Structure and Chemical Composition of Soil C‑Rich Al–Si–Fe Coprecipitates at Nanometer Scale
Soil carbon stabilization is mainly driven by organo-mineral interactions. Coprecipitates, of organic matter with short-range order minerals, detected through indirect chemical extraction methods, are increasingly recognized as key carbon sequestration phases. Yet the atomic structure of these copre...
Saved in:
Published in | Environmental science & technology Vol. 57; no. 49; pp. 20615 - 20626 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
12.12.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0013-936X 1520-5851 1520-5851 |
DOI | 10.1021/acs.est.3c06557 |
Cover
Loading…
Abstract | Soil carbon stabilization is mainly driven by organo-mineral interactions. Coprecipitates, of organic matter with short-range order minerals, detected through indirect chemical extraction methods, are increasingly recognized as key carbon sequestration phases. Yet the atomic structure of these coprecipitates is still rather conceptual. We used transmission electron microscopy imaging combined with energy-dispersive X-ray and electron energy loss spectroscopy chemical mappings, which enabled direct nanoscale characterization of coprecipitates from Andosols. A comparison with reference synthetic coprecipitates showed that the natural coprecipitates were structured by an amorphous Al, Si, and Fe inorganic skeleton associated with C and were therefore even less organized than short-range order minerals usually described. These amorphous types of coprecipitates resembled previously conceptualized nanosized coprecipitates of inorganic oligomers with organics (nanoCLICs) with heterogeneous elemental proportions (of C, Al, Si, and Fe) at nanoscale. These results mark a new step in the high-resolution imaging of organo-mineral associations, while shedding further light on the mechanisms that control carbon stabilization in soil and more broadly in aquatic colloid, sediment, and extraterrestrial samples. |
---|---|
AbstractList | Soil carbon stabilization is mainly driven by organo-mineral interactions. Coprecipitates, of organic matter with short-range order minerals, detected through indirect chemical extraction methods, are increasingly recognized as key carbon sequestration phases. Yet the atomic structure of these coprecipitates is still rather conceptual. We used transmission electron microscopy imaging combined with EDX (energy dispersive x-ray) and EELS (electron energy loss spectroscopy) chemical mappings, which enabled direct nanoscale characterization of coprecipitates from Andosols. A comparison with reference synthetic coprecipitates showed that the natural coprecipitates were structured by an amorphous Al, Si and Fe inorganic skeleton associated with C, and were therefore even less organized than short-range order minerals usually described. These amorphous type of coprecipitates resembled previously conceptualized nanosized coprecipitates of inorganic oligomers with organics (nanoCLICs) with heterogeneous elemental proportions (of C, Al, Si and Fe) at nanoscale. These results mark a new step in the high-resolution imaging of organo-mineral associations, while shedding further light on the mechanisms that control carbon stabilization in soil, and more broadly in aquatic colloid, sediment and extraterrestrial samples. Soil carbon stabilization is mainly driven by organo-mineral interactions. Coprecipitates, of organic matter with short-range order minerals, detected through indirect chemical extraction methods, are increasingly recognized as key carbon sequestration phases. Yet the atomic structure of these coprecipitates is still rather conceptual. We used transmission electron microscopy imaging combined with energy-dispersive X-ray and electron energy loss spectroscopy chemical mappings, which enabled direct nanoscale characterization of coprecipitates from Andosols. A comparison with reference synthetic coprecipitates showed that the natural coprecipitates were structured by an amorphous Al, Si, and Fe inorganic skeleton associated with C and were therefore even less organized than short-range order minerals usually described. These amorphous types of coprecipitates resembled previously conceptualized nanosized coprecipitates of inorganic oligomers with organics (nanoCLICs) with heterogeneous elemental proportions (of C, Al, Si, and Fe) at nanoscale. These results mark a new step in the high-resolution imaging of organo-mineral associations, while shedding further light on the mechanisms that control carbon stabilization in soil and more broadly in aquatic colloid, sediment, and extraterrestrial samples. Soil carbon stabilization is mainly driven by organo-mineral interactions. Coprecipitates, of organic matter with short-range order minerals, detected through indirect chemical extraction methods, are increasingly recognized as key carbon sequestration phases. Yet the atomic structure of these coprecipitates is still rather conceptual. We used transmission electron microscopy imaging combined with energy-dispersive X-ray and electron energy loss spectroscopy chemical mappings, which enabled direct nanoscale characterization of coprecipitates from Andosols. A comparison with reference synthetic coprecipitates showed that the natural coprecipitates were structured by an amorphous Al, Si, and Fe inorganic skeleton associated with C and were therefore even less organized than short-range order minerals usually described. These amorphous types of coprecipitates resembled previously conceptualized nanosized coprecipitates of inorganic oligomers with organics (nanoCLICs) with heterogeneous elemental proportions (of C, Al, Si, and Fe) at nanoscale. These results mark a new step in the high-resolution imaging of organo-mineral associations, while shedding further light on the mechanisms that control carbon stabilization in soil and more broadly in aquatic colloid, sediment, and extraterrestrial samples.Soil carbon stabilization is mainly driven by organo-mineral interactions. Coprecipitates, of organic matter with short-range order minerals, detected through indirect chemical extraction methods, are increasingly recognized as key carbon sequestration phases. Yet the atomic structure of these coprecipitates is still rather conceptual. We used transmission electron microscopy imaging combined with energy-dispersive X-ray and electron energy loss spectroscopy chemical mappings, which enabled direct nanoscale characterization of coprecipitates from Andosols. A comparison with reference synthetic coprecipitates showed that the natural coprecipitates were structured by an amorphous Al, Si, and Fe inorganic skeleton associated with C and were therefore even less organized than short-range order minerals usually described. These amorphous types of coprecipitates resembled previously conceptualized nanosized coprecipitates of inorganic oligomers with organics (nanoCLICs) with heterogeneous elemental proportions (of C, Al, Si, and Fe) at nanoscale. These results mark a new step in the high-resolution imaging of organo-mineral associations, while shedding further light on the mechanisms that control carbon stabilization in soil and more broadly in aquatic colloid, sediment, and extraterrestrial samples. |
Author | Boulineau, Adrien Saint-Antonin, François Basile-Doelsch, Isabelle Levard, Clément Jamoteau, Floriane Duvivier, Adrien Gassier, Ghislain Doelsch, Emmanuel Cam, Nithavong |
AuthorAffiliation | Recyclage et Risque, University of Montpellier, CIRAD Université Grenoble Alpes, CEA, LITEN Aix Marseille University, CNRS, IRD, INRAE, Coll France, CEREGE |
AuthorAffiliation_xml | – name: Université Grenoble Alpes, CEA, LITEN – name: Aix Marseille University, CNRS, IRD, INRAE, Coll France, CEREGE – name: Recyclage et Risque, University of Montpellier, CIRAD |
Author_xml | – sequence: 1 givenname: Floriane orcidid: 0009-0004-2087-1900 surname: Jamoteau fullname: Jamoteau, Floriane email: floriane.jamoteau@unil.ch organization: Recyclage et Risque, University of Montpellier, CIRAD – sequence: 2 givenname: Nithavong surname: Cam fullname: Cam, Nithavong organization: Aix Marseille University, CNRS, IRD, INRAE, Coll France, CEREGE – sequence: 3 givenname: Clément orcidid: 0000-0001-7507-7959 surname: Levard fullname: Levard, Clément organization: Aix Marseille University, CNRS, IRD, INRAE, Coll France, CEREGE – sequence: 4 givenname: Emmanuel surname: Doelsch fullname: Doelsch, Emmanuel organization: Recyclage et Risque, University of Montpellier, CIRAD – sequence: 5 givenname: Ghislain surname: Gassier fullname: Gassier, Ghislain organization: Aix Marseille University, CNRS, IRD, INRAE, Coll France, CEREGE – sequence: 6 givenname: Adrien surname: Duvivier fullname: Duvivier, Adrien organization: Aix Marseille University, CNRS, IRD, INRAE, Coll France, CEREGE – sequence: 7 givenname: Adrien surname: Boulineau fullname: Boulineau, Adrien organization: Université Grenoble Alpes, CEA, LITEN – sequence: 8 givenname: François surname: Saint-Antonin fullname: Saint-Antonin, François organization: Université Grenoble Alpes, CEA, LITEN – sequence: 9 givenname: Isabelle surname: Basile-Doelsch fullname: Basile-Doelsch, Isabelle organization: Aix Marseille University, CNRS, IRD, INRAE, Coll France, CEREGE |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38019574$$D View this record in MEDLINE/PubMed https://hal.science/hal-04498067$$DView record in HAL |
BookMark | eNqFkUFrFDEUx4NU7LZ69iYDXhSZ7UsyySTHZbFWWBRcBW8hm8mwKTOTMckUvPUriN-wn8QMu-2hULwk8PL7__Pe-5-hk8EPFqHXGJYYCL7QJi5tTEtqgDNWP0MLzAiUTDB8ghYAmJaS8p-n6CzGawAgFMQLdEoFYMnqaoF22xQmk6ZgCz00xXpve2d0V6x9P_rokvND4dti612u3d3--ebMvlh1d7d_ty4flzaTY7DGjS7pZGOhU_FFD763yYZim63sS_S81V20r473Ofpx-fH7-qrcfP30eb3alLriMpV1I2u-E5UUojEVh7aWLc5z8IpjIZuWNW3TWkyJhro2maplxQittKRCYI7pOXp_8N3rTo3B9Tr8Vl47dbXaqLkGVTYHXt_M7LsDOwb_a8obVL2LxnadHqyfoqKYUcEBaPVflAjJCMu9zOjbR-i1n8KQh1ZEApWESwKZenOkpl1vm4dW70PJADsAJvgYg22VmZebo0hBu05hUHP4Koev5k-O4WfdxSPdvfXTig8Hxfzw0OtT9D9HcMBp |
CitedBy_id | crossref_primary_10_1016_j_watres_2025_123524 crossref_primary_10_1029_2024JG008277 |
Cites_doi | 10.1038/nature10386 10.1007/978-0-387-76501-3 10.1016/B978-0-12-804312-7.00003-6 10.3390/soilsystems2020029 10.5194/bg-17-1507-2020 10.1016/j.chemgeo.2012.06.003 10.1038/s43017-021-00162-y 10.1111/j.1365-2389.2005.00703.x 10.1038/nclimate2580 10.1038/s41561-020-0596-z 10.1080/01490450490266343 10.1016/j.geoderma.2020.114483 10.1038/s41558-018-0341-4 10.1080/15583724.2010.493256 10.1038/s41586-019-1280-6 10.1016/j.gca.2019.11.030 10.1111/j.1365-2389.2006.00834.x 10.1046/j.1365-3040.1997.d01-86.x 10.1021/es1023898 10.1021/la0013188 10.1016/j.geoderma.2012.03.015 10.1021/es050778q 10.1016/j.gca.2014.08.026 10.1021/la991378h 10.1038/s41586-018-0328-3 10.1021/es800322j 10.1038/nature10855 10.2136/sssaj2004.0274 10.1016/S0016-7037(98)00249-X 10.1016/j.mee.2005.01.006 10.1016/j.geoderma.2006.10.006 10.1016/j.gca.2009.12.017 10.1080/10643389.2021.1980346 10.1111/1365-2435.14038 10.1016/0304-3991(84)90096-2 10.1016/j.soilbio.2021.108265 10.1007/s10533-021-00878-5 10.5194/essd-14-4811-2022 10.5194/bg-20-3151-2023 10.1016/j.chemosphere.2014.03.078 10.1016/j.gca.2007.11.035 10.1071/SR18299 10.1130/G48706.1 10.1016/j.gca.2011.03.006 10.1021/acs.est.6b02793 10.1111/ejss.12157 10.1016/j.geoderma.2022.116217 10.1021/acs.est.0c04592 10.5194/soil-6-597-2020 10.1016/j.gca.2009.09.023 10.1007/978-1-4757-5581-7 10.1016/j.geoderma.2014.09.008 10.1016/j.gca.2018.03.012 10.2136/sssaj2006.0111 10.1016/j.geoderma.2018.02.043 10.1038/s41467-020-19792-9 10.1016/j.gca.2021.09.003 10.1007/s10533-007-9103-5 10.1016/j.gca.2009.04.025 10.1007/s10533-013-9943-0 10.1016/0304-3991(83)90302-9 10.1016/j.geoderma.2022.115960 10.1016/S0927-7757(98)00325-2 10.1016/j.gca.2006.08.047 10.1016/j.soilbio.2023.109097 10.1021/es9911418 10.1002/9781119413332.ch3 10.1016/j.gca.2019.05.043 10.1007/s10533-018-0424-3 10.1007/978-1-4419-9583-4 10.1016/j.gca.2016.02.033 |
ContentType | Journal Article |
Copyright | 2023 American Chemical Society Copyright American Chemical Society Dec 12, 2023 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2023 American Chemical Society – notice: Copyright American Chemical Society Dec 12, 2023 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7S9 L.6 1XC VOOES |
DOI | 10.1021/acs.est.3c06557 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Biotechnology Research Abstracts AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1520-5851 |
EndPage | 20626 |
ExternalDocumentID | oai_HAL_hal_04498067v1 38019574 10_1021_acs_est_3c06557 c671248814 |
Genre | Journal Article |
GroupedDBID | --- -DZ -~X ..I .DC .K2 3R3 4.4 4R4 55A 5GY 5VS 63O 6TJ 7~N 85S AABXI ABFRP ABMVS ABOGM ABPPZ ABPTK ABQRX ABUCX ACGFS ACGOD ACIWK ACJ ACPRK ACS ADHLV AEESW AENEX AFEFF AFRAH AGHSJ AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 EBS ED~ F5P GGK GNL IH9 JG~ LG6 MS~ MW2 PQQKQ ROL RXW TN5 TWZ U5U UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 XSW XZL YZZ ZCA 53G AAHBH AAYXX ABBLG ABJNI ABLBI ADUKH CITATION CUPRZ CGR CUY CVF ECM EIF NPM YIN 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7S9 L.6 1XC UMC VOOES |
ID | FETCH-LOGICAL-a469t-7d976b84988dc460f79f1851646189df5dfdfe132a077c9887945234a93881613 |
IEDL.DBID | ACS |
ISSN | 0013-936X 1520-5851 |
IngestDate | Fri May 09 12:21:42 EDT 2025 Fri Jul 11 06:32:01 EDT 2025 Fri Jul 11 15:29:26 EDT 2025 Mon Jun 30 11:47:15 EDT 2025 Wed Feb 19 02:08:31 EST 2025 Tue Jul 01 04:11:31 EDT 2025 Thu Apr 24 22:57:12 EDT 2025 Wed Dec 13 04:04:23 EST 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 49 |
Keywords | soil carbon cycle EELS organic matter coprecipitates EDX organo-mineral associations transmission electron microscopy Soil carbon cycle |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a469t-7d976b84988dc460f79f1851646189df5dfdfe132a077c9887945234a93881613 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0009-0004-2087-1900 0000-0001-7507-7959 0000-0003-1842-2802 0000-0002-0587-8141 |
OpenAccessLink | https://hal.science/hal-04498067 |
PMID | 38019574 |
PQID | 2903926920 |
PQPubID | 45412 |
PageCount | 12 |
ParticipantIDs | hal_primary_oai_HAL_hal_04498067v1 proquest_miscellaneous_3153860034 proquest_miscellaneous_2895259454 proquest_journals_2903926920 pubmed_primary_38019574 crossref_citationtrail_10_1021_acs_est_3c06557 crossref_primary_10_1021_acs_est_3c06557 acs_journals_10_1021_acs_est_3c06557 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-12 |
PublicationDateYYYYMMDD | 2023-12-12 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-12 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Easton |
PublicationTitle | Environmental science & technology |
PublicationTitleAlternate | Environ. Sci. Technol |
PublicationYear | 2023 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref27/cit27 Henmi T. (ref55/cit55) 1976; 61 ref63/cit63 ref56/cit56 Egerton R. F. (ref35/cit35) 2011 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 Wada K. (ref54/cit54) 1974; 26 ref71/cit71 ref37/cit37 ref20/cit20 ref60/cit60 ref74/cit74 ref17/cit17 ref10/cit10 ref53/cit53 ref19/cit19 Smits M. M. (ref48/cit48) 2017 ref21/cit21 ref42/cit42 ref46/cit46 ref13/cit13 ref61/cit61 ref75/cit75 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref6/cit6 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref72/cit72 Kleber M. (ref3/cit3) 2015; 130 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref68/cit68 Samuels T. (ref49/cit49) 2020 ref26/cit26 ref73/cit73 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 Hren J. J. (ref36/cit36) 1979 ref4/cit4 ref30/cit30 Williams D. B. (ref34/cit34) 2009 ref47/cit47 ref1/cit1 ref44/cit44 ref70/cit70 ref7/cit7 |
References_xml | – ident: ref2/cit2 doi: 10.1038/nature10386 – volume-title: Transmission Electron Microscopy year: 2009 ident: ref34/cit34 doi: 10.1007/978-0-387-76501-3 – volume: 26 start-page: 211 volume-title: Advances in Agronomy year: 1974 ident: ref54/cit54 – start-page: 35 volume-title: Mycorrhizal Mediation of Soil year: 2017 ident: ref48/cit48 doi: 10.1016/B978-0-12-804312-7.00003-6 – ident: ref74/cit74 doi: 10.3390/soilsystems2020029 – ident: ref10/cit10 doi: 10.5194/bg-17-1507-2020 – ident: ref21/cit21 doi: 10.1016/j.chemgeo.2012.06.003 – ident: ref8/cit8 doi: 10.1038/s43017-021-00162-y – ident: ref9/cit9 doi: 10.1111/j.1365-2389.2005.00703.x – volume: 61 start-page: 379 issue: 5 year: 1976 ident: ref55/cit55 publication-title: Am. Mineral. – ident: ref69/cit69 doi: 10.1038/nclimate2580 – volume: 130 start-page: 1 volume-title: Advances in Agronomy year: 2015 ident: ref3/cit3 – ident: ref7/cit7 doi: 10.1038/s41561-020-0596-z – ident: ref66/cit66 doi: 10.1080/01490450490266343 – ident: ref52/cit52 doi: 10.1016/j.geoderma.2020.114483 – ident: ref11/cit11 doi: 10.1038/s41558-018-0341-4 – ident: ref46/cit46 doi: 10.1080/15583724.2010.493256 – ident: ref5/cit5 doi: 10.1038/s41586-019-1280-6 – ident: ref51/cit51 doi: 10.1016/j.gca.2019.11.030 – ident: ref38/cit38 doi: 10.1111/j.1365-2389.2006.00834.x – ident: ref26/cit26 doi: 10.1046/j.1365-3040.1997.d01-86.x – ident: ref20/cit20 doi: 10.1021/es1023898 – ident: ref65/cit65 doi: 10.1021/la0013188 – ident: ref29/cit29 doi: 10.1016/j.geoderma.2012.03.015 – ident: ref42/cit42 doi: 10.1021/es050778q – ident: ref22/cit22 doi: 10.1016/j.gca.2014.08.026 – ident: ref64/cit64 doi: 10.1021/la991378h – ident: ref6/cit6 doi: 10.1038/s41586-018-0328-3 – ident: ref18/cit18 doi: 10.1021/es800322j – ident: ref57/cit57 doi: 10.1038/nature10855 – ident: ref16/cit16 doi: 10.2136/sssaj2004.0274 – ident: ref63/cit63 doi: 10.1016/S0016-7037(98)00249-X – ident: ref47/cit47 doi: 10.1016/j.mee.2005.01.006 – ident: ref43/cit43 doi: 10.1016/j.geoderma.2006.10.006 – ident: ref62/cit62 doi: 10.1016/j.gca.2009.12.017 – ident: ref33/cit33 doi: 10.1080/10643389.2021.1980346 – ident: ref71/cit71 doi: 10.1111/1365-2435.14038 – ident: ref45/cit45 doi: 10.1016/0304-3991(84)90096-2 – ident: ref70/cit70 doi: 10.1016/j.soilbio.2021.108265 – ident: ref58/cit58 doi: 10.1007/s10533-021-00878-5 – ident: ref1/cit1 doi: 10.5194/essd-14-4811-2022 – ident: ref4/cit4 doi: 10.5194/bg-20-3151-2023 – ident: ref39/cit39 doi: 10.1016/j.chemosphere.2014.03.078 – ident: ref17/cit17 doi: 10.1016/j.gca.2007.11.035 – ident: ref14/cit14 doi: 10.1071/SR18299 – ident: ref50/cit50 doi: 10.1130/G48706.1 – ident: ref28/cit28 doi: 10.1016/j.gca.2011.03.006 – ident: ref24/cit24 doi: 10.1021/acs.est.6b02793 – ident: ref13/cit13 – ident: ref53/cit53 doi: 10.1111/ejss.12157 – ident: ref60/cit60 doi: 10.1016/j.geoderma.2022.116217 – ident: ref73/cit73 doi: 10.1021/acs.est.0c04592 – ident: ref75/cit75 doi: 10.5194/soil-6-597-2020 – ident: ref19/cit19 doi: 10.1016/j.gca.2009.09.023 – volume-title: Introduction to Analytical Electron Microscopy year: 1979 ident: ref36/cit36 doi: 10.1007/978-1-4757-5581-7 – ident: ref44/cit44 doi: 10.1016/j.geoderma.2014.09.008 – ident: ref31/cit31 doi: 10.1016/j.gca.2018.03.012 – ident: ref61/cit61 doi: 10.2136/sssaj2006.0111 – ident: ref40/cit40 doi: 10.1016/j.geoderma.2018.02.043 – ident: ref41/cit41 doi: 10.1038/s41467-020-19792-9 – ident: ref25/cit25 doi: 10.1016/j.gca.2021.09.003 – ident: ref30/cit30 doi: 10.1007/s10533-007-9103-5 – ident: ref68/cit68 doi: 10.1016/j.gca.2009.04.025 – ident: ref23/cit23 doi: 10.1007/s10533-013-9943-0 – ident: ref37/cit37 doi: 10.1016/0304-3991(83)90302-9 – ident: ref67/cit67 doi: 10.1016/j.geoderma.2022.115960 – ident: ref15/cit15 doi: 10.1016/S0927-7757(98)00325-2 – ident: ref56/cit56 doi: 10.1016/j.gca.2006.08.047 – ident: ref72/cit72 doi: 10.1016/j.soilbio.2023.109097 – ident: ref27/cit27 doi: 10.1021/es9911418 – start-page: 59 volume-title: Biogeochemical Cycles year: 2020 ident: ref49/cit49 doi: 10.1002/9781119413332.ch3 – ident: ref32/cit32 doi: 10.1016/j.gca.2019.05.043 – ident: ref12/cit12 doi: 10.1007/s10533-018-0424-3 – volume-title: Electron Energy-Loss Spectroscopy in the Electron Microscope year: 2011 ident: ref35/cit35 doi: 10.1007/978-1-4419-9583-4 – ident: ref59/cit59 doi: 10.1016/j.gca.2016.02.033 |
SSID | ssj0002308 |
Score | 2.4702225 |
Snippet | Soil carbon stabilization is mainly driven by organo-mineral interactions. Coprecipitates, of organic matter with short-range order minerals, detected through... |
SourceID | hal proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 20615 |
SubjectTerms | Agricultural sciences Aluminum Andosols Atomic structure Biogeochemical Cycling Carbon Carbon sequestration Chemical composition Chemical extraction Electron energy loss spectroscopy energy Energy loss environmental science Environmental Sciences Image resolution Iron Life Sciences Microscopy, Electron, Transmission Minerals Minerals - chemistry nanomaterials Organic matter sediments Short range order Silicon skeleton Soil - chemistry soil carbon Soil stabilization Soil study Spectroscopy Stabilization Transmission electron microscopy X-radiation |
Title | Structure and Chemical Composition of Soil C‑Rich Al–Si–Fe Coprecipitates at Nanometer Scale |
URI | http://dx.doi.org/10.1021/acs.est.3c06557 https://www.ncbi.nlm.nih.gov/pubmed/38019574 https://www.proquest.com/docview/2903926920 https://www.proquest.com/docview/2895259454 https://www.proquest.com/docview/3153860034 https://hal.science/hal-04498067 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwELZoucChLYVCaEEG9cAlIbEdxz6uqq5WCLgslfYWOf4RVUtSkd0eOPUVEG_YJ-lMNpsFqhVccnAmf5MZzzfy-BtCjgGheuZ9FVchczHgfx9r5VQsuWWZlEqEjmf702c5ORMfZvlsTRb99wo-y94b2yYwQSbcQrTMiy3ykElVIE3-6GQ6TLqApNWqWYHmcjaw-Ny7AYYh2_4Rhra-YhHkJoTZRZrx7rJGq-0ICrHA5CJZzKvE_rhP3_jvj9gjOz3epKOlgTwhD3y9Tx7_xkK4Tw5O15vdQLT39vYpqaYdueziu6emdnTFLUBxDulrvWgT6LQ5h7Hbm5-4SZ-OLm9vfk3P4TD2IHmF7BnYmQQgLTVzCrN58w1LcOA5EJuekbPx6ZeTSdz3ZIgNJNLzuHCAXyoltFLOCpmGQgcI-chSlintQu6CCx5SXJMWhQUp8HfIdYXRXClAl_yAbNdN7V8QqjKDPc-8lMyKSgqjisoIzp2xNkCeF5FjUFvZ-1RbdsvlLCtxEHRZ9rqMSLL6k6Xtec2xvcbl5gveDRdcLSk9Nou-BdMYpJCKezL6WOJYKkAHEOqvs4gcrSxn_bJMp4A8pWZpRN4Mp8F1cT3G1L5ZgIzSOWSfIhebZThGJIksQhF5vrTK4XW4wt2ehXj5f4o6JI8Y-AnW4mTsiGyDCflXgKjm1evOl-4A0_4bIg |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwEB615QAc-CkUQgsY1AOXLEnsOPZxVXW1wLYS2lbaW-Q4jqjaJhXZ5cCpr4B4wz5JZ7JJlh-tBJc9eCeJM5nxfCOPvwHYR4TqIucyPyvC3Ef873ytcuVLbqNQSiWKhmf76FiOT8XHWTzbgKA7C4OTqPFOdbOJv2IXCN_TGK6TA24xaMbJJtxBKBIRW_7wYNqvvQioVdezQHM568l8_roBRSNb_xaNNr9QLeQ6oNkEnNFD-NxPtakzOR8s5tnAfv-DxfF_3uURPGjRJxsuzeUxbLhyG-7_wkm4DTuHq6NvKNr6fv0EsmlDNbv46pgpc9YxDTBaUdrKL1YVbFqd4djN9Q86ss-GFzfXP6dn-DNyKHlFXBrUpwQBLjNzhmt7dUkFOfgcjFRP4XR0eHIw9tsODb7BtHruJzmimUwJrVRuhQyKRBcIAIizLFQ6L-K8yAuHCa8JksSiFHo_Zr7CaK4UYk2-A1tlVbrnwFRoqAOakzKyIpPCqCQzgvPcWFtg1ufBPqotbT2sTpvN8yhMaRB1mba69GDQfdDUtizn1GzjYv0F7_oLrpYEH-tF36KF9FJEzD0eTlIaCwTqAAP_t9CDvc6AVpONdIA4VOoo8OBN_zc6Mu3OmNJVC5RROsZcVMRivQyn-CSJU8iDZ0vj7KfDFZ39TMSLf1PUa7g7PjmapJMPx5924V6ErkNVOmG0B1toTu4lYq159qpxr1vNXiOD |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB7RIiF64FEoGAosqAcuDn6s1-tjVBoFKBVSiJSbtd6HqGjtCCccOPUvIP5hfwkzzsbloUhwyWEzttfreXyj3fkG4AARqk2srcLKxSZE_G_DQhoZilQnsRCSu45n-_2JGE_521k280VhVAuDk2jxTm23iU9WPTfOMwzEr2gcfeUg1Rg4s3wLrtOmHTHmDw8nvf9FUC3XfQuKVMx6Qp-_bkARSbe_RaStT3QechPY7ILO6DZM--l2Z00-D5aLaqC__cHk-L_vcwdueRTKhiu1uQvXbL0LO79wE-7C3tFVCRyKeh_Q3oNq0lHOLr9YpmrD1owDjDyLPwHGGscmzSmOXV58p9J9Njy7vPgxOcWfkUXJOXFqUL8SBLpMLRj6-OacDubgczBi3Yfp6Ojj4Tj0nRpChen1IswNoppK8kJKo7mIXF44BALEXRbLwrjMOOMsJr4qynONUugFMAPmqkilRMyZ7sF23dT2ITAZK-qEZoVINK8EVzKvFE9To7R2mP0FcIDLVnpLa8tuEz2JSxrEtSz9WgYwWH_UUnu2c2q6cbb5gpf9BfMV0cdm0ReoJb0UEXSPh8cljUUc1wABwNc4gP21El1NNikixKOiSKIAnvd_o0HTLo2qbbNEGVlkmJPyjG-WSSlOCeIWCuDBSkH76aSSakBz_ujfFuoZ3PjwelQevzl59xhuJmg9dFgnTvZhG7XJPkHItaiedhb2EydXJgY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure+and+Chemical+Composition+of+Soil+C-Rich+Al%E2%80%93Si%E2%80%93Fe+Coprecipitates+at+Nanometer+Scale&rft.jtitle=Environmental+science+%26+technology&rft.au=Jamoteau%2C+Floriane&rft.au=Cam%2C+Nithavong&rft.au=Levard%2C+Cl%C3%A9ment&rft.au=Doelsch%2C+Emmanuel&rft.date=2023-12-12&rft.pub=American+Chemical+Society&rft.issn=0013-936X&rft.volume=57&rft.issue=49&rft.spage=20615&rft_id=info:doi/10.1021%2Facs.est.3c06557&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon |