Structure and Chemical Composition of Soil C‑Rich Al–Si–Fe Coprecipitates at Nanometer Scale

Soil carbon stabilization is mainly driven by organo-mineral interactions. Coprecipitates, of organic matter with short-range order minerals, detected through indirect chemical extraction methods, are increasingly recognized as key carbon sequestration phases. Yet the atomic structure of these copre...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 57; no. 49; pp. 20615 - 20626
Main Authors Jamoteau, Floriane, Cam, Nithavong, Levard, Clément, Doelsch, Emmanuel, Gassier, Ghislain, Duvivier, Adrien, Boulineau, Adrien, Saint-Antonin, François, Basile-Doelsch, Isabelle
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 12.12.2023
Subjects
Online AccessGet full text
ISSN0013-936X
1520-5851
1520-5851
DOI10.1021/acs.est.3c06557

Cover

Loading…
Abstract Soil carbon stabilization is mainly driven by organo-mineral interactions. Coprecipitates, of organic matter with short-range order minerals, detected through indirect chemical extraction methods, are increasingly recognized as key carbon sequestration phases. Yet the atomic structure of these coprecipitates is still rather conceptual. We used transmission electron microscopy imaging combined with energy-dispersive X-ray and electron energy loss spectroscopy chemical mappings, which enabled direct nanoscale characterization of coprecipitates from Andosols. A comparison with reference synthetic coprecipitates showed that the natural coprecipitates were structured by an amorphous Al, Si, and Fe inorganic skeleton associated with C and were therefore even less organized than short-range order minerals usually described. These amorphous types of coprecipitates resembled previously conceptualized nanosized coprecipitates of inorganic oligomers with organics (nanoCLICs) with heterogeneous elemental proportions (of C, Al, Si, and Fe) at nanoscale. These results mark a new step in the high-resolution imaging of organo-mineral associations, while shedding further light on the mechanisms that control carbon stabilization in soil and more broadly in aquatic colloid, sediment, and extraterrestrial samples.
AbstractList Soil carbon stabilization is mainly driven by organo-mineral interactions. Coprecipitates, of organic matter with short-range order minerals, detected through indirect chemical extraction methods, are increasingly recognized as key carbon sequestration phases. Yet the atomic structure of these coprecipitates is still rather conceptual. We used transmission electron microscopy imaging combined with EDX (energy dispersive x-ray) and EELS (electron energy loss spectroscopy) chemical mappings, which enabled direct nanoscale characterization of coprecipitates from Andosols. A comparison with reference synthetic coprecipitates showed that the natural coprecipitates were structured by an amorphous Al, Si and Fe inorganic skeleton associated with C, and were therefore even less organized than short-range order minerals usually described. These amorphous type of coprecipitates resembled previously conceptualized nanosized coprecipitates of inorganic oligomers with organics (nanoCLICs) with heterogeneous elemental proportions (of C, Al, Si and Fe) at nanoscale. These results mark a new step in the high-resolution imaging of organo-mineral associations, while shedding further light on the mechanisms that control carbon stabilization in soil, and more broadly in aquatic colloid, sediment and extraterrestrial samples.
Soil carbon stabilization is mainly driven by organo-mineral interactions. Coprecipitates, of organic matter with short-range order minerals, detected through indirect chemical extraction methods, are increasingly recognized as key carbon sequestration phases. Yet the atomic structure of these coprecipitates is still rather conceptual. We used transmission electron microscopy imaging combined with energy-dispersive X-ray and electron energy loss spectroscopy chemical mappings, which enabled direct nanoscale characterization of coprecipitates from Andosols. A comparison with reference synthetic coprecipitates showed that the natural coprecipitates were structured by an amorphous Al, Si, and Fe inorganic skeleton associated with C and were therefore even less organized than short-range order minerals usually described. These amorphous types of coprecipitates resembled previously conceptualized nanosized coprecipitates of inorganic oligomers with organics (nanoCLICs) with heterogeneous elemental proportions (of C, Al, Si, and Fe) at nanoscale. These results mark a new step in the high-resolution imaging of organo-mineral associations, while shedding further light on the mechanisms that control carbon stabilization in soil and more broadly in aquatic colloid, sediment, and extraterrestrial samples.
Soil carbon stabilization is mainly driven by organo-mineral interactions. Coprecipitates, of organic matter with short-range order minerals, detected through indirect chemical extraction methods, are increasingly recognized as key carbon sequestration phases. Yet the atomic structure of these coprecipitates is still rather conceptual. We used transmission electron microscopy imaging combined with energy-dispersive X-ray and electron energy loss spectroscopy chemical mappings, which enabled direct nanoscale characterization of coprecipitates from Andosols. A comparison with reference synthetic coprecipitates showed that the natural coprecipitates were structured by an amorphous Al, Si, and Fe inorganic skeleton associated with C and were therefore even less organized than short-range order minerals usually described. These amorphous types of coprecipitates resembled previously conceptualized nanosized coprecipitates of inorganic oligomers with organics (nanoCLICs) with heterogeneous elemental proportions (of C, Al, Si, and Fe) at nanoscale. These results mark a new step in the high-resolution imaging of organo-mineral associations, while shedding further light on the mechanisms that control carbon stabilization in soil and more broadly in aquatic colloid, sediment, and extraterrestrial samples.Soil carbon stabilization is mainly driven by organo-mineral interactions. Coprecipitates, of organic matter with short-range order minerals, detected through indirect chemical extraction methods, are increasingly recognized as key carbon sequestration phases. Yet the atomic structure of these coprecipitates is still rather conceptual. We used transmission electron microscopy imaging combined with energy-dispersive X-ray and electron energy loss spectroscopy chemical mappings, which enabled direct nanoscale characterization of coprecipitates from Andosols. A comparison with reference synthetic coprecipitates showed that the natural coprecipitates were structured by an amorphous Al, Si, and Fe inorganic skeleton associated with C and were therefore even less organized than short-range order minerals usually described. These amorphous types of coprecipitates resembled previously conceptualized nanosized coprecipitates of inorganic oligomers with organics (nanoCLICs) with heterogeneous elemental proportions (of C, Al, Si, and Fe) at nanoscale. These results mark a new step in the high-resolution imaging of organo-mineral associations, while shedding further light on the mechanisms that control carbon stabilization in soil and more broadly in aquatic colloid, sediment, and extraterrestrial samples.
Author Boulineau, Adrien
Saint-Antonin, François
Basile-Doelsch, Isabelle
Levard, Clément
Jamoteau, Floriane
Duvivier, Adrien
Gassier, Ghislain
Doelsch, Emmanuel
Cam, Nithavong
AuthorAffiliation Recyclage et Risque, University of Montpellier, CIRAD
Université Grenoble Alpes, CEA, LITEN
Aix Marseille University, CNRS, IRD, INRAE, Coll France, CEREGE
AuthorAffiliation_xml – name: Université Grenoble Alpes, CEA, LITEN
– name: Aix Marseille University, CNRS, IRD, INRAE, Coll France, CEREGE
– name: Recyclage et Risque, University of Montpellier, CIRAD
Author_xml – sequence: 1
  givenname: Floriane
  orcidid: 0009-0004-2087-1900
  surname: Jamoteau
  fullname: Jamoteau, Floriane
  email: floriane.jamoteau@unil.ch
  organization: Recyclage et Risque, University of Montpellier, CIRAD
– sequence: 2
  givenname: Nithavong
  surname: Cam
  fullname: Cam, Nithavong
  organization: Aix Marseille University, CNRS, IRD, INRAE, Coll France, CEREGE
– sequence: 3
  givenname: Clément
  orcidid: 0000-0001-7507-7959
  surname: Levard
  fullname: Levard, Clément
  organization: Aix Marseille University, CNRS, IRD, INRAE, Coll France, CEREGE
– sequence: 4
  givenname: Emmanuel
  surname: Doelsch
  fullname: Doelsch, Emmanuel
  organization: Recyclage et Risque, University of Montpellier, CIRAD
– sequence: 5
  givenname: Ghislain
  surname: Gassier
  fullname: Gassier, Ghislain
  organization: Aix Marseille University, CNRS, IRD, INRAE, Coll France, CEREGE
– sequence: 6
  givenname: Adrien
  surname: Duvivier
  fullname: Duvivier, Adrien
  organization: Aix Marseille University, CNRS, IRD, INRAE, Coll France, CEREGE
– sequence: 7
  givenname: Adrien
  surname: Boulineau
  fullname: Boulineau, Adrien
  organization: Université Grenoble Alpes, CEA, LITEN
– sequence: 8
  givenname: François
  surname: Saint-Antonin
  fullname: Saint-Antonin, François
  organization: Université Grenoble Alpes, CEA, LITEN
– sequence: 9
  givenname: Isabelle
  surname: Basile-Doelsch
  fullname: Basile-Doelsch, Isabelle
  organization: Aix Marseille University, CNRS, IRD, INRAE, Coll France, CEREGE
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38019574$$D View this record in MEDLINE/PubMed
https://hal.science/hal-04498067$$DView record in HAL
BookMark eNqFkUFrFDEUx4NU7LZ69iYDXhSZ7UsyySTHZbFWWBRcBW8hm8mwKTOTMckUvPUriN-wn8QMu-2hULwk8PL7__Pe-5-hk8EPFqHXGJYYCL7QJi5tTEtqgDNWP0MLzAiUTDB8ghYAmJaS8p-n6CzGawAgFMQLdEoFYMnqaoF22xQmk6ZgCz00xXpve2d0V6x9P_rokvND4dti612u3d3--ebMvlh1d7d_ty4flzaTY7DGjS7pZGOhU_FFD763yYZim63sS_S81V20r473Ofpx-fH7-qrcfP30eb3alLriMpV1I2u-E5UUojEVh7aWLc5z8IpjIZuWNW3TWkyJhro2maplxQittKRCYI7pOXp_8N3rTo3B9Tr8Vl47dbXaqLkGVTYHXt_M7LsDOwb_a8obVL2LxnadHqyfoqKYUcEBaPVflAjJCMu9zOjbR-i1n8KQh1ZEApWESwKZenOkpl1vm4dW70PJADsAJvgYg22VmZebo0hBu05hUHP4Koev5k-O4WfdxSPdvfXTig8Hxfzw0OtT9D9HcMBp
CitedBy_id crossref_primary_10_1016_j_watres_2025_123524
crossref_primary_10_1029_2024JG008277
Cites_doi 10.1038/nature10386
10.1007/978-0-387-76501-3
10.1016/B978-0-12-804312-7.00003-6
10.3390/soilsystems2020029
10.5194/bg-17-1507-2020
10.1016/j.chemgeo.2012.06.003
10.1038/s43017-021-00162-y
10.1111/j.1365-2389.2005.00703.x
10.1038/nclimate2580
10.1038/s41561-020-0596-z
10.1080/01490450490266343
10.1016/j.geoderma.2020.114483
10.1038/s41558-018-0341-4
10.1080/15583724.2010.493256
10.1038/s41586-019-1280-6
10.1016/j.gca.2019.11.030
10.1111/j.1365-2389.2006.00834.x
10.1046/j.1365-3040.1997.d01-86.x
10.1021/es1023898
10.1021/la0013188
10.1016/j.geoderma.2012.03.015
10.1021/es050778q
10.1016/j.gca.2014.08.026
10.1021/la991378h
10.1038/s41586-018-0328-3
10.1021/es800322j
10.1038/nature10855
10.2136/sssaj2004.0274
10.1016/S0016-7037(98)00249-X
10.1016/j.mee.2005.01.006
10.1016/j.geoderma.2006.10.006
10.1016/j.gca.2009.12.017
10.1080/10643389.2021.1980346
10.1111/1365-2435.14038
10.1016/0304-3991(84)90096-2
10.1016/j.soilbio.2021.108265
10.1007/s10533-021-00878-5
10.5194/essd-14-4811-2022
10.5194/bg-20-3151-2023
10.1016/j.chemosphere.2014.03.078
10.1016/j.gca.2007.11.035
10.1071/SR18299
10.1130/G48706.1
10.1016/j.gca.2011.03.006
10.1021/acs.est.6b02793
10.1111/ejss.12157
10.1016/j.geoderma.2022.116217
10.1021/acs.est.0c04592
10.5194/soil-6-597-2020
10.1016/j.gca.2009.09.023
10.1007/978-1-4757-5581-7
10.1016/j.geoderma.2014.09.008
10.1016/j.gca.2018.03.012
10.2136/sssaj2006.0111
10.1016/j.geoderma.2018.02.043
10.1038/s41467-020-19792-9
10.1016/j.gca.2021.09.003
10.1007/s10533-007-9103-5
10.1016/j.gca.2009.04.025
10.1007/s10533-013-9943-0
10.1016/0304-3991(83)90302-9
10.1016/j.geoderma.2022.115960
10.1016/S0927-7757(98)00325-2
10.1016/j.gca.2006.08.047
10.1016/j.soilbio.2023.109097
10.1021/es9911418
10.1002/9781119413332.ch3
10.1016/j.gca.2019.05.043
10.1007/s10533-018-0424-3
10.1007/978-1-4419-9583-4
10.1016/j.gca.2016.02.033
ContentType Journal Article
Copyright 2023 American Chemical Society
Copyright American Chemical Society Dec 12, 2023
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2023 American Chemical Society
– notice: Copyright American Chemical Society Dec 12, 2023
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7S9
L.6
1XC
VOOES
DOI 10.1021/acs.est.3c06557
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

Biotechnology Research Abstracts
AGRICOLA
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1520-5851
EndPage 20626
ExternalDocumentID oai_HAL_hal_04498067v1
38019574
10_1021_acs_est_3c06557
c671248814
Genre Journal Article
GroupedDBID ---
-DZ
-~X
..I
.DC
.K2
3R3
4.4
4R4
55A
5GY
5VS
63O
6TJ
7~N
85S
AABXI
ABFRP
ABMVS
ABOGM
ABPPZ
ABPTK
ABQRX
ABUCX
ACGFS
ACGOD
ACIWK
ACJ
ACPRK
ACS
ADHLV
AEESW
AENEX
AFEFF
AFRAH
AGHSJ
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
EBS
ED~
F5P
GGK
GNL
IH9
JG~
LG6
MS~
MW2
PQQKQ
ROL
RXW
TN5
TWZ
U5U
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
XSW
XZL
YZZ
ZCA
53G
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ADUKH
CITATION
CUPRZ
CGR
CUY
CVF
ECM
EIF
NPM
YIN
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7S9
L.6
1XC
UMC
VOOES
ID FETCH-LOGICAL-a469t-7d976b84988dc460f79f1851646189df5dfdfe132a077c9887945234a93881613
IEDL.DBID ACS
ISSN 0013-936X
1520-5851
IngestDate Fri May 09 12:21:42 EDT 2025
Fri Jul 11 06:32:01 EDT 2025
Fri Jul 11 15:29:26 EDT 2025
Mon Jun 30 11:47:15 EDT 2025
Wed Feb 19 02:08:31 EST 2025
Tue Jul 01 04:11:31 EDT 2025
Thu Apr 24 22:57:12 EDT 2025
Wed Dec 13 04:04:23 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 49
Keywords soil carbon cycle
EELS
organic matter
coprecipitates
EDX
organo-mineral associations
transmission electron microscopy
Soil carbon cycle
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a469t-7d976b84988dc460f79f1851646189df5dfdfe132a077c9887945234a93881613
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0004-2087-1900
0000-0001-7507-7959
0000-0003-1842-2802
0000-0002-0587-8141
OpenAccessLink https://hal.science/hal-04498067
PMID 38019574
PQID 2903926920
PQPubID 45412
PageCount 12
ParticipantIDs hal_primary_oai_HAL_hal_04498067v1
proquest_miscellaneous_3153860034
proquest_miscellaneous_2895259454
proquest_journals_2903926920
pubmed_primary_38019574
crossref_citationtrail_10_1021_acs_est_3c06557
crossref_primary_10_1021_acs_est_3c06557
acs_journals_10_1021_acs_est_3c06557
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-12
PublicationDateYYYYMMDD 2023-12-12
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-12
  day: 12
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Easton
PublicationTitle Environmental science & technology
PublicationTitleAlternate Environ. Sci. Technol
PublicationYear 2023
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref27/cit27
Henmi T. (ref55/cit55) 1976; 61
ref63/cit63
ref56/cit56
Egerton R. F. (ref35/cit35) 2011
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
Wada K. (ref54/cit54) 1974; 26
ref71/cit71
ref37/cit37
ref20/cit20
ref60/cit60
ref74/cit74
ref17/cit17
ref10/cit10
ref53/cit53
ref19/cit19
Smits M. M. (ref48/cit48) 2017
ref21/cit21
ref42/cit42
ref46/cit46
ref13/cit13
ref61/cit61
ref75/cit75
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref6/cit6
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref72/cit72
Kleber M. (ref3/cit3) 2015; 130
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref68/cit68
Samuels T. (ref49/cit49) 2020
ref26/cit26
ref73/cit73
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
Hren J. J. (ref36/cit36) 1979
ref4/cit4
ref30/cit30
Williams D. B. (ref34/cit34) 2009
ref47/cit47
ref1/cit1
ref44/cit44
ref70/cit70
ref7/cit7
References_xml – ident: ref2/cit2
  doi: 10.1038/nature10386
– volume-title: Transmission Electron Microscopy
  year: 2009
  ident: ref34/cit34
  doi: 10.1007/978-0-387-76501-3
– volume: 26
  start-page: 211
  volume-title: Advances in Agronomy
  year: 1974
  ident: ref54/cit54
– start-page: 35
  volume-title: Mycorrhizal Mediation of Soil
  year: 2017
  ident: ref48/cit48
  doi: 10.1016/B978-0-12-804312-7.00003-6
– ident: ref74/cit74
  doi: 10.3390/soilsystems2020029
– ident: ref10/cit10
  doi: 10.5194/bg-17-1507-2020
– ident: ref21/cit21
  doi: 10.1016/j.chemgeo.2012.06.003
– ident: ref8/cit8
  doi: 10.1038/s43017-021-00162-y
– ident: ref9/cit9
  doi: 10.1111/j.1365-2389.2005.00703.x
– volume: 61
  start-page: 379
  issue: 5
  year: 1976
  ident: ref55/cit55
  publication-title: Am. Mineral.
– ident: ref69/cit69
  doi: 10.1038/nclimate2580
– volume: 130
  start-page: 1
  volume-title: Advances in Agronomy
  year: 2015
  ident: ref3/cit3
– ident: ref7/cit7
  doi: 10.1038/s41561-020-0596-z
– ident: ref66/cit66
  doi: 10.1080/01490450490266343
– ident: ref52/cit52
  doi: 10.1016/j.geoderma.2020.114483
– ident: ref11/cit11
  doi: 10.1038/s41558-018-0341-4
– ident: ref46/cit46
  doi: 10.1080/15583724.2010.493256
– ident: ref5/cit5
  doi: 10.1038/s41586-019-1280-6
– ident: ref51/cit51
  doi: 10.1016/j.gca.2019.11.030
– ident: ref38/cit38
  doi: 10.1111/j.1365-2389.2006.00834.x
– ident: ref26/cit26
  doi: 10.1046/j.1365-3040.1997.d01-86.x
– ident: ref20/cit20
  doi: 10.1021/es1023898
– ident: ref65/cit65
  doi: 10.1021/la0013188
– ident: ref29/cit29
  doi: 10.1016/j.geoderma.2012.03.015
– ident: ref42/cit42
  doi: 10.1021/es050778q
– ident: ref22/cit22
  doi: 10.1016/j.gca.2014.08.026
– ident: ref64/cit64
  doi: 10.1021/la991378h
– ident: ref6/cit6
  doi: 10.1038/s41586-018-0328-3
– ident: ref18/cit18
  doi: 10.1021/es800322j
– ident: ref57/cit57
  doi: 10.1038/nature10855
– ident: ref16/cit16
  doi: 10.2136/sssaj2004.0274
– ident: ref63/cit63
  doi: 10.1016/S0016-7037(98)00249-X
– ident: ref47/cit47
  doi: 10.1016/j.mee.2005.01.006
– ident: ref43/cit43
  doi: 10.1016/j.geoderma.2006.10.006
– ident: ref62/cit62
  doi: 10.1016/j.gca.2009.12.017
– ident: ref33/cit33
  doi: 10.1080/10643389.2021.1980346
– ident: ref71/cit71
  doi: 10.1111/1365-2435.14038
– ident: ref45/cit45
  doi: 10.1016/0304-3991(84)90096-2
– ident: ref70/cit70
  doi: 10.1016/j.soilbio.2021.108265
– ident: ref58/cit58
  doi: 10.1007/s10533-021-00878-5
– ident: ref1/cit1
  doi: 10.5194/essd-14-4811-2022
– ident: ref4/cit4
  doi: 10.5194/bg-20-3151-2023
– ident: ref39/cit39
  doi: 10.1016/j.chemosphere.2014.03.078
– ident: ref17/cit17
  doi: 10.1016/j.gca.2007.11.035
– ident: ref14/cit14
  doi: 10.1071/SR18299
– ident: ref50/cit50
  doi: 10.1130/G48706.1
– ident: ref28/cit28
  doi: 10.1016/j.gca.2011.03.006
– ident: ref24/cit24
  doi: 10.1021/acs.est.6b02793
– ident: ref13/cit13
– ident: ref53/cit53
  doi: 10.1111/ejss.12157
– ident: ref60/cit60
  doi: 10.1016/j.geoderma.2022.116217
– ident: ref73/cit73
  doi: 10.1021/acs.est.0c04592
– ident: ref75/cit75
  doi: 10.5194/soil-6-597-2020
– ident: ref19/cit19
  doi: 10.1016/j.gca.2009.09.023
– volume-title: Introduction to Analytical Electron Microscopy
  year: 1979
  ident: ref36/cit36
  doi: 10.1007/978-1-4757-5581-7
– ident: ref44/cit44
  doi: 10.1016/j.geoderma.2014.09.008
– ident: ref31/cit31
  doi: 10.1016/j.gca.2018.03.012
– ident: ref61/cit61
  doi: 10.2136/sssaj2006.0111
– ident: ref40/cit40
  doi: 10.1016/j.geoderma.2018.02.043
– ident: ref41/cit41
  doi: 10.1038/s41467-020-19792-9
– ident: ref25/cit25
  doi: 10.1016/j.gca.2021.09.003
– ident: ref30/cit30
  doi: 10.1007/s10533-007-9103-5
– ident: ref68/cit68
  doi: 10.1016/j.gca.2009.04.025
– ident: ref23/cit23
  doi: 10.1007/s10533-013-9943-0
– ident: ref37/cit37
  doi: 10.1016/0304-3991(83)90302-9
– ident: ref67/cit67
  doi: 10.1016/j.geoderma.2022.115960
– ident: ref15/cit15
  doi: 10.1016/S0927-7757(98)00325-2
– ident: ref56/cit56
  doi: 10.1016/j.gca.2006.08.047
– ident: ref72/cit72
  doi: 10.1016/j.soilbio.2023.109097
– ident: ref27/cit27
  doi: 10.1021/es9911418
– start-page: 59
  volume-title: Biogeochemical Cycles
  year: 2020
  ident: ref49/cit49
  doi: 10.1002/9781119413332.ch3
– ident: ref32/cit32
  doi: 10.1016/j.gca.2019.05.043
– ident: ref12/cit12
  doi: 10.1007/s10533-018-0424-3
– volume-title: Electron Energy-Loss Spectroscopy in the Electron Microscope
  year: 2011
  ident: ref35/cit35
  doi: 10.1007/978-1-4419-9583-4
– ident: ref59/cit59
  doi: 10.1016/j.gca.2016.02.033
SSID ssj0002308
Score 2.4702225
Snippet Soil carbon stabilization is mainly driven by organo-mineral interactions. Coprecipitates, of organic matter with short-range order minerals, detected through...
SourceID hal
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 20615
SubjectTerms Agricultural sciences
Aluminum
Andosols
Atomic structure
Biogeochemical Cycling
Carbon
Carbon sequestration
Chemical composition
Chemical extraction
Electron energy loss spectroscopy
energy
Energy loss
environmental science
Environmental Sciences
Image resolution
Iron
Life Sciences
Microscopy, Electron, Transmission
Minerals
Minerals - chemistry
nanomaterials
Organic matter
sediments
Short range order
Silicon
skeleton
Soil - chemistry
soil carbon
Soil stabilization
Soil study
Spectroscopy
Stabilization
Transmission electron microscopy
X-radiation
Title Structure and Chemical Composition of Soil C‑Rich Al–Si–Fe Coprecipitates at Nanometer Scale
URI http://dx.doi.org/10.1021/acs.est.3c06557
https://www.ncbi.nlm.nih.gov/pubmed/38019574
https://www.proquest.com/docview/2903926920
https://www.proquest.com/docview/2895259454
https://www.proquest.com/docview/3153860034
https://hal.science/hal-04498067
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwELZoucChLYVCaEEG9cAlIbEdxz6uqq5WCLgslfYWOf4RVUtSkd0eOPUVEG_YJ-lMNpsFqhVccnAmf5MZzzfy-BtCjgGheuZ9FVchczHgfx9r5VQsuWWZlEqEjmf702c5ORMfZvlsTRb99wo-y94b2yYwQSbcQrTMiy3ykElVIE3-6GQ6TLqApNWqWYHmcjaw-Ny7AYYh2_4Rhra-YhHkJoTZRZrx7rJGq-0ICrHA5CJZzKvE_rhP3_jvj9gjOz3epKOlgTwhD3y9Tx7_xkK4Tw5O15vdQLT39vYpqaYdueziu6emdnTFLUBxDulrvWgT6LQ5h7Hbm5-4SZ-OLm9vfk3P4TD2IHmF7BnYmQQgLTVzCrN58w1LcOA5EJuekbPx6ZeTSdz3ZIgNJNLzuHCAXyoltFLOCpmGQgcI-chSlintQu6CCx5SXJMWhQUp8HfIdYXRXClAl_yAbNdN7V8QqjKDPc-8lMyKSgqjisoIzp2xNkCeF5FjUFvZ-1RbdsvlLCtxEHRZ9rqMSLL6k6Xtec2xvcbl5gveDRdcLSk9Nou-BdMYpJCKezL6WOJYKkAHEOqvs4gcrSxn_bJMp4A8pWZpRN4Mp8F1cT3G1L5ZgIzSOWSfIhebZThGJIksQhF5vrTK4XW4wt2ehXj5f4o6JI8Y-AnW4mTsiGyDCflXgKjm1evOl-4A0_4bIg
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwEB615QAc-CkUQgsY1AOXLEnsOPZxVXW1wLYS2lbaW-Q4jqjaJhXZ5cCpr4B4wz5JZ7JJlh-tBJc9eCeJM5nxfCOPvwHYR4TqIucyPyvC3Ef873ytcuVLbqNQSiWKhmf76FiOT8XHWTzbgKA7C4OTqPFOdbOJv2IXCN_TGK6TA24xaMbJJtxBKBIRW_7wYNqvvQioVdezQHM568l8_roBRSNb_xaNNr9QLeQ6oNkEnNFD-NxPtakzOR8s5tnAfv-DxfF_3uURPGjRJxsuzeUxbLhyG-7_wkm4DTuHq6NvKNr6fv0EsmlDNbv46pgpc9YxDTBaUdrKL1YVbFqd4djN9Q86ss-GFzfXP6dn-DNyKHlFXBrUpwQBLjNzhmt7dUkFOfgcjFRP4XR0eHIw9tsODb7BtHruJzmimUwJrVRuhQyKRBcIAIizLFQ6L-K8yAuHCa8JksSiFHo_Zr7CaK4UYk2-A1tlVbrnwFRoqAOakzKyIpPCqCQzgvPcWFtg1ufBPqotbT2sTpvN8yhMaRB1mba69GDQfdDUtizn1GzjYv0F7_oLrpYEH-tF36KF9FJEzD0eTlIaCwTqAAP_t9CDvc6AVpONdIA4VOoo8OBN_zc6Mu3OmNJVC5RROsZcVMRivQyn-CSJU8iDZ0vj7KfDFZ39TMSLf1PUa7g7PjmapJMPx5924V6ErkNVOmG0B1toTu4lYq159qpxr1vNXiOD
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB7RIiF64FEoGAosqAcuDn6s1-tjVBoFKBVSiJSbtd6HqGjtCCccOPUvIP5hfwkzzsbloUhwyWEzttfreXyj3fkG4AARqk2srcLKxSZE_G_DQhoZilQnsRCSu45n-_2JGE_521k280VhVAuDk2jxTm23iU9WPTfOMwzEr2gcfeUg1Rg4s3wLrtOmHTHmDw8nvf9FUC3XfQuKVMx6Qp-_bkARSbe_RaStT3QechPY7ILO6DZM--l2Z00-D5aLaqC__cHk-L_vcwdueRTKhiu1uQvXbL0LO79wE-7C3tFVCRyKeh_Q3oNq0lHOLr9YpmrD1owDjDyLPwHGGscmzSmOXV58p9J9Njy7vPgxOcWfkUXJOXFqUL8SBLpMLRj6-OacDubgczBi3Yfp6Ojj4Tj0nRpChen1IswNoppK8kJKo7mIXF44BALEXRbLwrjMOOMsJr4qynONUugFMAPmqkilRMyZ7sF23dT2ITAZK-qEZoVINK8EVzKvFE9To7R2mP0FcIDLVnpLa8tuEz2JSxrEtSz9WgYwWH_UUnu2c2q6cbb5gpf9BfMV0cdm0ReoJb0UEXSPh8cljUUc1wABwNc4gP21El1NNikixKOiSKIAnvd_o0HTLo2qbbNEGVlkmJPyjG-WSSlOCeIWCuDBSkH76aSSakBz_ujfFuoZ3PjwelQevzl59xhuJmg9dFgnTvZhG7XJPkHItaiedhb2EydXJgY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure+and+Chemical+Composition+of+Soil+C-Rich+Al%E2%80%93Si%E2%80%93Fe+Coprecipitates+at+Nanometer+Scale&rft.jtitle=Environmental+science+%26+technology&rft.au=Jamoteau%2C+Floriane&rft.au=Cam%2C+Nithavong&rft.au=Levard%2C+Cl%C3%A9ment&rft.au=Doelsch%2C+Emmanuel&rft.date=2023-12-12&rft.pub=American+Chemical+Society&rft.issn=0013-936X&rft.volume=57&rft.issue=49&rft.spage=20615&rft_id=info:doi/10.1021%2Facs.est.3c06557&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon