Digestion of Plant Dietary miRNAs Starts in the Mouth under the Protection of Coingested Food Components and Plant-Derived Exosome-like Nanoparticles

The regulatory functions of plant miRNAs on mammalian bodies are controversial, mainly because stability of the miRNAs in the digestive tract, as the prerequisite for their cross-kingdom effects, has somehow been overlooked. Hence, as the first stage of food ingestion, stability of plant miRNAs in h...

Full description

Saved in:
Bibliographic Details
Published inJournal of agricultural and food chemistry Vol. 70; no. 14; pp. 4316 - 4327
Main Authors Qin, Xinshu, Wang, Xingyu, Xu, Ke, Zhang, Yi, Ren, Xiaoyu, Qi, Bangran, Liang, Qian, Yang, Xingbin, Li, Lin, Li, Shiqi
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 13.04.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The regulatory functions of plant miRNAs on mammalian bodies are controversial, mainly because stability of the miRNAs in the digestive tract, as the prerequisite for their cross-kingdom effects, has somehow been overlooked. Hence, as the first stage of food ingestion, stability of plant miRNAs in human saliva has been investigated. The results show that plant miRNAs are of considerable resistance against salivary digestion, as surviving miRNAs more than 20 fM are detected. The stability varies dramatically, which can be explained by the difference in tertiary structure, governing their affinities to RNase. Surprisingly, miRNAs of low initial concentrations can end up with high survival rates after digestion. Plant miRNAs can be loaded into exosome-like nanoparticles (ELNs) and microcapsules formed by food components, both of which protect the miRNAs from being degraded in human saliva. Overall, plant miRNAs can apply certain strategies to maintain constant concentrations, paving the way for their potential cross-kingdom effects.
AbstractList The regulatory functions of plant miRNAs on mammalian bodies are controversial, mainly because stability of the miRNAs in the digestive tract, as the prerequisite for their cross-kingdom effects, has somehow been overlooked. Hence, as the first stage of food ingestion, stability of plant miRNAs in human saliva has been investigated. The results show that plant miRNAs are of considerable resistance against salivary digestion, as surviving miRNAs more than 20 fM are detected. The stability varies dramatically, which can be explained by the difference in tertiary structure, governing their affinities to RNase. Surprisingly, miRNAs of low initial concentrations can end up with high survival rates after digestion. Plant miRNAs can be loaded into exosome-like nanoparticles (ELNs) and microcapsules formed by food components, both of which protect the miRNAs from being degraded in human saliva. Overall, plant miRNAs can apply certain strategies to maintain constant concentrations, paving the way for their potential cross-kingdom effects
The regulatory functions of plant miRNAs on mammalian bodies are controversial, mainly because stability of the miRNAs in the digestive tract, as the prerequisite for their cross-kingdom effects, has somehow been overlooked. Hence, as the first stage of food ingestion, stability of plant miRNAs in human saliva has been investigated. The results show that plant miRNAs are of considerable resistance against salivary digestion, as surviving miRNAs more than 20 fM are detected. The stability varies dramatically, which can be explained by the difference in tertiary structure, governing their affinities to RNase. Surprisingly, miRNAs of low initial concentrations can end up with high survival rates after digestion. Plant miRNAs can be loaded into exosome-like nanoparticles (ELNs) and microcapsules formed by food components, both of which protect the miRNAs from being degraded in human saliva. Overall, plant miRNAs can apply certain strategies to maintain constant concentrations, paving the way for their potential cross-kingdom effects.The regulatory functions of plant miRNAs on mammalian bodies are controversial, mainly because stability of the miRNAs in the digestive tract, as the prerequisite for their cross-kingdom effects, has somehow been overlooked. Hence, as the first stage of food ingestion, stability of plant miRNAs in human saliva has been investigated. The results show that plant miRNAs are of considerable resistance against salivary digestion, as surviving miRNAs more than 20 fM are detected. The stability varies dramatically, which can be explained by the difference in tertiary structure, governing their affinities to RNase. Surprisingly, miRNAs of low initial concentrations can end up with high survival rates after digestion. Plant miRNAs can be loaded into exosome-like nanoparticles (ELNs) and microcapsules formed by food components, both of which protect the miRNAs from being degraded in human saliva. Overall, plant miRNAs can apply certain strategies to maintain constant concentrations, paving the way for their potential cross-kingdom effects.
The regulatory functions of plant miRNAs on mammalian bodies are controversial, mainly because stability of the miRNAs in the digestive tract, as the prerequisite for their cross-kingdom effects, has somehow been overlooked. Hence, as the first stage of food ingestion, stability of plant miRNAs in human saliva has been investigated. The results show that plant miRNAs are of considerable resistance against salivary digestion, as surviving miRNAs more than 20 fM are detected. The stability varies dramatically, which can be explained by the difference in tertiary structure, governing their affinities to RNase. Surprisingly, miRNAs of low initial concentrations can end up with high survival rates after digestion. Plant miRNAs can be loaded into exosome-like nanoparticles (ELNs) and microcapsules formed by food components, both of which protect the miRNAs from being degraded in human saliva. Overall, plant miRNAs can apply certain strategies to maintain constant concentrations, paving the way for their potential cross-kingdom effects.
Author Liang, Qian
Li, Lin
Wang, Xingyu
Xu, Ke
Ren, Xiaoyu
Li, Shiqi
Qin, Xinshu
Zhang, Yi
Yang, Xingbin
Qi, Bangran
AuthorAffiliation Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science
Department of Material Science and Engineering, Queen Mary University of London Engineering School
Santa Barbara City College
Department of Joint Surgery, Hong Hui Hospital
IPREM, E2S UPPA, CNRS
AuthorAffiliation_xml – name: Department of Joint Surgery, Hong Hui Hospital
– name: Santa Barbara City College
– name: Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science
– name: IPREM, E2S UPPA, CNRS
– name: Department of Material Science and Engineering, Queen Mary University of London Engineering School
Author_xml – sequence: 1
  givenname: Xinshu
  surname: Qin
  fullname: Qin, Xinshu
  organization: Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science
– sequence: 2
  givenname: Xingyu
  orcidid: 0000-0003-4000-464X
  surname: Wang
  fullname: Wang, Xingyu
  email: wangxingyu@snnu.edu.cn
  organization: Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science
– sequence: 3
  givenname: Ke
  surname: Xu
  fullname: Xu, Ke
  organization: Department of Joint Surgery, Hong Hui Hospital
– sequence: 4
  givenname: Yi
  surname: Zhang
  fullname: Zhang, Yi
  organization: IPREM, E2S UPPA, CNRS
– sequence: 5
  givenname: Xiaoyu
  surname: Ren
  fullname: Ren, Xiaoyu
  organization: Department of Joint Surgery, Hong Hui Hospital
– sequence: 6
  givenname: Bangran
  surname: Qi
  fullname: Qi, Bangran
  organization: Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science
– sequence: 7
  givenname: Qian
  surname: Liang
  fullname: Liang, Qian
  organization: Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science
– sequence: 8
  givenname: Xingbin
  orcidid: 0000-0002-8039-0525
  surname: Yang
  fullname: Yang, Xingbin
  email: xbyang@snnu.edu.cn
  organization: Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science
– sequence: 9
  givenname: Lin
  surname: Li
  fullname: Li, Lin
  organization: Santa Barbara City College
– sequence: 10
  givenname: Shiqi
  surname: Li
  fullname: Li, Shiqi
  organization: Department of Material Science and Engineering, Queen Mary University of London Engineering School
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35352925$$D View this record in MEDLINE/PubMed
https://univ-pau.hal.science/hal-03651870$$DView record in HAL
BookMark eNqNkk1v1DAQhi1URLeFOyfkI0hksZ04jo-r3ZYiLaXi42w5tsO6JPZiOxX9If2_OM22ByQQp9HYzzue1zMn4Mh5ZwB4idESI4LfSRWX17JTS6wQYyV6AhaYElRQjJsjsECZKRpa42NwEuM1QqihDD0DxyUtKeGELsDdxn43MVnvoO_gVS9dghtrkgy3cLCfL1cRfslJitA6mHYGfvRj2sHRaRPu86vgk1EPBdbeuqme0fDce53zYZ9bdlkvnZ7rFxsT7E0mzn756AdT9PaHgZfS-X1-yKrexOfgaSf7aF4c4in4dn72dX1RbD-9_7BebQtZ1TwVkrSVKiVjWqNGS0J1tkU0qTjrUNkSxpWsVA4lx7yuOkyx5pJz09aMylaXp-DNXHcne7EPdsi2hZdWXKy2YjpDZU1xw9ANzuzrmd0H_3PMHsVgozJ9tmT8GAWpa4xKVPH_QSuaDTBMM_rqgI7tYPRjEw8TygCaARV8jMF0jwhGYloCkZdATEsgDkuQJfUfEmWTnEaUgrT9v4RvZ-H9jR-Dy5__d_w3iC3HJQ
CitedBy_id crossref_primary_10_1271_kagakutoseibutsu_61_78
crossref_primary_10_1021_acsomega_3c09633
crossref_primary_10_3389_fphar_2023_1272241
crossref_primary_10_3390_biomedicines11041053
crossref_primary_10_1021_acs_jafc_3c09511
crossref_primary_10_1002_adhm_202401466
crossref_primary_10_1021_acs_jafc_3c06104
crossref_primary_10_3390_cells11142232
crossref_primary_10_1080_10408398_2025_2479066
crossref_primary_10_3390_separations10030218
crossref_primary_10_1039_D3FO03503D
crossref_primary_10_1093_bbb_zbae198
crossref_primary_10_1021_acsfoodscitech_3c00210
crossref_primary_10_1016_j_trac_2023_117274
crossref_primary_10_3390_biomedicines11071806
crossref_primary_10_3389_fpls_2024_1512047
crossref_primary_10_1186_s12951_023_02193_7
crossref_primary_10_1016_j_apsb_2023_08_033
crossref_primary_10_1007_s13346_024_01621_x
crossref_primary_10_1021_acs_jafc_3c03042
crossref_primary_10_3390_biomedicines11061554
crossref_primary_10_22141_2224_0551_18_6_2023_1640
crossref_primary_10_1016_j_fochms_2025_100245
crossref_primary_10_1016_j_jare_2024_01_035
crossref_primary_10_1016_j_addr_2023_114774
crossref_primary_10_1016_j_omtn_2022_12_015
crossref_primary_10_1016_j_jep_2023_116969
crossref_primary_10_1002_adma_202311659
crossref_primary_10_1016_j_jddst_2023_104200
crossref_primary_10_1039_D4FO00721B
Cites_doi 10.1038/cr.2011.158
10.1016/j.cis.2010.06.010
10.4161/rna.24909
10.1016/j.ijbiomac.2018.05.054
10.1016/j.jff.2017.05.009
10.1016/j.ceb.2012.03.006
10.1007/s00394-021-02720-y
10.1146/annurev.cellbio.042308.113417
10.1038/cr.2016.13
10.1016/j.cofs.2015.07.008
10.1371/journal.pone.0137516
10.1038/nsmb.1762
10.1002/mnfr.201600974
10.1038/cr.2014.130
10.1021/acs.jafc.1c04737
10.1093/bioinformatics/bth374
10.4161/rna.25246
10.1038/srep25761
10.1038/s41420-020-0271-6
10.1038/nbt.2737
10.3390/nu7053184
10.1021/acs.jafc.1c04087
10.1038/cr.2015.25
10.1016/j.impact.2018.11.002
10.4161/rna.21619
10.1186/1471-2164-13-381
10.3390/biom11010087
10.1016/S0268-005X(03)00097-3
10.1261/rna.2183803
10.1038/srep26834
10.1016/j.jnutbio.2021.108627
10.1016/j.cell.2009.01.002
10.1039/D1TB00300C
10.1006/jmbi.1994.0130
10.1093/nar/gni178
10.1039/C4RA05642F
10.1111/bph.15421
10.3390/nu10020215
10.1002/mnfr.201300729
10.1016/j.jnutbio.2014.12.002
10.1038/mtna.2014.66
10.1016/j.plipres.2008.12.001
10.1021/jf200841k
10.1021/jf2047515
10.1038/nature25027
10.1002/mnfr.201500137
10.1038/s41565-018-0232-x
10.1093/nar/18.16.4809
10.1126/science.1107130
10.1093/ilar.46.2.129
10.3389/fgene.2021.613197
10.1016/j.tifs.2018.02.001
ContentType Journal Article
Copyright 2022 American Chemical Society
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2022 American Chemical Society
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
1XC
DOI 10.1021/acs.jafc.1c07730
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE

AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1520-5118
EndPage 4327
ExternalDocumentID oai_HAL_hal_03651870v1
35352925
10_1021_acs_jafc_1c07730
d78709573
Genre Journal Article
GroupedDBID -
4.4
55A
5GY
5VS
7~N
85S
AABXI
ABFLS
ABFRP
ABMVS
ABUCX
ACGFS
ACJ
ACS
AEESW
AENEX
AFEFF
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
DU5
EBS
ED
F5P
GGK
GNL
GX1
IH9
JG
K2
LG6
P2P
ROL
TWZ
UI2
VF5
VG9
W1F
WH7
X
---
-~X
.K2
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACGFO
ADHLV
BAANH
CITATION
CUPRZ
ED~
JG~
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
1XC
ID FETCH-LOGICAL-a469t-a2b4c3a77dd08da25d3522d2497f03b279ca4c279391964f151d9a99eb675abd3
IEDL.DBID ACS
ISSN 0021-8561
1520-5118
IngestDate Sat Aug 23 06:31:11 EDT 2025
Thu Jul 10 23:46:38 EDT 2025
Fri Jul 11 12:26:45 EDT 2025
Thu Apr 03 07:02:34 EDT 2025
Tue Jul 01 01:40:08 EDT 2025
Thu Apr 24 22:57:12 EDT 2025
Fri Apr 15 03:57:32 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords plant xenomiRNAs
microcapsules
cross-kingdom regulation
oral digestion
food components
exosome-like nanoparticles
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a469t-a2b4c3a77dd08da25d3522d2497f03b279ca4c279391964f151d9a99eb675abd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4000-464X
0000-0002-8039-0525
0000-0003-1780-0963
0000-0002-1970-1478
PMID 35352925
PQID 2645469715
PQPubID 23479
PageCount 12
ParticipantIDs hal_primary_oai_HAL_hal_03651870v1
proquest_miscellaneous_2661030491
proquest_miscellaneous_2645469715
pubmed_primary_35352925
crossref_primary_10_1021_acs_jafc_1c07730
crossref_citationtrail_10_1021_acs_jafc_1c07730
acs_journals_10_1021_acs_jafc_1c07730
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-13
PublicationDateYYYYMMDD 2022-04-13
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-13
  day: 13
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of agricultural and food chemistry
PublicationTitleAlternate J. Agric. Food Chem
PublicationYear 2022
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref45/cit46
ref3/cit4
ref27/cit28
ref16/cit17
ref52/cit53
ref23/cit24
ref31/cit32
ref8/cit9
ref2/cit3
ref34/cit35
ref37/cit38
ref20/cit21
ref48/cit49
ref49/cit50
ref17/cit18
ref9/cit10
ref10/cit11
ref35/cit36
ref21/cit22
ref46/cit47
ref42/cit43
ref13/cit14
ref19/cit20
ref24/cit25
ref38/cit39
ref50/cit51
ref6/cit7
ref36/cit37
ref18/cit19
ref11/cit12
ref25/cit26
ref32/cit33
ref14/cit15
ref5/cit6
ref51/cit52
ref43/cit44
ref28/cit29
ref29/cit30
ref40/cit41
ref26/cit27
ref15/cit16
ref12/cit13
ref41/cit42
ref22/cit23
ref33/cit34
ref39/cit40
ref47/cit48
ref4/cit5
ref30/cit31
ref1/cit2
ref44/cit45
ref7/cit8
References_xml – ident: ref5/cit6
  doi: 10.1038/cr.2011.158
– ident: ref37/cit38
  doi: 10.1016/j.cis.2010.06.010
– ident: ref12/cit13
  doi: 10.4161/rna.24909
– ident: ref40/cit41
  doi: 10.1016/j.ijbiomac.2018.05.054
– ident: ref49/cit50
  doi: 10.1016/j.jff.2017.05.009
– ident: ref4/cit5
  doi: 10.1016/j.ceb.2012.03.006
– ident: ref52/cit53
  doi: 10.1007/s00394-021-02720-y
– ident: ref3/cit4
  doi: 10.1146/annurev.cellbio.042308.113417
– ident: ref8/cit9
  doi: 10.1038/cr.2016.13
– ident: ref33/cit34
  doi: 10.1016/j.cofs.2015.07.008
– ident: ref25/cit26
  doi: 10.1371/journal.pone.0137516
– ident: ref32/cit33
  doi: 10.1038/nsmb.1762
– ident: ref18/cit19
  doi: 10.1002/mnfr.201600974
– ident: ref7/cit8
  doi: 10.1038/cr.2014.130
– ident: ref50/cit51
  doi: 10.1021/acs.jafc.1c04737
– ident: ref23/cit24
  doi: 10.1093/bioinformatics/bth374
– ident: ref11/cit12
  doi: 10.4161/rna.25246
– ident: ref6/cit7
  doi: 10.1038/srep25761
– ident: ref20/cit21
  doi: 10.1038/s41420-020-0271-6
– ident: ref10/cit11
  doi: 10.1038/nbt.2737
– ident: ref15/cit16
  doi: 10.3390/nu7053184
– ident: ref17/cit18
  doi: 10.1021/acs.jafc.1c04087
– ident: ref46/cit47
  doi: 10.1038/cr.2015.25
– ident: ref19/cit20
  doi: 10.1016/j.impact.2018.11.002
– ident: ref9/cit10
  doi: 10.4161/rna.21619
– ident: ref14/cit15
  doi: 10.1186/1471-2164-13-381
– ident: ref42/cit43
  doi: 10.3390/biom11010087
– ident: ref36/cit37
  doi: 10.1016/S0268-005X(03)00097-3
– ident: ref1/cit2
  doi: 10.1261/rna.2183803
– ident: ref30/cit31
  doi: 10.1038/srep26834
– ident: ref47/cit48
  doi: 10.1016/j.jnutbio.2021.108627
– ident: ref2/cit3
  doi: 10.1016/j.cell.2009.01.002
– ident: ref22/cit23
  doi: 10.1039/D1TB00300C
– ident: ref29/cit30
  doi: 10.1006/jmbi.1994.0130
– ident: ref21/cit22
  doi: 10.1093/nar/gni178
– ident: ref26/cit27
  doi: 10.1039/C4RA05642F
– ident: ref51/cit52
  doi: 10.1111/bph.15421
– ident: ref13/cit14
  doi: 10.3390/nu10020215
– ident: ref41/cit42
  doi: 10.1002/mnfr.201300729
– ident: ref24/cit25
  doi: 10.1016/j.jnutbio.2014.12.002
– ident: ref27/cit28
  doi: 10.1038/mtna.2014.66
– ident: ref34/cit35
  doi: 10.1016/j.plipres.2008.12.001
– ident: ref38/cit39
  doi: 10.1021/jf200841k
– ident: ref39/cit40
  doi: 10.1021/jf2047515
– ident: ref48/cit49
  doi: 10.1038/nature25027
– ident: ref16/cit17
  doi: 10.1002/mnfr.201500137
– ident: ref44/cit45
  doi: 10.1038/s41565-018-0232-x
– ident: ref28/cit29
  doi: 10.1093/nar/18.16.4809
– ident: ref31/cit32
  doi: 10.1126/science.1107130
– ident: ref45/cit46
  doi: 10.1093/ilar.46.2.129
– ident: ref43/cit44
  doi: 10.3389/fgene.2021.613197
– ident: ref35/cit36
  doi: 10.1016/j.tifs.2018.02.001
SSID ssj0008570
Score 2.5248806
Snippet The regulatory functions of plant miRNAs on mammalian bodies are controversial, mainly because stability of the miRNAs in the digestive tract, as the...
SourceID hal
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4316
SubjectTerms Analytical chemistry
Animals
Bioactive Constituents, Metabolites, and Functions
Chemical Sciences
Digestion
digestive tract
food chemistry
Humans
ingestion
Mammals - metabolism
Material chemistry
microRNA
MicroRNAs - genetics
MicroRNAs - metabolism
Mouth - metabolism
Nanoparticles
or physical chemistry
Plants - metabolism
Polymers
ribonucleases
RNA, Plant - metabolism
saliva
Theoretical and
Title Digestion of Plant Dietary miRNAs Starts in the Mouth under the Protection of Coingested Food Components and Plant-Derived Exosome-like Nanoparticles
URI http://dx.doi.org/10.1021/acs.jafc.1c07730
https://www.ncbi.nlm.nih.gov/pubmed/35352925
https://www.proquest.com/docview/2645469715
https://www.proquest.com/docview/2661030491
https://univ-pau.hal.science/hal-03651870
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoucABynuhIIPgwCHbteMk6-Nq29UK0QoBlXqL_CxL2wQl2Qr4H_2_nYndRbxWPUWx7Eliz9ifPZNvCHktjFfegiGxlPlEGKkTqZRPYClwEsZfFBbPO_YP8vmheHeUHf2iyfnTg8_ZjjLt8KvyZsjMqAB93CA3eQ42jDBo-mk16yJRewjnYMkYQEF0Sf5LAi5Epv1tIdr4gmGQ_8OY_VozuxuSFrU9RSGGmJwMl50emp9_Ezhe4zO2yJ0IOekk6Mg9csNV98ntyXETaTfcA3IR_EwwRrT2FBMZdXR34TrV_KBni48Hk5YCKm26li4qCpCR7mPmPYo_oDX9_YdA9xAFTGs8LMSDVDqra0tx0qkrDNmgqrJBfrILun8ONfa-12195pLTxYmjMNnDLj4G6z0kh7O9z9N5EhM2JAp22V2iuBYmVUVh7WhsFc8swjsLO7zCj1LNC2mUMHBJJfKAeUAbViopnYZti9I2fUQ2K3idJ4Tm3iiZaq8zLYQDYUwrP9aW2xEzY50NyBvo0TIaXFv2vnTOyr4QurmM3TwgO1ejXJrIeo7JN07XtHi7avEtMH6sqfsKFGdVDam655P3JZYBMsgYTIbnbEBeXulVCbaLDhlVuXrZlhzp1HJZsGxdnRwzwQkJch4HpVw9L0VuHsmzp9fsjGfkFp51hcCjbbLZNUv3HDBVp1_0xnQJ2XkdLg
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZ2lwPsgfejPA2CA4d0aydp6mPU3apAW6FlV9qb5Sd0HwlK0hXwP_i_zCRpEAgqOEW1nIlrz9ifPeNvCHkZGa-8BUNiIfNBZIQOhFI-gKXACRj_KLF43jFfDKfH0duT-GSLsPVdGGhECZLK2on_k12A7WHZqfKmz8wgAbXcJlcAi3BU6nT8oZt8ka-9iepgwQiwQeuZ_JMEXI9M-ct6tP0JoyH_BjXrJWdygxx2ja0jTc76q0r3zbffeBz_69_cJNdbAErTRmNukS2X3Sa76ceiJeFwd8j3xusEI0ZzTzGtUUX3l65SxVd6sTxcpCUFjFpUJV1mFAAknWMePorX0Yr69_uG_KEVMM7x6BCPVekkzy3FKSjPMICDqsw28oN9sIRLqHHwJS_zCxecL88chakf9vRt6N5dcjw5OBpPgzZ9Q6Bgz10FiuvIhCpJrB2MrOKxRbBnYb-X-EGoeSKMigw8QoGsYB6whxVKCKdhE6O0De-RnQya84DQoTdKhNrrWEeRA2FMKz_SltsBMyMd98gr6FHZml8pa886Z7IuhG6WbTf3yN56sKVpOdAxFcf5hjded298bvg_NtR9AfrTVUPi7mk6k1gGOCFmMDVesh55vlYvCZaM7hmVuXxVSo7kakORsHhTnSHmhYsEyLnf6Gb3vRCZegSPH_5jZzwjV6dH85mcvVm8e0SucbzXgSSW4WOyUxUr9wTQVqWf1vb1A_hJJY0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELe2ISF4YHxTPg2CBx7c1flo6seoXVVgqyZgaG-RP6FsS6YknWD_x_7f3SVuJBBU8BTFsi-Ofec7-86_I-R1pJ10BgSJh9yxSAvFhJSOgSqwAuY_Sgyed-zPh7PD6P1RfLRB4tVdGOhEBZSqxomPUn1mnEcY4DtY_l063ed6kABrbpJr6LVDxk7Hn7oFGDHb28gOzkZgH3jv5J8ooE7S1S86afMbRkT-zdxs1M50m3zpOtxEmxz3l7Xq64vfsBz_-49uk1veEKVpyzl3yIbN75Kb6dfSg3HYe-Sy9T7BzNHCUUxvVNPJwtay_ElPFx_naUXBVi3rii5yCoYk3cd8fBSvpZXN-0ELAuEJjAs8QsTjVTotCkNxKSpyDOSgMjctfTYBiTiHGrs_iqo4texkcWwpqADY2_sQvvvkcLr7eTxjPo0Dk7D3rpkMVKRDmSTGDEZGBrFBo8_Avi9xg1AFidAy0vAIBaKDObBBjJBCWAWbGalM-IBs5dCdR4QOnZYiVE7FKoosEONKupEygRlwPVJxj7yBEc28GFZZ42EPeNYUwjBnfph7ZGc14Zn2WOiYkuNkTYu3XYuzFgdkTd1XwENdNQTwnqV7GZaBvRBzWCLPeY-8XLFYBhKNbhqZ22JZZQGCrA1FwuN1dYaYHy4SQOdhy5_d90JE7BFB_PgfB-MFuX4wmWZ77-YfnpAbAV7vQCzL8CnZqsulfQZGV62eNyJ2BVeQKBA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Digestion+of+Plant+Dietary+miRNAs+Starts+in+the+Mouth+under+the+Protection+of+Coingested+Food+Components+and+Plant-Derived+Exosome-like+Nanoparticles&rft.jtitle=Journal+of+agricultural+and+food+chemistry&rft.au=Qin%2C+Xinshu&rft.au=Wang%2C+Xingyu&rft.au=Xu%2C+Ke&rft.au=Zhang%2C+Yi&rft.date=2022-04-13&rft.eissn=1520-5118&rft.volume=70&rft.issue=14&rft.spage=4316&rft_id=info:doi/10.1021%2Facs.jafc.1c07730&rft_id=info%3Apmid%2F35352925&rft.externalDocID=35352925
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8561&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8561&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8561&client=summon