Digestion of Plant Dietary miRNAs Starts in the Mouth under the Protection of Coingested Food Components and Plant-Derived Exosome-like Nanoparticles
The regulatory functions of plant miRNAs on mammalian bodies are controversial, mainly because stability of the miRNAs in the digestive tract, as the prerequisite for their cross-kingdom effects, has somehow been overlooked. Hence, as the first stage of food ingestion, stability of plant miRNAs in h...
Saved in:
Published in | Journal of agricultural and food chemistry Vol. 70; no. 14; pp. 4316 - 4327 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
13.04.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The regulatory functions of plant miRNAs on mammalian bodies are controversial, mainly because stability of the miRNAs in the digestive tract, as the prerequisite for their cross-kingdom effects, has somehow been overlooked. Hence, as the first stage of food ingestion, stability of plant miRNAs in human saliva has been investigated. The results show that plant miRNAs are of considerable resistance against salivary digestion, as surviving miRNAs more than 20 fM are detected. The stability varies dramatically, which can be explained by the difference in tertiary structure, governing their affinities to RNase. Surprisingly, miRNAs of low initial concentrations can end up with high survival rates after digestion. Plant miRNAs can be loaded into exosome-like nanoparticles (ELNs) and microcapsules formed by food components, both of which protect the miRNAs from being degraded in human saliva. Overall, plant miRNAs can apply certain strategies to maintain constant concentrations, paving the way for their potential cross-kingdom effects. |
---|---|
AbstractList | The regulatory functions of plant miRNAs on mammalian bodies are controversial, mainly because stability of the miRNAs in the digestive tract, as the prerequisite for their cross-kingdom effects, has somehow been overlooked. Hence, as the first stage of food ingestion, stability of plant miRNAs in human saliva has been investigated. The results show that plant miRNAs are of considerable resistance against salivary digestion, as surviving miRNAs more than 20 fM are detected. The stability varies dramatically, which can be explained by the difference in tertiary structure, governing their affinities to RNase. Surprisingly, miRNAs of low initial concentrations can end up with high survival rates after digestion. Plant miRNAs can be loaded into exosome-like nanoparticles (ELNs) and microcapsules formed by food components, both of which protect the miRNAs from being degraded in human saliva. Overall, plant miRNAs can apply certain strategies to maintain constant concentrations, paving the way for their potential cross-kingdom effects The regulatory functions of plant miRNAs on mammalian bodies are controversial, mainly because stability of the miRNAs in the digestive tract, as the prerequisite for their cross-kingdom effects, has somehow been overlooked. Hence, as the first stage of food ingestion, stability of plant miRNAs in human saliva has been investigated. The results show that plant miRNAs are of considerable resistance against salivary digestion, as surviving miRNAs more than 20 fM are detected. The stability varies dramatically, which can be explained by the difference in tertiary structure, governing their affinities to RNase. Surprisingly, miRNAs of low initial concentrations can end up with high survival rates after digestion. Plant miRNAs can be loaded into exosome-like nanoparticles (ELNs) and microcapsules formed by food components, both of which protect the miRNAs from being degraded in human saliva. Overall, plant miRNAs can apply certain strategies to maintain constant concentrations, paving the way for their potential cross-kingdom effects.The regulatory functions of plant miRNAs on mammalian bodies are controversial, mainly because stability of the miRNAs in the digestive tract, as the prerequisite for their cross-kingdom effects, has somehow been overlooked. Hence, as the first stage of food ingestion, stability of plant miRNAs in human saliva has been investigated. The results show that plant miRNAs are of considerable resistance against salivary digestion, as surviving miRNAs more than 20 fM are detected. The stability varies dramatically, which can be explained by the difference in tertiary structure, governing their affinities to RNase. Surprisingly, miRNAs of low initial concentrations can end up with high survival rates after digestion. Plant miRNAs can be loaded into exosome-like nanoparticles (ELNs) and microcapsules formed by food components, both of which protect the miRNAs from being degraded in human saliva. Overall, plant miRNAs can apply certain strategies to maintain constant concentrations, paving the way for their potential cross-kingdom effects. The regulatory functions of plant miRNAs on mammalian bodies are controversial, mainly because stability of the miRNAs in the digestive tract, as the prerequisite for their cross-kingdom effects, has somehow been overlooked. Hence, as the first stage of food ingestion, stability of plant miRNAs in human saliva has been investigated. The results show that plant miRNAs are of considerable resistance against salivary digestion, as surviving miRNAs more than 20 fM are detected. The stability varies dramatically, which can be explained by the difference in tertiary structure, governing their affinities to RNase. Surprisingly, miRNAs of low initial concentrations can end up with high survival rates after digestion. Plant miRNAs can be loaded into exosome-like nanoparticles (ELNs) and microcapsules formed by food components, both of which protect the miRNAs from being degraded in human saliva. Overall, plant miRNAs can apply certain strategies to maintain constant concentrations, paving the way for their potential cross-kingdom effects. |
Author | Liang, Qian Li, Lin Wang, Xingyu Xu, Ke Ren, Xiaoyu Li, Shiqi Qin, Xinshu Zhang, Yi Yang, Xingbin Qi, Bangran |
AuthorAffiliation | Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science Department of Material Science and Engineering, Queen Mary University of London Engineering School Santa Barbara City College Department of Joint Surgery, Hong Hui Hospital IPREM, E2S UPPA, CNRS |
AuthorAffiliation_xml | – name: Department of Joint Surgery, Hong Hui Hospital – name: Santa Barbara City College – name: Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science – name: IPREM, E2S UPPA, CNRS – name: Department of Material Science and Engineering, Queen Mary University of London Engineering School |
Author_xml | – sequence: 1 givenname: Xinshu surname: Qin fullname: Qin, Xinshu organization: Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science – sequence: 2 givenname: Xingyu orcidid: 0000-0003-4000-464X surname: Wang fullname: Wang, Xingyu email: wangxingyu@snnu.edu.cn organization: Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science – sequence: 3 givenname: Ke surname: Xu fullname: Xu, Ke organization: Department of Joint Surgery, Hong Hui Hospital – sequence: 4 givenname: Yi surname: Zhang fullname: Zhang, Yi organization: IPREM, E2S UPPA, CNRS – sequence: 5 givenname: Xiaoyu surname: Ren fullname: Ren, Xiaoyu organization: Department of Joint Surgery, Hong Hui Hospital – sequence: 6 givenname: Bangran surname: Qi fullname: Qi, Bangran organization: Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science – sequence: 7 givenname: Qian surname: Liang fullname: Liang, Qian organization: Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science – sequence: 8 givenname: Xingbin orcidid: 0000-0002-8039-0525 surname: Yang fullname: Yang, Xingbin email: xbyang@snnu.edu.cn organization: Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science – sequence: 9 givenname: Lin surname: Li fullname: Li, Lin organization: Santa Barbara City College – sequence: 10 givenname: Shiqi surname: Li fullname: Li, Shiqi organization: Department of Material Science and Engineering, Queen Mary University of London Engineering School |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35352925$$D View this record in MEDLINE/PubMed https://univ-pau.hal.science/hal-03651870$$DView record in HAL |
BookMark | eNqNkk1v1DAQhi1URLeFOyfkI0hksZ04jo-r3ZYiLaXi42w5tsO6JPZiOxX9If2_OM22ByQQp9HYzzue1zMn4Mh5ZwB4idESI4LfSRWX17JTS6wQYyV6AhaYElRQjJsjsECZKRpa42NwEuM1QqihDD0DxyUtKeGELsDdxn43MVnvoO_gVS9dghtrkgy3cLCfL1cRfslJitA6mHYGfvRj2sHRaRPu86vgk1EPBdbeuqme0fDce53zYZ9bdlkvnZ7rFxsT7E0mzn756AdT9PaHgZfS-X1-yKrexOfgaSf7aF4c4in4dn72dX1RbD-9_7BebQtZ1TwVkrSVKiVjWqNGS0J1tkU0qTjrUNkSxpWsVA4lx7yuOkyx5pJz09aMylaXp-DNXHcne7EPdsi2hZdWXKy2YjpDZU1xw9ANzuzrmd0H_3PMHsVgozJ9tmT8GAWpa4xKVPH_QSuaDTBMM_rqgI7tYPRjEw8TygCaARV8jMF0jwhGYloCkZdATEsgDkuQJfUfEmWTnEaUgrT9v4RvZ-H9jR-Dy5__d_w3iC3HJQ |
CitedBy_id | crossref_primary_10_1271_kagakutoseibutsu_61_78 crossref_primary_10_1021_acsomega_3c09633 crossref_primary_10_3389_fphar_2023_1272241 crossref_primary_10_3390_biomedicines11041053 crossref_primary_10_1021_acs_jafc_3c09511 crossref_primary_10_1002_adhm_202401466 crossref_primary_10_1021_acs_jafc_3c06104 crossref_primary_10_3390_cells11142232 crossref_primary_10_1080_10408398_2025_2479066 crossref_primary_10_3390_separations10030218 crossref_primary_10_1039_D3FO03503D crossref_primary_10_1093_bbb_zbae198 crossref_primary_10_1021_acsfoodscitech_3c00210 crossref_primary_10_1016_j_trac_2023_117274 crossref_primary_10_3390_biomedicines11071806 crossref_primary_10_3389_fpls_2024_1512047 crossref_primary_10_1186_s12951_023_02193_7 crossref_primary_10_1016_j_apsb_2023_08_033 crossref_primary_10_1007_s13346_024_01621_x crossref_primary_10_1021_acs_jafc_3c03042 crossref_primary_10_3390_biomedicines11061554 crossref_primary_10_22141_2224_0551_18_6_2023_1640 crossref_primary_10_1016_j_fochms_2025_100245 crossref_primary_10_1016_j_jare_2024_01_035 crossref_primary_10_1016_j_addr_2023_114774 crossref_primary_10_1016_j_omtn_2022_12_015 crossref_primary_10_1016_j_jep_2023_116969 crossref_primary_10_1002_adma_202311659 crossref_primary_10_1016_j_jddst_2023_104200 crossref_primary_10_1039_D4FO00721B |
Cites_doi | 10.1038/cr.2011.158 10.1016/j.cis.2010.06.010 10.4161/rna.24909 10.1016/j.ijbiomac.2018.05.054 10.1016/j.jff.2017.05.009 10.1016/j.ceb.2012.03.006 10.1007/s00394-021-02720-y 10.1146/annurev.cellbio.042308.113417 10.1038/cr.2016.13 10.1016/j.cofs.2015.07.008 10.1371/journal.pone.0137516 10.1038/nsmb.1762 10.1002/mnfr.201600974 10.1038/cr.2014.130 10.1021/acs.jafc.1c04737 10.1093/bioinformatics/bth374 10.4161/rna.25246 10.1038/srep25761 10.1038/s41420-020-0271-6 10.1038/nbt.2737 10.3390/nu7053184 10.1021/acs.jafc.1c04087 10.1038/cr.2015.25 10.1016/j.impact.2018.11.002 10.4161/rna.21619 10.1186/1471-2164-13-381 10.3390/biom11010087 10.1016/S0268-005X(03)00097-3 10.1261/rna.2183803 10.1038/srep26834 10.1016/j.jnutbio.2021.108627 10.1016/j.cell.2009.01.002 10.1039/D1TB00300C 10.1006/jmbi.1994.0130 10.1093/nar/gni178 10.1039/C4RA05642F 10.1111/bph.15421 10.3390/nu10020215 10.1002/mnfr.201300729 10.1016/j.jnutbio.2014.12.002 10.1038/mtna.2014.66 10.1016/j.plipres.2008.12.001 10.1021/jf200841k 10.1021/jf2047515 10.1038/nature25027 10.1002/mnfr.201500137 10.1038/s41565-018-0232-x 10.1093/nar/18.16.4809 10.1126/science.1107130 10.1093/ilar.46.2.129 10.3389/fgene.2021.613197 10.1016/j.tifs.2018.02.001 |
ContentType | Journal Article |
Copyright | 2022 American Chemical Society Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2022 American Chemical Society – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 1XC |
DOI | 10.1021/acs.jafc.1c07730 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1520-5118 |
EndPage | 4327 |
ExternalDocumentID | oai_HAL_hal_03651870v1 35352925 10_1021_acs_jafc_1c07730 d78709573 |
Genre | Journal Article |
GroupedDBID | - 4.4 55A 5GY 5VS 7~N 85S AABXI ABFLS ABFRP ABMVS ABUCX ACGFS ACJ ACS AEESW AENEX AFEFF AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 DU5 EBS ED F5P GGK GNL GX1 IH9 JG K2 LG6 P2P ROL TWZ UI2 VF5 VG9 W1F WH7 X --- -~X .K2 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACGFO ADHLV BAANH CITATION CUPRZ ED~ JG~ CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 1XC |
ID | FETCH-LOGICAL-a469t-a2b4c3a77dd08da25d3522d2497f03b279ca4c279391964f151d9a99eb675abd3 |
IEDL.DBID | ACS |
ISSN | 0021-8561 1520-5118 |
IngestDate | Sat Aug 23 06:31:11 EDT 2025 Thu Jul 10 23:46:38 EDT 2025 Fri Jul 11 12:26:45 EDT 2025 Thu Apr 03 07:02:34 EDT 2025 Tue Jul 01 01:40:08 EDT 2025 Thu Apr 24 22:57:12 EDT 2025 Fri Apr 15 03:57:32 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | plant xenomiRNAs microcapsules cross-kingdom regulation oral digestion food components exosome-like nanoparticles |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a469t-a2b4c3a77dd08da25d3522d2497f03b279ca4c279391964f151d9a99eb675abd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-4000-464X 0000-0002-8039-0525 0000-0003-1780-0963 0000-0002-1970-1478 |
PMID | 35352925 |
PQID | 2645469715 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | hal_primary_oai_HAL_hal_03651870v1 proquest_miscellaneous_2661030491 proquest_miscellaneous_2645469715 pubmed_primary_35352925 crossref_primary_10_1021_acs_jafc_1c07730 crossref_citationtrail_10_1021_acs_jafc_1c07730 acs_journals_10_1021_acs_jafc_1c07730 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-13 |
PublicationDateYYYYMMDD | 2022-04-13 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-13 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of agricultural and food chemistry |
PublicationTitleAlternate | J. Agric. Food Chem |
PublicationYear | 2022 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref45/cit46 ref3/cit4 ref27/cit28 ref16/cit17 ref52/cit53 ref23/cit24 ref31/cit32 ref8/cit9 ref2/cit3 ref34/cit35 ref37/cit38 ref20/cit21 ref48/cit49 ref49/cit50 ref17/cit18 ref9/cit10 ref10/cit11 ref35/cit36 ref21/cit22 ref46/cit47 ref42/cit43 ref13/cit14 ref19/cit20 ref24/cit25 ref38/cit39 ref50/cit51 ref6/cit7 ref36/cit37 ref18/cit19 ref11/cit12 ref25/cit26 ref32/cit33 ref14/cit15 ref5/cit6 ref51/cit52 ref43/cit44 ref28/cit29 ref29/cit30 ref40/cit41 ref26/cit27 ref15/cit16 ref12/cit13 ref41/cit42 ref22/cit23 ref33/cit34 ref39/cit40 ref47/cit48 ref4/cit5 ref30/cit31 ref1/cit2 ref44/cit45 ref7/cit8 |
References_xml | – ident: ref5/cit6 doi: 10.1038/cr.2011.158 – ident: ref37/cit38 doi: 10.1016/j.cis.2010.06.010 – ident: ref12/cit13 doi: 10.4161/rna.24909 – ident: ref40/cit41 doi: 10.1016/j.ijbiomac.2018.05.054 – ident: ref49/cit50 doi: 10.1016/j.jff.2017.05.009 – ident: ref4/cit5 doi: 10.1016/j.ceb.2012.03.006 – ident: ref52/cit53 doi: 10.1007/s00394-021-02720-y – ident: ref3/cit4 doi: 10.1146/annurev.cellbio.042308.113417 – ident: ref8/cit9 doi: 10.1038/cr.2016.13 – ident: ref33/cit34 doi: 10.1016/j.cofs.2015.07.008 – ident: ref25/cit26 doi: 10.1371/journal.pone.0137516 – ident: ref32/cit33 doi: 10.1038/nsmb.1762 – ident: ref18/cit19 doi: 10.1002/mnfr.201600974 – ident: ref7/cit8 doi: 10.1038/cr.2014.130 – ident: ref50/cit51 doi: 10.1021/acs.jafc.1c04737 – ident: ref23/cit24 doi: 10.1093/bioinformatics/bth374 – ident: ref11/cit12 doi: 10.4161/rna.25246 – ident: ref6/cit7 doi: 10.1038/srep25761 – ident: ref20/cit21 doi: 10.1038/s41420-020-0271-6 – ident: ref10/cit11 doi: 10.1038/nbt.2737 – ident: ref15/cit16 doi: 10.3390/nu7053184 – ident: ref17/cit18 doi: 10.1021/acs.jafc.1c04087 – ident: ref46/cit47 doi: 10.1038/cr.2015.25 – ident: ref19/cit20 doi: 10.1016/j.impact.2018.11.002 – ident: ref9/cit10 doi: 10.4161/rna.21619 – ident: ref14/cit15 doi: 10.1186/1471-2164-13-381 – ident: ref42/cit43 doi: 10.3390/biom11010087 – ident: ref36/cit37 doi: 10.1016/S0268-005X(03)00097-3 – ident: ref1/cit2 doi: 10.1261/rna.2183803 – ident: ref30/cit31 doi: 10.1038/srep26834 – ident: ref47/cit48 doi: 10.1016/j.jnutbio.2021.108627 – ident: ref2/cit3 doi: 10.1016/j.cell.2009.01.002 – ident: ref22/cit23 doi: 10.1039/D1TB00300C – ident: ref29/cit30 doi: 10.1006/jmbi.1994.0130 – ident: ref21/cit22 doi: 10.1093/nar/gni178 – ident: ref26/cit27 doi: 10.1039/C4RA05642F – ident: ref51/cit52 doi: 10.1111/bph.15421 – ident: ref13/cit14 doi: 10.3390/nu10020215 – ident: ref41/cit42 doi: 10.1002/mnfr.201300729 – ident: ref24/cit25 doi: 10.1016/j.jnutbio.2014.12.002 – ident: ref27/cit28 doi: 10.1038/mtna.2014.66 – ident: ref34/cit35 doi: 10.1016/j.plipres.2008.12.001 – ident: ref38/cit39 doi: 10.1021/jf200841k – ident: ref39/cit40 doi: 10.1021/jf2047515 – ident: ref48/cit49 doi: 10.1038/nature25027 – ident: ref16/cit17 doi: 10.1002/mnfr.201500137 – ident: ref44/cit45 doi: 10.1038/s41565-018-0232-x – ident: ref28/cit29 doi: 10.1093/nar/18.16.4809 – ident: ref31/cit32 doi: 10.1126/science.1107130 – ident: ref45/cit46 doi: 10.1093/ilar.46.2.129 – ident: ref43/cit44 doi: 10.3389/fgene.2021.613197 – ident: ref35/cit36 doi: 10.1016/j.tifs.2018.02.001 |
SSID | ssj0008570 |
Score | 2.5248806 |
Snippet | The regulatory functions of plant miRNAs on mammalian bodies are controversial, mainly because stability of the miRNAs in the digestive tract, as the... |
SourceID | hal proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4316 |
SubjectTerms | Analytical chemistry Animals Bioactive Constituents, Metabolites, and Functions Chemical Sciences Digestion digestive tract food chemistry Humans ingestion Mammals - metabolism Material chemistry microRNA MicroRNAs - genetics MicroRNAs - metabolism Mouth - metabolism Nanoparticles or physical chemistry Plants - metabolism Polymers ribonucleases RNA, Plant - metabolism saliva Theoretical and |
Title | Digestion of Plant Dietary miRNAs Starts in the Mouth under the Protection of Coingested Food Components and Plant-Derived Exosome-like Nanoparticles |
URI | http://dx.doi.org/10.1021/acs.jafc.1c07730 https://www.ncbi.nlm.nih.gov/pubmed/35352925 https://www.proquest.com/docview/2645469715 https://www.proquest.com/docview/2661030491 https://univ-pau.hal.science/hal-03651870 |
Volume | 70 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoucABynuhIIPgwCHbteMk6-Nq29UK0QoBlXqL_CxL2wQl2Qr4H_2_nYndRbxWPUWx7Eliz9ifPZNvCHktjFfegiGxlPlEGKkTqZRPYClwEsZfFBbPO_YP8vmheHeUHf2iyfnTg8_ZjjLt8KvyZsjMqAB93CA3eQ42jDBo-mk16yJRewjnYMkYQEF0Sf5LAi5Epv1tIdr4gmGQ_8OY_VozuxuSFrU9RSGGmJwMl50emp9_Ezhe4zO2yJ0IOekk6Mg9csNV98ntyXETaTfcA3IR_EwwRrT2FBMZdXR34TrV_KBni48Hk5YCKm26li4qCpCR7mPmPYo_oDX9_YdA9xAFTGs8LMSDVDqra0tx0qkrDNmgqrJBfrILun8ONfa-12195pLTxYmjMNnDLj4G6z0kh7O9z9N5EhM2JAp22V2iuBYmVUVh7WhsFc8swjsLO7zCj1LNC2mUMHBJJfKAeUAbViopnYZti9I2fUQ2K3idJ4Tm3iiZaq8zLYQDYUwrP9aW2xEzY50NyBvo0TIaXFv2vnTOyr4QurmM3TwgO1ejXJrIeo7JN07XtHi7avEtMH6sqfsKFGdVDam655P3JZYBMsgYTIbnbEBeXulVCbaLDhlVuXrZlhzp1HJZsGxdnRwzwQkJch4HpVw9L0VuHsmzp9fsjGfkFp51hcCjbbLZNUv3HDBVp1_0xnQJ2XkdLg |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZ2lwPsgfejPA2CA4d0aydp6mPU3apAW6FlV9qb5Sd0HwlK0hXwP_i_zCRpEAgqOEW1nIlrz9ifPeNvCHkZGa-8BUNiIfNBZIQOhFI-gKXACRj_KLF43jFfDKfH0duT-GSLsPVdGGhECZLK2on_k12A7WHZqfKmz8wgAbXcJlcAi3BU6nT8oZt8ka-9iepgwQiwQeuZ_JMEXI9M-ct6tP0JoyH_BjXrJWdygxx2ja0jTc76q0r3zbffeBz_69_cJNdbAErTRmNukS2X3Sa76ceiJeFwd8j3xusEI0ZzTzGtUUX3l65SxVd6sTxcpCUFjFpUJV1mFAAknWMePorX0Yr69_uG_KEVMM7x6BCPVekkzy3FKSjPMICDqsw28oN9sIRLqHHwJS_zCxecL88chakf9vRt6N5dcjw5OBpPgzZ9Q6Bgz10FiuvIhCpJrB2MrOKxRbBnYb-X-EGoeSKMigw8QoGsYB6whxVKCKdhE6O0De-RnQya84DQoTdKhNrrWEeRA2FMKz_SltsBMyMd98gr6FHZml8pa886Z7IuhG6WbTf3yN56sKVpOdAxFcf5hjded298bvg_NtR9AfrTVUPi7mk6k1gGOCFmMDVesh55vlYvCZaM7hmVuXxVSo7kakORsHhTnSHmhYsEyLnf6Gb3vRCZegSPH_5jZzwjV6dH85mcvVm8e0SucbzXgSSW4WOyUxUr9wTQVqWf1vb1A_hJJY0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELe2ISF4YHxTPg2CBx7c1flo6seoXVVgqyZgaG-RP6FsS6YknWD_x_7f3SVuJBBU8BTFsi-Ofec7-86_I-R1pJ10BgSJh9yxSAvFhJSOgSqwAuY_Sgyed-zPh7PD6P1RfLRB4tVdGOhEBZSqxomPUn1mnEcY4DtY_l063ed6kABrbpJr6LVDxk7Hn7oFGDHb28gOzkZgH3jv5J8ooE7S1S86afMbRkT-zdxs1M50m3zpOtxEmxz3l7Xq64vfsBz_-49uk1veEKVpyzl3yIbN75Kb6dfSg3HYe-Sy9T7BzNHCUUxvVNPJwtay_ElPFx_naUXBVi3rii5yCoYk3cd8fBSvpZXN-0ELAuEJjAs8QsTjVTotCkNxKSpyDOSgMjctfTYBiTiHGrs_iqo4texkcWwpqADY2_sQvvvkcLr7eTxjPo0Dk7D3rpkMVKRDmSTGDEZGBrFBo8_Avi9xg1AFidAy0vAIBaKDObBBjJBCWAWbGalM-IBs5dCdR4QOnZYiVE7FKoosEONKupEygRlwPVJxj7yBEc28GFZZ42EPeNYUwjBnfph7ZGc14Zn2WOiYkuNkTYu3XYuzFgdkTd1XwENdNQTwnqV7GZaBvRBzWCLPeY-8XLFYBhKNbhqZ22JZZQGCrA1FwuN1dYaYHy4SQOdhy5_d90JE7BFB_PgfB-MFuX4wmWZ77-YfnpAbAV7vQCzL8CnZqsulfQZGV62eNyJ2BVeQKBA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Digestion+of+Plant+Dietary+miRNAs+Starts+in+the+Mouth+under+the+Protection+of+Coingested+Food+Components+and+Plant-Derived+Exosome-like+Nanoparticles&rft.jtitle=Journal+of+agricultural+and+food+chemistry&rft.au=Qin%2C+Xinshu&rft.au=Wang%2C+Xingyu&rft.au=Xu%2C+Ke&rft.au=Zhang%2C+Yi&rft.date=2022-04-13&rft.eissn=1520-5118&rft.volume=70&rft.issue=14&rft.spage=4316&rft_id=info:doi/10.1021%2Facs.jafc.1c07730&rft_id=info%3Apmid%2F35352925&rft.externalDocID=35352925 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8561&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8561&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8561&client=summon |