtis, Samuel D organization: Department of Pharmacology and Molecular Sciences – sequence: 3 givenname: Netzahualcóyotl orcidid: 0000-0002-2740-6276 surname: Arroyo-Currás fullname: Arroyo-Currás, Netzahualcóyotl email: netzarroyo@jhmi.edu organization: Department of Chemical and Biomolecular Engineering, Whiting School of Engineering |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32040915$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1v1DAQhi1URD_gyhH5iBBZHMdO4uO22hakRT20nKOJd7Lr4tjBdg77T_i5uN2lB6SK01jj5xnL856TE-cdEvK-ZIuS8fIL6AijWaie86qVr8hZqYQoWi75yfNZiFNyHuMDY3XFmXxDTnMRTJXyjPxe2p_gMO2Mt_S7d97CHgNduQ29CX6eIl0OA-pE0w7p2rttcY9hpLcTBkjGO7D0LkFvrEl7Ctm6M9vcNG5L_UBXNqvB6x2ORoP9TJdTghFDcQkRM4su-hCpcfQyv--3jxC9trPZxLfk9QA24rtjvSA_rlf3V1-L9e3Nt6vlugBRq1SgQjmIWtbAUbSy6aXmTambHkEpJbmuGtnWWNci_wKHgZdMYK1ls2l4W-XrC_LxMHcK_teMMXWjiRqtzVvxc-y4YEzIPLn5P1rJSrZcPaEfjujcj7jppmBGCPvu7-IzsDgAOvgYAw7PSMm6x2S7Q7LdMdksiH8EbdJTBCmAsS9rnw5a7ncPfg45nPgS_Afvyrgi |
CitedBy_id | crossref_primary_10_1016_j_bbrc_2023_05_032 crossref_primary_10_1146_annurev_anchem_061417_125655 crossref_primary_10_1002_anie_202312975 crossref_primary_10_1002_chem_202303681 crossref_primary_10_1021_acsami_2c22741 crossref_primary_10_1021_acsami_3c06148 crossref_primary_10_1021_acsami_4c21790 crossref_primary_10_1039_D2AN01901A crossref_primary_10_1021_acssensors_0c01085 crossref_primary_10_1021_acssensors_0c02455 crossref_primary_10_1021_acssensors_2c01428 crossref_primary_10_1016_j_coelec_2022_101123 crossref_primary_10_1039_D4MA00648H crossref_primary_10_1016_j_snb_2023_133903 crossref_primary_10_1021_acs_langmuir_1c00166 crossref_primary_10_1149_2754_2726_accd7e crossref_primary_10_1002_agt2_186 crossref_primary_10_1016_j_snb_2021_131086 crossref_primary_10_1021_acs_analchem_1c00085 crossref_primary_10_1016_j_coelec_2023_101361 crossref_primary_10_1016_j_bios_2025_117229 crossref_primary_10_1021_acsapm_1c00575 crossref_primary_10_1016_j_bios_2022_114374 crossref_primary_10_1016_j_talanta_2023_125026 crossref_primary_10_1007_s00216_022_04015_5 crossref_primary_10_1021_acssensors_4c00861 crossref_primary_10_1016_j_coelec_2021_100902 crossref_primary_10_1039_D3TC03733A crossref_primary_10_1002_bio_4511 crossref_primary_10_1016_j_ijbiomac_2024_137325 crossref_primary_10_1016_j_electacta_2025_146097 crossref_primary_10_1021_acsapm_3c02206 crossref_primary_10_2174_1389201021999200918152721 crossref_primary_10_1016_j_ijoes_2024_100858 crossref_primary_10_1021_acs_analchem_1c04697 crossref_primary_10_1021_acssensors_2c02469 crossref_primary_10_1002_adfm_202208534 crossref_primary_10_1002_ange_202410076 crossref_primary_10_1039_D3EW00684K crossref_primary_10_1002_elan_202300387 crossref_primary_10_1021_acs_analchem_2c00829 crossref_primary_10_1021_acs_analchem_2c00069 crossref_primary_10_1109_TBME_2022_3203026 crossref_primary_10_1021_acs_langmuir_4c00972 crossref_primary_10_1021_acselectrochem_4c00068 crossref_primary_10_1039_D0AY02256J crossref_primary_10_1002_adsr_202300132 crossref_primary_10_1002_adhm_202201501 crossref_primary_10_1021_acssensors_2c00995 crossref_primary_10_1021_acs_analchem_0c03109 crossref_primary_10_1021_acs_jpcc_1c00336 crossref_primary_10_1016_j_bios_2023_115783 crossref_primary_10_1002_anie_202410076 crossref_primary_10_1002_ange_202312975 crossref_primary_10_1038_s41587_023_02059_1 crossref_primary_10_2174_0115734110286784231221054217 crossref_primary_10_1021_acs_analchem_0c05024 crossref_primary_10_1016_j_bioelechem_2023_108479 crossref_primary_10_1021_acs_langmuir_4c00585 crossref_primary_10_1073_pnas_2311279121 crossref_primary_10_3390_chemosensors13030092 crossref_primary_10_1021_acssensors_3c01624 crossref_primary_10_1038_s41557_021_00644_y crossref_primary_10_1039_D4CS00001C crossref_primary_10_1149_2754_2726_acc4d9 crossref_primary_10_1039_D4AN00241E crossref_primary_10_1007_s00216_023_05047_1 crossref_primary_10_1002_advs_202306716 crossref_primary_10_1021_acs_analchem_2c05158 crossref_primary_10_1021_acssensors_2c01910 crossref_primary_10_1021_acssensors_2c02403 crossref_primary_10_1016_j_microc_2024_110450 crossref_primary_10_1149_2754_2726_ad304a crossref_primary_10_1016_j_aca_2021_339377 crossref_primary_10_1016_j_talanta_2024_127250 |
Cites_doi | 10.1021/la00016a036 10.1002/anie.200500989 10.1063/1.472078 10.1016/j.bioelechem.2009.03.007 10.1126/science.252.5009.1164 10.1021/acs.analchem.6b02376 10.1021/ja056957p 10.1021/la00093a026 10.1021/ac4029054 10.1021/ac902595f 10.1016/j.colsurfa.2011.09.020 10.1021/acs.langmuir.5b01418 10.1021/acs.analchem.9b02553 10.1002/anie.201700748 10.1021/acs.jpcb.8b05075 10.1021/jacs.6b08671 10.1021/la020649c 10.1021/acssensors.9b01616 10.1021/cr960074m 10.1038/nprot.2007.413 10.1146/annurev-anchem-071015-041446 10.1021/acs.langmuir.7b00226 10.1016/0013-4686(95)00097-X 10.1021/ja000774f 10.1126/science.272.5265.1145 10.1073/pnas.2035257100 10.1021/acs.langmuir.9b00541 10.1021/ja00079a029 10.1021/ja038611p 10.1021/ac8021983 10.1073/pnas.1613458114 10.1115/1.4007698 10.1021/la00075a024 10.1002/pssa.200983321 10.1021/ja00076a032 10.1039/c39950001655 10.1016/0022-0728(88)85089-7 10.1021/acs.langmuir.8b01004 10.1021/la0611817 10.1021/jacs.7b05412 10.1126/scitranslmed.3007095 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1021/acsami.9b22385 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1944-8252 |
EndPage | 11223 |
ExternalDocumentID | 32040915 10_1021_acsami_9b22385 a4095779 |
Genre | Evaluation Study Journal Article |
GroupedDBID | - 23M 53G 55A 5GY 5VS 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED ED~ F5P GNL IH9 JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ --- .K2 4.4 5ZA 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ BAANH CITATION CUPRZ GGK CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a469t-e9e5f4656a2e4857b5c271c7bea99952c37586e664feceff2104e6c57d72832c3 |
IEDL.DBID | ACS |
ISSN | 1944-8244 1944-8252 |
IngestDate | Thu Jul 10 18:35:19 EDT 2025 Fri Jul 11 04:11:36 EDT 2025 Thu Jan 02 22:57:35 EST 2025 Thu Apr 24 22:52:13 EDT 2025 Tue Jul 01 01:48:30 EDT 2025 Fri Feb 12 03:48:35 EST 2021 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | voltammetry biosensor DNA self-assembled monolayer hexanethiol |
Language | English |
License | http://pubs.acs.org/page/policy/authorchoice_termsofuse.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a469t-e9e5f4656a2e4857b5c271c7bea99952c37586e664feceff2104e6c57d72832c3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ORCID | 0000-0002-5478-5291 0000-0002-2740-6276 |
OpenAccessLink | https://pubs.acs.org/doi/pdf/10.1021/acsami.9b22385 |
PMID | 32040915 |
PQID | 2353582977 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2400458577 proquest_miscellaneous_2353582977 pubmed_primary_32040915 crossref_primary_10_1021_acsami_9b22385 crossref_citationtrail_10_1021_acsami_9b22385 acs_journals_10_1021_acsami_9b22385 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-04 |
PublicationDateYYYYMMDD | 2020-03-04 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-04 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS applied materials & interfaces |
PublicationTitleAlternate | ACS Appl. Mater. Interfaces |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref7/cit7 |
References_xml | – ident: ref6/cit6 doi: 10.1021/la00016a036 – ident: ref25/cit25 doi: 10.1002/anie.200500989 – ident: ref30/cit30 doi: 10.1063/1.472078 – ident: ref28/cit28 doi: 10.1016/j.bioelechem.2009.03.007 – ident: ref3/cit3 doi: 10.1126/science.252.5009.1164 – ident: ref12/cit12 doi: 10.1021/acs.analchem.6b02376 – ident: ref13/cit13 doi: 10.1021/ja056957p – ident: ref16/cit16 doi: 10.1021/la00093a026 – ident: ref14/cit14 doi: 10.1021/ac4029054 – ident: ref23/cit23 doi: 10.1021/ac902595f – ident: ref18/cit18 doi: 10.1016/j.colsurfa.2011.09.020 – ident: ref21/cit21 doi: 10.1021/acs.langmuir.5b01418 – ident: ref32/cit32 doi: 10.1021/acs.analchem.9b02553 – ident: ref4/cit4 doi: 10.1002/anie.201700748 – ident: ref40/cit40 doi: 10.1021/acs.jpcb.8b05075 – ident: ref22/cit22 doi: 10.1021/jacs.6b08671 – ident: ref39/cit39 doi: 10.1021/la020649c – ident: ref35/cit35 doi: 10.1021/acssensors.9b01616 – ident: ref29/cit29 doi: 10.1021/cr960074m – ident: ref41/cit41 doi: 10.1038/nprot.2007.413 – ident: ref11/cit11 doi: 10.1146/annurev-anchem-071015-041446 – ident: ref34/cit34 doi: 10.1021/acs.langmuir.7b00226 – ident: ref38/cit38 doi: 10.1016/0013-4686(95)00097-X – ident: ref1/cit1 doi: 10.1021/ja000774f – ident: ref33/cit33 doi: 10.1126/science.272.5265.1145 – ident: ref26/cit26 doi: 10.1073/pnas.2035257100 – ident: ref31/cit31 doi: 10.1021/acs.langmuir.9b00541 – ident: ref9/cit9 doi: 10.1021/ja00079a029 – ident: ref5/cit5 doi: 10.1021/ja038611p – ident: ref15/cit15 doi: 10.1021/ac8021983 – ident: ref20/cit20 doi: 10.1073/pnas.1613458114 – ident: ref7/cit7 doi: 10.1115/1.4007698 – ident: ref8/cit8 doi: 10.1021/la00075a024 – ident: ref10/cit10 doi: 10.1002/pssa.200983321 – ident: ref2/cit2 doi: 10.1021/ja00076a032 – ident: ref27/cit27 doi: 10.1039/c39950001655 – ident: ref37/cit37 doi: 10.1016/0022-0728(88)85089-7 – ident: ref17/cit17 doi: 10.1021/acs.langmuir.8b01004 – ident: ref19/cit19 doi: 10.1021/la0611817 – ident: ref36/cit36 doi: 10.1021/jacs.7b05412 – ident: ref24/cit24 doi: 10.1126/scitranslmed.3007095 |
SSID | ssj0063205 |
Score | 2.5607162 |
Snippet | Electrochemical aptamer-based (E-AB) sensors achieve highly precise measurements of specific molecular targets in untreated biological fluids. This unique... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 11214 |
SubjectTerms | Aptamers, Nucleotide - chemistry Biosensing Techniques - instrumentation Biosensing Techniques - methods blood serum drugs Electrochemical Techniques - instrumentation Electrochemical Techniques - methods electrochemistry Electrodes electron transfer half life Hexanols - chemistry Humans hydrophobicity monitoring pharmacokinetics Serum - chemistry Sulfhydryl Compounds - chemistry temperature thiols voltammetry |
Title | Alkanethiol Monolayer End Groups Affect the Long-Term Operational Stability and Signaling of Electrochemical, Aptamer-Based Sensors in Biological Fluids |
URI | http://dx.doi.org/10.1021/acsami.9b22385 https://www.ncbi.nlm.nih.gov/pubmed/32040915 https://www.proquest.com/docview/2353582977 https://www.proquest.com/docview/2400458577 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELZaeqEH-qAP-tJUReKCKXHsJHvcol2hCtoDIHGLHHuyWrFNVpvsgf6S_tzOOFn6QEt7HyuOPfZ8nz3-RohdplylzqykbbGU2qKRmTscyBTRFd6XPnL83vn0S3J8oT9fmstf5x1_3-Cr6KN1DZfCGRQUyDJzXzxQCfkYg6Cjs9Wem8QqJCsSI9cyo4i1kme81Z6DkGv-DEJrkGWIMONHndxRE4QJObHk6mDZFgfu-23Zxn92_rHY6mEmDDu_eCLuYfVUPPxNfHBb_BjOriy_yZnWM6ClTRyX4DeMKg_hQKqBYcj1AIKIcFJXE3lOuzh8neOiP0AEQqoht_YaLLU6m04Y1VcTqEsYdeV1XK9HsA_DeWu_4UJ-orBJtsSe60UD0wq6aphsBOPZcuqbZ-JiPDo_OpZ9nQZpaaZbiQM0JeuuWYU6M2lhnEojlxZoCX4a5WIiJQkmiaZeY1kSy9SYOJP6lAslufi52KjqCl8KcKhS5dCybJvW3lMzfuMUYyiWduh3xAca0rxfZ00ertBVlHfjnPfjvCPkanpz10udc8WN2Vr7vRv7eSfysdby_cpbclqHfLlCM1Uvm1zFhh8dE5y-w4Y3TOJnbPOic7Wb75EHE9WOzKv_-sPXYlMx8edkOP1GbLSLJb4ldNQW78LC-Alqcgu- |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELaW5QAceC8sTyOQuODdjWMn6TGsWhXoLkjblfYWOfakqrYkVZMe4Jfwc5lxkvJSEVyjceLYY8839sw3jL0il6tQiRG4LRZCGdAisUcDEQPY3LnCBZbynU9Oo_G5en-hL3bYYZ8Lg52o8U21v8T_wS4QHOIzqogzyNGeJfoKu4pIRFKthvT4rN96o1D6mEV0zJVI0HD1LI1_tCdbZOtfbdEWgOkNzegW-7Tpoo8vuTxYN_mB_fobe-N__MNtdrMDnTxtteQO24HyLrvxExXhPfYtXVwaytCZVwuOCx09XgTjfFg67o-nap76yA-OgJFPqnImprin849LWHXHiRxxq4-0_cINtjqbzwjjlzNeFXzYFtuxHTvBG54uG_MZVuItGlGURV-6WtV8XvK2NiYJ8dFiPXf1fXY-Gk6Px6Kr2iAMznsjYAC6IBY2I0ElOs61lXFg4xwMglEtbYguSgRRpLDXUBTocyqIrI5dTGWTbLjHdsuqhIeMW5CxtGCIxE0p57AZZTyF4EunHbl99hKHNOtWXZ35C3UZZO04Z9047zPRz3JmO-Jzqr-x2Cr_eiO_bCk_tkq-6JUmw1VJVy04U9W6zmSoKQUZwfVfZGj7RG-NZB60Grf5HioyOt6BfvRPf_icXRtPTybZ5N3ph8fsuqQjAQqTU0_YbrNaw1PETU3-zK-V76OLFB8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdgSAgeGN-MDTACiRc8FsdO0sdstBowBtI6aW-RY1-qaiWpmvQB_hL-XO4ct-JDRfAanRPH9vl-Z9_9jrGX5HJVKjMCt8VKKANaZPZgIFIAWzpXuchSvvPH0-T4XL2_0Bchj5tyYbATLb6p9Zf4pNVzVwWGgegNPqeqOIMSbVqmr7JrdGdH9Rryo7PV9pvE0sctonOuRIbGa8XU-Ed7ske2_dUebQCZ3tiMttl43U0fY3K5v-zKffvtNwbH__yP2-xWAJ8871fLHXYF6rvs5k-UhPfY93x2aShTZ9rMOCo8er4IyvmwdtwfU7U89xEgHIEjP2nqiRjj3s4_zWERjhU54lcfcfuVG2x1Np0Q1q8nvKn4sC-6YwNLwWuezzvzBRbiEI0pyqJP3SxaPq15XyOThPhotpy69j47Hw3HR8ciVG8QBue_EzAAXREbm5GgMp2W2so0smkJBkGpljZGVyWBJFHYa6gq9D0VJFanLqXySTZ-wLbqpoZHjFuQqbRgiMxNKeewGWU-xeBLqB24HfYCh7QI2tcW_mJdRkU_zkUY5x0mVjNd2ECATnU4ZhvlX63l5z31x0bJ56uFU6B20pULzlSzbAsZa0pFRpD9FxnaRtFrI5mH_apbfw8XMzrgkX78T3_4jF3__HZUnLw7_bDLbkg6GaBoObXHtrrFEp4gfOrKp15dfgCCOBai |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alkanethiol+Monolayer+End+Groups+Affect+the+Long-Term+Operational+Stability+and+Signaling+of+Electrochemical%2C+Aptamer-Based+Sensors+in+Biological+Fluids&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Shaver%2C+Alexander&rft.au=Curtis%2C+Samuel+D&rft.au=Arroyo-Curr%C3%A1s%2C+Netzahualc%C3%B3yotl&rft.date=2020-03-04&rft.eissn=1944-8252&rft.volume=12&rft.issue=9&rft.spage=11214&rft_id=info:doi/10.1021%2Facsami.9b22385&rft_id=info%3Apmid%2F32040915&rft.externalDocID=32040915 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon |