Development of Catalysts and Ligands for Enantioselective Gold Catalysis
During the past decade, the use of Au(I) complexes for the catalytic activation of C–C π-bonds has been investigated intensely. Over this time period, the development of homogeneous gold catalysis has been extraordinarily rapid and has yielded a host of mild and selective methods for the formation o...
Saved in:
Published in | Accounts of chemical research Vol. 47; no. 3; pp. 889 - 901 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
18.03.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | During the past decade, the use of Au(I) complexes for the catalytic activation of C–C π-bonds has been investigated intensely. Over this time period, the development of homogeneous gold catalysis has been extraordinarily rapid and has yielded a host of mild and selective methods for the formation of carbon–carbon and carbon–heteroatom bonds. The facile formation of new bonds facilitated by gold naturally led to efforts toward rendering these transformations enantioselective. In this Account, we survey the development of catalysts and ligands for enantioselective gold catalysis by our research group as well as related work by others. We also discuss some of our strategies to address the challenges of enantioselective gold(I) catalysis. Early on, our work with enantioselective gold-catalyzed transformations focused on bis(phosphinegold) complexes derived from axially chiral scaffolds. Although these complexes were highly successful in some reactions like cyclopropanation, the careful choice of the weakly coordinating ligand (or counterion) was necessary to obtain high levels of enantioselectivity for the case of allene hydroamination. These counterion effects led us to use the anion itself as a source of chirality, which was successful in the case of allene hydroalkoxylation. In general, these tactics enhance the steric influence around the reactive gold center beyond the two-coordinate ligand environment. The use of binuclear complexes allowed us to use the second gold center and its associated ligand (or counterion) to exert a further steric influence. In a similar vein, we employed a chiral anion (in place of or in addition to a chiral ligand) to move the chiral information closer to the reactive center. In order to expand the scope of reactions amenable to enantioselective gold catalysis to cycloadditions and other carbocyclization processes, we also developed a new class of mononuclear phosphite and phosphoramidite ligands to supplement the previously widely utilized phosphines. However, we needed to judiciously design the steric environment to create “walls” that enclose the gold center. We also successfully applied these same considerations to the development of binuclear carbene ligands for gold. Finally, we describe the design of bifunctional urea–monophosphine ligands used in a gold-catalyzed three-component coupling. |
---|---|
AbstractList | During the past decade, the use of Au(I) complexes for the catalytic activation of C-C π-bonds has been investigated intensely. Over this time period, the development of homogeneous gold catalysis has been extraordinarily rapid and has yielded a host of mild and selective methods for the formation of carbon-carbon and carbon-heteroatom bonds. The facile formation of new bonds facilitated by gold naturally led to efforts toward rendering these transformations enantioselective. In this Account, we survey the development of catalysts and ligands for enantioselective gold catalysis by our research group as well as related work by others. We also discuss some of our strategies to address the challenges of enantioselective gold(I) catalysis. Early on, our work with enantioselective gold-catalyzed transformations focused on bis(phosphinegold) complexes derived from axially chiral scaffolds. Although these complexes were highly successful in some reactions like cyclopropanation, the careful choice of the weakly coordinating ligand (or counterion) was necessary to obtain high levels of enantioselectivity for the case of allene hydroamination. These counterion effects led us to use the anion itself as a source of chirality, which was successful in the case of allene hydroalkoxylation. In general, these tactics enhance the steric influence around the reactive gold center beyond the two-coordinate ligand environment. The use of binuclear complexes allowed us to use the second gold center and its associated ligand (or counterion) to exert a further steric influence. In a similar vein, we employed a chiral anion (in place of or in addition to a chiral ligand) to move the chiral information closer to the reactive center. In order to expand the scope of reactions amenable to enantioselective gold catalysis to cycloadditions and other carbocyclization processes, we also developed a new class of mononuclear phosphite and phosphoramidite ligands to supplement the previously widely utilized phosphines. However, we needed to judiciously design the steric environment to create "walls" that enclose the gold center. We also successfully applied these same considerations to the development of binuclear carbene ligands for gold. Finally, we describe the design of bifunctional urea-monophosphine ligands used in a gold-catalyzed three-component coupling.During the past decade, the use of Au(I) complexes for the catalytic activation of C-C π-bonds has been investigated intensely. Over this time period, the development of homogeneous gold catalysis has been extraordinarily rapid and has yielded a host of mild and selective methods for the formation of carbon-carbon and carbon-heteroatom bonds. The facile formation of new bonds facilitated by gold naturally led to efforts toward rendering these transformations enantioselective. In this Account, we survey the development of catalysts and ligands for enantioselective gold catalysis by our research group as well as related work by others. We also discuss some of our strategies to address the challenges of enantioselective gold(I) catalysis. Early on, our work with enantioselective gold-catalyzed transformations focused on bis(phosphinegold) complexes derived from axially chiral scaffolds. Although these complexes were highly successful in some reactions like cyclopropanation, the careful choice of the weakly coordinating ligand (or counterion) was necessary to obtain high levels of enantioselectivity for the case of allene hydroamination. These counterion effects led us to use the anion itself as a source of chirality, which was successful in the case of allene hydroalkoxylation. In general, these tactics enhance the steric influence around the reactive gold center beyond the two-coordinate ligand environment. The use of binuclear complexes allowed us to use the second gold center and its associated ligand (or counterion) to exert a further steric influence. In a similar vein, we employed a chiral anion (in place of or in addition to a chiral ligand) to move the chiral information closer to the reactive center. In order to expand the scope of reactions amenable to enantioselective gold catalysis to cycloadditions and other carbocyclization processes, we also developed a new class of mononuclear phosphite and phosphoramidite ligands to supplement the previously widely utilized phosphines. However, we needed to judiciously design the steric environment to create "walls" that enclose the gold center. We also successfully applied these same considerations to the development of binuclear carbene ligands for gold. Finally, we describe the design of bifunctional urea-monophosphine ligands used in a gold-catalyzed three-component coupling. During the past decade, the use of Au(I) complexes for the catalytic activation of C–C π-bonds has been investigated intensely. Over this time period, the development of homogeneous gold catalysis has been extraordinarily rapid and has yielded a host of mild and selective methods for the formation of carbon–carbon and carbon–heteroatom bonds. The facile formation of new bonds facilitated by gold naturally led to efforts toward rendering these transformations enantioselective. In this Account, we survey the development of catalysts and ligands for enantioselective gold catalysis by our research group as well as related work by others. We also discuss some of our strategies to address the challenges of enantioselective gold(I) catalysis. Early on, our work with enantioselective gold-catalyzed transformations focused on bis(phosphinegold) complexes derived from axially chiral scaffolds. Although these complexes were highly successful in some reactions like cyclopropanation, the careful choice of the weakly coordinating ligand (or counterion) was necessary to obtain high levels of enantioselectivity for the case of allene hydroamination. These counterion effects led us to use the anion itself as a source of chirality, which was successful in the case of allene hydroalkoxylation. In general, these tactics enhance the steric influence around the reactive gold center beyond the two-coordinate ligand environment. The use of binuclear complexes allowed us to use the second gold center and its associated ligand (or counterion) to exert a further steric influence. In a similar vein, we employed a chiral anion (in place of or in addition to a chiral ligand) to move the chiral information closer to the reactive center. In order to expand the scope of reactions amenable to enantioselective gold catalysis to cycloadditions and other carbocyclization processes, we also developed a new class of mononuclear phosphite and phosphoramidite ligands to supplement the previously widely utilized phosphines. However, we needed to judiciously design the steric environment to create “walls” that enclose the gold center. We also successfully applied these same considerations to the development of binuclear carbene ligands for gold. Finally, we describe the design of bifunctional urea–monophosphine ligands used in a gold-catalyzed three-component coupling. During the past decade, the use of Au(I) complexes for the catalytic activation of C-C pi -bonds has been investigated intensely. Over this time period, the development of homogeneous gold catalysis has been extraordinarily rapid and has yielded a host of mild and selective methods for the formation of carbon-carbon and carbon-heteroatom bonds. The facile formation of new bonds facilitated by gold naturally led to efforts toward rendering these transformations enantioselective. The use of Au(I) complexes for the catalytic activation of C-C π-bonds has been the subject of intense investigation in the last decade or so. The facile formation of carbon-carbon and carbon-heteroatom bonds facilitated by gold naturally led to efforts to render these transformations enantioselective. Early examples of enantioselective gold-catalyzed transformations have focused on bis(phosphinegold) complexes derived from axially chiral scaffolds. Although these complexes were highly successful in some reactions like cyclopropanation, careful choice of the weakly coordinating ligand (or counterion) was needed to obtain high levels of enantioselectivity for the case of allene hydroamination. These counterion effects led us to use the anion itself as a source of chirality, which was successful in the case of allene hydroalkoxylation. In order to expand the scope of reactions amenable to enantioselective gold catalysis to cycloadditions and other carbocyclization processes, a new class of mononuclear phosphite and phosphoramidite ligands was developed to supplement the previously widely utilized phosphines. Finally carbene ligands, in particular, the acyclic diaminocarbenes, have also been successfully applied to enantioselective transformations. |
Author | Toste, F. Dean Wang, Yi-Ming Lackner, Aaron D |
AuthorAffiliation | Department of Chemistry University of California |
AuthorAffiliation_xml | – name: University of California – name: Department of Chemistry |
Author_xml | – sequence: 1 givenname: Yi-Ming surname: Wang fullname: Wang, Yi-Ming – sequence: 2 givenname: Aaron D surname: Lackner fullname: Lackner, Aaron D – sequence: 3 givenname: F. Dean surname: Toste fullname: Toste, F. Dean email: fdtoste@berkeley.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24228794$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtrGzEUhUVISRy3i_6BMptCs3AiafSaTaG4eYGhm2QtZM2VqyBLrjQ25N9XxnZIQiDaXD2-ezi65wwdxxQBoa8EXxBMyaXJDGOi1OIIjQineMJUp47RCNfbumf0FJ2V8liPlAl5gk4po1TJjo3Q7W_YQEirJcShSa6ZmsGEpzKUxsS-mflFLaVxKTdX0cTBpwIB7OA30Nyk0B94Xz6jT86EAl_2dYwerq_up7eT2Z-bu-mv2cQw0Q0TCXPOgAmqMLSyZ11rDCjJKbj6h5bOORWWitYpUH3vJMPCWek6ZujcEsvbMfq5012t50vobfWdTdCr7JcmP-lkvH79Ev1fvUgb3XYCt3WN0Y-9QE7_1lAGvfTFQggmQloXTaTEVBEu-Mcox0ooyoWo6LeXtp79HCZdgcsdYHMqJYPT1g-mDnTr0gdNsN5mqZ-zrB3nbzoOou-x33essUU_pnWONYN3uP-zparB |
CitedBy_id | crossref_primary_10_1002_adma_201905488 crossref_primary_10_1021_ja504892c crossref_primary_10_1002_cplu_202100232 crossref_primary_10_1021_acscatal_1c00461 crossref_primary_10_1002_ange_201902352 crossref_primary_10_1039_D3CC01966G crossref_primary_10_1002_jcc_27104 crossref_primary_10_1002_chem_201502160 crossref_primary_10_1016_j_tetlet_2018_02_054 crossref_primary_10_1002_chem_201800042 crossref_primary_10_1002_ange_201501100 crossref_primary_10_1002_asia_202001375 crossref_primary_10_1021_acs_organomet_1c00143 crossref_primary_10_1002_anie_201503357 crossref_primary_10_1002_anie_201503599 crossref_primary_10_1002_chin_201422240 crossref_primary_10_1039_C4GC01586J crossref_primary_10_1039_D1QO00217A crossref_primary_10_1021_acs_joc_9b01071 crossref_primary_10_1039_C5CS00929D crossref_primary_10_1002_cjoc_201900544 crossref_primary_10_1016_j_mencom_2020_09_006 crossref_primary_10_1039_C5QO00162E crossref_primary_10_1002_chem_201702710 crossref_primary_10_1021_acs_orglett_8b01152 crossref_primary_10_1039_C5CC09529H crossref_primary_10_1002_chem_201903377 crossref_primary_10_1002_anie_202201739 crossref_primary_10_1021_acs_orglett_5b00146 crossref_primary_10_1002_chem_201804653 crossref_primary_10_1039_c4qo00112e crossref_primary_10_1002_ejic_202000929 crossref_primary_10_1002_ejoc_202100166 crossref_primary_10_1002_ange_201604211 crossref_primary_10_1016_j_molstruc_2020_129264 crossref_primary_10_1002_ajoc_202100571 crossref_primary_10_1021_jacs_6b02878 crossref_primary_10_1039_C5SC04130A crossref_primary_10_1002_ange_201604329 crossref_primary_10_1002_anie_202301337 crossref_primary_10_1038_nature14104 crossref_primary_10_1002_anie_201812140 crossref_primary_10_1002_jcc_70078 crossref_primary_10_1039_C9CC09470A crossref_primary_10_1002_ange_201503546 crossref_primary_10_1002_chem_202404153 crossref_primary_10_1002_ange_201915456 crossref_primary_10_1002_anie_201707260 crossref_primary_10_1039_C7CC05746F crossref_primary_10_1002_anie_201710782 crossref_primary_10_1016_j_tetasy_2015_12_006 crossref_primary_10_1021_ic501376v crossref_primary_10_3390_catal9110890 crossref_primary_10_1021_acs_orglett_7b02834 crossref_primary_10_1002_ange_202301337 crossref_primary_10_1021_acs_inorgchem_8b03172 crossref_primary_10_1002_ange_201710782 crossref_primary_10_1021_acs_orglett_8b02263 crossref_primary_10_1002_anie_201915456 crossref_primary_10_1039_C5CC05808B crossref_primary_10_1002_asia_201501326 crossref_primary_10_1002_ange_201707260 crossref_primary_10_1002_chem_201405923 crossref_primary_10_1016_j_ccr_2021_214131 crossref_primary_10_1002_anie_201503546 crossref_primary_10_1002_chem_201504658 crossref_primary_10_1002_chem_202303241 crossref_primary_10_3762_bjoc_11_295 crossref_primary_10_1002_ejic_202300042 crossref_primary_10_1002_chem_201804710 crossref_primary_10_1039_C4CC04633A crossref_primary_10_1039_C5CC07018J crossref_primary_10_1021_jacs_1c06728 crossref_primary_10_1021_acs_joc_9b01149 crossref_primary_10_1002_ange_202312874 crossref_primary_10_1021_acs_orglett_7b00119 crossref_primary_10_1039_D0CS00254B crossref_primary_10_1246_cl_210525 crossref_primary_10_1021_acs_orglett_1c02098 crossref_primary_10_1007_s40010_016_0288_7 crossref_primary_10_1021_acs_joc_0c01552 crossref_primary_10_1021_acscatal_2c04022 crossref_primary_10_1016_j_tet_2014_11_058 crossref_primary_10_1039_C7NJ02634J crossref_primary_10_1002_ejoc_201800777 crossref_primary_10_1007_s00894_015_2710_5 crossref_primary_10_1021_jacs_3c09288 crossref_primary_10_1016_j_mcat_2022_112154 crossref_primary_10_1021_acs_orglett_0c02310 crossref_primary_10_1021_jacs_7b07651 crossref_primary_10_1002_anie_201910922 crossref_primary_10_3762_bjoc_17_18 crossref_primary_10_1039_C6RA06926F crossref_primary_10_1039_D4CC01915F crossref_primary_10_1002_anie_201601701 crossref_primary_10_1021_acs_orglett_9b02735 crossref_primary_10_1002_chem_201700600 crossref_primary_10_1021_acs_organomet_9b00450 crossref_primary_10_1021_acs_organomet_1c00283 crossref_primary_10_1021_acs_organomet_8b00689 crossref_primary_10_1021_acs_orglett_5b00348 crossref_primary_10_1039_C6OB00698A crossref_primary_10_1021_jacs_5b04294 crossref_primary_10_1016_j_ccr_2024_216208 crossref_primary_10_1002_chem_201504441 crossref_primary_10_1002_asia_202200896 crossref_primary_10_1002_chem_201503598 crossref_primary_10_1021_acscatal_6b01626 crossref_primary_10_1002_ejoc_201801722 crossref_primary_10_1016_j_tet_2015_04_109 crossref_primary_10_1039_C6CC04765C crossref_primary_10_1002_ange_201503357 crossref_primary_10_1002_ange_201503599 crossref_primary_10_1021_acs_organomet_1c00034 crossref_primary_10_1002_chem_202003783 crossref_primary_10_1002_ijch_201900179 crossref_primary_10_1016_j_tetlet_2018_04_057 crossref_primary_10_1021_acs_organomet_7b00377 crossref_primary_10_1002_adsc_201501039 crossref_primary_10_1002_anie_202007206 crossref_primary_10_1021_acs_orglett_9b02992 crossref_primary_10_1039_D2QO01070D crossref_primary_10_1002_ange_201405147 crossref_primary_10_1021_acs_chemrev_0c00552 crossref_primary_10_1007_s13404_022_00317_9 crossref_primary_10_1039_C9CC00412B crossref_primary_10_1002_ange_201903957 crossref_primary_10_1002_ange_202305864 crossref_primary_10_1016_j_tet_2016_09_050 crossref_primary_10_1002_chem_201601188 crossref_primary_10_1002_chem_201502208 crossref_primary_10_1021_jacs_1c10450 crossref_primary_10_1021_acs_organomet_8b00230 crossref_primary_10_1039_D1TA03646G crossref_primary_10_1002_chem_201503891 crossref_primary_10_1002_ejoc_201900631 crossref_primary_10_1016_j_cclet_2022_04_050 crossref_primary_10_1039_C5SC01827G crossref_primary_10_1002_ijch_202200051 crossref_primary_10_1021_acs_orglett_7b02210 crossref_primary_10_3390_molecules201219755 crossref_primary_10_1002_anie_202202305 crossref_primary_10_1039_C7OB01179B crossref_primary_10_1039_C8DT00109J crossref_primary_10_1002_ange_202010021 crossref_primary_10_1016_j_tetlet_2015_04_105 crossref_primary_10_1002_anie_201706694 crossref_primary_10_1021_acs_orglett_9b03988 crossref_primary_10_3390_catal13060921 crossref_primary_10_1021_jacs_5b05971 crossref_primary_10_1039_D1QO01194D crossref_primary_10_1002_ange_201501762 crossref_primary_10_1039_C7DT04759B crossref_primary_10_1039_C5OB01895A crossref_primary_10_1039_C7CC03234J crossref_primary_10_1002_ejoc_201501121 crossref_primary_10_1002_ange_202006074 crossref_primary_10_1002_ejoc_201501364 crossref_primary_10_1002_ijch_201700033 crossref_primary_10_1016_j_rechem_2022_100344 crossref_primary_10_1021_acscatal_0c02957 crossref_primary_10_1039_C5DT01362C crossref_primary_10_1002_cphc_201701102 crossref_primary_10_1039_C6CC09879G crossref_primary_10_1002_ange_201812140 crossref_primary_10_1002_asia_201601499 crossref_primary_10_1016_j_poly_2024_116903 crossref_primary_10_1002_adsc_201700280 crossref_primary_10_1021_jacs_8b12478 crossref_primary_10_1002_ange_202001854 crossref_primary_10_1002_adsc_201800938 crossref_primary_10_1002_anie_202411292 crossref_primary_10_1002_chem_201500214 crossref_primary_10_1021_acs_inorgchem_8b00765 crossref_primary_10_1002_anie_201503149 crossref_primary_10_1002_ijch_201700081 crossref_primary_10_1021_acscatal_6b01001 crossref_primary_10_1002_ange_202115464 crossref_primary_10_1039_C6CC03132C crossref_primary_10_1002_zaac_201500565 crossref_primary_10_1002_chem_201405061 crossref_primary_10_1002_ange_201510026 crossref_primary_10_1002_cplu_202300202 crossref_primary_10_1039_D1QO00307K crossref_primary_10_1021_acs_chemrev_0c00348 crossref_primary_10_1002_cssc_201500869 crossref_primary_10_1021_acs_organomet_0c00776 crossref_primary_10_1039_D4QO00057A crossref_primary_10_1021_acs_orglett_7b01392 crossref_primary_10_1002_anie_202202019 crossref_primary_10_3390_molecules26092445 crossref_primary_10_1016_j_ccr_2015_09_012 crossref_primary_10_1039_C9CC02830G crossref_primary_10_1515_pac_2016_0101 crossref_primary_10_1002_adsc_202000274 crossref_primary_10_1002_chem_201406045 crossref_primary_10_1021_jacs_8b04563 crossref_primary_10_1002_ange_201409300 crossref_primary_10_1002_tcr_201600103 crossref_primary_10_1039_C6QO00087H crossref_primary_10_1002_ange_202201739 crossref_primary_10_1002_ejoc_202000139 crossref_primary_10_1002_chem_201701301 crossref_primary_10_1002_slct_202201407 crossref_primary_10_1039_C8CC05601C crossref_primary_10_1002_anie_201505464 crossref_primary_10_1002_anie_201603938 crossref_primary_10_1007_s10562_014_1436_9 crossref_primary_10_1002_ijch_201700060 crossref_primary_10_1002_anie_201404729 crossref_primary_10_1039_D1DT02164H crossref_primary_10_1002_anie_201601550 crossref_primary_10_1002_ijch_202200039 crossref_primary_10_1002_ijch_201700067 crossref_primary_10_1016_j_chempr_2020_03_014 crossref_primary_10_1016_j_tet_2014_12_041 crossref_primary_10_1002_ijch_202200043 crossref_primary_10_1039_C7DT02532G crossref_primary_10_1021_acs_joc_3c02784 crossref_primary_10_1016_j_chempr_2020_02_006 crossref_primary_10_1039_C8DT03721C crossref_primary_10_1016_j_isci_2024_110876 crossref_primary_10_1039_C5SC02933C crossref_primary_10_1039_C6CC10246H crossref_primary_10_3390_molecules27248956 crossref_primary_10_1016_j_tet_2015_07_003 crossref_primary_10_1002_anie_201902352 crossref_primary_10_1002_chem_201501697 crossref_primary_10_1021_acs_organomet_3c00520 crossref_primary_10_1039_D1CP02781F crossref_primary_10_1021_acs_chemrev_0c00697 crossref_primary_10_1002_ange_201710105 crossref_primary_10_1021_acs_orglett_9b03656 crossref_primary_10_1021_acs_chemrev_6b00094 crossref_primary_10_1002_ange_201807514 crossref_primary_10_1021_acs_joc_8b02064 crossref_primary_10_1002_anie_202205439 crossref_primary_10_1021_acs_orglett_6b02636 crossref_primary_10_1039_C4CC08736D crossref_primary_10_1016_j_trechm_2020_04_012 crossref_primary_10_1002_adsc_201801178 crossref_primary_10_1002_ange_202017035 crossref_primary_10_1002_cctc_202200870 crossref_primary_10_1039_D3CC04406H crossref_primary_10_1002_anie_202001854 crossref_primary_10_1039_C9SC06398F crossref_primary_10_1002_anie_201507152 crossref_primary_10_1002_ange_201603938 crossref_primary_10_1038_s41467_023_42032_9 crossref_primary_10_1002_chem_201901522 crossref_primary_10_1002_chem_201500545 crossref_primary_10_1021_acs_orglett_6b01898 crossref_primary_10_1002_ange_201407717 crossref_primary_10_1002_chem_201502968 crossref_primary_10_1021_om500815k crossref_primary_10_1016_j_jorganchem_2017_07_011 crossref_primary_10_1021_acscatal_0c00127 crossref_primary_10_1070_RCR4815 crossref_primary_10_1002_ange_201900955 crossref_primary_10_1002_chem_201705788 crossref_primary_10_3390_catal13091294 crossref_primary_10_1002_ange_202009636 crossref_primary_10_1002_anie_201612243 crossref_primary_10_1002_anie_201507165 crossref_primary_10_1149_2_0751908jes crossref_primary_10_1039_C5OB00986C crossref_primary_10_1002_adsc_201500913 crossref_primary_10_1002_anie_202006074 crossref_primary_10_1002_ajoc_201800324 crossref_primary_10_1002_anie_202012611 crossref_primary_10_1021_acscatal_6b00294 crossref_primary_10_1007_s12039_017_1352_9 crossref_primary_10_1021_cs501738p crossref_primary_10_1039_D1CS00485A crossref_primary_10_1002_cctc_201700839 crossref_primary_10_1021_acs_orglett_0c01945 crossref_primary_10_1039_C6RA13897G crossref_primary_10_1021_acscatal_5b01963 crossref_primary_10_1002_ange_202007206 crossref_primary_10_1021_acs_joc_5b00180 crossref_primary_10_1002_ange_201508331 crossref_primary_10_1039_C6CC02624A crossref_primary_10_1039_C4CY01716A crossref_primary_10_1021_acscatal_6b03211 crossref_primary_10_1002_ange_202012611 crossref_primary_10_1021_acs_organomet_5b00219 crossref_primary_10_1021_acs_orglett_8b02701 crossref_primary_10_1021_acs_chemrev_0c00930 crossref_primary_10_1039_C5CS00721F crossref_primary_10_1002_anie_201610042 crossref_primary_10_1002_chem_201600264 crossref_primary_10_1021_acs_accounts_4c00715 crossref_primary_10_1021_ja508587f crossref_primary_10_1039_C5SC01806D crossref_primary_10_1039_C8GC00508G crossref_primary_10_1002_chem_201404487 crossref_primary_10_1021_acs_chemrev_0c00624 crossref_primary_10_1039_D3QI00452J crossref_primary_10_1002_chem_201403155 crossref_primary_10_1016_j_mcat_2019_110420 crossref_primary_10_1039_C5OB00626K crossref_primary_10_1038_s41570_021_00348_4 crossref_primary_10_1021_acs_orglett_6b02429 crossref_primary_10_1038_s41467_023_44025_0 crossref_primary_10_1002_ange_202202305 crossref_primary_10_1002_anie_202017035 crossref_primary_10_1002_asia_201600593 crossref_primary_10_1021_acs_orglett_9b01296 crossref_primary_10_1002_ejoc_201600304 crossref_primary_10_1039_C5OB00736D crossref_primary_10_1002_chem_201602347 crossref_primary_10_1021_jacs_9b06326 crossref_primary_10_1021_acs_inorgchem_1c03579 crossref_primary_10_1002_anie_201508331 crossref_primary_10_1002_chem_201406318 crossref_primary_10_1002_chem_201500756 crossref_primary_10_1021_acs_orglett_9b02171 crossref_primary_10_1021_jacs_3c10865 crossref_primary_10_1021_acscatal_1c04483 crossref_primary_10_1002_anie_201407717 crossref_primary_10_1002_anie_202312874 crossref_primary_10_1021_acs_orglett_8b02999 crossref_primary_10_1039_C8QO00552D crossref_primary_10_1021_acs_inorgchem_0c02720 crossref_primary_10_1002_ange_201507165 crossref_primary_10_1002_chem_201404229 crossref_primary_10_1021_jacs_2c02799 crossref_primary_10_1039_D1RA09036D crossref_primary_10_1039_C9OB01299K crossref_primary_10_1002_anie_202009636 crossref_primary_10_1021_ol5007955 crossref_primary_10_1039_C5OB00407A crossref_primary_10_1039_C5RA10513G crossref_primary_10_1039_D0SC00497A crossref_primary_10_1021_acs_organomet_0c00292 crossref_primary_10_1021_acs_orglett_8b02982 crossref_primary_10_1002_ange_201601701 crossref_primary_10_1002_anie_201903957 crossref_primary_10_1002_cctc_201402940 crossref_primary_10_1002_ange_201507152 crossref_primary_10_1021_acs_iecr_7b02804 crossref_primary_10_1002_ejic_201901044 crossref_primary_10_1021_acs_organomet_3c00293 crossref_primary_10_1093_bulcsj_uoae026 crossref_primary_10_1021_acscatal_8b04455 crossref_primary_10_1021_cs501902v crossref_primary_10_3390_molecules25020414 crossref_primary_10_1021_cr500691k crossref_primary_10_1002_tcr_201600099 crossref_primary_10_1021_acs_joc_8b00168 crossref_primary_10_1002_ange_201910922 crossref_primary_10_1039_C5CC09718E crossref_primary_10_1002_adsc_201500628 crossref_primary_10_1002_anie_202115464 crossref_primary_10_1002_ange_201404729 crossref_primary_10_1002_slct_202304969 crossref_primary_10_1021_acs_cgd_2c00287 crossref_primary_10_1021_acs_orglett_5b01983 crossref_primary_10_1002_wnan_1831 crossref_primary_10_3390_molecules29133018 crossref_primary_10_1002_adsc_201600218 crossref_primary_10_1039_C7OB00897J crossref_primary_10_1002_adsc_202000755 crossref_primary_10_1002_chem_201405789 crossref_primary_10_1002_chem_201602822 crossref_primary_10_1002_anie_201501100 crossref_primary_10_1016_j_tet_2015_11_031 crossref_primary_10_1021_acscatal_4c00593 crossref_primary_10_1002_adsc_201700615 crossref_primary_10_1002_cjoc_202200017 crossref_primary_10_1002_adsc_201500520 crossref_primary_10_1039_C5GC00430F crossref_primary_10_3389_fchem_2019_00296 crossref_primary_10_1021_acs_orglett_2c04115 crossref_primary_10_1080_01614940_2019_1594016 crossref_primary_10_1021_acs_orglett_4c03521 crossref_primary_10_1021_om500499s crossref_primary_10_1002_anie_201409300 crossref_primary_10_1021_acs_joc_7b02956 crossref_primary_10_1002_ange_201503149 crossref_primary_10_1002_anie_201807514 crossref_primary_10_1002_ange_201505464 crossref_primary_10_1016_j_jorganchem_2019_121049 crossref_primary_10_1002_anie_202010021 crossref_primary_10_1039_C4CS00304G crossref_primary_10_1002_anie_201604211 crossref_primary_10_1002_chem_201800209 crossref_primary_10_1002_ange_202205439 crossref_primary_10_1021_acsomega_8b02907 crossref_primary_10_1002_ange_201706694 crossref_primary_10_1002_anie_201604329 crossref_primary_10_1039_C8OB00577J crossref_primary_10_1002_adsc_201600113 crossref_primary_10_1021_jacs_5b00613 crossref_primary_10_1039_D4SC04221B crossref_primary_10_1002_cctc_201600071 crossref_primary_10_1021_jacs_7b08791 crossref_primary_10_1039_C5CC08381H crossref_primary_10_1039_C4CP05078A crossref_primary_10_1039_C7OB00338B crossref_primary_10_1002_anie_201501762 crossref_primary_10_1021_jacs_7b06025 crossref_primary_10_1002_advs_202409334 crossref_primary_10_1016_j_cogsc_2018_03_002 crossref_primary_10_1021_acs_organomet_8b00709 crossref_primary_10_1021_ic5024357 crossref_primary_10_1039_C6CC05391B crossref_primary_10_1039_C8CC03140A crossref_primary_10_1070_RCR4901 crossref_primary_10_1039_C5OB02453F crossref_primary_10_1002_ange_201610042 crossref_primary_10_1002_ange_202411292 crossref_primary_10_1021_jacs_6b01707 crossref_primary_10_1002_adsc_201600139 crossref_primary_10_1002_open_201500181 crossref_primary_10_1002_cctc_201701752 crossref_primary_10_1039_C4QO00261J crossref_primary_10_1002_anie_202305864 crossref_primary_10_1039_D0CY01343A crossref_primary_10_1039_C5CC04830C crossref_primary_10_1039_D0RA07066A crossref_primary_10_1021_jacs_4c12063 crossref_primary_10_1002_chem_202100415 crossref_primary_10_1002_ange_202202019 crossref_primary_10_1002_anie_201900955 crossref_primary_10_1016_j_cclet_2019_10_019 crossref_primary_10_1039_D4QO01841A crossref_primary_10_1002_anie_201405147 crossref_primary_10_1021_jacs_9b09303 crossref_primary_10_1002_adsc_201600168 crossref_primary_10_1002_anie_201710105 crossref_primary_10_1021_acscatal_3c02213 crossref_primary_10_1016_j_comptc_2024_114508 crossref_primary_10_1002_anie_201510026 crossref_primary_10_1021_jacs_5b12877 crossref_primary_10_1002_ange_201601550 crossref_primary_10_1039_C7DT04593J crossref_primary_10_1002_tcr_201300039 crossref_primary_10_1039_C9OB01967G crossref_primary_10_1016_j_tetlet_2015_01_006 crossref_primary_10_1002_adsc_201600398 crossref_primary_10_1021_acs_organomet_6b00517 crossref_primary_10_1021_acs_organomet_7b00622 crossref_primary_10_1002_adsc_202400193 crossref_primary_10_1021_acs_inorgchem_0c00138 |
Cites_doi | 10.1126/science.1145229 10.1021/ja809297a 10.1021/ic101059c 10.1073/pnas.1006402107 10.1021/ja8085005 10.1038/nchem.331 10.1002/chem.201101346 10.1021/ja01624a038 10.1021/ja210388g 10.1021/ja3065446 10.1021/om0491645 10.1021/ja055059q 10.1002/anie.200600331 10.1021/ja901649s 10.1016/j.tetlet.2009.11.039 10.1039/p19760000811 10.1002/anie.200703769 10.1016/j.tet.2013.02.091 10.1021/om950832j 10.1002/anie.200800934 10.1002/anie.200905000 10.1039/c1sc00160d 10.1021/ol902622b 10.1002/(SICI)1521-3773(19980605)37:10<1415::AID-ANIE1415>3.0.CO;2-N 10.1021/ja068723r 10.1021/ja062045r 10.1021/ja103544p 10.1021/ja200084a 10.1021/ja0552500 10.1021/ja00280a056 10.1039/c3sc50811k 10.1021/ja075412n 10.1002/anie.200353207 10.1002/anie.201107789 10.1021/ja900155x 10.1021/ja049487s 10.1021/ja068819l 10.1021/ol0481838 10.1021/ja1095045 10.1002/cctc.201000070 10.1039/B612008C 10.1002/hlca.19550380728 10.1021/ja905415r 10.1039/p19760001983 10.1021/ja204331w 10.1021/ol9018002 10.1021/ja303641p 10.1021/ja205068j 10.1002/chem.201101749 10.1021/ja904055z 10.1002/anie.200603260 10.1021/jo00011a058 10.1021/ja3086774 10.1002/anie.200806059 |
ContentType | Journal Article |
Copyright | Copyright © 2013 American Chemical Society |
Copyright_xml | – notice: Copyright © 2013 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M 5PM |
DOI | 10.1021/ar400188g |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | MEDLINE - Academic Materials Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
DocumentTitleAlternate | Catalysts and Ligands for Enantioselective Au Catalysis |
EISSN | 1520-4898 |
EndPage | 901 |
ExternalDocumentID | PMC3960333 24228794 10_1021_ar400188g e35876987 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM073932 |
GroupedDBID | - .K2 02 23M 4.4 53G 55A 5GY 5VS 7~N 85S AABXI ABFLS ABMVS ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ K2 LG6 P2P RNS ROL TWZ UI2 UPT VF5 VG9 W1F WH7 X YZZ --- -DZ -~X 5ZA 6J9 6P2 AAYXX ABBLG ABJNI ABLBI ABQRX ACGFO ADHLV AFXLT AGXLV AHGAQ CITATION CUPRZ GGK IH2 XSW ZCA ~02 CGR CUY CVF ECM EIF NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M 5PM |
ID | FETCH-LOGICAL-a469t-7eb54e46280e37d493aae8752ef40032b526c263f8e8ddf7406fc7f94a2bc1c53 |
IEDL.DBID | ACS |
ISSN | 0001-4842 1520-4898 |
IngestDate | Thu Aug 21 13:43:48 EDT 2025 Thu Jul 10 23:24:38 EDT 2025 Fri Jul 11 04:42:44 EDT 2025 Thu Apr 03 07:05:22 EDT 2025 Tue Jul 01 04:04:08 EDT 2025 Thu Apr 24 23:08:56 EDT 2025 Thu Aug 27 13:43:19 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a469t-7eb54e46280e37d493aae8752ef40032b526c263f8e8ddf7406fc7f94a2bc1c53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 24228794 |
PQID | 1508682566 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3960333 proquest_miscellaneous_1770281565 proquest_miscellaneous_1508682566 pubmed_primary_24228794 crossref_citationtrail_10_1021_ar400188g crossref_primary_10_1021_ar400188g acs_journals_10_1021_ar400188g |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-03-18 |
PublicationDateYYYYMMDD | 2014-03-18 |
PublicationDate_xml | – month: 03 year: 2014 text: 2014-03-18 day: 18 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Accounts of chemical research |
PublicationTitleAlternate | Acc. Chem. Res |
PublicationYear | 2014 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Bartolomé C. (ref44/cit44) 2010; 49 Matsumoto Y. (ref43/cit43) 2010; 51 Teller H. (ref40/cit40) 2011; 17 Lalonde R. L. (ref21/cit21) 2007; 129 Handa S. (ref45/cit45) 2012; 51 Miles D. H. (ref28/cit28) 2013; 4 Sethofer S. G. (ref31/cit31) 2010; 132 Chatani N. (ref5/cit5) 1996; 15 Nieto-Oberhuber C. (ref6/cit6) 2004; 43 González A. Z. (ref36/cit36) 2011; 133 Muñoz M. P. (ref11/cit11c) 2005; 24 Corkey B. K. (ref13/cit13a) 2005; 127 Lalonde R. (ref27/cit27) 2010; 49 Alonso I. (ref38/cit38) 2009; 131 López-Carrillo V. (ref18/cit18) 2011; 17 Hamilton G. L. (ref26/cit26) 2007; 317 Benitez D. (ref16/cit16) 2009; 1 Morita N. (ref22/cit22) 2004; 6 Luzung M. R. (ref37/cit37) 2007; 129 Norman R. O. C. (ref1/cit1) 1976 Kleinbeck F. (ref29/cit29) 2009; 131 Norman R. O. C. (ref2/cit2) 1976 Cheon C. H. (ref10/cit11b) 2011; 133 Watson I. D. G. (ref19/cit19) 2009; 131 Stork G. (ref30/cit30a) 1955; 77 Fukuda Y. (ref3/cit3) 1991; 56 Mauleón P. (ref33/cit33) 2009; 131 Reetz M. T. (ref35/cit35) 2009; 131 Pradal A. (ref8/cit8a) 2011; 10 Teller H. (ref39/cit39) 2012; 134 Johansson M. J. (ref14/cit14) 2005; 127 Seidel G. (ref15/cit15b) 2009; 48 Fürstner A. (ref15/cit15a) 2008; 47 Bandini M. (ref47/cit47b) 2012; 134 Sengupta S. (ref8/cit8b) 2010; 2 Corkey B. K. (ref13/cit13b) 2007; 129 González A. Z. (ref34/cit34) 2010; 12 Eschenmoser A. (ref30/cit30b) 1955; 38 Francos J. (ref46/cit46) 2012; 134 Teles J. H. (ref4/cit4) 1998; 37 Brazeau J. F. (ref32/cit32) 2012; 134 Zhang Z. (ref24/cit24) 2006; 128 Ito Y. (ref9/cit9) 1986; 108 Benitez D. (ref17/cit17) 2009; 11 Nishina N. (ref23/cit23) 2006; 45 Correa A. (ref42/cit42) 2008; 47 Melhado A. D. (ref10/cit11a) 2011; 133 Knowles R. R. (ref47/cit47a) 2010; 107 Zhang Z. (ref25/cit25) 2007; 46 Cambpell M. J. (ref48/cit48) 2011; 2 Jiménez-Núñez E. (ref7/cit7) 2007 Wang Y.-M. (ref41/cit41) 2011; 133 Kennedy-Smith J. J. (ref12/cit12) 2004; 126 Corkey B. K. (ref13/cit13c) 2013; 69 Uemura M. (ref20/cit20) 2009; 131 |
References_xml | – volume: 317 start-page: 496 year: 2007 ident: ref26/cit26 publication-title: Science doi: 10.1126/science.1145229 – volume: 131 start-page: 4136 year: 2009 ident: ref35/cit35 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja809297a – volume: 49 start-page: 9758 year: 2010 ident: ref44/cit44 publication-title: Inorg. Chem. doi: 10.1021/ic101059c – volume: 107 start-page: 20678 year: 2010 ident: ref47/cit47a publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1006402107 – volume: 131 start-page: 2056 year: 2009 ident: ref19/cit19 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8085005 – volume: 1 start-page: 482 year: 2009 ident: ref16/cit16 publication-title: Nat. Chem. doi: 10.1038/nchem.331 – volume: 17 start-page: 7764 year: 2011 ident: ref40/cit40 publication-title: Chem.—Eur. J. doi: 10.1002/chem.201101346 – volume: 77 start-page: 5068 year: 1955 ident: ref30/cit30a publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01624a038 – volume: 134 start-page: 2742 year: 2012 ident: ref32/cit32 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja210388g – volume: 134 start-page: 14322 year: 2012 ident: ref46/cit46 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3065446 – volume: 24 start-page: 1293 year: 2005 ident: ref11/cit11c publication-title: Organometallics doi: 10.1021/om0491645 – volume: 127 start-page: 17168 year: 2005 ident: ref13/cit13a publication-title: J. Am. Chem. Soc. doi: 10.1021/ja055059q – volume: 45 start-page: 3314 year: 2006 ident: ref23/cit23 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200600331 – volume: 131 start-page: 6348 year: 2009 ident: ref33/cit33 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja901649s – volume: 51 start-page: 404 year: 2010 ident: ref43/cit43 publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2009.11.039 – start-page: 811 year: 1976 ident: ref1/cit1 publication-title: J. Chem. Soc., Perkin Trans. 1 doi: 10.1039/p19760000811 – volume: 47 start-page: 718 year: 2008 ident: ref42/cit42 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200703769 – volume: 69 start-page: 5640 year: 2013 ident: ref13/cit13c publication-title: Tetrahedron doi: 10.1016/j.tet.2013.02.091 – volume: 15 start-page: 901 year: 1996 ident: ref5/cit5 publication-title: Organometallics doi: 10.1021/om950832j – volume: 47 start-page: 5030 year: 2008 ident: ref15/cit15a publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200800934 – volume: 49 start-page: 598 year: 2010 ident: ref27/cit27 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200905000 – volume: 10 start-page: 1501 year: 2011 ident: ref8/cit8a publication-title: Synthesis – volume: 2 start-page: 1369 year: 2011 ident: ref48/cit48 publication-title: Chem. Sci. doi: 10.1039/c1sc00160d – volume: 12 start-page: 200 year: 2010 ident: ref34/cit34 publication-title: Org. Lett. doi: 10.1021/ol902622b – volume: 37 start-page: 1415 year: 1998 ident: ref4/cit4 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/(SICI)1521-3773(19980605)37:10<1415::AID-ANIE1415>3.0.CO;2-N – volume: 129 start-page: 2764 year: 2007 ident: ref13/cit13b publication-title: J. Am. Chem. Soc. doi: 10.1021/ja068723r – volume: 128 start-page: 9066 year: 2006 ident: ref24/cit24 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja062045r – volume: 132 start-page: 8276 year: 2010 ident: ref31/cit31 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja103544p – volume: 133 start-page: 5500 year: 2011 ident: ref36/cit36 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja200084a – volume: 127 start-page: 17616 year: 2005 ident: ref14/cit14 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0552500 – volume: 108 start-page: 6405 year: 1986 ident: ref9/cit9 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00280a056 – volume: 4 start-page: 3427 year: 2013 ident: ref28/cit28 publication-title: Chem. Sci. doi: 10.1039/c3sc50811k – volume: 129 start-page: 12402 year: 2007 ident: ref37/cit37 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja075412n – volume: 43 start-page: 2402 year: 2004 ident: ref6/cit6 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200353207 – volume: 51 start-page: 2912 year: 2012 ident: ref45/cit45 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201107789 – volume: 131 start-page: 3464 year: 2009 ident: ref20/cit20 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja900155x – volume: 126 start-page: 4526 year: 2004 ident: ref12/cit12 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja049487s – volume: 129 start-page: 2452 year: 2007 ident: ref21/cit21 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja068819l – volume: 6 start-page: 4121 year: 2004 ident: ref22/cit22 publication-title: Org. Lett. doi: 10.1021/ol0481838 – volume: 133 start-page: 3517 year: 2011 ident: ref10/cit11a publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1095045 – volume: 2 start-page: 609 year: 2010 ident: ref8/cit8b publication-title: ChemCatChem doi: 10.1002/cctc.201000070 – start-page: 333 year: 2007 ident: ref7/cit7 publication-title: Chem. Commun. doi: 10.1039/B612008C – volume: 38 start-page: 1890 year: 1955 ident: ref30/cit30b publication-title: Helv. Chim. Acta doi: 10.1002/hlca.19550380728 – volume: 131 start-page: 13020 year: 2009 ident: ref38/cit38 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja905415r – start-page: 1983 year: 1976 ident: ref2/cit2 publication-title: J. Chem. Soc., Perkin Trans. 1 doi: 10.1039/p19760001983 – volume: 133 start-page: 13248 year: 2011 ident: ref10/cit11b publication-title: J. Am. Chem. Soc. doi: 10.1021/ja204331w – volume: 11 start-page: 4798 year: 2009 ident: ref17/cit17 publication-title: Org. Lett. doi: 10.1021/ol9018002 – volume: 134 start-page: 15331 year: 2012 ident: ref39/cit39 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja303641p – volume: 133 start-page: 12972 year: 2011 ident: ref41/cit41 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja205068j – volume: 17 start-page: 10972 year: 2011 ident: ref18/cit18 publication-title: Chem.—Eur. J. doi: 10.1002/chem.201101749 – volume: 131 start-page: 9178 year: 2009 ident: ref29/cit29 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja904055z – volume: 46 start-page: 283 year: 2007 ident: ref25/cit25 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200603260 – volume: 56 start-page: 3729 year: 1991 ident: ref3/cit3 publication-title: J. Org. Chem. doi: 10.1021/jo00011a058 – volume: 134 start-page: 20690 year: 2012 ident: ref47/cit47b publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3086774 – volume: 48 start-page: 2510 year: 2009 ident: ref15/cit15b publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200806059 |
SSID | ssj0002467 |
Score | 2.5985749 |
Snippet | During the past decade, the use of Au(I) complexes for the catalytic activation of C–C π-bonds has been investigated intensely. Over this time period, the... During the past decade, the use of Au(I) complexes for the catalytic activation of C-C π-bonds has been investigated intensely. Over this time period, the... During the past decade, the use of Au(I) complexes for the catalytic activation of C-C pi -bonds has been investigated intensely. Over this time period, the... The use of Au(I) complexes for the catalytic activation of C-C π-bonds has been the subject of intense investigation in the last decade or so. The facile... |
SourceID | pubmedcentral proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 889 |
SubjectTerms | Alkadienes - chemistry Carbon Carbon-carbon composites Catalysis Catalysts Formations Gold Gold - chemistry Ligands Methane - analogs & derivatives Molecular Structure Organic Chemistry Phenomena Organogold Compounds - chemical synthesis Organogold Compounds - chemistry Organophosphorus Compounds - chemistry Phosphines - chemistry Rendering Stereoisomerism Transformations |
Title | Development of Catalysts and Ligands for Enantioselective Gold Catalysis |
URI | http://dx.doi.org/10.1021/ar400188g https://www.ncbi.nlm.nih.gov/pubmed/24228794 https://www.proquest.com/docview/1508682566 https://www.proquest.com/docview/1770281565 https://pubmed.ncbi.nlm.nih.gov/PMC3960333 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT8MwDLZ4HODC-zFeCo8Dl8KapGk5orExIeACk3armjQdE1OL1u4Avx6nXauNDTjXVVrHtT839meAC0HrOtJSWEyFjsWjfBqgUJiq4G5TTUOVd_E_PYt2hz90ne4CnP9ygk_t62DIzeQ4r7cIy1Tgx2vwT-OlcreUi4IYE_Ni7nFa0gdN3mpCj0qnQ88MnvxZFjkRZ1rrcFd26xTlJe9Xo0xeqa9Z8sa_XmED1sY4k9wWhrEJCzregpVGOd5tG9oT5UIkiUjD_Mf5TLOUBHFIHvs90wNMENKSpqmV6SdpPjEHnSO5TwZhKd9Pd6DTar422tZ4rIIVYC6cWa6WDtemJ7WumRvyGxYEGtMWqiN8TEalQ4WigkWe9sIwcjHkR8qNbnhApbKVw3ZhKU5ivQ9EK8RrYV0xdJtcck9SLzA9mVRIdFzarsEJ6t0ffxapn594U9uvFFKDy3JLfDUmJTezMQbzRM8q0Y-CiWOe0Gm5rz7q0xx-BLFORrg0IlGB6bAQf8i4LsItzGidGuwVtlAtRQ1XGjqvGrhTVlIJGJ7u6Stx_y3n62aYJTLGDv5TxiGsIhzjpsLN9o5gKRuO9DFCnkye5Cb_Dfan-qI |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT4QwEJ74OOjF92N9VuPBC7q0peDRbNRVVy9q4o3QUnSjASPsQX-90_JwV416ZoAynU6_oTPfAOwJ2taJlsJhKvYcnthugEJhqIKzTTWNla3iv7oW3Tt-ce_dVzQ5phYGB5Hjk3J7iP_JLuAeRq_cNJALHsZhEkEINdZ83LlpvC7louTHxPCYB5zWLELDt5odSOWjO9A3WPk1O3JouzmdLfsW2YHaLJOng0EhD9T7Fw7H_33JHMxUqJMcl2YyD2M6XYCpTt3sbRG6Q8lDJEtIx_zVecuLnERpTHr9B1MRTBDgkhOTOdPPcts_B10lOcue41q-ny_B3enJbafrVE0WnAgj48LxtfS4NhWqbc38mB-xKNIYxFCd4DAZlahqRQVLAh3EceIjAEiUnxzxiErlKo8tw0SapXoViFaI3uK2YuhEueSBpEFkKjSpkOjGtNuCLdRHWC2SPLTn39QNG4W0YL-emVBVFOWmU8bzT6K7jehLycvxk9BOPb0h6tMchUSpzgb4asSlAoNjIX6R8X0EXxjfei1YKU2ieRU1zGnoylrgjxhLI2BYu0evpP1Hy97NMGZkjK39pYxtmOreXvXC3vn15TpMI1DjJvfNDTZgongd6E0EQ4XcsqvgA2bzAxI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB71IVEu0AKlAZouiAMXp_Hueu0eK9MQ2hKQIFJvlvfVRq3sqnYO8OuZ9UtJqErPHtvr2d3Zbzwz3wB8FHRorJHCY0oHHrdVN0Ch0FXB2aaGalVV8X-biPGUn14EF42j6GphcBAFPqmogvhuV99q2zAM-IfpHXdN5KLLddh04Tq3oo_jn53lpVzUHJnoIvOI05ZJaPFWdwqpYvkU-gdarmZILhw5o-fwvRtslWlyPZiXcqD-rPA4Pv5rtuFZgz7Jcb1cdmDNZC9gK26bvr2E8UISEcktid3fnd9FWZA00-R8dukqgwkCXXLiMmhmeVH10UGTSb7kN7qVnxWvYDo6-RWPvabZgpeih1x6oZEBN65SdWhYqPkRS1ODzgw1FofJqAyoUFQwG5lIaxsiELAqtEc8pVL5KmC7sJHlmdkDYhSiOD1UDI0plzySNEpdpSYVEs2Z8XvQR50kzWYpkioOTv2kU0gPPrWzk6iGqtx1zLi5T_RDJ3pb83PcJ_S-neIE9elCImlm8jm-GvGpQCdZiAdkwhBBGPq5QQ9e18uiexV1DGpo0noQLi2YTsCxdy9fyWZXFYs3Q9-RMfbmf8o4gCc_Po-S86-Ts7fwFPEadylwfvQONsq7udlHTFTKfrUR_gLSnAWV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+Catalysts+and+Ligands+for+Enantioselective+Gold+Catalysis&rft.jtitle=Accounts+of+chemical+research&rft.au=Wang%2C+Yi-Ming&rft.au=Lackner%2C+Aaron+D&rft.au=Toste%2C+F.+Dean&rft.date=2014-03-18&rft.pub=American+Chemical+Society&rft.issn=0001-4842&rft.eissn=1520-4898&rft.volume=47&rft.issue=3&rft.spage=889&rft.epage=901&rft_id=info:doi/10.1021%2Far400188g&rft.externalDocID=e35876987 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon |