Biodegradation and Adsorption of Antibiotics in the Activated Sludge Process
The removal of 11 antibiotics of 6 classes, that is, two β-lactams (ampicillin and cefalexin), two sulfonamides (sulfamethoxazole and sulfadiazine), three fluoroquinolones (norfloxacin, ofloxacin, and ciprofloxacin), one tetracyclines (tetracycline), two macorlides (roxithromycin and anhydro-erythro...
Saved in:
Published in | Environmental science & technology Vol. 44; no. 9; pp. 3468 - 3473 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
01.05.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The removal of 11 antibiotics of 6 classes, that is, two β-lactams (ampicillin and cefalexin), two sulfonamides (sulfamethoxazole and sulfadiazine), three fluoroquinolones (norfloxacin, ofloxacin, and ciprofloxacin), one tetracyclines (tetracycline), two macorlides (roxithromycin and anhydro-erythromycin), and one others (trimethoprim), in activated sludge process was investigated using two series of batch reactors treating freshwater and saline sewage respectively. At environmental relevant concentrations tested in this study, biodegradation and adsorption were the major removal routes for the target antibiotics, where volatilization and hydrolysis were neglectable. Among the 11 target antibiotics, cefalexin and the two sulfonamides were predominantly removed by biodegradation in both freshwater and saline sewage systems. Ampicillin, norfloxacin, ciprofloxacin, ofloxacin, tetracycline, roxithromycin, and trimethoprim were mainly removed by adsorption. Divalent cations (Ca2+ and Mg2+) in saline sewage significantly decreased the adsorption of the three fluoroquinolones onto activated sludge. These three fluoroquinolones also exhibited certain biodegradability in the saline activated sludge reactor. Erythromycin-H2O was persistent in both saline and freshwater systems under the experimental conditions and could not be removed at all. Kinetics study showed that biodegradation of cefalexin, the two sulfonamides and the three fluoroquinolones followed first-order model well (R 2: 0.921−0.997) with the rate constants ranging from 5.2 × 10−3 to 3.6 × 10−1 h−1. |
---|---|
AbstractList | The removal of 11 antibiotics of 6 classes, that is, two β-lactams (ampicillin and cefalexin), two sulfonamides (sulfamethoxazole and sulfadiazine), three fluoroquinolones (norfloxacin, ofloxacin, and ciprofloxacin), one tetracyclines (tetracycline), two macorlides (roxithromycin and anhydro-erythromycin), and one others (trimethoprim), in activated sludge process was investigated using two series of batch reactors treating freshwater and saline sewage respectively. At environmental relevant concentrations tested in this study, biodegradation and adsorption were the major removal routes for the target antibiotics, where volatilization and hydrolysis were neglectable. Among the 11 target antibiotics, cefalexin and the two sulfonamides were predominantly removed by biodegradation in both freshwater and saline sewage systems. Ampicillin, norfloxacin, ciprofloxacin, ofloxacin, tetracycline, roxithromycin, and trimethoprim were mainly removed by adsorption. Divalent cations (Ca... and Mg...) in saline sewage significantly decreased the adsorption of the three fluoroquinolones onto activated sludge. These three fluoroquinolones also exhibited certain biodegradability in the saline activated sludge reactor. Erythromycin-H...O was persistent in both saline and freshwater systems under the experimental conditions and could not be removed at all. Kinetics study showed that biodegradation of cefalexin, the two sulfonamides and the three fluoroquinolones followed first-order model well (R...: 0.921-0.997) with the rate constants ranging from 5.2 x 10... to 3.6 x 10... h... (ProQuest: ... denotes formulae/symbols omitted.) The removal of 11 antibiotics of 6 classes, that is, two beta-lactams (ampicillin and cefalexin), two sulfonamides (sulfamethoxazole and sulfadiazine), three fluoroquinolones (norfloxacin, ofloxacin, and ciprofloxacin), one tetracyclines (tetracycline), two macorlides (roxithromycin and anhydro-erythromycin), and one others (trimethoprim), in activated sludge process was investigated using two series of batch reactors treating freshwater and saline sewage respectively. At environmental relevant concentrations tested in this study, biodegradation and adsorption were the major removal routes for the target antibiotics, where volatilization and hydrolysis were neglectable. Among the 11 target antibiotics, cefalexin and the two sulfonamides were predominantly removed by biodegradation in both freshwater and saline sewage systems. Ampicillin, norfloxacin, ciprofloxacin, ofloxacin, tetracycline, roxithromycin, and trimethoprim were mainly removed by adsorption. Divalent cations (Ca(2+) and Mg(2+)) in saline sewage significantly decreased the adsorption of the three fluoroquinolones onto activated sludge. These three fluoroquinolones also exhibited certain biodegradability in the saline activated sludge reactor. Erythromycin-H(2)O was persistent in both saline and freshwater systems under the experimental conditions and could not be removed at all. Kinetics study showed that biodegradation of cefalexin, the two sulfonamides and the three fluoroquinolones followed first-order model well (R(2): 0.921-0.997) with the rate constants ranging from 5.2 x 10(-3) to 3.6 x 10(-1) h(-1).The removal of 11 antibiotics of 6 classes, that is, two beta-lactams (ampicillin and cefalexin), two sulfonamides (sulfamethoxazole and sulfadiazine), three fluoroquinolones (norfloxacin, ofloxacin, and ciprofloxacin), one tetracyclines (tetracycline), two macorlides (roxithromycin and anhydro-erythromycin), and one others (trimethoprim), in activated sludge process was investigated using two series of batch reactors treating freshwater and saline sewage respectively. At environmental relevant concentrations tested in this study, biodegradation and adsorption were the major removal routes for the target antibiotics, where volatilization and hydrolysis were neglectable. Among the 11 target antibiotics, cefalexin and the two sulfonamides were predominantly removed by biodegradation in both freshwater and saline sewage systems. Ampicillin, norfloxacin, ciprofloxacin, ofloxacin, tetracycline, roxithromycin, and trimethoprim were mainly removed by adsorption. Divalent cations (Ca(2+) and Mg(2+)) in saline sewage significantly decreased the adsorption of the three fluoroquinolones onto activated sludge. These three fluoroquinolones also exhibited certain biodegradability in the saline activated sludge reactor. Erythromycin-H(2)O was persistent in both saline and freshwater systems under the experimental conditions and could not be removed at all. Kinetics study showed that biodegradation of cefalexin, the two sulfonamides and the three fluoroquinolones followed first-order model well (R(2): 0.921-0.997) with the rate constants ranging from 5.2 x 10(-3) to 3.6 x 10(-1) h(-1). The removal of 11 antibiotics of 6 classes, that is, two β-lactams (ampicillin and cefalexin), two sulfonamides (sulfamethoxazole and sulfadiazine), three fluoroquinolones (norfloxacin, ofloxacin, and ciprofloxacin), one tetracyclines (tetracycline), two macorlides (roxithromycin and anhydro-erythromycin), and one others (trimethoprim), in activated sludge process was investigated using two series of batch reactors treating freshwater and saline sewage respectively. At environmental relevant concentrations tested in this study, biodegradation and adsorption were the major removal routes for the target antibiotics, where volatilization and hydrolysis were neglectable. Among the 11 target antibiotics, cefalexin and the two sulfonamides were predominantly removed by biodegradation in both freshwater and saline sewage systems. Ampicillin, norfloxacin, ciprofloxacin, ofloxacin, tetracycline, roxithromycin, and trimethoprim were mainly removed by adsorption. Divalent cations (Ca2+ and Mg2+) in saline sewage significantly decreased the adsorption of the three fluoroquinolones onto activated sludge. These three fluoroquinolones also exhibited certain biodegradability in the saline activated sludge reactor. Erythromycin-H2O was persistent in both saline and freshwater systems under the experimental conditions and could not be removed at all. Kinetics study showed that biodegradation of cefalexin, the two sulfonamides and the three fluoroquinolones followed first-order model well (R 2: 0.921−0.997) with the rate constants ranging from 5.2 × 10−3 to 3.6 × 10−1 h−1. The removal of 11 antibiotics of 6 classes, that is, two beta-lactams (ampicillin and cefalexin), two sulfonamides (sulfamethoxazole and sulfadiazine), three fluoroquinolones (norfloxacin, ofloxacin, and ciprofloxacin), one tetracyclines (tetracycline), two macorlides (roxithromycin and anhydro-erythromycin), and one others (trimethoprim), in activated sludge process was investigated using two series of batch reactors treating freshwater and saline sewage respectively. At environmental relevant concentrations tested in this study, biodegradation and adsorption were the major removal routes for the target antibiotics, where volatilization and hydrolysis were neglectable. Among the 11 target antibiotics, cefalexin and the two sulfonamides were predominantly removed by biodegradation in both freshwater and saline sewage systems. Ampicillin, norfloxacin, ciprofloxacin, ofloxacin, tetracycline, roxithromycin, and trimethoprim were mainly removed by adsorption. Divalent cations (Ca(2+) and Mg(2+)) in saline sewage significantly decreased the adsorption of the three fluoroquinolones onto activated sludge. These three fluoroquinolones also exhibited certain biodegradability in the saline activated sludge reactor. Erythromycin-H(2)O was persistent in both saline and freshwater systems under the experimental conditions and could not be removed at all. Kinetics study showed that biodegradation of cefalexin, the two sulfonamides and the three fluoroquinolones followed first-order model well (R(2): 0.921-0.997) with the rate constants ranging from 5.2 x 10(-3) to 3.6 x 10(-1) h(-1). The removal of 11 antibiotics of 6 classes, that is, two *b-lactams (ampicillin and cefalexin), two sulfonamides (sulfamethoxazole and sulfadiazine), three fluoroquinolones (norfloxacin, ofloxacin, and ciprofloxacin), one tetracyclines (tetracycline), two macorlides (roxithromycin and anhydro-erythromycin), and one others (trimethoprim), in activated sludge process was investigated using two series of batch reactors treating freshwater and saline sewage respectively. At environmental relevant concentrations tested in this study, biodegradation and adsorption were the major removal routes for the target antibiotics, where volatilization and hydrolysis were neglectable. Among the 11 target antibiotics, cefalexin and the two sulfonamides were predominantly removed by biodegradation in both freshwater and saline sewage systems. Ampicillin, norfloxacin, ciprofloxacin, ofloxacin, tetracycline, roxithromycin, and trimethoprim were mainly removed by adsorption. Divalent cations (Ca2+ and Mg2+) in saline sewage significantly decreased the adsorption of the three fluoroquinolones onto activated sludge. These three fluoroquinolones also exhibited certain biodegradability in the saline activated sludge reactor. Erythromycin-H2O was persistent in both saline and freshwater systems under the experimental conditions and could not be removed at all. Kinetics study showed that biodegradation of cefalexin, the two sulfonamides and the three fluoroquinolones followed first-order model well (R2: 0.921-0.997) with the rate constants ranging from 5.2 X 10-3 to 3.6 X 10-1 h-1. |
Author | Zhang, Tong Li, Bing |
Author_xml | – sequence: 1 givenname: Bing surname: Li fullname: Li, Bing – sequence: 2 givenname: Tong surname: Zhang fullname: Zhang, Tong email: zhangt@hkucc.hku.hk |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22735114$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/20384353$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0V1LHDEUBuAgFl2tF_0DMgil9GLqSU4mM3O5FfsBCy20Be-GTD40MpusSabQf2_UrYItSC5C4Ely3nMOyK4P3hDyhsIHCoyemtQD8h6udsiCNgzqpmvoLlkAUKx7FBf75CClawBgCN0e2WeAHccGF2T10QVtLqPUMrvgK-l1tdQpxM39Mdhq6bMbXchOpcr5Kl-Zaqmy-y2z0dWPadaXpvoegzIpvSavrJySOdruh-TXp_OfZ1_q1bfPX8-Wq1py0ee6xVboXimKQrU4MsnlqK3u2663QghrZYuNGDloS3kpjGE70h67jgtlLXR4SN49vLuJ4WY2KQ9rl5SZJulNmNPQNrws4Oxlicih9ASKPHkmr8McfYkxIGsoZUjvPj7eonlcGz1solvL-Gf4288C3m6BTEpONkqvXHpyrCSjlBf3_sGpGFKKxj4SCsPdTIfHmRZ7-swql--nlaN0039vbKuQKj3F-NfdApV9rMk |
CODEN | ESTHAG |
CitedBy_id | crossref_primary_10_1016_j_cej_2020_125498 crossref_primary_10_1007_s10311_019_00945_2 crossref_primary_10_1016_j_jes_2021_03_037 crossref_primary_10_1080_07391102_2018_1521746 crossref_primary_10_1016_j_jhazmat_2021_127840 crossref_primary_10_1016_j_watres_2012_01_028 crossref_primary_10_1016_j_chemosphere_2020_128044 crossref_primary_10_1016_j_envadv_2021_100071 crossref_primary_10_1016_j_biortech_2013_08_131 crossref_primary_10_1016_j_watres_2019_06_010 crossref_primary_10_1016_j_ijbiomac_2024_135088 crossref_primary_10_1016_j_scitotenv_2022_157384 crossref_primary_10_1155_2020_8863370 crossref_primary_10_35414_akufemubid_1287632 crossref_primary_10_1016_j_scitotenv_2018_04_288 crossref_primary_10_1016_j_jwpe_2020_101799 crossref_primary_10_1080_10934529_2016_1258870 crossref_primary_10_1002_etc_5191 crossref_primary_10_1021_acs_est_1c01016 crossref_primary_10_1007_s11356_014_2800_4 crossref_primary_10_1016_j_jhazmat_2012_03_074 crossref_primary_10_1016_j_biortech_2018_11_023 crossref_primary_10_1016_j_jhazmat_2018_07_092 crossref_primary_10_1016_j_ibiod_2019_02_004 crossref_primary_10_1016_j_jwpe_2022_103075 crossref_primary_10_1016_j_scitotenv_2012_01_061 crossref_primary_10_1016_j_biortech_2022_126770 crossref_primary_10_1016_j_envint_2018_05_029 crossref_primary_10_1016_j_chemosphere_2019_125449 crossref_primary_10_1021_acs_est_7b05543 crossref_primary_10_1016_j_envres_2024_119396 crossref_primary_10_1016_j_scitotenv_2016_08_073 crossref_primary_10_1016_j_chemosphere_2011_05_045 crossref_primary_10_1016_j_cej_2016_02_035 crossref_primary_10_1016_j_chemosphere_2019_125681 crossref_primary_10_1021_acsenvironau_2c00010 crossref_primary_10_1016_j_jhazmat_2023_132894 crossref_primary_10_1016_j_scitotenv_2019_04_437 crossref_primary_10_5004_dwt_2022_28003 crossref_primary_10_1016_j_ecoenv_2018_02_067 crossref_primary_10_1016_j_envres_2022_115119 crossref_primary_10_1039_C7RA10150C crossref_primary_10_1007_s11356_019_04360_6 crossref_primary_10_1016_j_biortech_2019_122290 crossref_primary_10_1016_j_cej_2019_122770 crossref_primary_10_1016_j_chemosphere_2017_08_159 crossref_primary_10_1002_cnma_202400515 crossref_primary_10_1016_j_jclepro_2024_143019 crossref_primary_10_1016_j_jhazmat_2021_126734 crossref_primary_10_1007_s11356_018_2124_x crossref_primary_10_1016_j_envint_2022_107381 crossref_primary_10_1016_j_jwpe_2022_103080 crossref_primary_10_1016_j_watres_2012_01_047 crossref_primary_10_1080_01919512_2019_1624149 crossref_primary_10_1016_j_biortech_2021_125156 crossref_primary_10_1016_j_chemosphere_2013_01_040 crossref_primary_10_1016_j_jhazmat_2021_127946 crossref_primary_10_1016_j_scitotenv_2020_142217 crossref_primary_10_1016_j_jwpe_2025_107167 crossref_primary_10_1088_1755_1315_801_1_012004 crossref_primary_10_1080_01496395_2018_1445109 crossref_primary_10_1016_j_watres_2021_117616 crossref_primary_10_1073_pnas_2302761120 crossref_primary_10_1007_s10532_011_9522_9 crossref_primary_10_1007_s11270_023_06793_9 crossref_primary_10_1016_j_jece_2022_107403 crossref_primary_10_1016_j_scitotenv_2020_144642 crossref_primary_10_3390_w11112217 crossref_primary_10_1016_j_watres_2013_03_001 crossref_primary_10_1039_C7EW00171A crossref_primary_10_26907_2542_064X_2024_2_187_209 crossref_primary_10_1016_j_scitotenv_2017_08_009 crossref_primary_10_1590_s1413_41522020151522 crossref_primary_10_1016_j_jcis_2022_05_050 crossref_primary_10_1016_j_jcis_2021_03_165 crossref_primary_10_1016_j_scitotenv_2019_05_241 crossref_primary_10_1007_s42452_020_04003_3 crossref_primary_10_1016_j_seppur_2021_119021 crossref_primary_10_1039_c3em00150d crossref_primary_10_3390_molecules27228026 crossref_primary_10_1016_j_jece_2024_113671 crossref_primary_10_1016_j_biortech_2020_122825 crossref_primary_10_1093_femsec_fiy128 crossref_primary_10_1016_j_inoche_2022_110140 crossref_primary_10_1016_j_jssc_2020_121420 crossref_primary_10_1016_j_jwpe_2024_104941 crossref_primary_10_1016_j_biortech_2013_10_055 crossref_primary_10_1021_acs_est_6b01899 crossref_primary_10_1016_j_scitotenv_2020_138071 crossref_primary_10_1016_j_envpol_2013_08_038 crossref_primary_10_1007_s10532_018_9826_0 crossref_primary_10_1016_j_chemosphere_2013_02_070 crossref_primary_10_1016_j_ecoenv_2022_114049 crossref_primary_10_1016_j_watres_2021_117985 crossref_primary_10_1016_j_scitotenv_2013_02_024 crossref_primary_10_1016_j_chroma_2024_465427 crossref_primary_10_1080_10643389_2020_1835436 crossref_primary_10_1016_j_biteb_2019_01_002 crossref_primary_10_1016_j_chemosphere_2018_04_086 crossref_primary_10_1007_s11270_014_1940_y crossref_primary_10_1007_s12665_015_4342_6 crossref_primary_10_1016_j_jece_2022_107638 crossref_primary_10_1021_acs_est_2c07774 crossref_primary_10_1080_10643380903392692 crossref_primary_10_1016_j_apsusc_2023_156630 crossref_primary_10_1039_D2RA06436G crossref_primary_10_1080_03601234_2012_636580 crossref_primary_10_1016_j_biortech_2018_01_100 crossref_primary_10_1016_j_jhazmat_2019_121888 crossref_primary_10_1016_j_watres_2019_114988 crossref_primary_10_3390_catal13020336 crossref_primary_10_1007_s11783_017_0920_z crossref_primary_10_1016_j_cej_2023_143724 crossref_primary_10_1016_j_scitotenv_2018_03_207 crossref_primary_10_1016_j_scitotenv_2021_147379 crossref_primary_10_1080_10643389_2019_1642831 crossref_primary_10_1016_j_ecoenv_2012_03_002 crossref_primary_10_1016_j_scitotenv_2018_12_088 crossref_primary_10_1016_j_scitotenv_2019_05_216 crossref_primary_10_1007_s11356_013_1867_7 crossref_primary_10_1016_j_envpol_2023_122033 crossref_primary_10_1016_j_watres_2024_121738 crossref_primary_10_1016_j_envpol_2020_116152 crossref_primary_10_2174_1389201020666190527113903 crossref_primary_10_1016_j_scitotenv_2022_158550 crossref_primary_10_1007_s11356_021_13631_0 crossref_primary_10_3390_molecules29102276 crossref_primary_10_1007_s10876_025_02771_9 crossref_primary_10_1016_j_chemosphere_2023_137882 crossref_primary_10_1016_j_ecoenv_2018_08_101 crossref_primary_10_1371_journal_pone_0156854 crossref_primary_10_1016_j_cej_2019_122842 crossref_primary_10_3390_catal12050500 crossref_primary_10_1016_j_jes_2017_10_018 crossref_primary_10_1016_j_chemosphere_2017_09_092 crossref_primary_10_1039_C7AY01801K crossref_primary_10_3390_antibiotics11010114 crossref_primary_10_1016_j_jcat_2018_07_006 crossref_primary_10_1080_00319104_2022_2098295 crossref_primary_10_1016_j_biortech_2016_09_096 crossref_primary_10_1016_j_ecoenv_2024_117087 crossref_primary_10_1021_acs_est_8b00568 crossref_primary_10_1021_acsestwater_2c00600 crossref_primary_10_1007_s11356_017_8849_0 crossref_primary_10_1016_j_nbt_2019_08_002 crossref_primary_10_1007_s13762_023_04861_5 crossref_primary_10_1016_j_scitotenv_2021_152852 crossref_primary_10_1039_c6pp00319b crossref_primary_10_1088_1361_6528_ac530c crossref_primary_10_1007_s11274_011_0834_z crossref_primary_10_1016_j_cej_2023_142983 crossref_primary_10_1016_j_scitotenv_2019_05_341 crossref_primary_10_1016_j_biortech_2021_126473 crossref_primary_10_1016_j_colsurfa_2021_127203 crossref_primary_10_1016_j_marpolbul_2013_05_007 crossref_primary_10_1016_j_psep_2024_12_032 crossref_primary_10_1016_j_envpol_2023_123115 crossref_primary_10_1016_j_jhazmat_2024_134056 crossref_primary_10_1016_j_scitotenv_2014_04_097 crossref_primary_10_1016_j_chemosphere_2017_07_025 crossref_primary_10_1016_j_scitotenv_2018_10_004 crossref_primary_10_1016_j_watres_2017_12_029 crossref_primary_10_1093_femsec_fiy101 crossref_primary_10_1016_j_scitotenv_2012_08_038 crossref_primary_10_3390_antibiotics11020136 crossref_primary_10_1016_j_jenvman_2020_111098 crossref_primary_10_1016_j_watres_2016_10_025 crossref_primary_10_1039_c3ay40220g crossref_primary_10_1016_j_ecoenv_2017_08_052 crossref_primary_10_1016_j_jwpe_2024_105606 crossref_primary_10_1016_j_watres_2013_10_043 crossref_primary_10_1007_s11356_023_25846_4 crossref_primary_10_1016_j_scitotenv_2020_139348 crossref_primary_10_1016_j_jhazmat_2016_03_064 crossref_primary_10_1016_j_jiec_2023_07_049 crossref_primary_10_1016_j_cej_2024_150759 crossref_primary_10_1016_j_envpol_2019_113160 crossref_primary_10_1007_s11356_018_1221_1 crossref_primary_10_1016_j_chemosphere_2014_12_012 crossref_primary_10_1016_j_cej_2023_143821 crossref_primary_10_1016_j_watres_2019_114964 crossref_primary_10_1016_j_jece_2018_09_034 crossref_primary_10_1039_C9EN00968J crossref_primary_10_1016_j_scitotenv_2017_10_059 crossref_primary_10_1016_j_jclepro_2022_131421 crossref_primary_10_1016_j_watres_2020_115475 crossref_primary_10_1016_j_jenvman_2016_09_086 crossref_primary_10_1016_j_jenvman_2021_114336 crossref_primary_10_1016_j_jhazmat_2022_130364 crossref_primary_10_1016_j_jece_2020_104775 crossref_primary_10_1007_s40201_020_00571_z crossref_primary_10_1016_j_cej_2020_127494 crossref_primary_10_3390_ijerph17217706 crossref_primary_10_1016_j_chemosphere_2014_01_012 crossref_primary_10_2139_ssrn_4121066 crossref_primary_10_1016_j_chemosphere_2014_12_025 crossref_primary_10_1016_j_memsci_2023_121629 crossref_primary_10_1080_09593330_2015_1018338 crossref_primary_10_1016_j_ibiod_2015_01_015 crossref_primary_10_1016_j_chemosphere_2017_03_063 crossref_primary_10_1016_j_jphotochem_2018_01_030 crossref_primary_10_1016_j_scitotenv_2017_03_015 crossref_primary_10_1061__ASCE_EE_1943_7870_0001426 crossref_primary_10_1016_j_jcis_2016_08_068 crossref_primary_10_1016_j_watres_2020_116315 crossref_primary_10_1016_j_seppur_2020_116617 crossref_primary_10_3389_fmicb_2016_01728 crossref_primary_10_1016_j_jenvman_2022_114502 crossref_primary_10_1016_j_scitotenv_2020_143981 crossref_primary_10_1016_j_scitotenv_2019_04_410 crossref_primary_10_3390_ijms21113775 crossref_primary_10_1016_j_jes_2017_08_010 crossref_primary_10_1016_j_jenvman_2013_02_007 crossref_primary_10_1016_j_scitotenv_2013_11_008 crossref_primary_10_1186_s12934_021_01606_2 crossref_primary_10_1016_j_jhazmat_2016_03_085 crossref_primary_10_1021_acsami_3c01255 crossref_primary_10_18006_2017_5_4__402_411 crossref_primary_10_1007_s11356_016_6946_0 crossref_primary_10_1080_10934529_2015_1011981 crossref_primary_10_1016_j_ecoenv_2018_11_044 crossref_primary_10_1016_j_ibiod_2016_02_011 crossref_primary_10_1016_j_ibiod_2016_02_014 crossref_primary_10_1080_10643389_2020_1753634 crossref_primary_10_1021_acsomega_8b03406 crossref_primary_10_1039_C7RA09022F crossref_primary_10_1016_j_biortech_2021_125577 crossref_primary_10_1007_s11356_021_15498_7 crossref_primary_10_1007_s11157_017_9438_x crossref_primary_10_1016_j_jece_2013_12_021 crossref_primary_10_1016_j_scitotenv_2023_167862 crossref_primary_10_1007_s11270_010_0697_1 crossref_primary_10_1016_j_cej_2022_141220 crossref_primary_10_1016_j_chemosphere_2023_138099 crossref_primary_10_1080_02757540_2021_1924695 crossref_primary_10_1016_j_jenvman_2021_113628 crossref_primary_10_1016_j_jenvman_2023_117661 crossref_primary_10_1016_j_matchemphys_2022_126176 crossref_primary_10_1016_j_scitotenv_2015_12_057 crossref_primary_10_1016_j_scitotenv_2024_174688 crossref_primary_10_1016_j_watres_2019_05_034 crossref_primary_10_1039_D4CE00044G crossref_primary_10_1021_es103672x crossref_primary_10_1016_j_scitotenv_2019_03_473 crossref_primary_10_2139_ssrn_4046793 crossref_primary_10_1016_j_jpba_2014_11_020 crossref_primary_10_1039_C4EM00620H crossref_primary_10_1016_j_scitotenv_2020_141733 crossref_primary_10_1021_acs_iecr_9b03815 crossref_primary_10_1080_19443994_2014_926839 crossref_primary_10_1016_j_jhazmat_2012_11_003 crossref_primary_10_1016_j_apcatb_2011_09_029 crossref_primary_10_1016_j_seppur_2023_123261 crossref_primary_10_1007_s00244_012_9773_4 crossref_primary_10_1016_j_jece_2022_108585 crossref_primary_10_1016_j_scitotenv_2018_07_400 crossref_primary_10_1007_s10532_022_09980_3 crossref_primary_10_1007_s11356_021_18251_2 crossref_primary_10_1016_j_cej_2022_140265 crossref_primary_10_1016_j_chemosphere_2018_08_004 crossref_primary_10_5004_dwt_2020_25717 crossref_primary_10_1016_j_ibiod_2019_04_002 crossref_primary_10_1016_j_scitotenv_2015_01_096 crossref_primary_10_1007_s00449_016_1699_1 crossref_primary_10_1016_j_jwpe_2023_104139 crossref_primary_10_1016_j_jhazmat_2020_122615 crossref_primary_10_1021_acs_est_7b06026 crossref_primary_10_1016_j_cej_2015_06_025 crossref_primary_10_1016_j_jphotobiol_2018_05_022 crossref_primary_10_1007_s11356_017_0524_y crossref_primary_10_1016_j_cej_2018_04_142 crossref_primary_10_1007_s00253_012_4589_8 crossref_primary_10_1007_s11356_016_6054_1 crossref_primary_10_1016_j_jenvman_2024_122090 crossref_primary_10_1016_j_clay_2023_107127 crossref_primary_10_1016_j_memsci_2019_117425 crossref_primary_10_1016_j_psep_2023_11_047 crossref_primary_10_1016_j_chemosphere_2022_135406 crossref_primary_10_1007_s00449_020_02384_8 crossref_primary_10_2144_fsoa_2020_0189 crossref_primary_10_1016_j_biortech_2024_130672 crossref_primary_10_1016_j_jece_2024_112191 crossref_primary_10_1021_acs_est_9b06577 crossref_primary_10_1016_j_scitotenv_2021_145291 crossref_primary_10_1007_s00216_012_6239_5 crossref_primary_10_1016_j_scitotenv_2010_07_069 crossref_primary_10_1016_j_jclepro_2023_140119 crossref_primary_10_1007_s11157_015_9377_3 crossref_primary_10_1016_j_jes_2022_10_020 crossref_primary_10_3389_fmicb_2016_01015 crossref_primary_10_1016_j_jhazmat_2015_02_075 crossref_primary_10_1016_j_watres_2013_04_021 crossref_primary_10_1007_s11270_015_2438_y crossref_primary_10_1016_j_jwpe_2021_102538 crossref_primary_10_1016_j_biortech_2018_04_009 crossref_primary_10_1007_s11356_020_11616_z crossref_primary_10_1016_j_jwpe_2024_105683 crossref_primary_10_1039_D0RA02062A crossref_primary_10_1016_j_jece_2024_112013 crossref_primary_10_1016_j_jhazmat_2022_128335 crossref_primary_10_1007_s11814_016_0345_6 crossref_primary_10_1016_j_chemosphere_2021_129730 crossref_primary_10_1016_j_watres_2017_04_040 crossref_primary_10_1007_s11356_020_09829_3 crossref_primary_10_1016_j_enmm_2022_100747 crossref_primary_10_1016_j_watres_2022_119494 crossref_primary_10_1007_s11356_017_0853_x crossref_primary_10_2166_wst_2015_484 crossref_primary_10_1016_j_biortech_2021_125527 crossref_primary_10_1016_j_heliyon_2024_e33317 crossref_primary_10_1016_j_biortech_2017_03_189 crossref_primary_10_1007_s11274_020_2798_3 crossref_primary_10_1016_j_biortech_2020_124161 crossref_primary_10_1002_asia_202101105 crossref_primary_10_1007_s11356_022_22033_9 crossref_primary_10_1016_j_scitotenv_2022_157987 crossref_primary_10_1007_s11356_021_16676_3 crossref_primary_10_1016_j_seppur_2024_129712 crossref_primary_10_15407_biotech14_03_021 crossref_primary_10_3390_catal11070761 crossref_primary_10_1080_03601234_2022_2026124 crossref_primary_10_1016_j_scitotenv_2015_12_010 crossref_primary_10_1016_j_envpol_2012_11_008 crossref_primary_10_1016_j_vacuum_2021_110634 crossref_primary_10_2166_wst_2022_293 crossref_primary_10_3390_molecules27175402 crossref_primary_10_1016_j_ibiod_2024_105786 crossref_primary_10_1016_j_bej_2013_10_002 crossref_primary_10_1016_j_ccr_2018_05_019 crossref_primary_10_1016_j_bios_2015_10_069 crossref_primary_10_1016_j_biortech_2018_11_058 crossref_primary_10_1007_s11696_022_02063_w crossref_primary_10_1016_j_scitotenv_2020_139742 crossref_primary_10_1080_01496395_2020_1717533 crossref_primary_10_1007_s00128_020_02952_4 crossref_primary_10_1016_j_cej_2024_152555 crossref_primary_10_1016_j_jhazmat_2024_136875 crossref_primary_10_1007_s11356_015_5431_5 crossref_primary_10_1016_j_scitotenv_2022_159815 crossref_primary_10_1016_j_susmat_2024_e00825 crossref_primary_10_1039_c2pp25068c crossref_primary_10_3390_ijms150610083 crossref_primary_10_1007_s00253_012_4326_3 crossref_primary_10_1080_23312009_2017_1290021 crossref_primary_10_1016_j_jes_2022_11_014 crossref_primary_10_1039_c3em30682h crossref_primary_10_1016_j_cej_2024_150239 crossref_primary_10_2139_ssrn_4103365 crossref_primary_10_1007_s11356_017_8587_3 crossref_primary_10_1016_j_chemosphere_2018_01_003 crossref_primary_10_1016_j_envpol_2017_12_060 crossref_primary_10_1557_s43578_024_01331_7 crossref_primary_10_1016_j_jenvman_2024_120709 crossref_primary_10_1002_clen_201700101 crossref_primary_10_1021_ie301401a crossref_primary_10_3390_ijerph16234681 crossref_primary_10_3390_ijerph182010610 crossref_primary_10_1016_j_carbpol_2020_117343 crossref_primary_10_1016_j_envres_2020_110455 crossref_primary_10_1039_C6RA00277C crossref_primary_10_1016_j_jece_2022_108775 crossref_primary_10_1007_s00284_014_0731_4 crossref_primary_10_1016_j_jhazmat_2012_05_106 crossref_primary_10_1007_s11356_021_17365_x crossref_primary_10_1093_ismejo_wrad040 crossref_primary_10_3390_w14091351 crossref_primary_10_1016_j_scitotenv_2013_03_010 crossref_primary_10_1016_j_scitotenv_2023_167881 crossref_primary_10_3390_ijerph17061973 crossref_primary_10_1016_j_chemosphere_2022_136892 crossref_primary_10_1016_j_jcis_2024_05_055 crossref_primary_10_1016_j_watres_2019_115303 crossref_primary_10_1007_s11356_018_3413_0 crossref_primary_10_1007_s40201_019_00426_2 crossref_primary_10_1016_j_envres_2022_115012 crossref_primary_10_1016_j_chemosphere_2014_05_072 crossref_primary_10_1016_j_marpolbul_2020_111671 crossref_primary_10_1021_es301145m crossref_primary_10_1016_j_jece_2017_11_031 crossref_primary_10_1007_s11356_015_4831_x crossref_primary_10_1002_etc_4015 crossref_primary_10_1007_s10653_019_00392_6 crossref_primary_10_1016_j_jenvman_2020_111040 crossref_primary_10_3390_w13152105 crossref_primary_10_1061__ASCE_EE_1943_7870_0000850 crossref_primary_10_1039_C4AY00708E crossref_primary_10_1016_j_jwpe_2022_102914 crossref_primary_10_1089_ees_2010_0420 crossref_primary_10_1007_s00253_013_5333_8 crossref_primary_10_1016_j_jes_2016_10_006 crossref_primary_10_1016_j_biortech_2016_08_102 crossref_primary_10_1016_j_jhazmat_2019_121016 crossref_primary_10_1002_jctb_3774 crossref_primary_10_1016_j_seppur_2022_120878 crossref_primary_10_1016_j_seppur_2021_120334 crossref_primary_10_3390_plasma6030037 crossref_primary_10_1016_j_cej_2011_09_003 crossref_primary_10_1016_j_scitotenv_2022_157418 crossref_primary_10_1038_s41598_020_70943_w crossref_primary_10_1007_s10098_013_0611_9 crossref_primary_10_1016_j_jenvman_2013_06_003 crossref_primary_10_1002_jobm_201700497 crossref_primary_10_1016_j_watres_2013_06_009 crossref_primary_10_1016_j_jhazmat_2015_04_048 crossref_primary_10_1039_C5RA08438E crossref_primary_10_1080_09593330_2017_1380714 crossref_primary_10_2166_wst_2023_324 crossref_primary_10_2166_wh_2023_183 crossref_primary_10_1016_j_heliyon_2022_e11688 crossref_primary_10_1016_j_seppur_2018_12_062 crossref_primary_10_1007_s13738_020_02052_4 crossref_primary_10_1016_j_scitotenv_2020_137532 crossref_primary_10_1016_j_envpol_2021_118095 crossref_primary_10_1002_jctb_5962 crossref_primary_10_1039_D4AY00914B crossref_primary_10_1002_app_41803 crossref_primary_10_1186_s11671_017_2295_2 crossref_primary_10_1021_ie300146h crossref_primary_10_1128_mSphere_00058_20 crossref_primary_10_1021_acsomega_8b02049 crossref_primary_10_1007_s11270_024_07169_3 crossref_primary_10_1016_j_chemosphere_2019_01_016 crossref_primary_10_1016_j_envpol_2019_02_090 crossref_primary_10_1016_j_fuel_2012_10_043 crossref_primary_10_1016_j_scitotenv_2014_08_075 crossref_primary_10_1016_j_chemosphere_2017_04_121 crossref_primary_10_1016_j_scitotenv_2012_05_096 crossref_primary_10_1016_j_jallcom_2023_171312 crossref_primary_10_1016_j_eti_2020_100919 crossref_primary_10_1016_j_jenvman_2020_110368 crossref_primary_10_3390_ijerph15091911 crossref_primary_10_1016_j_scitotenv_2016_04_176 crossref_primary_10_1016_j_envpol_2023_121922 crossref_primary_10_1016_j_ecoenv_2022_113652 crossref_primary_10_1007_s10098_018_1524_4 crossref_primary_10_1016_j_jhazmat_2022_128540 crossref_primary_10_1007_s11356_013_2070_6 crossref_primary_10_1016_j_cej_2014_03_077 crossref_primary_10_1016_j_jhazmat_2014_03_063 crossref_primary_10_1039_C8TA11343B crossref_primary_10_1016_j_envres_2024_118418 crossref_primary_10_1016_j_wroa_2024_100235 crossref_primary_10_1038_srep28336 crossref_primary_10_1016_j_jhazmat_2020_122574 crossref_primary_10_1007_s11356_012_1442_7 crossref_primary_10_1016_j_cej_2018_02_013 crossref_primary_10_1016_j_scitotenv_2019_02_183 crossref_primary_10_1016_j_watres_2018_02_057 crossref_primary_10_1016_j_cej_2021_130582 crossref_primary_10_1007_s10532_023_10018_5 crossref_primary_10_1002_clen_202200328 crossref_primary_10_1039_C8NJ06031B crossref_primary_10_1016_j_ese_2022_100212 crossref_primary_10_1016_j_clwat_2025_100067 crossref_primary_10_1016_j_emcon_2016_07_001 crossref_primary_10_1007_s11164_017_3028_y crossref_primary_10_1016_j_jenvman_2019_04_070 crossref_primary_10_1021_acs_iecr_2c02635 crossref_primary_10_1016_j_jhazmat_2014_10_026 crossref_primary_10_3390_ma11112133 crossref_primary_10_3390_antibiotics12010028 crossref_primary_10_1002_ep_12118 crossref_primary_10_1016_j_watres_2018_02_061 crossref_primary_10_1016_j_cej_2019_123285 crossref_primary_10_1016_j_jes_2014_06_002 crossref_primary_10_1016_j_jenvman_2019_02_006 crossref_primary_10_2139_ssrn_4147071 crossref_primary_10_1016_j_chemosphere_2021_132487 crossref_primary_10_1016_j_scitotenv_2023_169170 crossref_primary_10_1016_j_cej_2019_05_064 crossref_primary_10_1016_j_jphotochem_2018_04_014 crossref_primary_10_1021_acs_est_9b00881 crossref_primary_10_1038_srep06844 crossref_primary_10_3390_ijms22062932 crossref_primary_10_1021_acs_est_7b05913 crossref_primary_10_1039_C8RA04904A crossref_primary_10_1016_j_apcatb_2022_121408 crossref_primary_10_1016_j_cej_2018_01_149 crossref_primary_10_1016_j_jhazmat_2021_127248 crossref_primary_10_1016_j_envpol_2023_121981 crossref_primary_10_3389_fmicb_2020_00867 crossref_primary_10_1007_s00253_014_5939_5 crossref_primary_10_1016_j_jclepro_2021_129722 crossref_primary_10_1016_j_scitotenv_2013_12_008 crossref_primary_10_1016_j_envres_2020_109718 crossref_primary_10_1186_s12866_025_03753_7 crossref_primary_10_1039_C4EM00457D crossref_primary_10_1016_j_jwpe_2022_102847 crossref_primary_10_1061__ASCE_HZ_2153_5515_0000592 crossref_primary_10_1016_j_jece_2023_109765 crossref_primary_10_1016_j_marpolbul_2017_03_003 crossref_primary_10_1016_j_scitotenv_2023_163464 crossref_primary_10_35118_apjmbb_2024_032_2_11 crossref_primary_10_1039_D1EN00841B crossref_primary_10_1016_j_cej_2019_123017 crossref_primary_10_1016_j_scitotenv_2013_06_018 crossref_primary_10_1016_j_scitotenv_2018_07_450 crossref_primary_10_3389_fmicb_2022_828922 crossref_primary_10_1016_j_envint_2018_02_003 crossref_primary_10_1007_s10529_020_03068_9 crossref_primary_10_1016_j_envres_2021_111091 crossref_primary_10_1021_es500351e crossref_primary_10_1016_j_heliyon_2020_e03348 crossref_primary_10_1016_j_jhazmat_2022_128500 crossref_primary_10_2166_wst_2017_003 crossref_primary_10_1002_clen_202300259 crossref_primary_10_1016_j_biortech_2022_128352 crossref_primary_10_2166_wrd_2017_143 crossref_primary_10_5004_dwt_2020_25765 crossref_primary_10_1016_j_cej_2022_137055 crossref_primary_10_3390_ijerph14101188 crossref_primary_10_3390_molecules30030625 crossref_primary_10_1016_j_micromeso_2022_111857 crossref_primary_10_1016_j_ecoenv_2020_111831 crossref_primary_10_1016_j_scitotenv_2020_142077 crossref_primary_10_1016_j_jenvman_2020_111896 crossref_primary_10_1016_j_bej_2015_04_014 crossref_primary_10_1016_j_chemosphere_2022_136724 crossref_primary_10_1016_j_scitotenv_2013_06_027 crossref_primary_10_1016_j_psep_2022_02_013 crossref_primary_10_1016_j_jes_2017_04_011 crossref_primary_10_3389_fmicb_2018_01047 crossref_primary_10_1016_j_jallcom_2019_152664 crossref_primary_10_1016_j_cej_2016_06_105 crossref_primary_10_1016_j_biortech_2022_127054 crossref_primary_10_1016_j_jece_2018_03_004 crossref_primary_10_1016_j_cej_2018_01_125 crossref_primary_10_1007_s10098_015_0968_z crossref_primary_10_1007_s12010_024_05165_1 crossref_primary_10_1016_j_jes_2022_10_051 crossref_primary_10_3390_membranes10100282 crossref_primary_10_1016_j_etap_2017_04_022 crossref_primary_10_1016_j_jhazmat_2024_133558 crossref_primary_10_1016_j_envpol_2019_112990 crossref_primary_10_1016_j_fuel_2024_131700 crossref_primary_10_1016_j_scitotenv_2016_09_201 crossref_primary_10_1021_acs_iecr_1c04104 crossref_primary_10_1080_19443994_2015_1042064 crossref_primary_10_1007_s11783_018_1048_5 crossref_primary_10_1016_j_cej_2018_01_012 crossref_primary_10_1016_j_enmm_2019_100274 crossref_primary_10_1016_j_jwpe_2025_107514 crossref_primary_10_1016_j_watres_2019_05_057 crossref_primary_10_1016_j_watres_2022_118891 crossref_primary_10_1007_s13762_022_04194_9 crossref_primary_10_1021_acs_est_2c00268 crossref_primary_10_1007_s10965_023_03802_7 crossref_primary_10_1038_s41598_024_73142_z crossref_primary_10_1016_j_biortech_2017_04_023 crossref_primary_10_1016_j_biortech_2022_127286 crossref_primary_10_1016_j_ibiod_2018_12_011 crossref_primary_10_5004_dwt_2017_20935 crossref_primary_10_1016_j_scitotenv_2012_10_026 crossref_primary_10_1016_j_talanta_2012_11_080 crossref_primary_10_5004_dwt_2017_20937 crossref_primary_10_5004_dwt_2021_27223 crossref_primary_10_1007_s13399_023_05092_x crossref_primary_10_1289_ehp_1206446 crossref_primary_10_1016_j_biortech_2019_122707 crossref_primary_10_1016_j_scitotenv_2018_07_422 crossref_primary_10_1016_j_molliq_2020_113150 crossref_primary_10_1016_j_watres_2023_119924 crossref_primary_10_1016_j_jaubas_2016_09_002 crossref_primary_10_1061__ASCE_HZ_2153_5515_0000346 crossref_primary_10_1063_1674_0068_cjcp2106111 crossref_primary_10_1016_j_chroma_2014_09_089 crossref_primary_10_1080_09593330_2017_1334710 crossref_primary_10_1016_j_chemosphere_2023_139034 crossref_primary_10_1016_j_cej_2017_01_083 crossref_primary_10_1016_j_scitotenv_2017_06_215 crossref_primary_10_1016_j_jhazmat_2015_06_058 crossref_primary_10_3390_min11050518 crossref_primary_10_1002_jeq2_20515 crossref_primary_10_1016_j_jece_2024_111880 crossref_primary_10_1007_s11104_018_3843_y crossref_primary_10_1021_acs_est_6b02231 crossref_primary_10_1186_s40249_022_01000_z crossref_primary_10_3390_antibiotics2020191 crossref_primary_10_1007_s11356_022_23243_x crossref_primary_10_1007_s11356_024_35275_6 crossref_primary_10_1016_j_chemosphere_2013_08_091 crossref_primary_10_1007_s10532_017_9789_6 crossref_primary_10_1007_s11356_024_33758_0 crossref_primary_10_1016_j_scitotenv_2024_177381 crossref_primary_10_1007_s13762_022_04047_5 crossref_primary_10_1007_s11783_019_1115_6 crossref_primary_10_3390_nano11030568 crossref_primary_10_1007_s11783_014_0661_1 crossref_primary_10_2166_wh_2020_013 crossref_primary_10_1007_s10532_021_09959_6 crossref_primary_10_1016_j_jhazmat_2020_123374 crossref_primary_10_1016_j_jenvman_2024_121522 crossref_primary_10_1002_gch2_202000116 crossref_primary_10_1016_j_chemosphere_2014_12_004 crossref_primary_10_1016_j_colsurfa_2023_132395 crossref_primary_10_1016_j_jenvman_2019_02_068 crossref_primary_10_1038_s41598_017_06303_y crossref_primary_10_1016_j_jwpe_2021_102089 crossref_primary_10_1016_j_chemosphere_2017_12_062 crossref_primary_10_1016_j_scitotenv_2019_134899 crossref_primary_10_1016_j_jwpe_2022_103348 crossref_primary_10_1016_j_cej_2022_138624 crossref_primary_10_1002_bmc_1621 crossref_primary_10_3390_app132111963 crossref_primary_10_1016_j_cej_2019_123346 crossref_primary_10_3390_ijerph191811256 crossref_primary_10_1016_j_biortech_2013_07_031 crossref_primary_10_1016_j_scitotenv_2016_07_085 crossref_primary_10_1016_j_cej_2018_07_011 crossref_primary_10_1016_j_chemosphere_2017_03_135 crossref_primary_10_1016_j_molstruc_2024_137729 crossref_primary_10_1016_j_jenvman_2024_122403 crossref_primary_10_3390_ijerph20043593 crossref_primary_10_1016_j_jece_2017_08_028 crossref_primary_10_1016_j_cej_2021_128665 crossref_primary_10_1016_j_jhazmat_2022_128910 crossref_primary_10_1016_j_jhazmat_2021_125126 crossref_primary_10_1016_j_jwpe_2022_103124 crossref_primary_10_1007_s10811_019_01823_8 crossref_primary_10_1016_j_eti_2020_100726 crossref_primary_10_1016_j_jwpe_2024_106030 crossref_primary_10_1016_j_talanta_2021_122923 crossref_primary_10_1016_j_biortech_2020_123886 crossref_primary_10_1016_j_chemosphere_2018_04_135 crossref_primary_10_1016_j_chemosphere_2018_04_138 crossref_primary_10_1016_j_scitotenv_2018_07_199 crossref_primary_10_1007_s11356_013_1924_2 crossref_primary_10_1016_j_ijbiomac_2019_05_165 crossref_primary_10_1039_C7RA06852B crossref_primary_10_3390_polym10020220 crossref_primary_10_1016_j_cej_2019_122103 crossref_primary_10_1016_j_watres_2016_11_048 crossref_primary_10_1007_s13738_014_0450_6 crossref_primary_10_1016_j_cej_2023_148356 crossref_primary_10_1016_j_jes_2019_06_017 crossref_primary_10_1007_s11270_024_07213_2 crossref_primary_10_1016_j_cclet_2020_04_048 crossref_primary_10_1007_s11356_021_18431_0 crossref_primary_10_1016_j_scitotenv_2022_153822 crossref_primary_10_1016_j_watres_2024_122513 crossref_primary_10_1007_s11270_020_04576_0 crossref_primary_10_1016_j_jece_2023_110020 crossref_primary_10_1016_j_ibiod_2016_10_020 crossref_primary_10_1016_j_biortech_2011_10_011 crossref_primary_10_1016_j_envpol_2023_121552 crossref_primary_10_1016_j_jclepro_2021_127359 crossref_primary_10_1016_j_ijbiomac_2024_131760 crossref_primary_10_2166_wst_2019_053 crossref_primary_10_1007_s13762_021_03519_4 crossref_primary_10_1016_j_biortech_2016_05_124 crossref_primary_10_1016_j_biortech_2013_09_125 crossref_primary_10_1016_j_cej_2023_145074 crossref_primary_10_1016_j_envpol_2021_116603 crossref_primary_10_1021_acs_est_8b05827 crossref_primary_10_1021_es502615e crossref_primary_10_1186_s12302_021_00505_y crossref_primary_10_1016_j_apcatb_2016_12_032 crossref_primary_10_1016_j_optmat_2021_111035 crossref_primary_10_1016_j_scitotenv_2018_06_016 crossref_primary_10_1016_j_biortech_2018_01_063 crossref_primary_10_1016_j_watres_2011_12_035 crossref_primary_10_1016_j_jenvman_2016_06_046 crossref_primary_10_1002_wer_1299 crossref_primary_10_1016_j_eti_2024_103778 crossref_primary_10_1016_j_scitotenv_2017_12_243 crossref_primary_10_1016_j_chemosphere_2022_134807 crossref_primary_10_1016_j_scitotenv_2023_161678 crossref_primary_10_1016_j_cej_2016_04_110 crossref_primary_10_1016_j_envint_2015_10_001 crossref_primary_10_1016_j_chemosphere_2021_130050 crossref_primary_10_1016_j_scitotenv_2020_142246 crossref_primary_10_1002_wer_1060 crossref_primary_10_1016_j_apsusc_2014_08_133 crossref_primary_10_1007_s11356_013_2060_8 crossref_primary_10_1016_j_jwpe_2023_103537 crossref_primary_10_1016_j_scitotenv_2021_145906 crossref_primary_10_1016_j_scitotenv_2014_02_075 crossref_primary_10_1080_19443994_2014_892031 crossref_primary_10_1007_s11356_022_21252_4 crossref_primary_10_1016_j_scitotenv_2023_162772 crossref_primary_10_12677_HJCET_2022_124040 crossref_primary_10_1016_j_envpol_2020_115589 crossref_primary_10_1002_ep_12391 crossref_primary_10_1007_s11356_016_8062_6 crossref_primary_10_1007_s11356_024_34567_1 crossref_primary_10_1016_j_envpol_2021_116797 crossref_primary_10_3390_antibiotics11101362 crossref_primary_10_1016_j_jenvman_2018_09_025 crossref_primary_10_1016_j_molliq_2014_06_017 crossref_primary_10_1016_j_watres_2024_122658 crossref_primary_10_3390_app11093975 crossref_primary_10_1016_j_jhazmat_2019_120823 crossref_primary_10_1016_j_chemosphere_2017_03_125 crossref_primary_10_1002_clen_201300989 crossref_primary_10_1002_jctb_4165 crossref_primary_10_1016_j_jhazmat_2020_124025 crossref_primary_10_1590_S1413_41522013000300002 crossref_primary_10_1007_s00449_015_1495_3 crossref_primary_10_1002_bio_4906 crossref_primary_10_1016_j_biortech_2019_121683 crossref_primary_10_1021_acs_iecr_2c02458 crossref_primary_10_1088_1755_1315_186_3_012051 crossref_primary_10_1016_j_chemosphere_2011_03_002 crossref_primary_10_1016_j_envpol_2019_03_111 crossref_primary_10_1016_j_scitotenv_2018_12_236 crossref_primary_10_1016_j_biortech_2020_123974 crossref_primary_10_1016_j_eti_2023_103006 crossref_primary_10_2139_ssrn_3996869 crossref_primary_10_1016_j_eti_2023_103370 crossref_primary_10_1016_j_jes_2014_06_022 crossref_primary_10_3390_su12187611 crossref_primary_10_1016_j_eti_2023_103373 crossref_primary_10_1016_j_cej_2020_128152 crossref_primary_10_1016_j_jes_2021_08_052 crossref_primary_10_3390_antibiotics12030440 crossref_primary_10_3390_ma12203296 crossref_primary_10_1016_j_envpol_2018_02_024 crossref_primary_10_3390_w14182896 crossref_primary_10_7717_peerj_1359 crossref_primary_10_1016_j_scitotenv_2017_06_155 crossref_primary_10_1080_19443994_2013_842504 crossref_primary_10_1016_j_chemosphere_2017_11_056 crossref_primary_10_1016_j_memsci_2022_120762 crossref_primary_10_1016_j_jwpe_2024_106074 crossref_primary_10_1016_j_seppur_2022_121291 crossref_primary_10_1016_j_cej_2024_155372 crossref_primary_10_1016_j_apcatb_2017_06_029 crossref_primary_10_1039_C4EM00596A crossref_primary_10_1016_j_jhazmat_2023_131452 crossref_primary_10_5004_dwt_2021_26540 crossref_primary_10_1007_s11783_019_1118_3 crossref_primary_10_1016_j_ecoenv_2015_12_020 crossref_primary_10_1016_j_scitotenv_2014_02_095 crossref_primary_10_1016_j_biortech_2019_02_089 crossref_primary_10_1016_j_ecoenv_2018_01_016 crossref_primary_10_2166_wrd_2016_099 crossref_primary_10_1016_j_scitotenv_2017_04_102 crossref_primary_10_1016_j_jes_2019_04_004 crossref_primary_10_1016_j_envint_2012_09_010 crossref_primary_10_1016_j_envpol_2019_05_080 crossref_primary_10_1007_s40710_014_0034_6 crossref_primary_10_1080_22297928_2017_1423244 crossref_primary_10_1016_j_envint_2019_105156 crossref_primary_10_1016_j_ceja_2021_100160 crossref_primary_10_1016_j_eti_2023_103225 crossref_primary_10_1016_j_cej_2019_02_088 crossref_primary_10_1016_j_envres_2024_118564 crossref_primary_10_1016_j_jece_2023_111437 crossref_primary_10_1016_j_cej_2022_135298 crossref_primary_10_1007_s42768_021_00089_6 crossref_primary_10_1016_j_envint_2021_106863 crossref_primary_10_1016_j_ceramint_2024_04_142 crossref_primary_10_1007_s11356_023_28823_z crossref_primary_10_1007_s11356_022_18629_w crossref_primary_10_1016_j_biortech_2018_08_028 crossref_primary_10_1016_j_chemosphere_2014_08_028 crossref_primary_10_1007_s11356_024_33844_3 crossref_primary_10_1016_j_chemosphere_2021_132566 crossref_primary_10_1016_j_jafr_2025_101815 crossref_primary_10_1016_j_psep_2011_08_008 crossref_primary_10_1021_acs_est_9b01131 crossref_primary_10_1016_j_chemosphere_2017_11_051 crossref_primary_10_1016_j_chemosphere_2021_132681 |
Cites_doi | 10.1093/jac/dkg293 10.1016/j.watres.2007.07.031 10.1016/0048-9697(96)05039-5 10.1016/S0039-9140(03)00171-1 10.1016/j.chroma.2006.02.086 10.1021/es032519b 10.1021/es030653q 10.1021/es048603o 10.1016/j.watres.2007.04.005 10.1016/j.watres.2007.06.023 10.1021/es048143z 10.1021/ac050141p 10.1016/j.chroma.2005.05.051 10.1021/es050006u 10.1002/etc.5620191011 10.1016/j.watres.2006.02.014 10.1016/j.aca.2006.01.054 10.1007/978-3-662-04634-0 10.1080/15287390600975137 10.1126/science.1159483 10.1021/es0264448 10.1021/ac015588m 10.1021/es049509a 10.1021/es0342087 10.1897/04-211R.1 10.1016/j.scitotenv.2005.04.031 10.1016/j.clay.2007.08.003 10.1016/j.scitotenv.2008.02.042 10.1021/es060835v 10.1021/ic00290a022 10.1016/j.scitotenv.2005.06.030 10.1016/j.aca.2009.04.042 10.1021/es051321j 10.1016/j.jhazmat.2008.09.113 10.1021/es034368i 10.1016/j.chemosphere.2007.01.008 10.1016/j.chroma.2008.03.029 10.1021/es048550a 10.1016/j.chroma.2008.10.090 10.1021/es0256212 10.1016/j.watres.2009.02.005 10.1021/jp9824050 10.2533/000942903777679064 |
ContentType | Journal Article |
Copyright | Copyright © 2010 American Chemical Society 2015 INIST-CNRS Copyright American Chemical Society May 1, 2010 |
Copyright_xml | – notice: Copyright © 2010 American Chemical Society – notice: 2015 INIST-CNRS – notice: Copyright American Chemical Society May 1, 2010 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7QH 7UA F1W H97 L.G |
DOI | 10.1021/es903490h |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic Aqualine Water Resources Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional ASFA: Aquatic Sciences and Fisheries Abstracts Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts |
DatabaseTitleList | Biotechnology Research Abstracts MEDLINE - Academic MEDLINE Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences Applied Sciences |
EISSN | 1520-5851 |
EndPage | 3473 |
ExternalDocumentID | 2041237331 20384353 22735114 10_1021_es903490h c699431999 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GeographicLocations | Hong Kong Asia China |
GroupedDBID | - .K2 1AW 3R3 4.4 4R4 53G 55A 5GY 5VS 63O 7~N 85S AABXI ABFLS ABMVS ABOGM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACPRK ACS AEESW AENEX AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ K2 LG6 MS PQEST PQQKQ ROL RXW TN5 TWZ U5U UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK XZL YZZ --- -DZ -~X ..I .DC 6TJ AAHBH AAYOK AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV ADMHC ADUKH AGXLV AHGAQ CITATION CUPRZ GGK MS~ MW2 XSW ZCA .HR 186 1WB 42X 8WZ A6W ABHMW ACKIV ACRPL ADNMO AETEA AEYZD AGQPQ ANPPW ANTXH IHE IQODW MVM NHB OHT RNS TAE UBC UBX UBY UQL VJK VOH YV5 ZCG ZY4 ~A~ CGR CUY CVF ECM EIF NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7QH 7UA F1W H97 L.G |
ID | FETCH-LOGICAL-a469t-7376d9cc136c73b2a4abdfd9789f666ffa7356b40df14ada237b1938846cff083 |
IEDL.DBID | ACS |
ISSN | 0013-936X |
IngestDate | Fri Jul 11 16:48:27 EDT 2025 Tue Aug 05 09:40:45 EDT 2025 Fri Jul 25 04:38:25 EDT 2025 Thu Apr 03 07:04:56 EDT 2025 Mon Jul 21 09:16:13 EDT 2025 Tue Jul 01 02:10:23 EDT 2025 Thu Apr 24 23:11:25 EDT 2025 Thu Aug 27 13:43:21 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Biodegradation Drug Activated sludge Sulfonamide Biodegradability Operating conditions Biological purification Salinity Hydrolysis Persistence Antibiotic Adsorption Batchwise Volatilization Micropollutant Urban waste water Kinetics Waste water purification Organic compounds |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a469t-7376d9cc136c73b2a4abdfd9789f666ffa7356b40df14ada237b1938846cff083 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 20384353 |
PQID | 325112318 |
PQPubID | 45412 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_754545042 proquest_miscellaneous_733403080 proquest_journals_325112318 pubmed_primary_20384353 pascalfrancis_primary_22735114 crossref_primary_10_1021_es903490h crossref_citationtrail_10_1021_es903490h acs_journals_10_1021_es903490h |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-05-01 |
PublicationDateYYYYMMDD | 2010-05-01 |
PublicationDate_xml | – month: 05 year: 2010 text: 2010-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States – name: Easton |
PublicationTitle | Environmental science & technology |
PublicationTitleAlternate | Environ. Sci. Technol |
PublicationYear | 2010 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Xu W. H. (ref17/cit17) 2007; 41 Abegglen C. (ref43/cit43) 2009; 43 Roberts P. H. (ref24/cit24) 2006; 356 Spongberg A. L. (ref20/cit20) 2008; 397 Hernando M. D. (ref9/cit9) 2004 Göbel A. (ref16/cit16) 2005; 1085 Andreozzi R. (ref33/cit33) 2004; 38 Hamscher G. (ref5/cit5) 2002; 74 Joss A. (ref29/cit29) 2006; 40 Watkinson A. J. (ref4/cit4) 2007; 41 Miao X. S. (ref15/cit15) 2004; 38 Martinez J. L. (ref10/cit10) 2008; 321 Golet E. M. (ref12/cit12) 2002; 36 McArdell C. S. (ref14/cit14) 2003; 37 Turiel E. (ref35/cit35) 2006; 562 Gulkowska A. (ref18/cit18) 2008; 42 Kim S. (ref31/cit31) 2007; 10 Batt A. L. (ref28/cit28) 2006; 40 Gu C. (ref37/cit37) 2005; 39 Kim S. (ref26/cit26) 2005; 39 Göbel A. (ref8/cit8) 2005; 39 Li B. (ref22/cit22) 2009; 645 Diaz-Cruz M. S. (ref3/cit3) 2008; 1193 Rogers H. R. (ref36/cit36) 1996; 185 Parolo M. E. (ref40/cit40) 2008; 40 Lindberg R. H. (ref23/cit23) 2005; 39 Karthikeyan K. G. (ref19/cit19) 2006; 361 Golet E. M. (ref6/cit6) 2003; 37 Chang P. H. (ref39/cit39) 2009; 165 Figueroa R. A. (ref38/cit38) 2004; 38 Kümmerer K. (ref13/cit13) 2003; 52 Wessels J. M. (ref41/cit41) 1998; 102 Junker T. (ref30/cit30) 2006; 40 Xiao Y. (ref1/cit1) 2008; 1214 Kümmerer K. (ref2/cit2) 2001 Boxall A. B. A. (ref7/cit7) 2003; 37 El-Kommos M. E. (ref34/cit34) 2003; 60 Eichhorn P. (ref44/cit44) 2005; 77 Ingerslev F. (ref25/cit25) 2000; 19 Batt A. L. (ref21/cit21) 2007; 68 Pérez S. (ref27/cit27) 2005; 24 Cha J. M. (ref32/cit32) 2006; 1115 (ref45/cit45) 2004 Giger W. (ref11/cit11) 2003; 57 Lambs L. (ref42/cit42) 1988; 27 |
References_xml | – start-page: 334 volume-title: 1st Workshop on Validation of Robustness of Sensors and Bioassays for Screening Polluatants year: 2004 ident: ref9/cit9 – volume: 52 start-page: 5 issue: 1 year: 2003 ident: ref13/cit13 publication-title: J. Antimicrob. Chemother. doi: 10.1093/jac/dkg293 – volume: 42 start-page: 395 issue: 1 year: 2008 ident: ref18/cit18 publication-title: Water Res. doi: 10.1016/j.watres.2007.07.031 – volume: 185 start-page: 3 issue: 1 year: 1996 ident: ref36/cit36 publication-title: Sci. Total Environ. doi: 10.1016/0048-9697(96)05039-5 – volume: 60 start-page: 1033 issue: 5 year: 2003 ident: ref34/cit34 publication-title: Talanta. doi: 10.1016/S0039-9140(03)00171-1 – volume: 1115 start-page: 46 issue: 1 year: 2006 ident: ref32/cit32 publication-title: J. Chromatogr., A. doi: 10.1016/j.chroma.2006.02.086 – volume: 37 start-page: 286A issue: 15 year: 2003 ident: ref7/cit7 publication-title: Environ. Sci. Technol. doi: 10.1021/es032519b – volume: 38 start-page: 3533 issue: 13 year: 2004 ident: ref15/cit15 publication-title: Environ. Sci. Technol. doi: 10.1021/es030653q – volume: 39 start-page: 2660 issue: 8 year: 2005 ident: ref37/cit37 publication-title: Environ. Sci. Technol. doi: 10.1021/es048603o – volume: 41 start-page: 4164 issue: 18 year: 2007 ident: ref4/cit4 publication-title: Water Res. doi: 10.1016/j.watres.2007.04.005 – volume: 41 start-page: 4526 issue: 19 year: 2007 ident: ref17/cit17 publication-title: Water Res. doi: 10.1016/j.watres.2007.06.023 – volume: 39 start-page: 3421 issue: 10 year: 2005 ident: ref23/cit23 publication-title: Environ. Sci. Technol. doi: 10.1021/es048143z – volume: 77 start-page: 4176 issue: 13 year: 2005 ident: ref44/cit44 publication-title: Anal. Chem. doi: 10.1021/ac050141p – volume: 1085 start-page: 179 issue: 2 year: 2005 ident: ref16/cit16 publication-title: J. Chromatogr., A. doi: 10.1016/j.chroma.2005.05.051 – volume: 39 start-page: 5816 issue: 15 year: 2005 ident: ref26/cit26 publication-title: Environ. Sci. Technol. doi: 10.1021/es050006u – volume: 19 start-page: 2467 issue: 10 year: 2000 ident: ref25/cit25 publication-title: Environ. Toxicol. Chem. doi: 10.1002/etc.5620191011 – volume: 40 start-page: 1686 issue: 8 year: 2006 ident: ref29/cit29 publication-title: Water Res. doi: 10.1016/j.watres.2006.02.014 – volume: 562 start-page: 30 issue: 1 year: 2006 ident: ref35/cit35 publication-title: Anal. Chim. Acta. doi: 10.1016/j.aca.2006.01.054 – volume-title: Pharmaceuticals in the Environment: Sources, Fate, Effects and Risks year: 2001 ident: ref2/cit2 doi: 10.1007/978-3-662-04634-0 – volume-title: Wastewater Engineering: Treatment and Reuse year: 2004 ident: ref45/cit45 – volume: 10 start-page: 559 issue: 8 year: 2007 ident: ref31/cit31 publication-title: J. Toxicol. Environ. Health, Part B. doi: 10.1080/15287390600975137 – volume: 321 start-page: 365 issue: 5887 year: 2008 ident: ref10/cit10 publication-title: Science. doi: 10.1126/science.1159483 – volume: 37 start-page: 3243 issue: 15 year: 2003 ident: ref6/cit6 publication-title: Environ. Sci. Technol. doi: 10.1021/es0264448 – volume: 74 start-page: 1509 issue: 7 year: 2002 ident: ref5/cit5 publication-title: Anal. Chem. doi: 10.1021/ac015588m – volume: 38 start-page: 6832 issue: 24 year: 2004 ident: ref33/cit33 publication-title: Environ. Sci. Technol. doi: 10.1021/es049509a – volume: 38 start-page: 476 issue: 2 year: 2004 ident: ref38/cit38 publication-title: Environ. Sci. Technol. doi: 10.1021/es0342087 – volume: 24 start-page: 1361 issue: 6 year: 2005 ident: ref27/cit27 publication-title: Environ. Toxicol. Chem. doi: 10.1897/04-211R.1 – volume: 356 start-page: 143 issue: 1 year: 2006 ident: ref24/cit24 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2005.04.031 – volume: 40 start-page: 179 issue: 1 year: 2008 ident: ref40/cit40 publication-title: Appl. Clay Sci. doi: 10.1016/j.clay.2007.08.003 – volume: 397 start-page: 148 issue: 1 year: 2008 ident: ref20/cit20 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2008.02.042 – volume: 40 start-page: 7367 issue: 23 year: 2006 ident: ref28/cit28 publication-title: Environ. Sci. Technol. doi: 10.1021/es060835v – volume: 27 start-page: 3001 issue: 17 year: 1988 ident: ref42/cit42 publication-title: Inorg. Chem. doi: 10.1021/ic00290a022 – volume: 361 start-page: 196 issue: 1 year: 2006 ident: ref19/cit19 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2005.06.030 – volume: 645 start-page: 64 issue: 1 year: 2009 ident: ref22/cit22 publication-title: Anal. Chim. Acta. doi: 10.1016/j.aca.2009.04.042 – volume: 40 start-page: 318 issue: 1 year: 2006 ident: ref30/cit30 publication-title: Environ. Sci. Technol. doi: 10.1021/es051321j – volume: 165 start-page: 148 issue: 1 year: 2009 ident: ref39/cit39 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2008.09.113 – volume: 37 start-page: 5479 issue: 24 year: 2003 ident: ref14/cit14 publication-title: Environ. Sci. Technol. doi: 10.1021/es034368i – volume: 68 start-page: 428 issue: 3 year: 2007 ident: ref21/cit21 publication-title: Chemosphere. doi: 10.1016/j.chemosphere.2007.01.008 – volume: 1193 start-page: 50 issue: 1 year: 2008 ident: ref3/cit3 publication-title: J. Chromatogr., A. doi: 10.1016/j.chroma.2008.03.029 – volume: 39 start-page: 3981 issue: 11 year: 2005 ident: ref8/cit8 publication-title: Environ. Sci. Technol. doi: 10.1021/es048550a – volume: 1214 start-page: 100 issue: 1 year: 2008 ident: ref1/cit1 publication-title: J. Chromatogr., A. doi: 10.1016/j.chroma.2008.10.090 – volume: 36 start-page: 3645 issue: 17 year: 2002 ident: ref12/cit12 publication-title: Environ. Sci. Technol. doi: 10.1021/es0256212 – volume: 43 start-page: 2036 issue: 7 year: 2009 ident: ref43/cit43 publication-title: Water Res. doi: 10.1016/j.watres.2009.02.005 – volume: 102 start-page: 9323 issue: 46 year: 1998 ident: ref41/cit41 publication-title: J. Phys. Chem. B. doi: 10.1021/jp9824050 – volume: 57 start-page: 485 issue: 9 year: 2003 ident: ref11/cit11 publication-title: Chimia. doi: 10.2533/000942903777679064 |
SSID | ssj0002308 |
Score | 2.5490131 |
Snippet | The removal of 11 antibiotics of 6 classes, that is, two β-lactams (ampicillin and cefalexin), two sulfonamides (sulfamethoxazole and sulfadiazine), three... The removal of 11 antibiotics of 6 classes, that is, two beta-lactams (ampicillin and cefalexin), two sulfonamides (sulfamethoxazole and sulfadiazine), three... The removal of 11 antibiotics of 6 classes, that is, two *b-lactams (ampicillin and cefalexin), two sulfonamides (sulfamethoxazole and sulfadiazine), three... |
SourceID | proquest pubmed pascalfrancis crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3468 |
SubjectTerms | Adsorption Anti-Bacterial Agents - chemistry Antibiotics Applied sciences Biodegradation Biodegradation, Environmental Biological and medical sciences Biological treatment of waters Bioremediation Biotechnology Cations Environment and pollution Environmental science Exact sciences and technology Fluoroquinolones - chemistry Fresh water Fundamental and applied biological sciences. Psychology Industrial applications and implications. Economical aspects Kinetics Magnesium - chemistry Mass Spectrometry - methods Other wastewaters Pollution Remediation and Control Technologies Saline water Sewage Sludge Time Factors Waste Disposal, Fluid - methods Wastewaters Water Pollutants, Chemical - analysis Water Purification Water treatment and pollution |
Title | Biodegradation and Adsorption of Antibiotics in the Activated Sludge Process |
URI | http://dx.doi.org/10.1021/es903490h https://www.ncbi.nlm.nih.gov/pubmed/20384353 https://www.proquest.com/docview/325112318 https://www.proquest.com/docview/733403080 https://www.proquest.com/docview/754545042 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwEB5RemmF2kJLSSkrq-2hl9Ak9trxMeUhhKAXQNpb5CdFRQkiu5f--o7zWhCPnjNRHI9n5huN5xuAb1pKhtmxjoURMmbcqThX3MeZl4zqDGNSWy44_cWPLtjxbDpbga9PVPCz9IdrZOBQSX6_gJcZz0XIsIq9s9HdIobOhzEFkvLZQB9099UQekxzL_Ss3agGd8F34yuexpdtnDl8C_tDt053veTP7mKud83fh-SNz_3CO3jT40xSdAdjHVZctQGv77APbsDmwbLJDUV7K2_ew8nPq9oGEolu3hJRlSWFberb1r2Q2pOiCq0mdaB4JlcVQRBJCtMOSnOWnF0v7KUjfQvCB7g4PDjfO4r7qQuxwlR5Hgt0OVYak1JuBKpLMaWtt5htSo-5jvdK0CnXLLE-ZbiQjAqNKDBHIGO8R0S3CatVXbktIIn2mmkmhVKcaZ4q4wR6AC-M4rmlJoIJqqXsraYp24J4lpbjfkXwfdBYaXrO8jA64_ox0S-j6E1H1PGY0OSe2kfJDFEcQk8WwfZwDpbLoiENQxycR0DGp2iFobSiKlcvmlJQygLzT_KMCGJVNkUfGcHH7oAtv57QHGEr_fS__diGV8PthST9DKvz24XbQVA015PWKP4Bng0FdA |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcoAK8SgUlsJiIZC4pCSxN04OHEJptaXbXtpKewt-0ooqqepdIfgp_BX-HOO8tkUFTpU4Z2Q79njmG43nG4BXMssYRscy4IpnAUuMCFKR2CC2GaMyRp9Upwv29pPxEfs4HU2X4EdXC4OLcDiSq5P4C3aB6K1xmadSCY_bB5S75ttXDM_cu50PeJav43h763BzHLQdBAKBYd8s4Hh9dKZURBPFcWrBhNRWY-SUWcTt1gpOR4lkobYRE1rElEtENCk6ZWUtohMc9wbcRNAT-8Au3zzorTxC97TrjpDRZNqxFl1cqvd4yl3yeHfOhMPNt03XjD_D2tq9bd-Dn_3G1K9avmzMZ3JDff-NM_L_3Ln7cLdF1SRvrsEDWDLlKqxc4FpchbWtRUkfirY2zT2EyfuTSnvKjKa7FBGlJrl21XltTEllSV76wprKE1qTk5IgZCa5qtvCGU0OTuf6syFtwcUjOLqW_1yD5bIqzRMgobSSSZZxIRImk0gow9HeWa5EkmqqBjDE4ylaG-GKOv0fR0V_PgN40ylKoVqGdt8o5PQq0Ze96FlDS3KV0PCStvWSMWJWBNpsAOud-i2WRX3Qiag_HQDpv6LN8YkkUZpq7gpOKfM8R-FfRBCZsxF6hAE8bvR6MXtIUwTp9Om_9uMF3Bof7k2Kyc7-7jrc7t5thNEzWJ6dz81zhIMzOazvJYFP163OvwDDSGid |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VIiEQ4lEohMJiIZC4pCSxN04OHJa2q5aWCqlU2lvws62oklW9KwQ_hr_CX2Oc17aowKkS54xsx57HNxr7G4CXMs8ZZscy5IrnIUuNCDOR2jCxOaMywZhUlws-7Kfbh-z9ZDhZgh_dWxhchMORXF3E91Y91bZlGIjfGJd7OpXouL1EuWu-fcUUzb3d2cTzfJUk461PG9th20UgFJj6zUKOJqRzpWKaKo7TCyakthqzp9widrdWcDpMJYu0jZnQIqFcIqrJMDAraxGh4LjX4LovD_rkbrRx0Ht6hO9Z1yEhp-mkYy46v1Qf9ZS7EPVuT4XDA7BN54w_Q9s6xI3vws9-c-qbLV_W5zO5rr7_xhv5_-7ePbjTomsyaszhPiyZcgVuneNcXIHVrcXTPhRtfZt7AHvvTirtqTOaLlNElJqMtKvOaqdKKktGpX9gU3lia3JSEoTOZKTq9nBGk4PTuT4ypH148RAOr-Q_V2G5rErzGEgkrWSS5VyIlMk0Fspw9HuWK5FmmqoABnhEResrXFFfA0jioj-fAF53ylKolqndNww5vUz0RS86behJLhMaXNC4XjJB7IqAmwWw1qngYlnUJ5-I_rMASP8VfY8vKInSVHNXcEqZ5zuK_iKCCJ0NMTIE8KjR7cXsEc0QrNMn_9qP53Dj4-a42NvZ312Dm931jSh-Csuzs7l5hqhwJge1aRL4fNXa_Auig2sg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biodegradation+and+Adsorption+of+Antibiotics+in+the+Activated+Sludge+Process&rft.jtitle=Environmental+science+%26+technology&rft.au=Li%2C+Bing&rft.au=Zhang%2C+Tong&rft.date=2010-05-01&rft.pub=American+Chemical+Society&rft.issn=0013-936X&rft.volume=44&rft.issue=9&rft.spage=3468&rft_id=info:doi/10.1021%2Fes903490h&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2041237331 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon |