Development of Catalysts and Ligands for Enantioselective Gold Catalysis

During the past decade, the use of Au(I) complexes for the catalytic activation of C–C π-bonds has been investigated intensely. Over this time period, the development of homogeneous gold catalysis has been extraordinarily rapid and has yielded a host of mild and selective methods for the formation o...

Full description

Saved in:
Bibliographic Details
Published inAccounts of chemical research Vol. 47; no. 3; pp. 889 - 901
Main Authors Wang, Yi-Ming, Lackner, Aaron D, Toste, F. Dean
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 18.03.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract During the past decade, the use of Au(I) complexes for the catalytic activation of C–C π-bonds has been investigated intensely. Over this time period, the development of homogeneous gold catalysis has been extraordinarily rapid and has yielded a host of mild and selective methods for the formation of carbon–carbon and carbon–heteroatom bonds. The facile formation of new bonds facilitated by gold naturally led to efforts toward rendering these transformations enantioselective. In this Account, we survey the development of catalysts and ligands for enantioselective gold catalysis by our research group as well as related work by others. We also discuss some of our strategies to address the challenges of enantioselective gold(I) catalysis. Early on, our work with enantioselective gold-catalyzed transformations focused on bis(phosphinegold) complexes derived from axially chiral scaffolds. Although these complexes were highly successful in some reactions like cyclopropanation, the careful choice of the weakly coordinating ligand (or counterion) was necessary to obtain high levels of enantioselectivity for the case of allene hydroamination. These counterion effects led us to use the anion itself as a source of chirality, which was successful in the case of allene hydroalkoxylation. In general, these tactics enhance the steric influence around the reactive gold center beyond the two-coordinate ligand environment. The use of binuclear complexes allowed us to use the second gold center and its associated ligand (or counterion) to exert a further steric influence. In a similar vein, we employed a chiral anion (in place of or in addition to a chiral ligand) to move the chiral information closer to the reactive center. In order to expand the scope of reactions amenable to enantioselective gold catalysis to cycloadditions and other carbocyclization processes, we also developed a new class of mononuclear phosphite and phosphoramidite ligands to supplement the previously widely utilized phosphines. However, we needed to judiciously design the steric environment to create “walls” that enclose the gold center. We also successfully applied these same considerations to the development of binuclear carbene ligands for gold. Finally, we describe the design of bifunctional urea–monophosphine ligands used in a gold-catalyzed three-component coupling.
AbstractList During the past decade, the use of Au(I) complexes for the catalytic activation of C-C π-bonds has been investigated intensely. Over this time period, the development of homogeneous gold catalysis has been extraordinarily rapid and has yielded a host of mild and selective methods for the formation of carbon-carbon and carbon-heteroatom bonds. The facile formation of new bonds facilitated by gold naturally led to efforts toward rendering these transformations enantioselective. In this Account, we survey the development of catalysts and ligands for enantioselective gold catalysis by our research group as well as related work by others. We also discuss some of our strategies to address the challenges of enantioselective gold(I) catalysis. Early on, our work with enantioselective gold-catalyzed transformations focused on bis(phosphinegold) complexes derived from axially chiral scaffolds. Although these complexes were highly successful in some reactions like cyclopropanation, the careful choice of the weakly coordinating ligand (or counterion) was necessary to obtain high levels of enantioselectivity for the case of allene hydroamination. These counterion effects led us to use the anion itself as a source of chirality, which was successful in the case of allene hydroalkoxylation. In general, these tactics enhance the steric influence around the reactive gold center beyond the two-coordinate ligand environment. The use of binuclear complexes allowed us to use the second gold center and its associated ligand (or counterion) to exert a further steric influence. In a similar vein, we employed a chiral anion (in place of or in addition to a chiral ligand) to move the chiral information closer to the reactive center. In order to expand the scope of reactions amenable to enantioselective gold catalysis to cycloadditions and other carbocyclization processes, we also developed a new class of mononuclear phosphite and phosphoramidite ligands to supplement the previously widely utilized phosphines. However, we needed to judiciously design the steric environment to create "walls" that enclose the gold center. We also successfully applied these same considerations to the development of binuclear carbene ligands for gold. Finally, we describe the design of bifunctional urea-monophosphine ligands used in a gold-catalyzed three-component coupling.During the past decade, the use of Au(I) complexes for the catalytic activation of C-C π-bonds has been investigated intensely. Over this time period, the development of homogeneous gold catalysis has been extraordinarily rapid and has yielded a host of mild and selective methods for the formation of carbon-carbon and carbon-heteroatom bonds. The facile formation of new bonds facilitated by gold naturally led to efforts toward rendering these transformations enantioselective. In this Account, we survey the development of catalysts and ligands for enantioselective gold catalysis by our research group as well as related work by others. We also discuss some of our strategies to address the challenges of enantioselective gold(I) catalysis. Early on, our work with enantioselective gold-catalyzed transformations focused on bis(phosphinegold) complexes derived from axially chiral scaffolds. Although these complexes were highly successful in some reactions like cyclopropanation, the careful choice of the weakly coordinating ligand (or counterion) was necessary to obtain high levels of enantioselectivity for the case of allene hydroamination. These counterion effects led us to use the anion itself as a source of chirality, which was successful in the case of allene hydroalkoxylation. In general, these tactics enhance the steric influence around the reactive gold center beyond the two-coordinate ligand environment. The use of binuclear complexes allowed us to use the second gold center and its associated ligand (or counterion) to exert a further steric influence. In a similar vein, we employed a chiral anion (in place of or in addition to a chiral ligand) to move the chiral information closer to the reactive center. In order to expand the scope of reactions amenable to enantioselective gold catalysis to cycloadditions and other carbocyclization processes, we also developed a new class of mononuclear phosphite and phosphoramidite ligands to supplement the previously widely utilized phosphines. However, we needed to judiciously design the steric environment to create "walls" that enclose the gold center. We also successfully applied these same considerations to the development of binuclear carbene ligands for gold. Finally, we describe the design of bifunctional urea-monophosphine ligands used in a gold-catalyzed three-component coupling.
During the past decade, the use of Au(I) complexes for the catalytic activation of C–C π-bonds has been investigated intensely. Over this time period, the development of homogeneous gold catalysis has been extraordinarily rapid and has yielded a host of mild and selective methods for the formation of carbon–carbon and carbon–heteroatom bonds. The facile formation of new bonds facilitated by gold naturally led to efforts toward rendering these transformations enantioselective. In this Account, we survey the development of catalysts and ligands for enantioselective gold catalysis by our research group as well as related work by others. We also discuss some of our strategies to address the challenges of enantioselective gold(I) catalysis. Early on, our work with enantioselective gold-catalyzed transformations focused on bis(phosphinegold) complexes derived from axially chiral scaffolds. Although these complexes were highly successful in some reactions like cyclopropanation, the careful choice of the weakly coordinating ligand (or counterion) was necessary to obtain high levels of enantioselectivity for the case of allene hydroamination. These counterion effects led us to use the anion itself as a source of chirality, which was successful in the case of allene hydroalkoxylation. In general, these tactics enhance the steric influence around the reactive gold center beyond the two-coordinate ligand environment. The use of binuclear complexes allowed us to use the second gold center and its associated ligand (or counterion) to exert a further steric influence. In a similar vein, we employed a chiral anion (in place of or in addition to a chiral ligand) to move the chiral information closer to the reactive center. In order to expand the scope of reactions amenable to enantioselective gold catalysis to cycloadditions and other carbocyclization processes, we also developed a new class of mononuclear phosphite and phosphoramidite ligands to supplement the previously widely utilized phosphines. However, we needed to judiciously design the steric environment to create “walls” that enclose the gold center. We also successfully applied these same considerations to the development of binuclear carbene ligands for gold. Finally, we describe the design of bifunctional urea–monophosphine ligands used in a gold-catalyzed three-component coupling.
During the past decade, the use of Au(I) complexes for the catalytic activation of C-C pi -bonds has been investigated intensely. Over this time period, the development of homogeneous gold catalysis has been extraordinarily rapid and has yielded a host of mild and selective methods for the formation of carbon-carbon and carbon-heteroatom bonds. The facile formation of new bonds facilitated by gold naturally led to efforts toward rendering these transformations enantioselective.
The use of Au(I) complexes for the catalytic activation of C-C π-bonds has been the subject of intense investigation in the last decade or so. The facile formation of carbon-carbon and carbon-heteroatom bonds facilitated by gold naturally led to efforts to render these transformations enantioselective. Early examples of enantioselective gold-catalyzed transformations have focused on bis(phosphinegold) complexes derived from axially chiral scaffolds. Although these complexes were highly successful in some reactions like cyclopropanation, careful choice of the weakly coordinating ligand (or counterion) was needed to obtain high levels of enantioselectivity for the case of allene hydroamination. These counterion effects led us to use the anion itself as a source of chirality, which was successful in the case of allene hydroalkoxylation. In order to expand the scope of reactions amenable to enantioselective gold catalysis to cycloadditions and other carbocyclization processes, a new class of mononuclear phosphite and phosphoramidite ligands was developed to supplement the previously widely utilized phosphines. Finally carbene ligands, in particular, the acyclic diaminocarbenes, have also been successfully applied to enantioselective transformations.
Author Toste, F. Dean
Wang, Yi-Ming
Lackner, Aaron D
AuthorAffiliation Department of Chemistry
University of California
AuthorAffiliation_xml – name: University of California
– name: Department of Chemistry
Author_xml – sequence: 1
  givenname: Yi-Ming
  surname: Wang
  fullname: Wang, Yi-Ming
– sequence: 2
  givenname: Aaron D
  surname: Lackner
  fullname: Lackner, Aaron D
– sequence: 3
  givenname: F. Dean
  surname: Toste
  fullname: Toste, F. Dean
  email: fdtoste@berkeley.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24228794$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtrGzEUhUVISRy3i_6BMptCs3AiafSaTaG4eYGhm2QtZM2VqyBLrjQ25N9XxnZIQiDaXD2-ezi65wwdxxQBoa8EXxBMyaXJDGOi1OIIjQineMJUp47RCNfbumf0FJ2V8liPlAl5gk4po1TJjo3Q7W_YQEirJcShSa6ZmsGEpzKUxsS-mflFLaVxKTdX0cTBpwIB7OA30Nyk0B94Xz6jT86EAl_2dYwerq_up7eT2Z-bu-mv2cQw0Q0TCXPOgAmqMLSyZ11rDCjJKbj6h5bOORWWitYpUH3vJMPCWek6ZujcEsvbMfq5012t50vobfWdTdCr7JcmP-lkvH79Ev1fvUgb3XYCt3WN0Y-9QE7_1lAGvfTFQggmQloXTaTEVBEu-Mcox0ooyoWo6LeXtp79HCZdgcsdYHMqJYPT1g-mDnTr0gdNsN5mqZ-zrB3nbzoOou-x33essUU_pnWONYN3uP-zparB
CitedBy_id crossref_primary_10_1002_adma_201905488
crossref_primary_10_1021_ja504892c
crossref_primary_10_1002_cplu_202100232
crossref_primary_10_1021_acscatal_1c00461
crossref_primary_10_1002_ange_201902352
crossref_primary_10_1039_D3CC01966G
crossref_primary_10_1002_jcc_27104
crossref_primary_10_1002_chem_201502160
crossref_primary_10_1016_j_tetlet_2018_02_054
crossref_primary_10_1002_chem_201800042
crossref_primary_10_1002_ange_201501100
crossref_primary_10_1002_asia_202001375
crossref_primary_10_1021_acs_organomet_1c00143
crossref_primary_10_1002_anie_201503357
crossref_primary_10_1002_anie_201503599
crossref_primary_10_1002_chin_201422240
crossref_primary_10_1039_C4GC01586J
crossref_primary_10_1039_D1QO00217A
crossref_primary_10_1021_acs_joc_9b01071
crossref_primary_10_1039_C5CS00929D
crossref_primary_10_1002_cjoc_201900544
crossref_primary_10_1016_j_mencom_2020_09_006
crossref_primary_10_1039_C5QO00162E
crossref_primary_10_1002_chem_201702710
crossref_primary_10_1021_acs_orglett_8b01152
crossref_primary_10_1039_C5CC09529H
crossref_primary_10_1002_chem_201903377
crossref_primary_10_1002_anie_202201739
crossref_primary_10_1021_acs_orglett_5b00146
crossref_primary_10_1002_chem_201804653
crossref_primary_10_1039_c4qo00112e
crossref_primary_10_1002_ejic_202000929
crossref_primary_10_1002_ejoc_202100166
crossref_primary_10_1002_ange_201604211
crossref_primary_10_1016_j_molstruc_2020_129264
crossref_primary_10_1002_ajoc_202100571
crossref_primary_10_1021_jacs_6b02878
crossref_primary_10_1039_C5SC04130A
crossref_primary_10_1002_ange_201604329
crossref_primary_10_1002_anie_202301337
crossref_primary_10_1038_nature14104
crossref_primary_10_1002_anie_201812140
crossref_primary_10_1002_jcc_70078
crossref_primary_10_1039_C9CC09470A
crossref_primary_10_1002_ange_201503546
crossref_primary_10_1002_chem_202404153
crossref_primary_10_1002_ange_201915456
crossref_primary_10_1002_anie_201707260
crossref_primary_10_1039_C7CC05746F
crossref_primary_10_1002_anie_201710782
crossref_primary_10_1016_j_tetasy_2015_12_006
crossref_primary_10_1021_ic501376v
crossref_primary_10_3390_catal9110890
crossref_primary_10_1021_acs_orglett_7b02834
crossref_primary_10_1002_ange_202301337
crossref_primary_10_1021_acs_inorgchem_8b03172
crossref_primary_10_1002_ange_201710782
crossref_primary_10_1021_acs_orglett_8b02263
crossref_primary_10_1002_anie_201915456
crossref_primary_10_1039_C5CC05808B
crossref_primary_10_1002_asia_201501326
crossref_primary_10_1002_ange_201707260
crossref_primary_10_1002_chem_201405923
crossref_primary_10_1016_j_ccr_2021_214131
crossref_primary_10_1002_anie_201503546
crossref_primary_10_1002_chem_201504658
crossref_primary_10_1002_chem_202303241
crossref_primary_10_3762_bjoc_11_295
crossref_primary_10_1002_ejic_202300042
crossref_primary_10_1002_chem_201804710
crossref_primary_10_1039_C4CC04633A
crossref_primary_10_1039_C5CC07018J
crossref_primary_10_1021_jacs_1c06728
crossref_primary_10_1021_acs_joc_9b01149
crossref_primary_10_1002_ange_202312874
crossref_primary_10_1021_acs_orglett_7b00119
crossref_primary_10_1039_D0CS00254B
crossref_primary_10_1246_cl_210525
crossref_primary_10_1021_acs_orglett_1c02098
crossref_primary_10_1007_s40010_016_0288_7
crossref_primary_10_1021_acs_joc_0c01552
crossref_primary_10_1021_acscatal_2c04022
crossref_primary_10_1016_j_tet_2014_11_058
crossref_primary_10_1039_C7NJ02634J
crossref_primary_10_1002_ejoc_201800777
crossref_primary_10_1007_s00894_015_2710_5
crossref_primary_10_1021_jacs_3c09288
crossref_primary_10_1016_j_mcat_2022_112154
crossref_primary_10_1021_acs_orglett_0c02310
crossref_primary_10_1021_jacs_7b07651
crossref_primary_10_1002_anie_201910922
crossref_primary_10_3762_bjoc_17_18
crossref_primary_10_1039_C6RA06926F
crossref_primary_10_1039_D4CC01915F
crossref_primary_10_1002_anie_201601701
crossref_primary_10_1021_acs_orglett_9b02735
crossref_primary_10_1002_chem_201700600
crossref_primary_10_1021_acs_organomet_9b00450
crossref_primary_10_1021_acs_organomet_1c00283
crossref_primary_10_1021_acs_organomet_8b00689
crossref_primary_10_1021_acs_orglett_5b00348
crossref_primary_10_1039_C6OB00698A
crossref_primary_10_1021_jacs_5b04294
crossref_primary_10_1016_j_ccr_2024_216208
crossref_primary_10_1002_chem_201504441
crossref_primary_10_1002_asia_202200896
crossref_primary_10_1002_chem_201503598
crossref_primary_10_1021_acscatal_6b01626
crossref_primary_10_1002_ejoc_201801722
crossref_primary_10_1016_j_tet_2015_04_109
crossref_primary_10_1039_C6CC04765C
crossref_primary_10_1002_ange_201503357
crossref_primary_10_1002_ange_201503599
crossref_primary_10_1021_acs_organomet_1c00034
crossref_primary_10_1002_chem_202003783
crossref_primary_10_1002_ijch_201900179
crossref_primary_10_1016_j_tetlet_2018_04_057
crossref_primary_10_1021_acs_organomet_7b00377
crossref_primary_10_1002_adsc_201501039
crossref_primary_10_1002_anie_202007206
crossref_primary_10_1021_acs_orglett_9b02992
crossref_primary_10_1039_D2QO01070D
crossref_primary_10_1002_ange_201405147
crossref_primary_10_1021_acs_chemrev_0c00552
crossref_primary_10_1007_s13404_022_00317_9
crossref_primary_10_1039_C9CC00412B
crossref_primary_10_1002_ange_201903957
crossref_primary_10_1002_ange_202305864
crossref_primary_10_1016_j_tet_2016_09_050
crossref_primary_10_1002_chem_201601188
crossref_primary_10_1002_chem_201502208
crossref_primary_10_1021_jacs_1c10450
crossref_primary_10_1021_acs_organomet_8b00230
crossref_primary_10_1039_D1TA03646G
crossref_primary_10_1002_chem_201503891
crossref_primary_10_1002_ejoc_201900631
crossref_primary_10_1016_j_cclet_2022_04_050
crossref_primary_10_1039_C5SC01827G
crossref_primary_10_1002_ijch_202200051
crossref_primary_10_1021_acs_orglett_7b02210
crossref_primary_10_3390_molecules201219755
crossref_primary_10_1002_anie_202202305
crossref_primary_10_1039_C7OB01179B
crossref_primary_10_1039_C8DT00109J
crossref_primary_10_1002_ange_202010021
crossref_primary_10_1016_j_tetlet_2015_04_105
crossref_primary_10_1002_anie_201706694
crossref_primary_10_1021_acs_orglett_9b03988
crossref_primary_10_3390_catal13060921
crossref_primary_10_1021_jacs_5b05971
crossref_primary_10_1039_D1QO01194D
crossref_primary_10_1002_ange_201501762
crossref_primary_10_1039_C7DT04759B
crossref_primary_10_1039_C5OB01895A
crossref_primary_10_1039_C7CC03234J
crossref_primary_10_1002_ejoc_201501121
crossref_primary_10_1002_ange_202006074
crossref_primary_10_1002_ejoc_201501364
crossref_primary_10_1002_ijch_201700033
crossref_primary_10_1016_j_rechem_2022_100344
crossref_primary_10_1021_acscatal_0c02957
crossref_primary_10_1039_C5DT01362C
crossref_primary_10_1002_cphc_201701102
crossref_primary_10_1039_C6CC09879G
crossref_primary_10_1002_ange_201812140
crossref_primary_10_1002_asia_201601499
crossref_primary_10_1016_j_poly_2024_116903
crossref_primary_10_1002_adsc_201700280
crossref_primary_10_1021_jacs_8b12478
crossref_primary_10_1002_ange_202001854
crossref_primary_10_1002_adsc_201800938
crossref_primary_10_1002_anie_202411292
crossref_primary_10_1002_chem_201500214
crossref_primary_10_1021_acs_inorgchem_8b00765
crossref_primary_10_1002_anie_201503149
crossref_primary_10_1002_ijch_201700081
crossref_primary_10_1021_acscatal_6b01001
crossref_primary_10_1002_ange_202115464
crossref_primary_10_1039_C6CC03132C
crossref_primary_10_1002_zaac_201500565
crossref_primary_10_1002_chem_201405061
crossref_primary_10_1002_ange_201510026
crossref_primary_10_1002_cplu_202300202
crossref_primary_10_1039_D1QO00307K
crossref_primary_10_1021_acs_chemrev_0c00348
crossref_primary_10_1002_cssc_201500869
crossref_primary_10_1021_acs_organomet_0c00776
crossref_primary_10_1039_D4QO00057A
crossref_primary_10_1021_acs_orglett_7b01392
crossref_primary_10_1002_anie_202202019
crossref_primary_10_3390_molecules26092445
crossref_primary_10_1016_j_ccr_2015_09_012
crossref_primary_10_1039_C9CC02830G
crossref_primary_10_1515_pac_2016_0101
crossref_primary_10_1002_adsc_202000274
crossref_primary_10_1002_chem_201406045
crossref_primary_10_1021_jacs_8b04563
crossref_primary_10_1002_ange_201409300
crossref_primary_10_1002_tcr_201600103
crossref_primary_10_1039_C6QO00087H
crossref_primary_10_1002_ange_202201739
crossref_primary_10_1002_ejoc_202000139
crossref_primary_10_1002_chem_201701301
crossref_primary_10_1002_slct_202201407
crossref_primary_10_1039_C8CC05601C
crossref_primary_10_1002_anie_201505464
crossref_primary_10_1002_anie_201603938
crossref_primary_10_1007_s10562_014_1436_9
crossref_primary_10_1002_ijch_201700060
crossref_primary_10_1002_anie_201404729
crossref_primary_10_1039_D1DT02164H
crossref_primary_10_1002_anie_201601550
crossref_primary_10_1002_ijch_202200039
crossref_primary_10_1002_ijch_201700067
crossref_primary_10_1016_j_chempr_2020_03_014
crossref_primary_10_1016_j_tet_2014_12_041
crossref_primary_10_1002_ijch_202200043
crossref_primary_10_1039_C7DT02532G
crossref_primary_10_1021_acs_joc_3c02784
crossref_primary_10_1016_j_chempr_2020_02_006
crossref_primary_10_1039_C8DT03721C
crossref_primary_10_1016_j_isci_2024_110876
crossref_primary_10_1039_C5SC02933C
crossref_primary_10_1039_C6CC10246H
crossref_primary_10_3390_molecules27248956
crossref_primary_10_1016_j_tet_2015_07_003
crossref_primary_10_1002_anie_201902352
crossref_primary_10_1002_chem_201501697
crossref_primary_10_1021_acs_organomet_3c00520
crossref_primary_10_1039_D1CP02781F
crossref_primary_10_1021_acs_chemrev_0c00697
crossref_primary_10_1002_ange_201710105
crossref_primary_10_1021_acs_orglett_9b03656
crossref_primary_10_1021_acs_chemrev_6b00094
crossref_primary_10_1002_ange_201807514
crossref_primary_10_1021_acs_joc_8b02064
crossref_primary_10_1002_anie_202205439
crossref_primary_10_1021_acs_orglett_6b02636
crossref_primary_10_1039_C4CC08736D
crossref_primary_10_1016_j_trechm_2020_04_012
crossref_primary_10_1002_adsc_201801178
crossref_primary_10_1002_ange_202017035
crossref_primary_10_1002_cctc_202200870
crossref_primary_10_1039_D3CC04406H
crossref_primary_10_1002_anie_202001854
crossref_primary_10_1039_C9SC06398F
crossref_primary_10_1002_anie_201507152
crossref_primary_10_1002_ange_201603938
crossref_primary_10_1038_s41467_023_42032_9
crossref_primary_10_1002_chem_201901522
crossref_primary_10_1002_chem_201500545
crossref_primary_10_1021_acs_orglett_6b01898
crossref_primary_10_1002_ange_201407717
crossref_primary_10_1002_chem_201502968
crossref_primary_10_1021_om500815k
crossref_primary_10_1016_j_jorganchem_2017_07_011
crossref_primary_10_1021_acscatal_0c00127
crossref_primary_10_1070_RCR4815
crossref_primary_10_1002_ange_201900955
crossref_primary_10_1002_chem_201705788
crossref_primary_10_3390_catal13091294
crossref_primary_10_1002_ange_202009636
crossref_primary_10_1002_anie_201612243
crossref_primary_10_1002_anie_201507165
crossref_primary_10_1149_2_0751908jes
crossref_primary_10_1039_C5OB00986C
crossref_primary_10_1002_adsc_201500913
crossref_primary_10_1002_anie_202006074
crossref_primary_10_1002_ajoc_201800324
crossref_primary_10_1002_anie_202012611
crossref_primary_10_1021_acscatal_6b00294
crossref_primary_10_1007_s12039_017_1352_9
crossref_primary_10_1021_cs501738p
crossref_primary_10_1039_D1CS00485A
crossref_primary_10_1002_cctc_201700839
crossref_primary_10_1021_acs_orglett_0c01945
crossref_primary_10_1039_C6RA13897G
crossref_primary_10_1021_acscatal_5b01963
crossref_primary_10_1002_ange_202007206
crossref_primary_10_1021_acs_joc_5b00180
crossref_primary_10_1002_ange_201508331
crossref_primary_10_1039_C6CC02624A
crossref_primary_10_1039_C4CY01716A
crossref_primary_10_1021_acscatal_6b03211
crossref_primary_10_1002_ange_202012611
crossref_primary_10_1021_acs_organomet_5b00219
crossref_primary_10_1021_acs_orglett_8b02701
crossref_primary_10_1021_acs_chemrev_0c00930
crossref_primary_10_1039_C5CS00721F
crossref_primary_10_1002_anie_201610042
crossref_primary_10_1002_chem_201600264
crossref_primary_10_1021_acs_accounts_4c00715
crossref_primary_10_1021_ja508587f
crossref_primary_10_1039_C5SC01806D
crossref_primary_10_1039_C8GC00508G
crossref_primary_10_1002_chem_201404487
crossref_primary_10_1021_acs_chemrev_0c00624
crossref_primary_10_1039_D3QI00452J
crossref_primary_10_1002_chem_201403155
crossref_primary_10_1016_j_mcat_2019_110420
crossref_primary_10_1039_C5OB00626K
crossref_primary_10_1038_s41570_021_00348_4
crossref_primary_10_1021_acs_orglett_6b02429
crossref_primary_10_1038_s41467_023_44025_0
crossref_primary_10_1002_ange_202202305
crossref_primary_10_1002_anie_202017035
crossref_primary_10_1002_asia_201600593
crossref_primary_10_1021_acs_orglett_9b01296
crossref_primary_10_1002_ejoc_201600304
crossref_primary_10_1039_C5OB00736D
crossref_primary_10_1002_chem_201602347
crossref_primary_10_1021_jacs_9b06326
crossref_primary_10_1021_acs_inorgchem_1c03579
crossref_primary_10_1002_anie_201508331
crossref_primary_10_1002_chem_201406318
crossref_primary_10_1002_chem_201500756
crossref_primary_10_1021_acs_orglett_9b02171
crossref_primary_10_1021_jacs_3c10865
crossref_primary_10_1021_acscatal_1c04483
crossref_primary_10_1002_anie_201407717
crossref_primary_10_1002_anie_202312874
crossref_primary_10_1021_acs_orglett_8b02999
crossref_primary_10_1039_C8QO00552D
crossref_primary_10_1021_acs_inorgchem_0c02720
crossref_primary_10_1002_ange_201507165
crossref_primary_10_1002_chem_201404229
crossref_primary_10_1021_jacs_2c02799
crossref_primary_10_1039_D1RA09036D
crossref_primary_10_1039_C9OB01299K
crossref_primary_10_1002_anie_202009636
crossref_primary_10_1021_ol5007955
crossref_primary_10_1039_C5OB00407A
crossref_primary_10_1039_C5RA10513G
crossref_primary_10_1039_D0SC00497A
crossref_primary_10_1021_acs_organomet_0c00292
crossref_primary_10_1021_acs_orglett_8b02982
crossref_primary_10_1002_ange_201601701
crossref_primary_10_1002_anie_201903957
crossref_primary_10_1002_cctc_201402940
crossref_primary_10_1002_ange_201507152
crossref_primary_10_1021_acs_iecr_7b02804
crossref_primary_10_1002_ejic_201901044
crossref_primary_10_1021_acs_organomet_3c00293
crossref_primary_10_1093_bulcsj_uoae026
crossref_primary_10_1021_acscatal_8b04455
crossref_primary_10_1021_cs501902v
crossref_primary_10_3390_molecules25020414
crossref_primary_10_1021_cr500691k
crossref_primary_10_1002_tcr_201600099
crossref_primary_10_1021_acs_joc_8b00168
crossref_primary_10_1002_ange_201910922
crossref_primary_10_1039_C5CC09718E
crossref_primary_10_1002_adsc_201500628
crossref_primary_10_1002_anie_202115464
crossref_primary_10_1002_ange_201404729
crossref_primary_10_1002_slct_202304969
crossref_primary_10_1021_acs_cgd_2c00287
crossref_primary_10_1021_acs_orglett_5b01983
crossref_primary_10_1002_wnan_1831
crossref_primary_10_3390_molecules29133018
crossref_primary_10_1002_adsc_201600218
crossref_primary_10_1039_C7OB00897J
crossref_primary_10_1002_adsc_202000755
crossref_primary_10_1002_chem_201405789
crossref_primary_10_1002_chem_201602822
crossref_primary_10_1002_anie_201501100
crossref_primary_10_1016_j_tet_2015_11_031
crossref_primary_10_1021_acscatal_4c00593
crossref_primary_10_1002_adsc_201700615
crossref_primary_10_1002_cjoc_202200017
crossref_primary_10_1002_adsc_201500520
crossref_primary_10_1039_C5GC00430F
crossref_primary_10_3389_fchem_2019_00296
crossref_primary_10_1021_acs_orglett_2c04115
crossref_primary_10_1080_01614940_2019_1594016
crossref_primary_10_1021_acs_orglett_4c03521
crossref_primary_10_1021_om500499s
crossref_primary_10_1002_anie_201409300
crossref_primary_10_1021_acs_joc_7b02956
crossref_primary_10_1002_ange_201503149
crossref_primary_10_1002_anie_201807514
crossref_primary_10_1002_ange_201505464
crossref_primary_10_1016_j_jorganchem_2019_121049
crossref_primary_10_1002_anie_202010021
crossref_primary_10_1039_C4CS00304G
crossref_primary_10_1002_anie_201604211
crossref_primary_10_1002_chem_201800209
crossref_primary_10_1002_ange_202205439
crossref_primary_10_1021_acsomega_8b02907
crossref_primary_10_1002_ange_201706694
crossref_primary_10_1002_anie_201604329
crossref_primary_10_1039_C8OB00577J
crossref_primary_10_1002_adsc_201600113
crossref_primary_10_1021_jacs_5b00613
crossref_primary_10_1039_D4SC04221B
crossref_primary_10_1002_cctc_201600071
crossref_primary_10_1021_jacs_7b08791
crossref_primary_10_1039_C5CC08381H
crossref_primary_10_1039_C4CP05078A
crossref_primary_10_1039_C7OB00338B
crossref_primary_10_1002_anie_201501762
crossref_primary_10_1021_jacs_7b06025
crossref_primary_10_1002_advs_202409334
crossref_primary_10_1016_j_cogsc_2018_03_002
crossref_primary_10_1021_acs_organomet_8b00709
crossref_primary_10_1021_ic5024357
crossref_primary_10_1039_C6CC05391B
crossref_primary_10_1039_C8CC03140A
crossref_primary_10_1070_RCR4901
crossref_primary_10_1039_C5OB02453F
crossref_primary_10_1002_ange_201610042
crossref_primary_10_1002_ange_202411292
crossref_primary_10_1021_jacs_6b01707
crossref_primary_10_1002_adsc_201600139
crossref_primary_10_1002_open_201500181
crossref_primary_10_1002_cctc_201701752
crossref_primary_10_1039_C4QO00261J
crossref_primary_10_1002_anie_202305864
crossref_primary_10_1039_D0CY01343A
crossref_primary_10_1039_C5CC04830C
crossref_primary_10_1039_D0RA07066A
crossref_primary_10_1021_jacs_4c12063
crossref_primary_10_1002_chem_202100415
crossref_primary_10_1002_ange_202202019
crossref_primary_10_1002_anie_201900955
crossref_primary_10_1016_j_cclet_2019_10_019
crossref_primary_10_1039_D4QO01841A
crossref_primary_10_1002_anie_201405147
crossref_primary_10_1021_jacs_9b09303
crossref_primary_10_1002_adsc_201600168
crossref_primary_10_1002_anie_201710105
crossref_primary_10_1021_acscatal_3c02213
crossref_primary_10_1016_j_comptc_2024_114508
crossref_primary_10_1002_anie_201510026
crossref_primary_10_1021_jacs_5b12877
crossref_primary_10_1002_ange_201601550
crossref_primary_10_1039_C7DT04593J
crossref_primary_10_1002_tcr_201300039
crossref_primary_10_1039_C9OB01967G
crossref_primary_10_1016_j_tetlet_2015_01_006
crossref_primary_10_1002_adsc_201600398
crossref_primary_10_1021_acs_organomet_6b00517
crossref_primary_10_1021_acs_organomet_7b00622
crossref_primary_10_1002_adsc_202400193
crossref_primary_10_1021_acs_inorgchem_0c00138
Cites_doi 10.1126/science.1145229
10.1021/ja809297a
10.1021/ic101059c
10.1073/pnas.1006402107
10.1021/ja8085005
10.1038/nchem.331
10.1002/chem.201101346
10.1021/ja01624a038
10.1021/ja210388g
10.1021/ja3065446
10.1021/om0491645
10.1021/ja055059q
10.1002/anie.200600331
10.1021/ja901649s
10.1016/j.tetlet.2009.11.039
10.1039/p19760000811
10.1002/anie.200703769
10.1016/j.tet.2013.02.091
10.1021/om950832j
10.1002/anie.200800934
10.1002/anie.200905000
10.1039/c1sc00160d
10.1021/ol902622b
10.1002/(SICI)1521-3773(19980605)37:10<1415::AID-ANIE1415>3.0.CO;2-N
10.1021/ja068723r
10.1021/ja062045r
10.1021/ja103544p
10.1021/ja200084a
10.1021/ja0552500
10.1021/ja00280a056
10.1039/c3sc50811k
10.1021/ja075412n
10.1002/anie.200353207
10.1002/anie.201107789
10.1021/ja900155x
10.1021/ja049487s
10.1021/ja068819l
10.1021/ol0481838
10.1021/ja1095045
10.1002/cctc.201000070
10.1039/B612008C
10.1002/hlca.19550380728
10.1021/ja905415r
10.1039/p19760001983
10.1021/ja204331w
10.1021/ol9018002
10.1021/ja303641p
10.1021/ja205068j
10.1002/chem.201101749
10.1021/ja904055z
10.1002/anie.200603260
10.1021/jo00011a058
10.1021/ja3086774
10.1002/anie.200806059
ContentType Journal Article
Copyright Copyright © 2013 American Chemical Society
Copyright_xml – notice: Copyright © 2013 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
5PM
DOI 10.1021/ar400188g
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList MEDLINE - Academic

Materials Research Database

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
DocumentTitleAlternate Catalysts and Ligands for Enantioselective Au Catalysis
EISSN 1520-4898
EndPage 901
ExternalDocumentID PMC3960333
24228794
10_1021_ar400188g
e35876987
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM073932
GroupedDBID -
.K2
02
23M
4.4
53G
55A
5GY
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
RNS
ROL
TWZ
UI2
UPT
VF5
VG9
W1F
WH7
X
YZZ
---
-DZ
-~X
5ZA
6J9
6P2
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACGFO
ADHLV
AFXLT
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
ZCA
~02
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
5PM
ID FETCH-LOGICAL-a469t-7eb54e46280e37d493aae8752ef40032b526c263f8e8ddf7406fc7f94a2bc1c53
IEDL.DBID ACS
ISSN 0001-4842
1520-4898
IngestDate Thu Aug 21 13:43:48 EDT 2025
Thu Jul 10 23:24:38 EDT 2025
Fri Jul 11 04:42:44 EDT 2025
Thu Apr 03 07:05:22 EDT 2025
Tue Jul 01 04:04:08 EDT 2025
Thu Apr 24 23:08:56 EDT 2025
Thu Aug 27 13:43:19 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a469t-7eb54e46280e37d493aae8752ef40032b526c263f8e8ddf7406fc7f94a2bc1c53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 24228794
PQID 1508682566
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3960333
proquest_miscellaneous_1770281565
proquest_miscellaneous_1508682566
pubmed_primary_24228794
crossref_citationtrail_10_1021_ar400188g
crossref_primary_10_1021_ar400188g
acs_journals_10_1021_ar400188g
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-03-18
PublicationDateYYYYMMDD 2014-03-18
PublicationDate_xml – month: 03
  year: 2014
  text: 2014-03-18
  day: 18
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Accounts of chemical research
PublicationTitleAlternate Acc. Chem. Res
PublicationYear 2014
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Bartolomé C. (ref44/cit44) 2010; 49
Matsumoto Y. (ref43/cit43) 2010; 51
Teller H. (ref40/cit40) 2011; 17
Lalonde R. L. (ref21/cit21) 2007; 129
Handa S. (ref45/cit45) 2012; 51
Miles D. H. (ref28/cit28) 2013; 4
Sethofer S. G. (ref31/cit31) 2010; 132
Chatani N. (ref5/cit5) 1996; 15
Nieto-Oberhuber C. (ref6/cit6) 2004; 43
González A. Z. (ref36/cit36) 2011; 133
Muñoz M. P. (ref11/cit11c) 2005; 24
Corkey B. K. (ref13/cit13a) 2005; 127
Lalonde R. (ref27/cit27) 2010; 49
Alonso I. (ref38/cit38) 2009; 131
López-Carrillo V. (ref18/cit18) 2011; 17
Hamilton G. L. (ref26/cit26) 2007; 317
Benitez D. (ref16/cit16) 2009; 1
Morita N. (ref22/cit22) 2004; 6
Luzung M. R. (ref37/cit37) 2007; 129
Norman R. O. C. (ref1/cit1) 1976
Kleinbeck F. (ref29/cit29) 2009; 131
Norman R. O. C. (ref2/cit2) 1976
Cheon C. H. (ref10/cit11b) 2011; 133
Watson I. D. G. (ref19/cit19) 2009; 131
Stork G. (ref30/cit30a) 1955; 77
Fukuda Y. (ref3/cit3) 1991; 56
Mauleón P. (ref33/cit33) 2009; 131
Reetz M. T. (ref35/cit35) 2009; 131
Pradal A. (ref8/cit8a) 2011; 10
Teller H. (ref39/cit39) 2012; 134
Johansson M. J. (ref14/cit14) 2005; 127
Seidel G. (ref15/cit15b) 2009; 48
Fürstner A. (ref15/cit15a) 2008; 47
Bandini M. (ref47/cit47b) 2012; 134
Sengupta S. (ref8/cit8b) 2010; 2
Corkey B. K. (ref13/cit13b) 2007; 129
González A. Z. (ref34/cit34) 2010; 12
Eschenmoser A. (ref30/cit30b) 1955; 38
Francos J. (ref46/cit46) 2012; 134
Teles J. H. (ref4/cit4) 1998; 37
Brazeau J. F. (ref32/cit32) 2012; 134
Zhang Z. (ref24/cit24) 2006; 128
Ito Y. (ref9/cit9) 1986; 108
Benitez D. (ref17/cit17) 2009; 11
Nishina N. (ref23/cit23) 2006; 45
Correa A. (ref42/cit42) 2008; 47
Melhado A. D. (ref10/cit11a) 2011; 133
Knowles R. R. (ref47/cit47a) 2010; 107
Zhang Z. (ref25/cit25) 2007; 46
Cambpell M. J. (ref48/cit48) 2011; 2
Jiménez-Núñez E. (ref7/cit7) 2007
Wang Y.-M. (ref41/cit41) 2011; 133
Kennedy-Smith J. J. (ref12/cit12) 2004; 126
Corkey B. K. (ref13/cit13c) 2013; 69
Uemura M. (ref20/cit20) 2009; 131
References_xml – volume: 317
  start-page: 496
  year: 2007
  ident: ref26/cit26
  publication-title: Science
  doi: 10.1126/science.1145229
– volume: 131
  start-page: 4136
  year: 2009
  ident: ref35/cit35
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja809297a
– volume: 49
  start-page: 9758
  year: 2010
  ident: ref44/cit44
  publication-title: Inorg. Chem.
  doi: 10.1021/ic101059c
– volume: 107
  start-page: 20678
  year: 2010
  ident: ref47/cit47a
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1006402107
– volume: 131
  start-page: 2056
  year: 2009
  ident: ref19/cit19
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja8085005
– volume: 1
  start-page: 482
  year: 2009
  ident: ref16/cit16
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.331
– volume: 17
  start-page: 7764
  year: 2011
  ident: ref40/cit40
  publication-title: Chem.—Eur. J.
  doi: 10.1002/chem.201101346
– volume: 77
  start-page: 5068
  year: 1955
  ident: ref30/cit30a
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01624a038
– volume: 134
  start-page: 2742
  year: 2012
  ident: ref32/cit32
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja210388g
– volume: 134
  start-page: 14322
  year: 2012
  ident: ref46/cit46
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3065446
– volume: 24
  start-page: 1293
  year: 2005
  ident: ref11/cit11c
  publication-title: Organometallics
  doi: 10.1021/om0491645
– volume: 127
  start-page: 17168
  year: 2005
  ident: ref13/cit13a
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja055059q
– volume: 45
  start-page: 3314
  year: 2006
  ident: ref23/cit23
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200600331
– volume: 131
  start-page: 6348
  year: 2009
  ident: ref33/cit33
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja901649s
– volume: 51
  start-page: 404
  year: 2010
  ident: ref43/cit43
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2009.11.039
– start-page: 811
  year: 1976
  ident: ref1/cit1
  publication-title: J. Chem. Soc., Perkin Trans. 1
  doi: 10.1039/p19760000811
– volume: 47
  start-page: 718
  year: 2008
  ident: ref42/cit42
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200703769
– volume: 69
  start-page: 5640
  year: 2013
  ident: ref13/cit13c
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2013.02.091
– volume: 15
  start-page: 901
  year: 1996
  ident: ref5/cit5
  publication-title: Organometallics
  doi: 10.1021/om950832j
– volume: 47
  start-page: 5030
  year: 2008
  ident: ref15/cit15a
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200800934
– volume: 49
  start-page: 598
  year: 2010
  ident: ref27/cit27
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200905000
– volume: 10
  start-page: 1501
  year: 2011
  ident: ref8/cit8a
  publication-title: Synthesis
– volume: 2
  start-page: 1369
  year: 2011
  ident: ref48/cit48
  publication-title: Chem. Sci.
  doi: 10.1039/c1sc00160d
– volume: 12
  start-page: 200
  year: 2010
  ident: ref34/cit34
  publication-title: Org. Lett.
  doi: 10.1021/ol902622b
– volume: 37
  start-page: 1415
  year: 1998
  ident: ref4/cit4
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/(SICI)1521-3773(19980605)37:10<1415::AID-ANIE1415>3.0.CO;2-N
– volume: 129
  start-page: 2764
  year: 2007
  ident: ref13/cit13b
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja068723r
– volume: 128
  start-page: 9066
  year: 2006
  ident: ref24/cit24
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja062045r
– volume: 132
  start-page: 8276
  year: 2010
  ident: ref31/cit31
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja103544p
– volume: 133
  start-page: 5500
  year: 2011
  ident: ref36/cit36
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja200084a
– volume: 127
  start-page: 17616
  year: 2005
  ident: ref14/cit14
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0552500
– volume: 108
  start-page: 6405
  year: 1986
  ident: ref9/cit9
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00280a056
– volume: 4
  start-page: 3427
  year: 2013
  ident: ref28/cit28
  publication-title: Chem. Sci.
  doi: 10.1039/c3sc50811k
– volume: 129
  start-page: 12402
  year: 2007
  ident: ref37/cit37
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja075412n
– volume: 43
  start-page: 2402
  year: 2004
  ident: ref6/cit6
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200353207
– volume: 51
  start-page: 2912
  year: 2012
  ident: ref45/cit45
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201107789
– volume: 131
  start-page: 3464
  year: 2009
  ident: ref20/cit20
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja900155x
– volume: 126
  start-page: 4526
  year: 2004
  ident: ref12/cit12
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja049487s
– volume: 129
  start-page: 2452
  year: 2007
  ident: ref21/cit21
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja068819l
– volume: 6
  start-page: 4121
  year: 2004
  ident: ref22/cit22
  publication-title: Org. Lett.
  doi: 10.1021/ol0481838
– volume: 133
  start-page: 3517
  year: 2011
  ident: ref10/cit11a
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja1095045
– volume: 2
  start-page: 609
  year: 2010
  ident: ref8/cit8b
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201000070
– start-page: 333
  year: 2007
  ident: ref7/cit7
  publication-title: Chem. Commun.
  doi: 10.1039/B612008C
– volume: 38
  start-page: 1890
  year: 1955
  ident: ref30/cit30b
  publication-title: Helv. Chim. Acta
  doi: 10.1002/hlca.19550380728
– volume: 131
  start-page: 13020
  year: 2009
  ident: ref38/cit38
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja905415r
– start-page: 1983
  year: 1976
  ident: ref2/cit2
  publication-title: J. Chem. Soc., Perkin Trans. 1
  doi: 10.1039/p19760001983
– volume: 133
  start-page: 13248
  year: 2011
  ident: ref10/cit11b
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja204331w
– volume: 11
  start-page: 4798
  year: 2009
  ident: ref17/cit17
  publication-title: Org. Lett.
  doi: 10.1021/ol9018002
– volume: 134
  start-page: 15331
  year: 2012
  ident: ref39/cit39
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja303641p
– volume: 133
  start-page: 12972
  year: 2011
  ident: ref41/cit41
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja205068j
– volume: 17
  start-page: 10972
  year: 2011
  ident: ref18/cit18
  publication-title: Chem.—Eur. J.
  doi: 10.1002/chem.201101749
– volume: 131
  start-page: 9178
  year: 2009
  ident: ref29/cit29
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja904055z
– volume: 46
  start-page: 283
  year: 2007
  ident: ref25/cit25
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200603260
– volume: 56
  start-page: 3729
  year: 1991
  ident: ref3/cit3
  publication-title: J. Org. Chem.
  doi: 10.1021/jo00011a058
– volume: 134
  start-page: 20690
  year: 2012
  ident: ref47/cit47b
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3086774
– volume: 48
  start-page: 2510
  year: 2009
  ident: ref15/cit15b
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200806059
SSID ssj0002467
Score 2.5985749
Snippet During the past decade, the use of Au(I) complexes for the catalytic activation of C–C π-bonds has been investigated intensely. Over this time period, the...
During the past decade, the use of Au(I) complexes for the catalytic activation of C-C π-bonds has been investigated intensely. Over this time period, the...
During the past decade, the use of Au(I) complexes for the catalytic activation of C-C pi -bonds has been investigated intensely. Over this time period, the...
The use of Au(I) complexes for the catalytic activation of C-C π-bonds has been the subject of intense investigation in the last decade or so. The facile...
SourceID pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 889
SubjectTerms Alkadienes - chemistry
Carbon
Carbon-carbon composites
Catalysis
Catalysts
Formations
Gold
Gold - chemistry
Ligands
Methane - analogs & derivatives
Molecular Structure
Organic Chemistry Phenomena
Organogold Compounds - chemical synthesis
Organogold Compounds - chemistry
Organophosphorus Compounds - chemistry
Phosphines - chemistry
Rendering
Stereoisomerism
Transformations
Title Development of Catalysts and Ligands for Enantioselective Gold Catalysis
URI http://dx.doi.org/10.1021/ar400188g
https://www.ncbi.nlm.nih.gov/pubmed/24228794
https://www.proquest.com/docview/1508682566
https://www.proquest.com/docview/1770281565
https://pubmed.ncbi.nlm.nih.gov/PMC3960333
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT8MwDLZ4HODC-zFeCo8Dl8KapGk5orExIeACk3armjQdE1OL1u4Avx6nXauNDTjXVVrHtT839meAC0HrOtJSWEyFjsWjfBqgUJiq4G5TTUOVd_E_PYt2hz90ne4CnP9ygk_t62DIzeQ4r7cIy1Tgx2vwT-OlcreUi4IYE_Ni7nFa0gdN3mpCj0qnQ88MnvxZFjkRZ1rrcFd26xTlJe9Xo0xeqa9Z8sa_XmED1sY4k9wWhrEJCzregpVGOd5tG9oT5UIkiUjD_Mf5TLOUBHFIHvs90wNMENKSpqmV6SdpPjEHnSO5TwZhKd9Pd6DTar422tZ4rIIVYC6cWa6WDtemJ7WumRvyGxYEGtMWqiN8TEalQ4WigkWe9sIwcjHkR8qNbnhApbKVw3ZhKU5ivQ9EK8RrYV0xdJtcck9SLzA9mVRIdFzarsEJ6t0ffxapn594U9uvFFKDy3JLfDUmJTezMQbzRM8q0Y-CiWOe0Gm5rz7q0xx-BLFORrg0IlGB6bAQf8i4LsItzGidGuwVtlAtRQ1XGjqvGrhTVlIJGJ7u6Stx_y3n62aYJTLGDv5TxiGsIhzjpsLN9o5gKRuO9DFCnkye5Cb_Dfan-qI
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT4QwEJ74OOjF92N9VuPBC7q0peDRbNRVVy9q4o3QUnSjASPsQX-90_JwV416ZoAynU6_oTPfAOwJ2taJlsJhKvYcnthugEJhqIKzTTWNla3iv7oW3Tt-ce_dVzQ5phYGB5Hjk3J7iP_JLuAeRq_cNJALHsZhEkEINdZ83LlpvC7louTHxPCYB5zWLELDt5odSOWjO9A3WPk1O3JouzmdLfsW2YHaLJOng0EhD9T7Fw7H_33JHMxUqJMcl2YyD2M6XYCpTt3sbRG6Q8lDJEtIx_zVecuLnERpTHr9B1MRTBDgkhOTOdPPcts_B10lOcue41q-ny_B3enJbafrVE0WnAgj48LxtfS4NhWqbc38mB-xKNIYxFCd4DAZlahqRQVLAh3EceIjAEiUnxzxiErlKo8tw0SapXoViFaI3uK2YuhEueSBpEFkKjSpkOjGtNuCLdRHWC2SPLTn39QNG4W0YL-emVBVFOWmU8bzT6K7jehLycvxk9BOPb0h6tMchUSpzgb4asSlAoNjIX6R8X0EXxjfei1YKU2ieRU1zGnoylrgjxhLI2BYu0evpP1Hy97NMGZkjK39pYxtmOreXvXC3vn15TpMI1DjJvfNDTZgongd6E0EQ4XcsqvgA2bzAxI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB71IVEu0AKlAZouiAMXp_Hueu0eK9MQ2hKQIFJvlvfVRq3sqnYO8OuZ9UtJqErPHtvr2d3Zbzwz3wB8FHRorJHCY0oHHrdVN0Ch0FXB2aaGalVV8X-biPGUn14EF42j6GphcBAFPqmogvhuV99q2zAM-IfpHXdN5KLLddh04Tq3oo_jn53lpVzUHJnoIvOI05ZJaPFWdwqpYvkU-gdarmZILhw5o-fwvRtslWlyPZiXcqD-rPA4Pv5rtuFZgz7Jcb1cdmDNZC9gK26bvr2E8UISEcktid3fnd9FWZA00-R8dukqgwkCXXLiMmhmeVH10UGTSb7kN7qVnxWvYDo6-RWPvabZgpeih1x6oZEBN65SdWhYqPkRS1ODzgw1FofJqAyoUFQwG5lIaxsiELAqtEc8pVL5KmC7sJHlmdkDYhSiOD1UDI0plzySNEpdpSYVEs2Z8XvQR50kzWYpkioOTv2kU0gPPrWzk6iGqtx1zLi5T_RDJ3pb83PcJ_S-neIE9elCImlm8jm-GvGpQCdZiAdkwhBBGPq5QQ9e18uiexV1DGpo0noQLi2YTsCxdy9fyWZXFYs3Q9-RMfbmf8o4gCc_Po-S86-Ts7fwFPEadylwfvQONsq7udlHTFTKfrUR_gLSnAWV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+Catalysts+and+Ligands+for+Enantioselective+Gold+Catalysis&rft.jtitle=Accounts+of+chemical+research&rft.au=Wang%2C+Yi-Ming&rft.au=Lackner%2C+Aaron+D&rft.au=Toste%2C+F.+Dean&rft.date=2014-03-18&rft.pub=American+Chemical+Society&rft.issn=0001-4842&rft.eissn=1520-4898&rft.volume=47&rft.issue=3&rft.spage=889&rft.epage=901&rft_id=info:doi/10.1021%2Far400188g&rft.externalDocID=e35876987
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon