Chemical Transformations during Aging of Zerovalent Iron Nanoparticles in the Presence of Common Groundwater Dissolved Constituents

Nanoscale zerovalent iron (NZVI) that was aged in simulated groundwater was evaluated for alterations in composition and speciation over 6 months to understand the possible transformations NZVI could undergo in natural waters. NZVI was exposed to 10 mN of various common groundwater anions (Cl−, NO3...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 44; no. 9; pp. 3455 - 3461
Main Authors Reinsch, Brian C, Forsberg, Brady, Penn, R. Lee, Kim, Christopher S, Lowry, Gregory V
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 01.05.2010
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nanoscale zerovalent iron (NZVI) that was aged in simulated groundwater was evaluated for alterations in composition and speciation over 6 months to understand the possible transformations NZVI could undergo in natural waters. NZVI was exposed to 10 mN of various common groundwater anions (Cl−, NO3 −, SO4 2−, HPO4 2−, and HCO3 −) or to dissolved oxygen (saturated, ∼9 mg/L). Fresh and exposed NZVI samples, along with Fe-oxide model compounds, were then analyzed using synchrotron radiation X-ray absorption spectroscopy (XAS) to yield both relative oxidation state, using the X-ray absorption near edge structure (XANES), and quantitative speciation information regarding the types and proportions of mineral species present, from analysis of the extended X-ray absorption fine structure (EXAFS). Over 1 month of aging the dissolved anions inhibited the oxidation of the NZVI to varying degrees. Aging for 6 months, however, resulted in average oxidation states that were similar to each other regardless of the anion used, except for nitrate. Nitrate passivated the NZVI surface such that even after 6 months of aging the particles retained nearly the same mineral and Fe0 content as fresh NZVI. Linear least-squares combination fitting (LCF) of the EXAFS spectra for 1 month-aged samples indicated that the oxidized particles remain predominantly a binary phase system containing Fe0 and Fe3O4, while the 6 month aged samples contained additional mineral phases such as vivianite (Fe3(PO4)2·8H2O) and iron sulfate species, possibly schwertmannite (Fe3+ 16O16(OH,SO4)12−13·10−12H2O). The presence of these additional mineral species was confirmed using synchrotron-based X-ray diffraction (XRD). NZVI exposed to water saturated with dissolved oxygen showed a rapid (<24 h) loss of Fe0 and evolved both magnetite and maghemite (γ-Fe2O3) within the oxide layer. These findings have implications toward the eventual fate, transport, and toxicity of NZVI used for groundwater remediation.
AbstractList Nanoscale zerovalent iron (NZVI) that was aged in simulated groundwater was evaluated for alterations in composition and speciation over 6 months to understand the possible transformations NZV delta could undergo in natural waters. NZV delta was exposed to 10 mN of various common groundwater anions (Cl-, NO3-, SO42-, HPO42-, and HCO3-) or to dissolved oxygen (saturated, 9 mg/L). Fresh and exposed NZV delta samples, along with Fe-oxide model compounds, were then analyzed using synchrotron radiation X-ray absorption spectroscopy (XAS) to yield both relative oxidation state, using the X-ray absorption near edge structure (XANES), and quantitative speciation information regarding the types and proportions of mineral species present, from analysis of the extended X-ray absorption fine structure (EXAFS). Over 1 month of aging the dissolved anions inhibited the oxidation of the NZV delta to varying degrees. Aging for 6 months, however, resulted in average oxidation states that were similar to each other regardless of the anion used, except for nitrate. Nitrate passivated the NZVI surface such that even after 6 months of aging the particles retained nearly the same mineral and Fe0 content as fresh NZVI. Linear least-squares combination fitting (LCF) of the EXAFS spectra for 1 month-aged samples indicated that the oxidized particles remain predominantly a binary phase system containing Fe0 and Fe3O4, while the 6 month aged samples contained additional mineral phases such as vivianite (Fe3(PO4)2.8H2O) and iron sulfate species, possibly schwertmannite (Fe3+16O16(OH,SO4)12-13.10-12H2O). The presence of these additional mineral species was confirmed using synchrotron-based X-ray diffraction (XRD). NZV delta exposed to water saturated with dissolved oxygen showed a rapid (<24 h) loss of Fe0 and evolved both magnetite and maghemite (*g-Fe2O3) within the oxide layer. These findings have implications toward the eventual fate, transport, and toxicity of NZV delta used for groundwater remediation.
Nanoscale zerovalent iron (NZVI) that was aged in simulated groundwater was evaluated for alterations in composition and speciation over 6 months to understand the possible transformations NZVI could undergo in natural waters. NZVI was exposed to 10 mN of various common groundwater anions (Cl(-), NO(3)(-), SO(4)(2-), HPO(4)(2-), and HCO(3)(-)) or to dissolved oxygen (saturated, approximately 9 mg/L). Fresh and exposed NZVI samples, along with Fe-oxide model compounds, were then analyzed using synchrotron radiation X-ray absorption spectroscopy (XAS) to yield both relative oxidation state, using the X-ray absorption near edge structure (XANES), and quantitative speciation information regarding the types and proportions of mineral species present, from analysis of the extended X-ray absorption fine structure (EXAFS). Over 1 month of aging the dissolved anions inhibited the oxidation of the NZVI to varying degrees. Aging for 6 months, however, resulted in average oxidation states that were similar to each other regardless of the anion used, except for nitrate. Nitrate passivated the NZVI surface such that even after 6 months of aging the particles retained nearly the same mineral and Fe(0) content as fresh NZVI. Linear least-squares combination fitting (LCF) of the EXAFS spectra for 1 month-aged samples indicated that the oxidized particles remain predominantly a binary phase system containing Fe(0) and Fe(3)O(4), while the 6 month aged samples contained additional mineral phases such as vivianite (Fe(3)(PO(4))(2).8H(2)O) and iron sulfate species, possibly schwertmannite (Fe(3+)(16)O(16)(OH,SO(4))(12-13).10-12H(2)O). The presence of these additional mineral species was confirmed using synchrotron-based X-ray diffraction (XRD). NZVI exposed to water saturated with dissolved oxygen showed a rapid (<24 h) loss of Fe(0) and evolved both magnetite and maghemite (gamma-Fe(2)O(3)) within the oxide layer. These findings have implications toward the eventual fate, transport, and toxicity of NZVI used for groundwater remediation.
Nanoscale zerovalent iron (NZVI) that was aged in simulated groundwater was evaluated for alterations in composition and speciation over 6 months to understand the possible transformations NZVI could undergo in natural waters. NZVI was exposed to 10 mN of various common groundwater anions (Cl(-), NO(3)(-), SO(4)(2-), HPO(4)(2-), and HCO(3)(-)) or to dissolved oxygen (saturated, approximately 9 mg/L). Fresh and exposed NZVI samples, along with Fe-oxide model compounds, were then analyzed using synchrotron radiation X-ray absorption spectroscopy (XAS) to yield both relative oxidation state, using the X-ray absorption near edge structure (XANES), and quantitative speciation information regarding the types and proportions of mineral species present, from analysis of the extended X-ray absorption fine structure (EXAFS). Over 1 month of aging the dissolved anions inhibited the oxidation of the NZVI to varying degrees. Aging for 6 months, however, resulted in average oxidation states that were similar to each other regardless of the anion used, except for nitrate. Nitrate passivated the NZVI surface such that even after 6 months of aging the particles retained nearly the same mineral and Fe(0) content as fresh NZVI. Linear least-squares combination fitting (LCF) of the EXAFS spectra for 1 month-aged samples indicated that the oxidized particles remain predominantly a binary phase system containing Fe(0) and Fe(3)O(4), while the 6 month aged samples contained additional mineral phases such as vivianite (Fe(3)(PO(4))(2).8H(2)O) and iron sulfate species, possibly schwertmannite (Fe(3+)(16)O(16)(OH,SO(4))(12-13).10-12H(2)O). The presence of these additional mineral species was confirmed using synchrotron-based X-ray diffraction (XRD). NZVI exposed to water saturated with dissolved oxygen showed a rapid (<24 h) loss of Fe(0) and evolved both magnetite and maghemite (gamma-Fe(2)O(3)) within the oxide layer. These findings have implications toward the eventual fate, transport, and toxicity of NZVI used for groundwater remediation.Nanoscale zerovalent iron (NZVI) that was aged in simulated groundwater was evaluated for alterations in composition and speciation over 6 months to understand the possible transformations NZVI could undergo in natural waters. NZVI was exposed to 10 mN of various common groundwater anions (Cl(-), NO(3)(-), SO(4)(2-), HPO(4)(2-), and HCO(3)(-)) or to dissolved oxygen (saturated, approximately 9 mg/L). Fresh and exposed NZVI samples, along with Fe-oxide model compounds, were then analyzed using synchrotron radiation X-ray absorption spectroscopy (XAS) to yield both relative oxidation state, using the X-ray absorption near edge structure (XANES), and quantitative speciation information regarding the types and proportions of mineral species present, from analysis of the extended X-ray absorption fine structure (EXAFS). Over 1 month of aging the dissolved anions inhibited the oxidation of the NZVI to varying degrees. Aging for 6 months, however, resulted in average oxidation states that were similar to each other regardless of the anion used, except for nitrate. Nitrate passivated the NZVI surface such that even after 6 months of aging the particles retained nearly the same mineral and Fe(0) content as fresh NZVI. Linear least-squares combination fitting (LCF) of the EXAFS spectra for 1 month-aged samples indicated that the oxidized particles remain predominantly a binary phase system containing Fe(0) and Fe(3)O(4), while the 6 month aged samples contained additional mineral phases such as vivianite (Fe(3)(PO(4))(2).8H(2)O) and iron sulfate species, possibly schwertmannite (Fe(3+)(16)O(16)(OH,SO(4))(12-13).10-12H(2)O). The presence of these additional mineral species was confirmed using synchrotron-based X-ray diffraction (XRD). NZVI exposed to water saturated with dissolved oxygen showed a rapid (<24 h) loss of Fe(0) and evolved both magnetite and maghemite (gamma-Fe(2)O(3)) within the oxide layer. These findings have implications toward the eventual fate, transport, and toxicity of NZVI used for groundwater remediation.
Nanoscale zerovalent iron (NZVI) that was aged in simulated groundwater was evaluated for alterations in composition and speciation over 6 months to understand the possible transformations NZVI could undergo in natural waters. NZVI was exposed to 10 mN of various common groundwater anions (Cl..., NO..., SO..., HPO..., and HCO...) or to dissolved oxygen (saturated, ...9 mg/L). Fresh and exposed NZVI samples, along with Fe-oxide model compounds, were then analyzed using synchrotron radiation X-ray absorption spectroscopy (XAS) to yield both relative oxidation state, using the X-ray absorption near edge structure (XANES), and quantitative speciation information regarding the types and proportions of mineral species present, from analysis of the extended X-ray absorption fine structure (EXAFS). Over 1 month of aging the dissolved anions inhibited the oxidation of the NZVI to varying degrees. Aging for 6 months, however, resulted in average oxidation states that were similar to each other regardless of the anion used, except for nitrate. Nitrate passivated the NZVI surface such that even after 6 months of aging the particles retained nearly the same mineral and Fe... content as fresh NZVI. Linear least-squares combination fitting (LCF) of the EXAFS spectra for 1 month-aged samples indicated that the oxidized particles remain predominantly a binary phase system containing Fe... and Fe...O..., while the 6 month aged samples contained additional mineral phases such as vivianite (Fe...(PO...)...-8H...O) and iron sulfate species, possibly schwertmannite (Fe...O...(OH,SO...)...-10-12H...O). The presence of these additional mineral species was confirmed using synchrotron-based X-ray diffraction (XRD). NZVI exposed to water saturated with dissolved oxygen showed a rapid (<24 h) loss of Fe... and evolved both magnetite and maghemite (...-Fe...O...) within the oxide layer. These findings have implications toward the eventual fate, transport, and toxicity of NZVI used for groundwater remediation. (ProQuest: ... denotes formulae/symbols omitted.)
Nanoscale zerovalent iron (NZVI) that was aged in simulated groundwater was evaluated for alterations in composition and speciation over 6 months to understand the possible transformations NZVI could undergo in natural waters. NZVI was exposed to 10 mN of various common groundwater anions (Cl−, NO3 −, SO4 2−, HPO4 2−, and HCO3 −) or to dissolved oxygen (saturated, ∼9 mg/L). Fresh and exposed NZVI samples, along with Fe-oxide model compounds, were then analyzed using synchrotron radiation X-ray absorption spectroscopy (XAS) to yield both relative oxidation state, using the X-ray absorption near edge structure (XANES), and quantitative speciation information regarding the types and proportions of mineral species present, from analysis of the extended X-ray absorption fine structure (EXAFS). Over 1 month of aging the dissolved anions inhibited the oxidation of the NZVI to varying degrees. Aging for 6 months, however, resulted in average oxidation states that were similar to each other regardless of the anion used, except for nitrate. Nitrate passivated the NZVI surface such that even after 6 months of aging the particles retained nearly the same mineral and Fe0 content as fresh NZVI. Linear least-squares combination fitting (LCF) of the EXAFS spectra for 1 month-aged samples indicated that the oxidized particles remain predominantly a binary phase system containing Fe0 and Fe3O4, while the 6 month aged samples contained additional mineral phases such as vivianite (Fe3(PO4)2·8H2O) and iron sulfate species, possibly schwertmannite (Fe3+ 16O16(OH,SO4)12−13·10−12H2O). The presence of these additional mineral species was confirmed using synchrotron-based X-ray diffraction (XRD). NZVI exposed to water saturated with dissolved oxygen showed a rapid (<24 h) loss of Fe0 and evolved both magnetite and maghemite (γ-Fe2O3) within the oxide layer. These findings have implications toward the eventual fate, transport, and toxicity of NZVI used for groundwater remediation.
Author Reinsch, Brian C
Lowry, Gregory V
Forsberg, Brady
Penn, R. Lee
Kim, Christopher S
Author_xml – sequence: 1
  givenname: Brian C
  surname: Reinsch
  fullname: Reinsch, Brian C
– sequence: 2
  givenname: Brady
  surname: Forsberg
  fullname: Forsberg, Brady
– sequence: 3
  givenname: R. Lee
  surname: Penn
  fullname: Penn, R. Lee
– sequence: 4
  givenname: Christopher S
  surname: Kim
  fullname: Kim, Christopher S
– sequence: 5
  givenname: Gregory V
  surname: Lowry
  fullname: Lowry, Gregory V
  email: glowry@andrew.cmu.edu
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22735112$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/20380376$$D View this record in MEDLINE/PubMed
BookMark eNqF0k1rFTEUBuAgFXtbXfgHJAgiLsbmc2ayLNdaC0VdVBA3QyZz0psyk1yTTKVr_7gZe22hCm6SRZ5zyOE9B2jPBw8IPafkLSWMHkFShCkmNo_QikpGKtlKuodWhFBeKV5_3UcHKV0RQhgn7RO0zwhvCW_qFfq53sDkjB7xRdQ-2RAnnV3wCQ9zdP4SH18uZ7D4G8RwrUfwGZ_F4PFH7cNWx-zMCAk7j_MG8OcICbyBpWAdpqm40xhmP_zQGSJ-51IK4zUM5dGn7PJc2qWn6LHVY4Jnu_sQfXl_crH-UJ1_Oj1bH59XWtQqV8rWrZLCKKutrRljSiuhBeUDNa2pLbMtsYo0tu77YgQI0oAcaN83TDeM8UP0-rbvNobvM6TcTS4ZGEftIcypa6SQQhAp_i85F4TXTV3kywfyKszRlzE6ziRpl1gKerFDcz_B0G2jm3S86f7EUMCrHdCpZGFLFMale8caLildJnhz60wMKUWwd4SSblmF7m4Vij16YI3Lv7PNUbvxnxW7X2iT7sf42_0CSzHCPg
CODEN ESTHAG
CitedBy_id crossref_primary_10_4491_eer_2022_513
crossref_primary_10_1016_j_jhazmat_2022_129988
crossref_primary_10_1007_s12540_019_00443_8
crossref_primary_10_1016_j_chemosphere_2015_10_066
crossref_primary_10_1021_acs_est_8b03355
crossref_primary_10_1016_j_jhazmat_2016_09_028
crossref_primary_10_1016_j_cej_2021_133844
crossref_primary_10_1021_acs_est_6b04130
crossref_primary_10_1021_acs_est_8b01734
crossref_primary_10_1080_10590501_2017_1418793
crossref_primary_10_1002_wer_1265
crossref_primary_10_1002_jccs_201700406
crossref_primary_10_1021_es301753u
crossref_primary_10_3390_polym15010061
crossref_primary_10_1016_j_jenvman_2024_121805
crossref_primary_10_1038_s41893_024_01409_4
crossref_primary_10_1039_C4RA08988J
crossref_primary_10_1080_09593330_2023_2179944
crossref_primary_10_1016_j_jece_2022_109038
crossref_primary_10_1016_j_jece_2017_09_008
crossref_primary_10_1016_j_jhazmat_2012_05_019
crossref_primary_10_1016_j_envres_2024_120022
crossref_primary_10_1061__ASCE_EE_1943_7870_0001090
crossref_primary_10_1016_j_envpol_2017_09_052
crossref_primary_10_1089_ees_2012_0312
crossref_primary_10_1016_j_pce_2015_11_007
crossref_primary_10_1021_acs_est_6b01763
crossref_primary_10_1016_j_jhazmat_2015_03_021
crossref_primary_10_1016_j_jece_2023_110896
crossref_primary_10_1016_j_cej_2012_05_018
crossref_primary_10_1016_j_watres_2015_02_004
crossref_primary_10_1039_D0EN00182A
crossref_primary_10_1016_j_jes_2022_12_028
crossref_primary_10_1021_acs_est_4c11435
crossref_primary_10_1021_acs_est_6b02170
crossref_primary_10_5620_eht_e2014022
crossref_primary_10_1080_09593330_2014_904932
crossref_primary_10_1002_etc_3924
crossref_primary_10_1039_D2EW00522K
crossref_primary_10_1016_j_memsci_2011_05_054
crossref_primary_10_1016_j_seppur_2022_120550
crossref_primary_10_1016_j_chemosphere_2018_03_041
crossref_primary_10_3724_SP_J_1095_2013_20572
crossref_primary_10_1016_j_scitotenv_2017_10_002
crossref_primary_10_1021_es303422w
crossref_primary_10_1039_C6RA04935D
crossref_primary_10_1061__ASCE_EE_1943_7870_0000782
crossref_primary_10_1016_j_chemosphere_2019_125461
crossref_primary_10_1016_j_watres_2014_10_043
crossref_primary_10_1016_j_jcis_2015_04_019
crossref_primary_10_1016_j_seppur_2016_11_053
crossref_primary_10_1039_C8EN00645H
crossref_primary_10_3389_fmicb_2021_643589
crossref_primary_10_1016_j_scitotenv_2019_05_331
crossref_primary_10_1016_j_scitotenv_2024_172451
crossref_primary_10_1016_j_jes_2018_09_002
crossref_primary_10_1016_j_scitotenv_2021_145757
crossref_primary_10_1021_acs_est_5b00719
crossref_primary_10_1016_j_colsurfa_2016_11_014
crossref_primary_10_1016_j_chemosphere_2017_12_151
crossref_primary_10_2175_106143014X13975035525582
crossref_primary_10_1021_ie400165a
crossref_primary_10_1016_j_chemosphere_2021_131422
crossref_primary_10_3109_17435390_2010_537382
crossref_primary_10_1016_j_jece_2022_108958
crossref_primary_10_1016_j_proenv_2013_04_020
crossref_primary_10_1016_j_jconhyd_2010_07_011
crossref_primary_10_1016_j_watres_2012_12_042
crossref_primary_10_1016_j_watres_2012_06_051
crossref_primary_10_1016_j_watres_2017_11_002
crossref_primary_10_1016_j_jhazmat_2020_124665
crossref_primary_10_1016_j_scitotenv_2019_06_388
crossref_primary_10_1021_acsomega_6b00382
crossref_primary_10_1016_j_jhazmat_2021_126709
crossref_primary_10_1021_acs_inorgchem_9b03612
crossref_primary_10_1016_j_jconhyd_2015_03_004
crossref_primary_10_1016_j_scitotenv_2015_05_033
crossref_primary_10_1021_acs_est_5b06251
crossref_primary_10_1016_j_jhazmat_2014_08_040
crossref_primary_10_1002_rem_21426
crossref_primary_10_1016_j_jhazmat_2016_03_069
crossref_primary_10_1021_jp501846f
crossref_primary_10_1016_j_chemosphere_2018_05_067
crossref_primary_10_1016_j_watres_2016_04_054
crossref_primary_10_1016_j_watres_2012_05_015
crossref_primary_10_1021_es203732x
crossref_primary_10_1021_es9031198
crossref_primary_10_1021_es102398e
crossref_primary_10_1016_j_jhazmat_2021_127343
crossref_primary_10_1007_s00128_015_1697_z
crossref_primary_10_1021_jp506281d
crossref_primary_10_1016_j_jhazmat_2015_12_070
crossref_primary_10_1016_j_jece_2025_115431
crossref_primary_10_1016_j_chemosphere_2023_140147
crossref_primary_10_1016_j_watres_2016_10_037
crossref_primary_10_1155_2012_461468
crossref_primary_10_1016_j_ccr_2014_12_014
crossref_primary_10_1021_acs_est_6b00128
crossref_primary_10_1039_C5EN00145E
crossref_primary_10_1016_j_scitotenv_2022_158469
crossref_primary_10_1021_es304987r
crossref_primary_10_1016_j_jhazmat_2016_03_082
crossref_primary_10_1016_j_cej_2023_147049
crossref_primary_10_1016_j_watres_2020_116060
crossref_primary_10_1016_j_watres_2014_06_008
crossref_primary_10_1039_C8GC01171K
crossref_primary_10_1016_j_aca_2015_10_040
crossref_primary_10_1021_acs_est_1c08282
crossref_primary_10_1016_j_scitotenv_2018_02_038
crossref_primary_10_1016_j_jclepro_2022_131201
crossref_primary_10_1007_s11270_015_2583_3
crossref_primary_10_1016_j_colsurfa_2014_06_017
crossref_primary_10_3390_w3020629
crossref_primary_10_5004_dwt_2019_24503
crossref_primary_10_1039_C8CC03350A
crossref_primary_10_1016_j_jhazmat_2011_09_029
crossref_primary_10_1021_acs_est_2c07289
crossref_primary_10_1016_j_jes_2023_05_038
crossref_primary_10_1016_j_chemosphere_2020_126137
crossref_primary_10_1016_j_jhazmat_2012_08_074
crossref_primary_10_1016_j_scitotenv_2022_153960
crossref_primary_10_1039_C6RA06565A
crossref_primary_10_1021_acs_jpcc_3c04459
crossref_primary_10_1039_C9EM00592G
crossref_primary_10_1016_j_vacuum_2019_02_029
crossref_primary_10_1016_j_watres_2016_04_074
crossref_primary_10_1016_j_cej_2016_09_088
crossref_primary_10_1021_acsami_5b11859
crossref_primary_10_1021_acs_est_2c07953
crossref_primary_10_1021_es303037k
crossref_primary_10_1016_j_jece_2015_12_013
crossref_primary_10_1016_j_clay_2022_106440
crossref_primary_10_1007_s10669_014_9489_2
crossref_primary_10_2139_ssrn_3991467
crossref_primary_10_1016_j_scitotenv_2021_148324
crossref_primary_10_1016_j_ecoenv_2017_07_004
crossref_primary_10_1007_s10311_022_01419_8
crossref_primary_10_1021_acs_est_5b02804
crossref_primary_10_1016_j_cej_2022_135120
crossref_primary_10_1631_jzus_A1400112
crossref_primary_10_1016_j_chemosphere_2015_10_122
crossref_primary_10_1016_j_jece_2017_01_038
crossref_primary_10_1016_j_chemosphere_2016_12_029
crossref_primary_10_1021_acs_est_7b05847
crossref_primary_10_1016_j_jhazmat_2020_122620
crossref_primary_10_1021_acs_iecr_2c02357
crossref_primary_10_1039_C8JA00439K
crossref_primary_10_1080_10643389_2014_924185
crossref_primary_10_1021_acs_est_7b02695
crossref_primary_10_1016_j_chemosphere_2014_09_026
crossref_primary_10_1016_j_gca_2021_11_006
crossref_primary_10_1016_j_envres_2020_109662
crossref_primary_10_1016_j_scitotenv_2014_02_043
crossref_primary_10_1016_j_watres_2020_116632
crossref_primary_10_1021_acsami_0c08626
crossref_primary_10_1080_10934529_2021_1941704
crossref_primary_10_3390_pr12102101
crossref_primary_10_1016_j_jhazmat_2014_01_034
crossref_primary_10_1016_j_matpr_2015_04_055
crossref_primary_10_1016_j_jhazmat_2021_127400
crossref_primary_10_1071_EN14273
crossref_primary_10_1080_10643389_2013_790747
crossref_primary_10_1016_j_jenvman_2017_11_070
crossref_primary_10_3390_w14060987
crossref_primary_10_1016_j_jhazmat_2020_123844
crossref_primary_10_1071_EN14037
crossref_primary_10_1016_j_chemosphere_2020_128001
crossref_primary_10_1016_j_chemosphere_2014_09_095
crossref_primary_10_1016_j_watres_2016_09_012
crossref_primary_10_1016_j_watres_2018_04_037
crossref_primary_10_1021_es500958b
crossref_primary_10_1016_j_advwatres_2012_02_005
crossref_primary_10_1016_j_chemosphere_2020_127707
crossref_primary_10_1007_s12665_019_8538_z
crossref_primary_10_1021_acs_est_5b04485
crossref_primary_10_3390_magnetochemistry9010018
crossref_primary_10_1016_j_envpol_2018_02_036
crossref_primary_10_1016_j_watres_2012_10_013
crossref_primary_10_1039_D0EN00886A
crossref_primary_10_1021_acsestwater_2c00574
crossref_primary_10_1002_anie_201405050
crossref_primary_10_1021_es204608d
crossref_primary_10_1016_j_watres_2017_03_012
crossref_primary_10_1016_j_jes_2015_07_016
crossref_primary_10_1016_j_jhazmat_2021_125207
crossref_primary_10_1016_j_watres_2022_119472
crossref_primary_10_1002_ange_201405050
crossref_primary_10_1016_j_envpol_2016_07_030
crossref_primary_10_1016_j_scitotenv_2023_162751
crossref_primary_10_1007_s11356_019_07140_4
crossref_primary_10_1039_C2EM30691C
crossref_primary_10_1016_j_scitotenv_2021_149981
crossref_primary_10_1021_es103185t
crossref_primary_10_1016_j_watres_2023_120874
crossref_primary_10_1016_j_jece_2024_112023
crossref_primary_10_1021_es500216t
crossref_primary_10_1016_j_jhazmat_2016_04_037
crossref_primary_10_1016_j_jwpe_2023_104720
crossref_primary_10_1016_j_chemosphere_2020_126155
crossref_primary_10_1007_s11270_013_1799_3
crossref_primary_10_1016_j_watres_2025_123141
Cites_doi 10.1021/nl0518268
10.1021/es062726m
10.1021/es801955n
10.1007/BF00307311
10.1002/sia.2726
10.1023/A:1025520116015
10.1021/es049259y
10.2134/jeq2003.2033
10.1021/cm0511217
10.1021/es990787x
10.1021/es048851k
10.1021/jp0777418
10.1021/es049190u
10.1007/BF01204319
10.1021/es0711967
10.1002/3527602097
10.1021/es071774j
10.1021/es051954y
10.1103/PhysRevB.68.195423
10.1007/s00254-001-0443-5
10.1016/S0304-3894(99)00034-5
10.1238/Physica.Topical.115a01011
10.1021/es071936b
10.1021/es980660s
10.1021/es803589t
10.1016/j.gca.2004.07.003
10.1021/es900171v
10.1021/es800086f
10.1021/es061349a
10.1016/S0048-9697(00)00640-9
10.2138/am-2004-0412
10.1021/es049195r
10.1021/es060685o
10.1590/S0100-40422007000100008
10.1111/j.1745-6584.2000.tb00226.x
ContentType Journal Article
Copyright Copyright © 2010 American Chemical Society
2015 INIST-CNRS
Copyright American Chemical Society May 1, 2010
Copyright_xml – notice: Copyright © 2010 American Chemical Society
– notice: 2015 INIST-CNRS
– notice: Copyright American Chemical Society May 1, 2010
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7QH
7TV
7UA
F1W
H97
L.G
DOI 10.1021/es902924h
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
MEDLINE - Academic
Aqualine
Pollution Abstracts
Water Resources Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ASFA: Aquatic Sciences and Fisheries Abstracts
Pollution Abstracts
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE
MEDLINE - Academic
Biotechnology Research Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
Applied Sciences
EISSN 1520-5851
EndPage 3461
ExternalDocumentID 2041237311
20380376
22735112
10_1021_es902924h
b511583988
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Feature
GroupedDBID -
.K2
1AW
3R3
4.4
4R4
53G
55A
5GY
5VS
63O
7~N
85S
AABXI
ABFLS
ABMVS
ABOGM
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACPRK
ACS
AEESW
AENEX
AFEFF
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
K2
LG6
MS
PQEST
PQQKQ
ROL
RXW
TN5
TWZ
U5U
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
XZL
YZZ
---
-DZ
-~X
..I
.DC
6TJ
AAHBH
AAYOK
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
ADMHC
ADUKH
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
MS~
MW2
XSW
ZCA
.HR
186
1WB
42X
8WZ
A6W
ABHMW
ACKIV
ACRPL
ADNMO
AETEA
AEYZD
AGQPQ
ANPPW
ANTXH
IHE
IQODW
MVM
NHB
OHT
RNS
TAE
UBC
UBX
UBY
UQL
VJK
VOH
YV5
ZCG
ZY4
~A~
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7QH
7TV
7UA
F1W
H97
L.G
ID FETCH-LOGICAL-a469t-9f68954c9faff62229a94a413d1c8c6f2f80f907f6bb9fa4e407e5d1bb72a7223
IEDL.DBID ACS
ISSN 0013-936X
IngestDate Fri Jul 11 04:08:30 EDT 2025
Fri Jul 11 14:08:23 EDT 2025
Fri Jul 25 05:46:57 EDT 2025
Thu Apr 03 07:04:53 EDT 2025
Mon Jul 21 09:14:04 EDT 2025
Tue Jul 01 02:10:23 EDT 2025
Thu Apr 24 23:01:39 EDT 2025
Thu Aug 27 13:43:21 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords XANES spectrometry
Pollutant behavior
Nanoparticle
Toxicity
In situ
Ageing
Zerovalent metal
Iron
Permeable reactive barrier
EXAFS spectrometry
Transport process
X ray absorption spectrometry
Decontamination
Model compound
Oxidation
Water pollution
Speciation
Ground water
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a469t-9f68954c9faff62229a94a413d1c8c6f2f80f907f6bb9fa4e407e5d1bb72a7223
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 20380376
PQID 325082924
PQPubID 45412
PageCount 7
ParticipantIDs proquest_miscellaneous_754544054
proquest_miscellaneous_733403676
proquest_journals_325082924
pubmed_primary_20380376
pascalfrancis_primary_22735112
crossref_primary_10_1021_es902924h
crossref_citationtrail_10_1021_es902924h
acs_journals_10_1021_es902924h
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-05-01
PublicationDateYYYYMMDD 2010-05-01
PublicationDate_xml – month: 05
  year: 2010
  text: 2010-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
– name: Easton
PublicationTitle Environmental science & technology
PublicationTitleAlternate Environ. Sci. Technol
PublicationYear 2010
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Webb S. M. (ref28/cit28) 2005; 115
Wang C. M. (ref22/cit22) 2005; 98
Kober R. (ref39/cit39) 2002; 41
Lemos V. P. (ref8/cit8) 2007; 30
Kanel S. R. (ref2/cit2) 2008; 42
Signorini L. (ref38/cit38) 2003; 68
Kohn T. (ref37/cit37) 2005; 39
Liu Y. Q. (ref20/cit20) 2005; 39
Van Der Zee C. (ref18/cit18) 2005; 69
Liu Y. (ref27/cit27) 2007; 41
Ressler T. (ref29/cit29) 2000; 34
Wu W. M. (ref40/cit40) 2006; 40
Phillips D. H. (ref7/cit7) 2003; 32
Sirk K. M. (ref5/cit5) 2009; 43
Kim C. S. (ref31/cit31) 2000; 261
Liu Y. Q. (ref19/cit19) 2005; 17
ref34/cit34
Saleh N. (ref4/cit4) 2005; 5
Brown G. E. (ref25/cit25) 1988; 18
Sarathy V. (ref16/cit16) 2008; 112
Wiesner M. R. (ref13/cit13) 2006; 40
Cornell R. M. (ref14/cit14) 2003
O’Day P. A. (ref23/cit23) 2004; 89
Mishra D. (ref36/cit36) 2005; 39
Nurmi J. T. (ref17/cit17) 2005; 39
Auffan M. (ref12/cit12) 2008; 42
Phenrat T. (ref15/cit15) 2009; 43
Waychunas G. A. (ref26/cit26) 1986; 13
Puls R. W. (ref6/cit6) 1999; 68
Phenrat T. (ref11/cit11) 2009; 43
Phenrat T. (ref9/cit9) 2007; 41
Lande J. (ref32/cit32) 2007
Saleh N. (ref3/cit3) 2008; 42
Waychunas G. A. (ref24/cit24) 1983; 10
Liu Y. Q. (ref10/cit10) 2006; 40
ref33/cit33
Zhang W. X. (ref1/cit1) 2003; 5
Schlicker O. (ref35/cit35) 2000; 38
Ostergren J. D. (ref30/cit30) 1999; 33
Baer D. R. (ref21/cit21) 2008; 40
References_xml – volume: 5
  start-page: 2489
  issue: 12
  year: 2005
  ident: ref4/cit4
  publication-title: Nano Lett.
  doi: 10.1021/nl0518268
– volume: 40
  start-page: 4336
  issue: 14
  year: 2006
  ident: ref13/cit13
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es062726m
– volume: 43
  start-page: 195
  issue: 1
  year: 2009
  ident: ref11/cit11
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es801955n
– volume: 13
  start-page: 31
  issue: 1
  year: 1986
  ident: ref26/cit26
  publication-title: Phys. Chem. Miner.
  doi: 10.1007/BF00307311
– volume: 40
  start-page: 529
  issue: 3
  year: 2008
  ident: ref21/cit21
  publication-title: Surf. Interface Anal.
  doi: 10.1002/sia.2726
– volume: 5
  start-page: 323
  issue: 3
  year: 2003
  ident: ref1/cit1
  publication-title: J. Nanopart. Res.
  doi: 10.1023/A:1025520116015
– volume: 39
  start-page: 645
  issue: 2
  year: 2005
  ident: ref36/cit36
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es049259y
– volume: 32
  start-page: 2033
  issue: 6
  year: 2003
  ident: ref7/cit7
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2003.2033
– volume: 17
  start-page: 5315
  issue: 21
  year: 2005
  ident: ref19/cit19
  publication-title: Chem. Mater.
  doi: 10.1021/cm0511217
– volume: 34
  start-page: 950
  issue: 6
  year: 2000
  ident: ref29/cit29
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es990787x
– volume: 39
  start-page: 2867
  issue: 8
  year: 2005
  ident: ref37/cit37
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es048851k
– ident: ref33/cit33
– volume: 112
  start-page: 2286
  issue: 7
  year: 2008
  ident: ref16/cit16
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp0777418
– volume: 39
  start-page: 1221
  issue: 5
  year: 2005
  ident: ref17/cit17
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es049190u
– volume: 98
  start-page: XXXX
  issue: 9
  year: 2005
  ident: ref22/cit22
  publication-title: J. Appl. Phys.
– volume: 10
  start-page: 1
  issue: 1
  year: 1983
  ident: ref24/cit24
  publication-title: Phys. Chem. Miner.
  doi: 10.1007/BF01204319
– volume: 41
  start-page: 7881
  issue: 22
  year: 2007
  ident: ref27/cit27
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0711967
– volume-title: The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses
  year: 2003
  ident: ref14/cit14
  doi: 10.1002/3527602097
– volume: 42
  start-page: 896
  issue: 3
  year: 2008
  ident: ref2/cit2
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es071774j
– ident: ref34/cit34
– volume: 40
  start-page: 3978
  issue: 12
  year: 2006
  ident: ref40/cit40
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es051954y
– volume: 68
  start-page: XXXX
  issue: 19
  year: 2003
  ident: ref38/cit38
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.68.195423
– volume: 41
  start-page: 644
  issue: 6
  year: 2002
  ident: ref39/cit39
  publication-title: Environ. Geol.
  doi: 10.1007/s00254-001-0443-5
– volume: 68
  start-page: 109
  issue: 1
  year: 1999
  ident: ref6/cit6
  publication-title: J. Hazard. Mater.
  doi: 10.1016/S0304-3894(99)00034-5
– volume: 115
  start-page: 1011
  year: 2005
  ident: ref28/cit28
  publication-title: Phys. Scr.
  doi: 10.1238/Physica.Topical.115a01011
– volume-title: The Area Diffraction Machine
  year: 2007
  ident: ref32/cit32
– volume: 42
  start-page: 3349
  issue: 9
  year: 2008
  ident: ref3/cit3
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es071936b
– volume: 33
  start-page: 1627
  issue: 10
  year: 1999
  ident: ref30/cit30
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es980660s
– volume: 43
  start-page: 3803
  issue: 10
  year: 2009
  ident: ref5/cit5
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es803589t
– volume: 69
  start-page: 441
  issue: 2
  year: 2005
  ident: ref18/cit18
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2004.07.003
– volume: 43
  start-page: 5079
  issue: 13
  year: 2009
  ident: ref15/cit15
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es900171v
– volume: 42
  start-page: 6730
  issue: 17
  year: 2008
  ident: ref12/cit12
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es800086f
– volume: 41
  start-page: 284
  issue: 1
  year: 2007
  ident: ref9/cit9
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es061349a
– volume: 261
  start-page: 157
  issue: 1
  year: 2000
  ident: ref31/cit31
  publication-title: Sci. Total Environ.
  doi: 10.1016/S0048-9697(00)00640-9
– volume: 89
  start-page: 572
  issue: 4
  year: 2004
  ident: ref23/cit23
  publication-title: Am. Mineral.
  doi: 10.2138/am-2004-0412
– volume: 39
  start-page: 1338
  issue: 5
  year: 2005
  ident: ref20/cit20
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es049195r
– volume: 40
  start-page: 6085
  issue: 19
  year: 2006
  ident: ref10/cit10
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es060685o
– volume: 30
  start-page: 36
  issue: 1
  year: 2007
  ident: ref8/cit8
  publication-title: Quim. Nova
  doi: 10.1590/S0100-40422007000100008
– volume: 38
  start-page: 403
  issue: 3
  year: 2000
  ident: ref35/cit35
  publication-title: Ground Water
  doi: 10.1111/j.1745-6584.2000.tb00226.x
– volume: 18
  start-page: 431
  year: 1988
  ident: ref25/cit25
  publication-title: Rev. Mineral.
SSID ssj0002308
Score 2.4511144
Snippet Nanoscale zerovalent iron (NZVI) that was aged in simulated groundwater was evaluated for alterations in composition and speciation over 6 months to understand...
SourceID proquest
pubmed
pascalfrancis
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3455
SubjectTerms Aging
Anions
Applied sciences
Bioremediation
Chemical compounds
Earth sciences
Earth, ocean, space
Engineering and environment geology. Geothermics
Environmental science
Exact sciences and technology
Groundwater
Groundwater pollution
Groundwaters
Iron
Iron - chemistry
Nanoparticles
Nanoparticles - chemistry
Nanotechnology - methods
Natural water pollution
Oxidation
Oxygen - chemistry
Pollution
Pollution, environment geology
Powders
Remediation and Control Technologies
Spectrum analysis
Time Factors
Trichloroethylene - chemistry
Water - chemistry
Water Pollutants, Chemical - analysis
Water Purification - methods
Water treatment and pollution
X-Ray Absorption Spectroscopy - methods
X-Ray Diffraction
X-rays
Title Chemical Transformations during Aging of Zerovalent Iron Nanoparticles in the Presence of Common Groundwater Dissolved Constituents
URI http://dx.doi.org/10.1021/es902924h
https://www.ncbi.nlm.nih.gov/pubmed/20380376
https://www.proquest.com/docview/325082924
https://www.proquest.com/docview/733403676
https://www.proquest.com/docview/754544054
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB6VcgFVPAotS2FlAQcuaRPHm8ex6kOlUhESrbTiEtmxrVagbLXZBYkrf5xvNo_diracM3YSeybzffE8iD7EuR3FSupAaZOCoBgVaMkHrgDj1ukoVpqJ4tnn5ORCnY5H4zV6f8cJvoz2XJ2HEizh8gE9lAmMl_HPwdf-cwsMnXVtCvI4GXflg1aHsusp6xuuZ-Na11gF37SvuBtfLvzM8VM67LJ1mvCS77vzmdktf_9bvPG-V3hGT1qcKfYbxXhOa67apMcr1Qc3aetomeQG0dbK6xf0p6siIM5XYC3UUzRJjWKfOxuJiRff3HQCVcUE4hNmEvhWg4S3sXbiqhKAl-LLIsOpdDyA81Egx3-8KvsLOHcqDq9Y_386K7h5KEcucGzHS7o4Pjo_OAnaZg2BBsOeBblPsnykytxr7xPuEq5zpeEibVRmZeKlz0IPJu4TYyCjHJikG9nImFTqFCBli9arSeVekQDot9ICt2llVBmnxmBqMC3mTjYM7YCG2M2iNba6WJyjy6jol3lAH7uNLsq21Dl33Phxm-i7XvS6qe9xm9Dwhrb0khLgjxHrgHY69Vk-Vgx0mfH4AYn-KoyXT2R05SbzukjjWIVcM-8eEUBcBVSNWbYbvVzePYyzEA7i9f_WY4cedUEPYfSG1mfTuXsLLDUzw4Ut_QWxTxnX
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELagHAAhHoVCKAQLceCyZdd29nGMSqsU2gqJVIq4rOy1LSrQpsomIHHlj_PNvpKi8jhnPHGcmZ3vW8-DsVcysyOphA6UNgkIilGBFnThCjBunY6k0kQUT07jyZl6NxvN2jY5VAuDTVTQVNWX-OvuAtEbV2WhAFn4fJ3dAAgRZM3j_Y_9UxdQOu2mFWQynnVdhDaXUgQqqksR6M6FrnAYvpli8WeYWYebw3vN3KJ6o3WWyZe91dLsFT9-6-H4f7_kPrvbok4-bszkAbvmym12e6MX4TbbOViXvEG09fnqIfvZ9RTg0w2QC2PlTYkjH9OcIz73_JNbzGG4UMCPoInjyQ1K3mbe8fOSA2zyD3W9U-FoAVWnQI7ef5X2O1Dvgr89J2_45iynUaKUx0CZHo_Y2eHBdH8StKMbAg2-vQwyH6fZSBWZ197HNDNcZ0ojYNqoSIvYC5-GHrzcx8ZARjnwSjeykTGJ0Akgyw7bKuele8I4KIAVFihOK6MKmRgD1eBdxKRsGNoBG-KU89b1qry-VRdR3h_zgL3u_u-8aBuf0_yNr1eJvuxFL5puH1cJDS8ZTS8pAAUJvw7YbmdF621JYM2U1g8Y7z-FK9P9jC7dfFXliZQqpA56fxEB4FXA2NDyuDHP9beHMg0RLp7-6zxesJuT6clxfnx0-n6X3erSIcLoGdtaLlbuOVDW0gxr9_oFeyYiOA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZbxMxEB5BkRAIcRRaQiFYiAde0u7h7PEYtY1ajlKJVop4WdlrW1RUmyibgMQrf5xv9kqKyvGc8cRxZna-b2c8Q_Q6TM0wlIEaSKVjEBQtByrghCvAuLHKD6ViovjhJDo6l28nw0lDFPkuDDZRQlNZJfHZq2fGNR0G_D1bpl4AwvDlJt3idB1b9Gj_U_fkBZxO2okFaRhN2k5C60s5CuXllSh0b6ZKHIirJ1n8GWpWIWf8gD52m60qTb7uLhd6N__xWx_H__81D-l-gz7FqDaXR3TDFpt0d60n4SZtHa6uvkG08f3yMf1sewuIszWwC6MV9VVHMeJ5R2LqxGc7n8KAoUAcQ5PAExzUvKnAExeFAOgUp9W9p9zyAr6lAjl-D1aY70C_c3FwwV7xzRrBI0W5noErPp7Q-fjwbP9o0IxwGCjw7sUgdVGSDmWeOuVcxLPDVSoVAqfx8ySPXOASz4Gfu0hryEgLfmmHxtc6DlQM6LJFG8W0sE9JgAqYwADNKallHsZaQzX4FzMq43mmR32cdNa4YJlV2fXAz7pj7tGb9j_P8qYBOs_huLxO9FUnOqu7flwn1L9iOJ1kAEjIOLZHO60lrbYVAnMmvL5HovsULs15GlXY6bLM4jCUHnfS-4sIgK8E1oaW7dpEV9_uhYmHsPHsX-fxkm6fHoyz98cn73boTlsV4fnPaWMxX9oXAFsL3a887BfFWSS7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chemical+transformations+during+aging+of+zerovalent+iron+nanoparticles+in+the+presence+of+common+groundwater+dissolved+constituents&rft.jtitle=Environmental+science+%26+technology&rft.au=Reinsch%2C+Brian+C&rft.au=sberg%2C+Brady&rft.au=Penn%2C+R+Lee&rft.au=Kim%2C+Christopher+S&rft.date=2010-05-01&rft.issn=0013-936X&rft.volume=44&rft.issue=9&rft.spage=3455&rft_id=info:doi/10.1021%2Fes902924h&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon