Chemical Transformations during Aging of Zerovalent Iron Nanoparticles in the Presence of Common Groundwater Dissolved Constituents
Nanoscale zerovalent iron (NZVI) that was aged in simulated groundwater was evaluated for alterations in composition and speciation over 6 months to understand the possible transformations NZVI could undergo in natural waters. NZVI was exposed to 10 mN of various common groundwater anions (Cl−, NO3...
Saved in:
Published in | Environmental science & technology Vol. 44; no. 9; pp. 3455 - 3461 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
01.05.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nanoscale zerovalent iron (NZVI) that was aged in simulated groundwater was evaluated for alterations in composition and speciation over 6 months to understand the possible transformations NZVI could undergo in natural waters. NZVI was exposed to 10 mN of various common groundwater anions (Cl−, NO3 −, SO4 2−, HPO4 2−, and HCO3 −) or to dissolved oxygen (saturated, ∼9 mg/L). Fresh and exposed NZVI samples, along with Fe-oxide model compounds, were then analyzed using synchrotron radiation X-ray absorption spectroscopy (XAS) to yield both relative oxidation state, using the X-ray absorption near edge structure (XANES), and quantitative speciation information regarding the types and proportions of mineral species present, from analysis of the extended X-ray absorption fine structure (EXAFS). Over 1 month of aging the dissolved anions inhibited the oxidation of the NZVI to varying degrees. Aging for 6 months, however, resulted in average oxidation states that were similar to each other regardless of the anion used, except for nitrate. Nitrate passivated the NZVI surface such that even after 6 months of aging the particles retained nearly the same mineral and Fe0 content as fresh NZVI. Linear least-squares combination fitting (LCF) of the EXAFS spectra for 1 month-aged samples indicated that the oxidized particles remain predominantly a binary phase system containing Fe0 and Fe3O4, while the 6 month aged samples contained additional mineral phases such as vivianite (Fe3(PO4)2·8H2O) and iron sulfate species, possibly schwertmannite (Fe3+ 16O16(OH,SO4)12−13·10−12H2O). The presence of these additional mineral species was confirmed using synchrotron-based X-ray diffraction (XRD). NZVI exposed to water saturated with dissolved oxygen showed a rapid (<24 h) loss of Fe0 and evolved both magnetite and maghemite (γ-Fe2O3) within the oxide layer. These findings have implications toward the eventual fate, transport, and toxicity of NZVI used for groundwater remediation. |
---|---|
AbstractList | Nanoscale zerovalent iron (NZVI) that was aged in simulated groundwater was evaluated for alterations in composition and speciation over 6 months to understand the possible transformations NZV delta could undergo in natural waters. NZV delta was exposed to 10 mN of various common groundwater anions (Cl-, NO3-, SO42-, HPO42-, and HCO3-) or to dissolved oxygen (saturated, 9 mg/L). Fresh and exposed NZV delta samples, along with Fe-oxide model compounds, were then analyzed using synchrotron radiation X-ray absorption spectroscopy (XAS) to yield both relative oxidation state, using the X-ray absorption near edge structure (XANES), and quantitative speciation information regarding the types and proportions of mineral species present, from analysis of the extended X-ray absorption fine structure (EXAFS). Over 1 month of aging the dissolved anions inhibited the oxidation of the NZV delta to varying degrees. Aging for 6 months, however, resulted in average oxidation states that were similar to each other regardless of the anion used, except for nitrate. Nitrate passivated the NZVI surface such that even after 6 months of aging the particles retained nearly the same mineral and Fe0 content as fresh NZVI. Linear least-squares combination fitting (LCF) of the EXAFS spectra for 1 month-aged samples indicated that the oxidized particles remain predominantly a binary phase system containing Fe0 and Fe3O4, while the 6 month aged samples contained additional mineral phases such as vivianite (Fe3(PO4)2.8H2O) and iron sulfate species, possibly schwertmannite (Fe3+16O16(OH,SO4)12-13.10-12H2O). The presence of these additional mineral species was confirmed using synchrotron-based X-ray diffraction (XRD). NZV delta exposed to water saturated with dissolved oxygen showed a rapid (<24 h) loss of Fe0 and evolved both magnetite and maghemite (*g-Fe2O3) within the oxide layer. These findings have implications toward the eventual fate, transport, and toxicity of NZV delta used for groundwater remediation. Nanoscale zerovalent iron (NZVI) that was aged in simulated groundwater was evaluated for alterations in composition and speciation over 6 months to understand the possible transformations NZVI could undergo in natural waters. NZVI was exposed to 10 mN of various common groundwater anions (Cl(-), NO(3)(-), SO(4)(2-), HPO(4)(2-), and HCO(3)(-)) or to dissolved oxygen (saturated, approximately 9 mg/L). Fresh and exposed NZVI samples, along with Fe-oxide model compounds, were then analyzed using synchrotron radiation X-ray absorption spectroscopy (XAS) to yield both relative oxidation state, using the X-ray absorption near edge structure (XANES), and quantitative speciation information regarding the types and proportions of mineral species present, from analysis of the extended X-ray absorption fine structure (EXAFS). Over 1 month of aging the dissolved anions inhibited the oxidation of the NZVI to varying degrees. Aging for 6 months, however, resulted in average oxidation states that were similar to each other regardless of the anion used, except for nitrate. Nitrate passivated the NZVI surface such that even after 6 months of aging the particles retained nearly the same mineral and Fe(0) content as fresh NZVI. Linear least-squares combination fitting (LCF) of the EXAFS spectra for 1 month-aged samples indicated that the oxidized particles remain predominantly a binary phase system containing Fe(0) and Fe(3)O(4), while the 6 month aged samples contained additional mineral phases such as vivianite (Fe(3)(PO(4))(2).8H(2)O) and iron sulfate species, possibly schwertmannite (Fe(3+)(16)O(16)(OH,SO(4))(12-13).10-12H(2)O). The presence of these additional mineral species was confirmed using synchrotron-based X-ray diffraction (XRD). NZVI exposed to water saturated with dissolved oxygen showed a rapid (<24 h) loss of Fe(0) and evolved both magnetite and maghemite (gamma-Fe(2)O(3)) within the oxide layer. These findings have implications toward the eventual fate, transport, and toxicity of NZVI used for groundwater remediation. Nanoscale zerovalent iron (NZVI) that was aged in simulated groundwater was evaluated for alterations in composition and speciation over 6 months to understand the possible transformations NZVI could undergo in natural waters. NZVI was exposed to 10 mN of various common groundwater anions (Cl(-), NO(3)(-), SO(4)(2-), HPO(4)(2-), and HCO(3)(-)) or to dissolved oxygen (saturated, approximately 9 mg/L). Fresh and exposed NZVI samples, along with Fe-oxide model compounds, were then analyzed using synchrotron radiation X-ray absorption spectroscopy (XAS) to yield both relative oxidation state, using the X-ray absorption near edge structure (XANES), and quantitative speciation information regarding the types and proportions of mineral species present, from analysis of the extended X-ray absorption fine structure (EXAFS). Over 1 month of aging the dissolved anions inhibited the oxidation of the NZVI to varying degrees. Aging for 6 months, however, resulted in average oxidation states that were similar to each other regardless of the anion used, except for nitrate. Nitrate passivated the NZVI surface such that even after 6 months of aging the particles retained nearly the same mineral and Fe(0) content as fresh NZVI. Linear least-squares combination fitting (LCF) of the EXAFS spectra for 1 month-aged samples indicated that the oxidized particles remain predominantly a binary phase system containing Fe(0) and Fe(3)O(4), while the 6 month aged samples contained additional mineral phases such as vivianite (Fe(3)(PO(4))(2).8H(2)O) and iron sulfate species, possibly schwertmannite (Fe(3+)(16)O(16)(OH,SO(4))(12-13).10-12H(2)O). The presence of these additional mineral species was confirmed using synchrotron-based X-ray diffraction (XRD). NZVI exposed to water saturated with dissolved oxygen showed a rapid (<24 h) loss of Fe(0) and evolved both magnetite and maghemite (gamma-Fe(2)O(3)) within the oxide layer. These findings have implications toward the eventual fate, transport, and toxicity of NZVI used for groundwater remediation.Nanoscale zerovalent iron (NZVI) that was aged in simulated groundwater was evaluated for alterations in composition and speciation over 6 months to understand the possible transformations NZVI could undergo in natural waters. NZVI was exposed to 10 mN of various common groundwater anions (Cl(-), NO(3)(-), SO(4)(2-), HPO(4)(2-), and HCO(3)(-)) or to dissolved oxygen (saturated, approximately 9 mg/L). Fresh and exposed NZVI samples, along with Fe-oxide model compounds, were then analyzed using synchrotron radiation X-ray absorption spectroscopy (XAS) to yield both relative oxidation state, using the X-ray absorption near edge structure (XANES), and quantitative speciation information regarding the types and proportions of mineral species present, from analysis of the extended X-ray absorption fine structure (EXAFS). Over 1 month of aging the dissolved anions inhibited the oxidation of the NZVI to varying degrees. Aging for 6 months, however, resulted in average oxidation states that were similar to each other regardless of the anion used, except for nitrate. Nitrate passivated the NZVI surface such that even after 6 months of aging the particles retained nearly the same mineral and Fe(0) content as fresh NZVI. Linear least-squares combination fitting (LCF) of the EXAFS spectra for 1 month-aged samples indicated that the oxidized particles remain predominantly a binary phase system containing Fe(0) and Fe(3)O(4), while the 6 month aged samples contained additional mineral phases such as vivianite (Fe(3)(PO(4))(2).8H(2)O) and iron sulfate species, possibly schwertmannite (Fe(3+)(16)O(16)(OH,SO(4))(12-13).10-12H(2)O). The presence of these additional mineral species was confirmed using synchrotron-based X-ray diffraction (XRD). NZVI exposed to water saturated with dissolved oxygen showed a rapid (<24 h) loss of Fe(0) and evolved both magnetite and maghemite (gamma-Fe(2)O(3)) within the oxide layer. These findings have implications toward the eventual fate, transport, and toxicity of NZVI used for groundwater remediation. Nanoscale zerovalent iron (NZVI) that was aged in simulated groundwater was evaluated for alterations in composition and speciation over 6 months to understand the possible transformations NZVI could undergo in natural waters. NZVI was exposed to 10 mN of various common groundwater anions (Cl..., NO..., SO..., HPO..., and HCO...) or to dissolved oxygen (saturated, ...9 mg/L). Fresh and exposed NZVI samples, along with Fe-oxide model compounds, were then analyzed using synchrotron radiation X-ray absorption spectroscopy (XAS) to yield both relative oxidation state, using the X-ray absorption near edge structure (XANES), and quantitative speciation information regarding the types and proportions of mineral species present, from analysis of the extended X-ray absorption fine structure (EXAFS). Over 1 month of aging the dissolved anions inhibited the oxidation of the NZVI to varying degrees. Aging for 6 months, however, resulted in average oxidation states that were similar to each other regardless of the anion used, except for nitrate. Nitrate passivated the NZVI surface such that even after 6 months of aging the particles retained nearly the same mineral and Fe... content as fresh NZVI. Linear least-squares combination fitting (LCF) of the EXAFS spectra for 1 month-aged samples indicated that the oxidized particles remain predominantly a binary phase system containing Fe... and Fe...O..., while the 6 month aged samples contained additional mineral phases such as vivianite (Fe...(PO...)...-8H...O) and iron sulfate species, possibly schwertmannite (Fe...O...(OH,SO...)...-10-12H...O). The presence of these additional mineral species was confirmed using synchrotron-based X-ray diffraction (XRD). NZVI exposed to water saturated with dissolved oxygen showed a rapid (<24 h) loss of Fe... and evolved both magnetite and maghemite (...-Fe...O...) within the oxide layer. These findings have implications toward the eventual fate, transport, and toxicity of NZVI used for groundwater remediation. (ProQuest: ... denotes formulae/symbols omitted.) Nanoscale zerovalent iron (NZVI) that was aged in simulated groundwater was evaluated for alterations in composition and speciation over 6 months to understand the possible transformations NZVI could undergo in natural waters. NZVI was exposed to 10 mN of various common groundwater anions (Cl−, NO3 −, SO4 2−, HPO4 2−, and HCO3 −) or to dissolved oxygen (saturated, ∼9 mg/L). Fresh and exposed NZVI samples, along with Fe-oxide model compounds, were then analyzed using synchrotron radiation X-ray absorption spectroscopy (XAS) to yield both relative oxidation state, using the X-ray absorption near edge structure (XANES), and quantitative speciation information regarding the types and proportions of mineral species present, from analysis of the extended X-ray absorption fine structure (EXAFS). Over 1 month of aging the dissolved anions inhibited the oxidation of the NZVI to varying degrees. Aging for 6 months, however, resulted in average oxidation states that were similar to each other regardless of the anion used, except for nitrate. Nitrate passivated the NZVI surface such that even after 6 months of aging the particles retained nearly the same mineral and Fe0 content as fresh NZVI. Linear least-squares combination fitting (LCF) of the EXAFS spectra for 1 month-aged samples indicated that the oxidized particles remain predominantly a binary phase system containing Fe0 and Fe3O4, while the 6 month aged samples contained additional mineral phases such as vivianite (Fe3(PO4)2·8H2O) and iron sulfate species, possibly schwertmannite (Fe3+ 16O16(OH,SO4)12−13·10−12H2O). The presence of these additional mineral species was confirmed using synchrotron-based X-ray diffraction (XRD). NZVI exposed to water saturated with dissolved oxygen showed a rapid (<24 h) loss of Fe0 and evolved both magnetite and maghemite (γ-Fe2O3) within the oxide layer. These findings have implications toward the eventual fate, transport, and toxicity of NZVI used for groundwater remediation. |
Author | Reinsch, Brian C Lowry, Gregory V Forsberg, Brady Penn, R. Lee Kim, Christopher S |
Author_xml | – sequence: 1 givenname: Brian C surname: Reinsch fullname: Reinsch, Brian C – sequence: 2 givenname: Brady surname: Forsberg fullname: Forsberg, Brady – sequence: 3 givenname: R. Lee surname: Penn fullname: Penn, R. Lee – sequence: 4 givenname: Christopher S surname: Kim fullname: Kim, Christopher S – sequence: 5 givenname: Gregory V surname: Lowry fullname: Lowry, Gregory V email: glowry@andrew.cmu.edu |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22735112$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/20380376$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0k1rFTEUBuAgFXtbXfgHJAgiLsbmc2ayLNdaC0VdVBA3QyZz0psyk1yTTKVr_7gZe22hCm6SRZ5zyOE9B2jPBw8IPafkLSWMHkFShCkmNo_QikpGKtlKuodWhFBeKV5_3UcHKV0RQhgn7RO0zwhvCW_qFfq53sDkjB7xRdQ-2RAnnV3wCQ9zdP4SH18uZ7D4G8RwrUfwGZ_F4PFH7cNWx-zMCAk7j_MG8OcICbyBpWAdpqm40xhmP_zQGSJ-51IK4zUM5dGn7PJc2qWn6LHVY4Jnu_sQfXl_crH-UJ1_Oj1bH59XWtQqV8rWrZLCKKutrRljSiuhBeUDNa2pLbMtsYo0tu77YgQI0oAcaN83TDeM8UP0-rbvNobvM6TcTS4ZGEftIcypa6SQQhAp_i85F4TXTV3kywfyKszRlzE6ziRpl1gKerFDcz_B0G2jm3S86f7EUMCrHdCpZGFLFMale8caLildJnhz60wMKUWwd4SSblmF7m4Vij16YI3Lv7PNUbvxnxW7X2iT7sf42_0CSzHCPg |
CODEN | ESTHAG |
CitedBy_id | crossref_primary_10_4491_eer_2022_513 crossref_primary_10_1016_j_jhazmat_2022_129988 crossref_primary_10_1007_s12540_019_00443_8 crossref_primary_10_1016_j_chemosphere_2015_10_066 crossref_primary_10_1021_acs_est_8b03355 crossref_primary_10_1016_j_jhazmat_2016_09_028 crossref_primary_10_1016_j_cej_2021_133844 crossref_primary_10_1021_acs_est_6b04130 crossref_primary_10_1021_acs_est_8b01734 crossref_primary_10_1080_10590501_2017_1418793 crossref_primary_10_1002_wer_1265 crossref_primary_10_1002_jccs_201700406 crossref_primary_10_1021_es301753u crossref_primary_10_3390_polym15010061 crossref_primary_10_1016_j_jenvman_2024_121805 crossref_primary_10_1038_s41893_024_01409_4 crossref_primary_10_1039_C4RA08988J crossref_primary_10_1080_09593330_2023_2179944 crossref_primary_10_1016_j_jece_2022_109038 crossref_primary_10_1016_j_jece_2017_09_008 crossref_primary_10_1016_j_jhazmat_2012_05_019 crossref_primary_10_1016_j_envres_2024_120022 crossref_primary_10_1061__ASCE_EE_1943_7870_0001090 crossref_primary_10_1016_j_envpol_2017_09_052 crossref_primary_10_1089_ees_2012_0312 crossref_primary_10_1016_j_pce_2015_11_007 crossref_primary_10_1021_acs_est_6b01763 crossref_primary_10_1016_j_jhazmat_2015_03_021 crossref_primary_10_1016_j_jece_2023_110896 crossref_primary_10_1016_j_cej_2012_05_018 crossref_primary_10_1016_j_watres_2015_02_004 crossref_primary_10_1039_D0EN00182A crossref_primary_10_1016_j_jes_2022_12_028 crossref_primary_10_1021_acs_est_4c11435 crossref_primary_10_1021_acs_est_6b02170 crossref_primary_10_5620_eht_e2014022 crossref_primary_10_1080_09593330_2014_904932 crossref_primary_10_1002_etc_3924 crossref_primary_10_1039_D2EW00522K crossref_primary_10_1016_j_memsci_2011_05_054 crossref_primary_10_1016_j_seppur_2022_120550 crossref_primary_10_1016_j_chemosphere_2018_03_041 crossref_primary_10_3724_SP_J_1095_2013_20572 crossref_primary_10_1016_j_scitotenv_2017_10_002 crossref_primary_10_1021_es303422w crossref_primary_10_1039_C6RA04935D crossref_primary_10_1061__ASCE_EE_1943_7870_0000782 crossref_primary_10_1016_j_chemosphere_2019_125461 crossref_primary_10_1016_j_watres_2014_10_043 crossref_primary_10_1016_j_jcis_2015_04_019 crossref_primary_10_1016_j_seppur_2016_11_053 crossref_primary_10_1039_C8EN00645H crossref_primary_10_3389_fmicb_2021_643589 crossref_primary_10_1016_j_scitotenv_2019_05_331 crossref_primary_10_1016_j_scitotenv_2024_172451 crossref_primary_10_1016_j_jes_2018_09_002 crossref_primary_10_1016_j_scitotenv_2021_145757 crossref_primary_10_1021_acs_est_5b00719 crossref_primary_10_1016_j_colsurfa_2016_11_014 crossref_primary_10_1016_j_chemosphere_2017_12_151 crossref_primary_10_2175_106143014X13975035525582 crossref_primary_10_1021_ie400165a crossref_primary_10_1016_j_chemosphere_2021_131422 crossref_primary_10_3109_17435390_2010_537382 crossref_primary_10_1016_j_jece_2022_108958 crossref_primary_10_1016_j_proenv_2013_04_020 crossref_primary_10_1016_j_jconhyd_2010_07_011 crossref_primary_10_1016_j_watres_2012_12_042 crossref_primary_10_1016_j_watres_2012_06_051 crossref_primary_10_1016_j_watres_2017_11_002 crossref_primary_10_1016_j_jhazmat_2020_124665 crossref_primary_10_1016_j_scitotenv_2019_06_388 crossref_primary_10_1021_acsomega_6b00382 crossref_primary_10_1016_j_jhazmat_2021_126709 crossref_primary_10_1021_acs_inorgchem_9b03612 crossref_primary_10_1016_j_jconhyd_2015_03_004 crossref_primary_10_1016_j_scitotenv_2015_05_033 crossref_primary_10_1021_acs_est_5b06251 crossref_primary_10_1016_j_jhazmat_2014_08_040 crossref_primary_10_1002_rem_21426 crossref_primary_10_1016_j_jhazmat_2016_03_069 crossref_primary_10_1021_jp501846f crossref_primary_10_1016_j_chemosphere_2018_05_067 crossref_primary_10_1016_j_watres_2016_04_054 crossref_primary_10_1016_j_watres_2012_05_015 crossref_primary_10_1021_es203732x crossref_primary_10_1021_es9031198 crossref_primary_10_1021_es102398e crossref_primary_10_1016_j_jhazmat_2021_127343 crossref_primary_10_1007_s00128_015_1697_z crossref_primary_10_1021_jp506281d crossref_primary_10_1016_j_jhazmat_2015_12_070 crossref_primary_10_1016_j_jece_2025_115431 crossref_primary_10_1016_j_chemosphere_2023_140147 crossref_primary_10_1016_j_watres_2016_10_037 crossref_primary_10_1155_2012_461468 crossref_primary_10_1016_j_ccr_2014_12_014 crossref_primary_10_1021_acs_est_6b00128 crossref_primary_10_1039_C5EN00145E crossref_primary_10_1016_j_scitotenv_2022_158469 crossref_primary_10_1021_es304987r crossref_primary_10_1016_j_jhazmat_2016_03_082 crossref_primary_10_1016_j_cej_2023_147049 crossref_primary_10_1016_j_watres_2020_116060 crossref_primary_10_1016_j_watres_2014_06_008 crossref_primary_10_1039_C8GC01171K crossref_primary_10_1016_j_aca_2015_10_040 crossref_primary_10_1021_acs_est_1c08282 crossref_primary_10_1016_j_scitotenv_2018_02_038 crossref_primary_10_1016_j_jclepro_2022_131201 crossref_primary_10_1007_s11270_015_2583_3 crossref_primary_10_1016_j_colsurfa_2014_06_017 crossref_primary_10_3390_w3020629 crossref_primary_10_5004_dwt_2019_24503 crossref_primary_10_1039_C8CC03350A crossref_primary_10_1016_j_jhazmat_2011_09_029 crossref_primary_10_1021_acs_est_2c07289 crossref_primary_10_1016_j_jes_2023_05_038 crossref_primary_10_1016_j_chemosphere_2020_126137 crossref_primary_10_1016_j_jhazmat_2012_08_074 crossref_primary_10_1016_j_scitotenv_2022_153960 crossref_primary_10_1039_C6RA06565A crossref_primary_10_1021_acs_jpcc_3c04459 crossref_primary_10_1039_C9EM00592G crossref_primary_10_1016_j_vacuum_2019_02_029 crossref_primary_10_1016_j_watres_2016_04_074 crossref_primary_10_1016_j_cej_2016_09_088 crossref_primary_10_1021_acsami_5b11859 crossref_primary_10_1021_acs_est_2c07953 crossref_primary_10_1021_es303037k crossref_primary_10_1016_j_jece_2015_12_013 crossref_primary_10_1016_j_clay_2022_106440 crossref_primary_10_1007_s10669_014_9489_2 crossref_primary_10_2139_ssrn_3991467 crossref_primary_10_1016_j_scitotenv_2021_148324 crossref_primary_10_1016_j_ecoenv_2017_07_004 crossref_primary_10_1007_s10311_022_01419_8 crossref_primary_10_1021_acs_est_5b02804 crossref_primary_10_1016_j_cej_2022_135120 crossref_primary_10_1631_jzus_A1400112 crossref_primary_10_1016_j_chemosphere_2015_10_122 crossref_primary_10_1016_j_jece_2017_01_038 crossref_primary_10_1016_j_chemosphere_2016_12_029 crossref_primary_10_1021_acs_est_7b05847 crossref_primary_10_1016_j_jhazmat_2020_122620 crossref_primary_10_1021_acs_iecr_2c02357 crossref_primary_10_1039_C8JA00439K crossref_primary_10_1080_10643389_2014_924185 crossref_primary_10_1021_acs_est_7b02695 crossref_primary_10_1016_j_chemosphere_2014_09_026 crossref_primary_10_1016_j_gca_2021_11_006 crossref_primary_10_1016_j_envres_2020_109662 crossref_primary_10_1016_j_scitotenv_2014_02_043 crossref_primary_10_1016_j_watres_2020_116632 crossref_primary_10_1021_acsami_0c08626 crossref_primary_10_1080_10934529_2021_1941704 crossref_primary_10_3390_pr12102101 crossref_primary_10_1016_j_jhazmat_2014_01_034 crossref_primary_10_1016_j_matpr_2015_04_055 crossref_primary_10_1016_j_jhazmat_2021_127400 crossref_primary_10_1071_EN14273 crossref_primary_10_1080_10643389_2013_790747 crossref_primary_10_1016_j_jenvman_2017_11_070 crossref_primary_10_3390_w14060987 crossref_primary_10_1016_j_jhazmat_2020_123844 crossref_primary_10_1071_EN14037 crossref_primary_10_1016_j_chemosphere_2020_128001 crossref_primary_10_1016_j_chemosphere_2014_09_095 crossref_primary_10_1016_j_watres_2016_09_012 crossref_primary_10_1016_j_watres_2018_04_037 crossref_primary_10_1021_es500958b crossref_primary_10_1016_j_advwatres_2012_02_005 crossref_primary_10_1016_j_chemosphere_2020_127707 crossref_primary_10_1007_s12665_019_8538_z crossref_primary_10_1021_acs_est_5b04485 crossref_primary_10_3390_magnetochemistry9010018 crossref_primary_10_1016_j_envpol_2018_02_036 crossref_primary_10_1016_j_watres_2012_10_013 crossref_primary_10_1039_D0EN00886A crossref_primary_10_1021_acsestwater_2c00574 crossref_primary_10_1002_anie_201405050 crossref_primary_10_1021_es204608d crossref_primary_10_1016_j_watres_2017_03_012 crossref_primary_10_1016_j_jes_2015_07_016 crossref_primary_10_1016_j_jhazmat_2021_125207 crossref_primary_10_1016_j_watres_2022_119472 crossref_primary_10_1002_ange_201405050 crossref_primary_10_1016_j_envpol_2016_07_030 crossref_primary_10_1016_j_scitotenv_2023_162751 crossref_primary_10_1007_s11356_019_07140_4 crossref_primary_10_1039_C2EM30691C crossref_primary_10_1016_j_scitotenv_2021_149981 crossref_primary_10_1021_es103185t crossref_primary_10_1016_j_watres_2023_120874 crossref_primary_10_1016_j_jece_2024_112023 crossref_primary_10_1021_es500216t crossref_primary_10_1016_j_jhazmat_2016_04_037 crossref_primary_10_1016_j_jwpe_2023_104720 crossref_primary_10_1016_j_chemosphere_2020_126155 crossref_primary_10_1007_s11270_013_1799_3 crossref_primary_10_1016_j_watres_2025_123141 |
Cites_doi | 10.1021/nl0518268 10.1021/es062726m 10.1021/es801955n 10.1007/BF00307311 10.1002/sia.2726 10.1023/A:1025520116015 10.1021/es049259y 10.2134/jeq2003.2033 10.1021/cm0511217 10.1021/es990787x 10.1021/es048851k 10.1021/jp0777418 10.1021/es049190u 10.1007/BF01204319 10.1021/es0711967 10.1002/3527602097 10.1021/es071774j 10.1021/es051954y 10.1103/PhysRevB.68.195423 10.1007/s00254-001-0443-5 10.1016/S0304-3894(99)00034-5 10.1238/Physica.Topical.115a01011 10.1021/es071936b 10.1021/es980660s 10.1021/es803589t 10.1016/j.gca.2004.07.003 10.1021/es900171v 10.1021/es800086f 10.1021/es061349a 10.1016/S0048-9697(00)00640-9 10.2138/am-2004-0412 10.1021/es049195r 10.1021/es060685o 10.1590/S0100-40422007000100008 10.1111/j.1745-6584.2000.tb00226.x |
ContentType | Journal Article |
Copyright | Copyright © 2010 American Chemical Society 2015 INIST-CNRS Copyright American Chemical Society May 1, 2010 |
Copyright_xml | – notice: Copyright © 2010 American Chemical Society – notice: 2015 INIST-CNRS – notice: Copyright American Chemical Society May 1, 2010 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7QH 7TV 7UA F1W H97 L.G |
DOI | 10.1021/es902924h |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic Aqualine Pollution Abstracts Water Resources Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional ASFA: Aquatic Sciences and Fisheries Abstracts Pollution Abstracts Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE MEDLINE - Academic Biotechnology Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences Applied Sciences |
EISSN | 1520-5851 |
EndPage | 3461 |
ExternalDocumentID | 2041237311 20380376 22735112 10_1021_es902924h b511583988 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Feature |
GroupedDBID | - .K2 1AW 3R3 4.4 4R4 53G 55A 5GY 5VS 63O 7~N 85S AABXI ABFLS ABMVS ABOGM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACPRK ACS AEESW AENEX AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ K2 LG6 MS PQEST PQQKQ ROL RXW TN5 TWZ U5U UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK XZL YZZ --- -DZ -~X ..I .DC 6TJ AAHBH AAYOK AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV ADMHC ADUKH AGXLV AHGAQ CITATION CUPRZ GGK MS~ MW2 XSW ZCA .HR 186 1WB 42X 8WZ A6W ABHMW ACKIV ACRPL ADNMO AETEA AEYZD AGQPQ ANPPW ANTXH IHE IQODW MVM NHB OHT RNS TAE UBC UBX UBY UQL VJK VOH YV5 ZCG ZY4 ~A~ CGR CUY CVF ECM EIF NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7QH 7TV 7UA F1W H97 L.G |
ID | FETCH-LOGICAL-a469t-9f68954c9faff62229a94a413d1c8c6f2f80f907f6bb9fa4e407e5d1bb72a7223 |
IEDL.DBID | ACS |
ISSN | 0013-936X |
IngestDate | Fri Jul 11 04:08:30 EDT 2025 Fri Jul 11 14:08:23 EDT 2025 Fri Jul 25 05:46:57 EDT 2025 Thu Apr 03 07:04:53 EDT 2025 Mon Jul 21 09:14:04 EDT 2025 Tue Jul 01 02:10:23 EDT 2025 Thu Apr 24 23:01:39 EDT 2025 Thu Aug 27 13:43:21 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | XANES spectrometry Pollutant behavior Nanoparticle Toxicity In situ Ageing Zerovalent metal Iron Permeable reactive barrier EXAFS spectrometry Transport process X ray absorption spectrometry Decontamination Model compound Oxidation Water pollution Speciation Ground water |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a469t-9f68954c9faff62229a94a413d1c8c6f2f80f907f6bb9fa4e407e5d1bb72a7223 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 20380376 |
PQID | 325082924 |
PQPubID | 45412 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_754544054 proquest_miscellaneous_733403676 proquest_journals_325082924 pubmed_primary_20380376 pascalfrancis_primary_22735112 crossref_primary_10_1021_es902924h crossref_citationtrail_10_1021_es902924h acs_journals_10_1021_es902924h |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-05-01 |
PublicationDateYYYYMMDD | 2010-05-01 |
PublicationDate_xml | – month: 05 year: 2010 text: 2010-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States – name: Easton |
PublicationTitle | Environmental science & technology |
PublicationTitleAlternate | Environ. Sci. Technol |
PublicationYear | 2010 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Webb S. M. (ref28/cit28) 2005; 115 Wang C. M. (ref22/cit22) 2005; 98 Kober R. (ref39/cit39) 2002; 41 Lemos V. P. (ref8/cit8) 2007; 30 Kanel S. R. (ref2/cit2) 2008; 42 Signorini L. (ref38/cit38) 2003; 68 Kohn T. (ref37/cit37) 2005; 39 Liu Y. Q. (ref20/cit20) 2005; 39 Van Der Zee C. (ref18/cit18) 2005; 69 Liu Y. (ref27/cit27) 2007; 41 Ressler T. (ref29/cit29) 2000; 34 Wu W. M. (ref40/cit40) 2006; 40 Phillips D. H. (ref7/cit7) 2003; 32 Sirk K. M. (ref5/cit5) 2009; 43 Kim C. S. (ref31/cit31) 2000; 261 Liu Y. Q. (ref19/cit19) 2005; 17 ref34/cit34 Saleh N. (ref4/cit4) 2005; 5 Brown G. E. (ref25/cit25) 1988; 18 Sarathy V. (ref16/cit16) 2008; 112 Wiesner M. R. (ref13/cit13) 2006; 40 Cornell R. M. (ref14/cit14) 2003 O’Day P. A. (ref23/cit23) 2004; 89 Mishra D. (ref36/cit36) 2005; 39 Nurmi J. T. (ref17/cit17) 2005; 39 Auffan M. (ref12/cit12) 2008; 42 Phenrat T. (ref15/cit15) 2009; 43 Waychunas G. A. (ref26/cit26) 1986; 13 Puls R. W. (ref6/cit6) 1999; 68 Phenrat T. (ref11/cit11) 2009; 43 Phenrat T. (ref9/cit9) 2007; 41 Lande J. (ref32/cit32) 2007 Saleh N. (ref3/cit3) 2008; 42 Waychunas G. A. (ref24/cit24) 1983; 10 Liu Y. Q. (ref10/cit10) 2006; 40 ref33/cit33 Zhang W. X. (ref1/cit1) 2003; 5 Schlicker O. (ref35/cit35) 2000; 38 Ostergren J. D. (ref30/cit30) 1999; 33 Baer D. R. (ref21/cit21) 2008; 40 |
References_xml | – volume: 5 start-page: 2489 issue: 12 year: 2005 ident: ref4/cit4 publication-title: Nano Lett. doi: 10.1021/nl0518268 – volume: 40 start-page: 4336 issue: 14 year: 2006 ident: ref13/cit13 publication-title: Environ. Sci. Technol. doi: 10.1021/es062726m – volume: 43 start-page: 195 issue: 1 year: 2009 ident: ref11/cit11 publication-title: Environ. Sci. Technol. doi: 10.1021/es801955n – volume: 13 start-page: 31 issue: 1 year: 1986 ident: ref26/cit26 publication-title: Phys. Chem. Miner. doi: 10.1007/BF00307311 – volume: 40 start-page: 529 issue: 3 year: 2008 ident: ref21/cit21 publication-title: Surf. Interface Anal. doi: 10.1002/sia.2726 – volume: 5 start-page: 323 issue: 3 year: 2003 ident: ref1/cit1 publication-title: J. Nanopart. Res. doi: 10.1023/A:1025520116015 – volume: 39 start-page: 645 issue: 2 year: 2005 ident: ref36/cit36 publication-title: Environ. Sci. Technol. doi: 10.1021/es049259y – volume: 32 start-page: 2033 issue: 6 year: 2003 ident: ref7/cit7 publication-title: J. Environ. Qual. doi: 10.2134/jeq2003.2033 – volume: 17 start-page: 5315 issue: 21 year: 2005 ident: ref19/cit19 publication-title: Chem. Mater. doi: 10.1021/cm0511217 – volume: 34 start-page: 950 issue: 6 year: 2000 ident: ref29/cit29 publication-title: Environ. Sci. Technol. doi: 10.1021/es990787x – volume: 39 start-page: 2867 issue: 8 year: 2005 ident: ref37/cit37 publication-title: Environ. Sci. Technol. doi: 10.1021/es048851k – ident: ref33/cit33 – volume: 112 start-page: 2286 issue: 7 year: 2008 ident: ref16/cit16 publication-title: J. Phys. Chem. C doi: 10.1021/jp0777418 – volume: 39 start-page: 1221 issue: 5 year: 2005 ident: ref17/cit17 publication-title: Environ. Sci. Technol. doi: 10.1021/es049190u – volume: 98 start-page: XXXX issue: 9 year: 2005 ident: ref22/cit22 publication-title: J. Appl. Phys. – volume: 10 start-page: 1 issue: 1 year: 1983 ident: ref24/cit24 publication-title: Phys. Chem. Miner. doi: 10.1007/BF01204319 – volume: 41 start-page: 7881 issue: 22 year: 2007 ident: ref27/cit27 publication-title: Environ. Sci. Technol. doi: 10.1021/es0711967 – volume-title: The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses year: 2003 ident: ref14/cit14 doi: 10.1002/3527602097 – volume: 42 start-page: 896 issue: 3 year: 2008 ident: ref2/cit2 publication-title: Environ. Sci. Technol. doi: 10.1021/es071774j – ident: ref34/cit34 – volume: 40 start-page: 3978 issue: 12 year: 2006 ident: ref40/cit40 publication-title: Environ. Sci. Technol. doi: 10.1021/es051954y – volume: 68 start-page: XXXX issue: 19 year: 2003 ident: ref38/cit38 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.68.195423 – volume: 41 start-page: 644 issue: 6 year: 2002 ident: ref39/cit39 publication-title: Environ. Geol. doi: 10.1007/s00254-001-0443-5 – volume: 68 start-page: 109 issue: 1 year: 1999 ident: ref6/cit6 publication-title: J. Hazard. Mater. doi: 10.1016/S0304-3894(99)00034-5 – volume: 115 start-page: 1011 year: 2005 ident: ref28/cit28 publication-title: Phys. Scr. doi: 10.1238/Physica.Topical.115a01011 – volume-title: The Area Diffraction Machine year: 2007 ident: ref32/cit32 – volume: 42 start-page: 3349 issue: 9 year: 2008 ident: ref3/cit3 publication-title: Environ. Sci. Technol. doi: 10.1021/es071936b – volume: 33 start-page: 1627 issue: 10 year: 1999 ident: ref30/cit30 publication-title: Environ. Sci. Technol. doi: 10.1021/es980660s – volume: 43 start-page: 3803 issue: 10 year: 2009 ident: ref5/cit5 publication-title: Environ. Sci. Technol. doi: 10.1021/es803589t – volume: 69 start-page: 441 issue: 2 year: 2005 ident: ref18/cit18 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2004.07.003 – volume: 43 start-page: 5079 issue: 13 year: 2009 ident: ref15/cit15 publication-title: Environ. Sci. Technol. doi: 10.1021/es900171v – volume: 42 start-page: 6730 issue: 17 year: 2008 ident: ref12/cit12 publication-title: Environ. Sci. Technol. doi: 10.1021/es800086f – volume: 41 start-page: 284 issue: 1 year: 2007 ident: ref9/cit9 publication-title: Environ. Sci. Technol. doi: 10.1021/es061349a – volume: 261 start-page: 157 issue: 1 year: 2000 ident: ref31/cit31 publication-title: Sci. Total Environ. doi: 10.1016/S0048-9697(00)00640-9 – volume: 89 start-page: 572 issue: 4 year: 2004 ident: ref23/cit23 publication-title: Am. Mineral. doi: 10.2138/am-2004-0412 – volume: 39 start-page: 1338 issue: 5 year: 2005 ident: ref20/cit20 publication-title: Environ. Sci. Technol. doi: 10.1021/es049195r – volume: 40 start-page: 6085 issue: 19 year: 2006 ident: ref10/cit10 publication-title: Environ. Sci. Technol. doi: 10.1021/es060685o – volume: 30 start-page: 36 issue: 1 year: 2007 ident: ref8/cit8 publication-title: Quim. Nova doi: 10.1590/S0100-40422007000100008 – volume: 38 start-page: 403 issue: 3 year: 2000 ident: ref35/cit35 publication-title: Ground Water doi: 10.1111/j.1745-6584.2000.tb00226.x – volume: 18 start-page: 431 year: 1988 ident: ref25/cit25 publication-title: Rev. Mineral. |
SSID | ssj0002308 |
Score | 2.4511144 |
Snippet | Nanoscale zerovalent iron (NZVI) that was aged in simulated groundwater was evaluated for alterations in composition and speciation over 6 months to understand... |
SourceID | proquest pubmed pascalfrancis crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3455 |
SubjectTerms | Aging Anions Applied sciences Bioremediation Chemical compounds Earth sciences Earth, ocean, space Engineering and environment geology. Geothermics Environmental science Exact sciences and technology Groundwater Groundwater pollution Groundwaters Iron Iron - chemistry Nanoparticles Nanoparticles - chemistry Nanotechnology - methods Natural water pollution Oxidation Oxygen - chemistry Pollution Pollution, environment geology Powders Remediation and Control Technologies Spectrum analysis Time Factors Trichloroethylene - chemistry Water - chemistry Water Pollutants, Chemical - analysis Water Purification - methods Water treatment and pollution X-Ray Absorption Spectroscopy - methods X-Ray Diffraction X-rays |
Title | Chemical Transformations during Aging of Zerovalent Iron Nanoparticles in the Presence of Common Groundwater Dissolved Constituents |
URI | http://dx.doi.org/10.1021/es902924h https://www.ncbi.nlm.nih.gov/pubmed/20380376 https://www.proquest.com/docview/325082924 https://www.proquest.com/docview/733403676 https://www.proquest.com/docview/754544054 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB6VcgFVPAotS2FlAQcuaRPHm8ex6kOlUhESrbTiEtmxrVagbLXZBYkrf5xvNo_diracM3YSeybzffE8iD7EuR3FSupAaZOCoBgVaMkHrgDj1ukoVpqJ4tnn5ORCnY5H4zV6f8cJvoz2XJ2HEizh8gE9lAmMl_HPwdf-cwsMnXVtCvI4GXflg1aHsusp6xuuZ-Na11gF37SvuBtfLvzM8VM67LJ1mvCS77vzmdktf_9bvPG-V3hGT1qcKfYbxXhOa67apMcr1Qc3aetomeQG0dbK6xf0p6siIM5XYC3UUzRJjWKfOxuJiRff3HQCVcUE4hNmEvhWg4S3sXbiqhKAl-LLIsOpdDyA81Egx3-8KvsLOHcqDq9Y_386K7h5KEcucGzHS7o4Pjo_OAnaZg2BBsOeBblPsnykytxr7xPuEq5zpeEibVRmZeKlz0IPJu4TYyCjHJikG9nImFTqFCBli9arSeVekQDot9ICt2llVBmnxmBqMC3mTjYM7YCG2M2iNba6WJyjy6jol3lAH7uNLsq21Dl33Phxm-i7XvS6qe9xm9Dwhrb0khLgjxHrgHY69Vk-Vgx0mfH4AYn-KoyXT2R05SbzukjjWIVcM-8eEUBcBVSNWbYbvVzePYyzEA7i9f_WY4cedUEPYfSG1mfTuXsLLDUzw4Ut_QWxTxnX |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELagHAAhHoVCKAQLceCyZdd29nGMSqsU2gqJVIq4rOy1LSrQpsomIHHlj_PNvpKi8jhnPHGcmZ3vW8-DsVcysyOphA6UNgkIilGBFnThCjBunY6k0kQUT07jyZl6NxvN2jY5VAuDTVTQVNWX-OvuAtEbV2WhAFn4fJ3dAAgRZM3j_Y_9UxdQOu2mFWQynnVdhDaXUgQqqksR6M6FrnAYvpli8WeYWYebw3vN3KJ6o3WWyZe91dLsFT9-6-H4f7_kPrvbok4-bszkAbvmym12e6MX4TbbOViXvEG09fnqIfvZ9RTg0w2QC2PlTYkjH9OcIz73_JNbzGG4UMCPoInjyQ1K3mbe8fOSA2zyD3W9U-FoAVWnQI7ef5X2O1Dvgr89J2_45iynUaKUx0CZHo_Y2eHBdH8StKMbAg2-vQwyH6fZSBWZ197HNDNcZ0ojYNqoSIvYC5-GHrzcx8ZARjnwSjeykTGJ0Akgyw7bKuele8I4KIAVFihOK6MKmRgD1eBdxKRsGNoBG-KU89b1qry-VRdR3h_zgL3u_u-8aBuf0_yNr1eJvuxFL5puH1cJDS8ZTS8pAAUJvw7YbmdF621JYM2U1g8Y7z-FK9P9jC7dfFXliZQqpA56fxEB4FXA2NDyuDHP9beHMg0RLp7-6zxesJuT6clxfnx0-n6X3erSIcLoGdtaLlbuOVDW0gxr9_oFeyYiOA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZbxMxEB5BkRAIcRRaQiFYiAde0u7h7PEYtY1ajlKJVop4WdlrW1RUmyibgMQrf5xv9kqKyvGc8cRxZna-b2c8Q_Q6TM0wlIEaSKVjEBQtByrghCvAuLHKD6ViovjhJDo6l28nw0lDFPkuDDZRQlNZJfHZq2fGNR0G_D1bpl4AwvDlJt3idB1b9Gj_U_fkBZxO2okFaRhN2k5C60s5CuXllSh0b6ZKHIirJ1n8GWpWIWf8gD52m60qTb7uLhd6N__xWx_H__81D-l-gz7FqDaXR3TDFpt0d60n4SZtHa6uvkG08f3yMf1sewuIszWwC6MV9VVHMeJ5R2LqxGc7n8KAoUAcQ5PAExzUvKnAExeFAOgUp9W9p9zyAr6lAjl-D1aY70C_c3FwwV7xzRrBI0W5noErPp7Q-fjwbP9o0IxwGCjw7sUgdVGSDmWeOuVcxLPDVSoVAqfx8ySPXOASz4Gfu0hryEgLfmmHxtc6DlQM6LJFG8W0sE9JgAqYwADNKallHsZaQzX4FzMq43mmR32cdNa4YJlV2fXAz7pj7tGb9j_P8qYBOs_huLxO9FUnOqu7flwn1L9iOJ1kAEjIOLZHO60lrbYVAnMmvL5HovsULs15GlXY6bLM4jCUHnfS-4sIgK8E1oaW7dpEV9_uhYmHsPHsX-fxkm6fHoyz98cn73boTlsV4fnPaWMxX9oXAFsL3a887BfFWSS7 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chemical+transformations+during+aging+of+zerovalent+iron+nanoparticles+in+the+presence+of+common+groundwater+dissolved+constituents&rft.jtitle=Environmental+science+%26+technology&rft.au=Reinsch%2C+Brian+C&rft.au=sberg%2C+Brady&rft.au=Penn%2C+R+Lee&rft.au=Kim%2C+Christopher+S&rft.date=2010-05-01&rft.issn=0013-936X&rft.volume=44&rft.issue=9&rft.spage=3455&rft_id=info:doi/10.1021%2Fes902924h&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon |