Biodegradation and Adsorption of Antibiotics in the Activated Sludge Process

The removal of 11 antibiotics of 6 classes, that is, two β-lactams (ampicillin and cefalexin), two sulfonamides (sulfamethoxazole and sulfadiazine), three fluoroquinolones (norfloxacin, ofloxacin, and ciprofloxacin), one tetracyclines (tetracycline), two macorlides (roxithromycin and anhydro-erythro...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 44; no. 9; pp. 3468 - 3473
Main Authors Li, Bing, Zhang, Tong
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 01.05.2010
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The removal of 11 antibiotics of 6 classes, that is, two β-lactams (ampicillin and cefalexin), two sulfonamides (sulfamethoxazole and sulfadiazine), three fluoroquinolones (norfloxacin, ofloxacin, and ciprofloxacin), one tetracyclines (tetracycline), two macorlides (roxithromycin and anhydro-erythromycin), and one others (trimethoprim), in activated sludge process was investigated using two series of batch reactors treating freshwater and saline sewage respectively. At environmental relevant concentrations tested in this study, biodegradation and adsorption were the major removal routes for the target antibiotics, where volatilization and hydrolysis were neglectable. Among the 11 target antibiotics, cefalexin and the two sulfonamides were predominantly removed by biodegradation in both freshwater and saline sewage systems. Ampicillin, norfloxacin, ciprofloxacin, ofloxacin, tetracycline, roxithromycin, and trimethoprim were mainly removed by adsorption. Divalent cations (Ca2+ and Mg2+) in saline sewage significantly decreased the adsorption of the three fluoroquinolones onto activated sludge. These three fluoroquinolones also exhibited certain biodegradability in the saline activated sludge reactor. Erythromycin-H2O was persistent in both saline and freshwater systems under the experimental conditions and could not be removed at all. Kinetics study showed that biodegradation of cefalexin, the two sulfonamides and the three fluoroquinolones followed first-order model well (R 2: 0.921−0.997) with the rate constants ranging from 5.2 × 10−3 to 3.6 × 10−1 h−1.
AbstractList The removal of 11 antibiotics of 6 classes, that is, two β-lactams (ampicillin and cefalexin), two sulfonamides (sulfamethoxazole and sulfadiazine), three fluoroquinolones (norfloxacin, ofloxacin, and ciprofloxacin), one tetracyclines (tetracycline), two macorlides (roxithromycin and anhydro-erythromycin), and one others (trimethoprim), in activated sludge process was investigated using two series of batch reactors treating freshwater and saline sewage respectively. At environmental relevant concentrations tested in this study, biodegradation and adsorption were the major removal routes for the target antibiotics, where volatilization and hydrolysis were neglectable. Among the 11 target antibiotics, cefalexin and the two sulfonamides were predominantly removed by biodegradation in both freshwater and saline sewage systems. Ampicillin, norfloxacin, ciprofloxacin, ofloxacin, tetracycline, roxithromycin, and trimethoprim were mainly removed by adsorption. Divalent cations (Ca... and Mg...) in saline sewage significantly decreased the adsorption of the three fluoroquinolones onto activated sludge. These three fluoroquinolones also exhibited certain biodegradability in the saline activated sludge reactor. Erythromycin-H...O was persistent in both saline and freshwater systems under the experimental conditions and could not be removed at all. Kinetics study showed that biodegradation of cefalexin, the two sulfonamides and the three fluoroquinolones followed first-order model well (R...: 0.921-0.997) with the rate constants ranging from 5.2 x 10... to 3.6 x 10... h... (ProQuest: ... denotes formulae/symbols omitted.)
The removal of 11 antibiotics of 6 classes, that is, two beta-lactams (ampicillin and cefalexin), two sulfonamides (sulfamethoxazole and sulfadiazine), three fluoroquinolones (norfloxacin, ofloxacin, and ciprofloxacin), one tetracyclines (tetracycline), two macorlides (roxithromycin and anhydro-erythromycin), and one others (trimethoprim), in activated sludge process was investigated using two series of batch reactors treating freshwater and saline sewage respectively. At environmental relevant concentrations tested in this study, biodegradation and adsorption were the major removal routes for the target antibiotics, where volatilization and hydrolysis were neglectable. Among the 11 target antibiotics, cefalexin and the two sulfonamides were predominantly removed by biodegradation in both freshwater and saline sewage systems. Ampicillin, norfloxacin, ciprofloxacin, ofloxacin, tetracycline, roxithromycin, and trimethoprim were mainly removed by adsorption. Divalent cations (Ca(2+) and Mg(2+)) in saline sewage significantly decreased the adsorption of the three fluoroquinolones onto activated sludge. These three fluoroquinolones also exhibited certain biodegradability in the saline activated sludge reactor. Erythromycin-H(2)O was persistent in both saline and freshwater systems under the experimental conditions and could not be removed at all. Kinetics study showed that biodegradation of cefalexin, the two sulfonamides and the three fluoroquinolones followed first-order model well (R(2): 0.921-0.997) with the rate constants ranging from 5.2 x 10(-3) to 3.6 x 10(-1) h(-1).The removal of 11 antibiotics of 6 classes, that is, two beta-lactams (ampicillin and cefalexin), two sulfonamides (sulfamethoxazole and sulfadiazine), three fluoroquinolones (norfloxacin, ofloxacin, and ciprofloxacin), one tetracyclines (tetracycline), two macorlides (roxithromycin and anhydro-erythromycin), and one others (trimethoprim), in activated sludge process was investigated using two series of batch reactors treating freshwater and saline sewage respectively. At environmental relevant concentrations tested in this study, biodegradation and adsorption were the major removal routes for the target antibiotics, where volatilization and hydrolysis were neglectable. Among the 11 target antibiotics, cefalexin and the two sulfonamides were predominantly removed by biodegradation in both freshwater and saline sewage systems. Ampicillin, norfloxacin, ciprofloxacin, ofloxacin, tetracycline, roxithromycin, and trimethoprim were mainly removed by adsorption. Divalent cations (Ca(2+) and Mg(2+)) in saline sewage significantly decreased the adsorption of the three fluoroquinolones onto activated sludge. These three fluoroquinolones also exhibited certain biodegradability in the saline activated sludge reactor. Erythromycin-H(2)O was persistent in both saline and freshwater systems under the experimental conditions and could not be removed at all. Kinetics study showed that biodegradation of cefalexin, the two sulfonamides and the three fluoroquinolones followed first-order model well (R(2): 0.921-0.997) with the rate constants ranging from 5.2 x 10(-3) to 3.6 x 10(-1) h(-1).
The removal of 11 antibiotics of 6 classes, that is, two β-lactams (ampicillin and cefalexin), two sulfonamides (sulfamethoxazole and sulfadiazine), three fluoroquinolones (norfloxacin, ofloxacin, and ciprofloxacin), one tetracyclines (tetracycline), two macorlides (roxithromycin and anhydro-erythromycin), and one others (trimethoprim), in activated sludge process was investigated using two series of batch reactors treating freshwater and saline sewage respectively. At environmental relevant concentrations tested in this study, biodegradation and adsorption were the major removal routes for the target antibiotics, where volatilization and hydrolysis were neglectable. Among the 11 target antibiotics, cefalexin and the two sulfonamides were predominantly removed by biodegradation in both freshwater and saline sewage systems. Ampicillin, norfloxacin, ciprofloxacin, ofloxacin, tetracycline, roxithromycin, and trimethoprim were mainly removed by adsorption. Divalent cations (Ca2+ and Mg2+) in saline sewage significantly decreased the adsorption of the three fluoroquinolones onto activated sludge. These three fluoroquinolones also exhibited certain biodegradability in the saline activated sludge reactor. Erythromycin-H2O was persistent in both saline and freshwater systems under the experimental conditions and could not be removed at all. Kinetics study showed that biodegradation of cefalexin, the two sulfonamides and the three fluoroquinolones followed first-order model well (R 2: 0.921−0.997) with the rate constants ranging from 5.2 × 10−3 to 3.6 × 10−1 h−1.
The removal of 11 antibiotics of 6 classes, that is, two beta-lactams (ampicillin and cefalexin), two sulfonamides (sulfamethoxazole and sulfadiazine), three fluoroquinolones (norfloxacin, ofloxacin, and ciprofloxacin), one tetracyclines (tetracycline), two macorlides (roxithromycin and anhydro-erythromycin), and one others (trimethoprim), in activated sludge process was investigated using two series of batch reactors treating freshwater and saline sewage respectively. At environmental relevant concentrations tested in this study, biodegradation and adsorption were the major removal routes for the target antibiotics, where volatilization and hydrolysis were neglectable. Among the 11 target antibiotics, cefalexin and the two sulfonamides were predominantly removed by biodegradation in both freshwater and saline sewage systems. Ampicillin, norfloxacin, ciprofloxacin, ofloxacin, tetracycline, roxithromycin, and trimethoprim were mainly removed by adsorption. Divalent cations (Ca(2+) and Mg(2+)) in saline sewage significantly decreased the adsorption of the three fluoroquinolones onto activated sludge. These three fluoroquinolones also exhibited certain biodegradability in the saline activated sludge reactor. Erythromycin-H(2)O was persistent in both saline and freshwater systems under the experimental conditions and could not be removed at all. Kinetics study showed that biodegradation of cefalexin, the two sulfonamides and the three fluoroquinolones followed first-order model well (R(2): 0.921-0.997) with the rate constants ranging from 5.2 x 10(-3) to 3.6 x 10(-1) h(-1).
The removal of 11 antibiotics of 6 classes, that is, two *b-lactams (ampicillin and cefalexin), two sulfonamides (sulfamethoxazole and sulfadiazine), three fluoroquinolones (norfloxacin, ofloxacin, and ciprofloxacin), one tetracyclines (tetracycline), two macorlides (roxithromycin and anhydro-erythromycin), and one others (trimethoprim), in activated sludge process was investigated using two series of batch reactors treating freshwater and saline sewage respectively. At environmental relevant concentrations tested in this study, biodegradation and adsorption were the major removal routes for the target antibiotics, where volatilization and hydrolysis were neglectable. Among the 11 target antibiotics, cefalexin and the two sulfonamides were predominantly removed by biodegradation in both freshwater and saline sewage systems. Ampicillin, norfloxacin, ciprofloxacin, ofloxacin, tetracycline, roxithromycin, and trimethoprim were mainly removed by adsorption. Divalent cations (Ca2+ and Mg2+) in saline sewage significantly decreased the adsorption of the three fluoroquinolones onto activated sludge. These three fluoroquinolones also exhibited certain biodegradability in the saline activated sludge reactor. Erythromycin-H2O was persistent in both saline and freshwater systems under the experimental conditions and could not be removed at all. Kinetics study showed that biodegradation of cefalexin, the two sulfonamides and the three fluoroquinolones followed first-order model well (R2: 0.921-0.997) with the rate constants ranging from 5.2 X 10-3 to 3.6 X 10-1 h-1.
Author Zhang, Tong
Li, Bing
Author_xml – sequence: 1
  givenname: Bing
  surname: Li
  fullname: Li, Bing
– sequence: 2
  givenname: Tong
  surname: Zhang
  fullname: Zhang, Tong
  email: zhangt@hkucc.hku.hk
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22735114$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/20384353$$D View this record in MEDLINE/PubMed
BookMark eNqF0V1LHDEUBuAgFl2tF_0DMgil9GLqSU4mM3O5FfsBCy20Be-GTD40MpusSabQf2_UrYItSC5C4Ely3nMOyK4P3hDyhsIHCoyemtQD8h6udsiCNgzqpmvoLlkAUKx7FBf75CClawBgCN0e2WeAHccGF2T10QVtLqPUMrvgK-l1tdQpxM39Mdhq6bMbXchOpcr5Kl-Zaqmy-y2z0dWPadaXpvoegzIpvSavrJySOdruh-TXp_OfZ1_q1bfPX8-Wq1py0ee6xVboXimKQrU4MsnlqK3u2663QghrZYuNGDloS3kpjGE70h67jgtlLXR4SN49vLuJ4WY2KQ9rl5SZJulNmNPQNrws4Oxlicih9ASKPHkmr8McfYkxIGsoZUjvPj7eonlcGz1solvL-Gf4288C3m6BTEpONkqvXHpyrCSjlBf3_sGpGFKKxj4SCsPdTIfHmRZ7-swql--nlaN0039vbKuQKj3F-NfdApV9rMk
CODEN ESTHAG
CitedBy_id crossref_primary_10_1016_j_cej_2020_125498
crossref_primary_10_1007_s10311_019_00945_2
crossref_primary_10_1016_j_jes_2021_03_037
crossref_primary_10_1080_07391102_2018_1521746
crossref_primary_10_1016_j_jhazmat_2021_127840
crossref_primary_10_1016_j_watres_2012_01_028
crossref_primary_10_1016_j_chemosphere_2020_128044
crossref_primary_10_1016_j_envadv_2021_100071
crossref_primary_10_1016_j_biortech_2013_08_131
crossref_primary_10_1016_j_watres_2019_06_010
crossref_primary_10_1016_j_ijbiomac_2024_135088
crossref_primary_10_1016_j_scitotenv_2022_157384
crossref_primary_10_1155_2020_8863370
crossref_primary_10_35414_akufemubid_1287632
crossref_primary_10_1016_j_scitotenv_2018_04_288
crossref_primary_10_1016_j_jwpe_2020_101799
crossref_primary_10_1080_10934529_2016_1258870
crossref_primary_10_1002_etc_5191
crossref_primary_10_1021_acs_est_1c01016
crossref_primary_10_1007_s11356_014_2800_4
crossref_primary_10_1016_j_jhazmat_2012_03_074
crossref_primary_10_1016_j_biortech_2018_11_023
crossref_primary_10_1016_j_jhazmat_2018_07_092
crossref_primary_10_1016_j_ibiod_2019_02_004
crossref_primary_10_1016_j_jwpe_2022_103075
crossref_primary_10_1016_j_scitotenv_2012_01_061
crossref_primary_10_1016_j_biortech_2022_126770
crossref_primary_10_1016_j_envint_2018_05_029
crossref_primary_10_1016_j_chemosphere_2019_125449
crossref_primary_10_1021_acs_est_7b05543
crossref_primary_10_1016_j_envres_2024_119396
crossref_primary_10_1016_j_scitotenv_2016_08_073
crossref_primary_10_1016_j_chemosphere_2011_05_045
crossref_primary_10_1016_j_cej_2016_02_035
crossref_primary_10_1016_j_chemosphere_2019_125681
crossref_primary_10_1021_acsenvironau_2c00010
crossref_primary_10_1016_j_jhazmat_2023_132894
crossref_primary_10_1016_j_scitotenv_2019_04_437
crossref_primary_10_5004_dwt_2022_28003
crossref_primary_10_1016_j_ecoenv_2018_02_067
crossref_primary_10_1016_j_envres_2022_115119
crossref_primary_10_1039_C7RA10150C
crossref_primary_10_1007_s11356_019_04360_6
crossref_primary_10_1016_j_biortech_2019_122290
crossref_primary_10_1016_j_cej_2019_122770
crossref_primary_10_1016_j_chemosphere_2017_08_159
crossref_primary_10_1002_cnma_202400515
crossref_primary_10_1016_j_jclepro_2024_143019
crossref_primary_10_1016_j_jhazmat_2021_126734
crossref_primary_10_1007_s11356_018_2124_x
crossref_primary_10_1016_j_envint_2022_107381
crossref_primary_10_1016_j_jwpe_2022_103080
crossref_primary_10_1016_j_watres_2012_01_047
crossref_primary_10_1080_01919512_2019_1624149
crossref_primary_10_1016_j_biortech_2021_125156
crossref_primary_10_1016_j_chemosphere_2013_01_040
crossref_primary_10_1016_j_jhazmat_2021_127946
crossref_primary_10_1016_j_scitotenv_2020_142217
crossref_primary_10_1016_j_jwpe_2025_107167
crossref_primary_10_1088_1755_1315_801_1_012004
crossref_primary_10_1080_01496395_2018_1445109
crossref_primary_10_1016_j_watres_2021_117616
crossref_primary_10_1073_pnas_2302761120
crossref_primary_10_1007_s10532_011_9522_9
crossref_primary_10_1007_s11270_023_06793_9
crossref_primary_10_1016_j_jece_2022_107403
crossref_primary_10_1016_j_scitotenv_2020_144642
crossref_primary_10_3390_w11112217
crossref_primary_10_1016_j_watres_2013_03_001
crossref_primary_10_1039_C7EW00171A
crossref_primary_10_26907_2542_064X_2024_2_187_209
crossref_primary_10_1016_j_scitotenv_2017_08_009
crossref_primary_10_1590_s1413_41522020151522
crossref_primary_10_1016_j_jcis_2022_05_050
crossref_primary_10_1016_j_jcis_2021_03_165
crossref_primary_10_1016_j_scitotenv_2019_05_241
crossref_primary_10_1007_s42452_020_04003_3
crossref_primary_10_1016_j_seppur_2021_119021
crossref_primary_10_1039_c3em00150d
crossref_primary_10_3390_molecules27228026
crossref_primary_10_1016_j_jece_2024_113671
crossref_primary_10_1016_j_biortech_2020_122825
crossref_primary_10_1093_femsec_fiy128
crossref_primary_10_1016_j_inoche_2022_110140
crossref_primary_10_1016_j_jssc_2020_121420
crossref_primary_10_1016_j_jwpe_2024_104941
crossref_primary_10_1016_j_biortech_2013_10_055
crossref_primary_10_1021_acs_est_6b01899
crossref_primary_10_1016_j_scitotenv_2020_138071
crossref_primary_10_1016_j_envpol_2013_08_038
crossref_primary_10_1007_s10532_018_9826_0
crossref_primary_10_1016_j_chemosphere_2013_02_070
crossref_primary_10_1016_j_ecoenv_2022_114049
crossref_primary_10_1016_j_watres_2021_117985
crossref_primary_10_1016_j_scitotenv_2013_02_024
crossref_primary_10_1016_j_chroma_2024_465427
crossref_primary_10_1080_10643389_2020_1835436
crossref_primary_10_1016_j_biteb_2019_01_002
crossref_primary_10_1016_j_chemosphere_2018_04_086
crossref_primary_10_1007_s11270_014_1940_y
crossref_primary_10_1007_s12665_015_4342_6
crossref_primary_10_1016_j_jece_2022_107638
crossref_primary_10_1021_acs_est_2c07774
crossref_primary_10_1080_10643380903392692
crossref_primary_10_1016_j_apsusc_2023_156630
crossref_primary_10_1039_D2RA06436G
crossref_primary_10_1080_03601234_2012_636580
crossref_primary_10_1016_j_biortech_2018_01_100
crossref_primary_10_1016_j_jhazmat_2019_121888
crossref_primary_10_1016_j_watres_2019_114988
crossref_primary_10_3390_catal13020336
crossref_primary_10_1007_s11783_017_0920_z
crossref_primary_10_1016_j_cej_2023_143724
crossref_primary_10_1016_j_scitotenv_2018_03_207
crossref_primary_10_1016_j_scitotenv_2021_147379
crossref_primary_10_1080_10643389_2019_1642831
crossref_primary_10_1016_j_ecoenv_2012_03_002
crossref_primary_10_1016_j_scitotenv_2018_12_088
crossref_primary_10_1016_j_scitotenv_2019_05_216
crossref_primary_10_1007_s11356_013_1867_7
crossref_primary_10_1016_j_envpol_2023_122033
crossref_primary_10_1016_j_watres_2024_121738
crossref_primary_10_1016_j_envpol_2020_116152
crossref_primary_10_2174_1389201020666190527113903
crossref_primary_10_1016_j_scitotenv_2022_158550
crossref_primary_10_1007_s11356_021_13631_0
crossref_primary_10_3390_molecules29102276
crossref_primary_10_1007_s10876_025_02771_9
crossref_primary_10_1016_j_chemosphere_2023_137882
crossref_primary_10_1016_j_ecoenv_2018_08_101
crossref_primary_10_1371_journal_pone_0156854
crossref_primary_10_1016_j_cej_2019_122842
crossref_primary_10_3390_catal12050500
crossref_primary_10_1016_j_jes_2017_10_018
crossref_primary_10_1016_j_chemosphere_2017_09_092
crossref_primary_10_1039_C7AY01801K
crossref_primary_10_3390_antibiotics11010114
crossref_primary_10_1016_j_jcat_2018_07_006
crossref_primary_10_1080_00319104_2022_2098295
crossref_primary_10_1016_j_biortech_2016_09_096
crossref_primary_10_1016_j_ecoenv_2024_117087
crossref_primary_10_1021_acs_est_8b00568
crossref_primary_10_1021_acsestwater_2c00600
crossref_primary_10_1007_s11356_017_8849_0
crossref_primary_10_1016_j_nbt_2019_08_002
crossref_primary_10_1007_s13762_023_04861_5
crossref_primary_10_1016_j_scitotenv_2021_152852
crossref_primary_10_1039_c6pp00319b
crossref_primary_10_1088_1361_6528_ac530c
crossref_primary_10_1007_s11274_011_0834_z
crossref_primary_10_1016_j_cej_2023_142983
crossref_primary_10_1016_j_scitotenv_2019_05_341
crossref_primary_10_1016_j_biortech_2021_126473
crossref_primary_10_1016_j_colsurfa_2021_127203
crossref_primary_10_1016_j_marpolbul_2013_05_007
crossref_primary_10_1016_j_psep_2024_12_032
crossref_primary_10_1016_j_envpol_2023_123115
crossref_primary_10_1016_j_jhazmat_2024_134056
crossref_primary_10_1016_j_scitotenv_2014_04_097
crossref_primary_10_1016_j_chemosphere_2017_07_025
crossref_primary_10_1016_j_scitotenv_2018_10_004
crossref_primary_10_1016_j_watres_2017_12_029
crossref_primary_10_1093_femsec_fiy101
crossref_primary_10_1016_j_scitotenv_2012_08_038
crossref_primary_10_3390_antibiotics11020136
crossref_primary_10_1016_j_jenvman_2020_111098
crossref_primary_10_1016_j_watres_2016_10_025
crossref_primary_10_1039_c3ay40220g
crossref_primary_10_1016_j_ecoenv_2017_08_052
crossref_primary_10_1016_j_jwpe_2024_105606
crossref_primary_10_1016_j_watres_2013_10_043
crossref_primary_10_1007_s11356_023_25846_4
crossref_primary_10_1016_j_scitotenv_2020_139348
crossref_primary_10_1016_j_jhazmat_2016_03_064
crossref_primary_10_1016_j_jiec_2023_07_049
crossref_primary_10_1016_j_cej_2024_150759
crossref_primary_10_1016_j_envpol_2019_113160
crossref_primary_10_1007_s11356_018_1221_1
crossref_primary_10_1016_j_chemosphere_2014_12_012
crossref_primary_10_1016_j_cej_2023_143821
crossref_primary_10_1016_j_watres_2019_114964
crossref_primary_10_1016_j_jece_2018_09_034
crossref_primary_10_1039_C9EN00968J
crossref_primary_10_1016_j_scitotenv_2017_10_059
crossref_primary_10_1016_j_jclepro_2022_131421
crossref_primary_10_1016_j_watres_2020_115475
crossref_primary_10_1016_j_jenvman_2016_09_086
crossref_primary_10_1016_j_jenvman_2021_114336
crossref_primary_10_1016_j_jhazmat_2022_130364
crossref_primary_10_1016_j_jece_2020_104775
crossref_primary_10_1007_s40201_020_00571_z
crossref_primary_10_1016_j_cej_2020_127494
crossref_primary_10_3390_ijerph17217706
crossref_primary_10_1016_j_chemosphere_2014_01_012
crossref_primary_10_2139_ssrn_4121066
crossref_primary_10_1016_j_chemosphere_2014_12_025
crossref_primary_10_1016_j_memsci_2023_121629
crossref_primary_10_1080_09593330_2015_1018338
crossref_primary_10_1016_j_ibiod_2015_01_015
crossref_primary_10_1016_j_chemosphere_2017_03_063
crossref_primary_10_1016_j_jphotochem_2018_01_030
crossref_primary_10_1016_j_scitotenv_2017_03_015
crossref_primary_10_1061__ASCE_EE_1943_7870_0001426
crossref_primary_10_1016_j_jcis_2016_08_068
crossref_primary_10_1016_j_watres_2020_116315
crossref_primary_10_1016_j_seppur_2020_116617
crossref_primary_10_3389_fmicb_2016_01728
crossref_primary_10_1016_j_jenvman_2022_114502
crossref_primary_10_1016_j_scitotenv_2020_143981
crossref_primary_10_1016_j_scitotenv_2019_04_410
crossref_primary_10_3390_ijms21113775
crossref_primary_10_1016_j_jes_2017_08_010
crossref_primary_10_1016_j_jenvman_2013_02_007
crossref_primary_10_1016_j_scitotenv_2013_11_008
crossref_primary_10_1186_s12934_021_01606_2
crossref_primary_10_1016_j_jhazmat_2016_03_085
crossref_primary_10_1021_acsami_3c01255
crossref_primary_10_18006_2017_5_4__402_411
crossref_primary_10_1007_s11356_016_6946_0
crossref_primary_10_1080_10934529_2015_1011981
crossref_primary_10_1016_j_ecoenv_2018_11_044
crossref_primary_10_1016_j_ibiod_2016_02_011
crossref_primary_10_1016_j_ibiod_2016_02_014
crossref_primary_10_1080_10643389_2020_1753634
crossref_primary_10_1021_acsomega_8b03406
crossref_primary_10_1039_C7RA09022F
crossref_primary_10_1016_j_biortech_2021_125577
crossref_primary_10_1007_s11356_021_15498_7
crossref_primary_10_1007_s11157_017_9438_x
crossref_primary_10_1016_j_jece_2013_12_021
crossref_primary_10_1016_j_scitotenv_2023_167862
crossref_primary_10_1007_s11270_010_0697_1
crossref_primary_10_1016_j_cej_2022_141220
crossref_primary_10_1016_j_chemosphere_2023_138099
crossref_primary_10_1080_02757540_2021_1924695
crossref_primary_10_1016_j_jenvman_2021_113628
crossref_primary_10_1016_j_jenvman_2023_117661
crossref_primary_10_1016_j_matchemphys_2022_126176
crossref_primary_10_1016_j_scitotenv_2015_12_057
crossref_primary_10_1016_j_scitotenv_2024_174688
crossref_primary_10_1016_j_watres_2019_05_034
crossref_primary_10_1039_D4CE00044G
crossref_primary_10_1021_es103672x
crossref_primary_10_1016_j_scitotenv_2019_03_473
crossref_primary_10_2139_ssrn_4046793
crossref_primary_10_1016_j_jpba_2014_11_020
crossref_primary_10_1039_C4EM00620H
crossref_primary_10_1016_j_scitotenv_2020_141733
crossref_primary_10_1021_acs_iecr_9b03815
crossref_primary_10_1080_19443994_2014_926839
crossref_primary_10_1016_j_jhazmat_2012_11_003
crossref_primary_10_1016_j_apcatb_2011_09_029
crossref_primary_10_1016_j_seppur_2023_123261
crossref_primary_10_1007_s00244_012_9773_4
crossref_primary_10_1016_j_jece_2022_108585
crossref_primary_10_1016_j_scitotenv_2018_07_400
crossref_primary_10_1007_s10532_022_09980_3
crossref_primary_10_1007_s11356_021_18251_2
crossref_primary_10_1016_j_cej_2022_140265
crossref_primary_10_1016_j_chemosphere_2018_08_004
crossref_primary_10_5004_dwt_2020_25717
crossref_primary_10_1016_j_ibiod_2019_04_002
crossref_primary_10_1016_j_scitotenv_2015_01_096
crossref_primary_10_1007_s00449_016_1699_1
crossref_primary_10_1016_j_jwpe_2023_104139
crossref_primary_10_1016_j_jhazmat_2020_122615
crossref_primary_10_1021_acs_est_7b06026
crossref_primary_10_1016_j_cej_2015_06_025
crossref_primary_10_1016_j_jphotobiol_2018_05_022
crossref_primary_10_1007_s11356_017_0524_y
crossref_primary_10_1016_j_cej_2018_04_142
crossref_primary_10_1007_s00253_012_4589_8
crossref_primary_10_1007_s11356_016_6054_1
crossref_primary_10_1016_j_jenvman_2024_122090
crossref_primary_10_1016_j_clay_2023_107127
crossref_primary_10_1016_j_memsci_2019_117425
crossref_primary_10_1016_j_psep_2023_11_047
crossref_primary_10_1016_j_chemosphere_2022_135406
crossref_primary_10_1007_s00449_020_02384_8
crossref_primary_10_2144_fsoa_2020_0189
crossref_primary_10_1016_j_biortech_2024_130672
crossref_primary_10_1016_j_jece_2024_112191
crossref_primary_10_1021_acs_est_9b06577
crossref_primary_10_1016_j_scitotenv_2021_145291
crossref_primary_10_1007_s00216_012_6239_5
crossref_primary_10_1016_j_scitotenv_2010_07_069
crossref_primary_10_1016_j_jclepro_2023_140119
crossref_primary_10_1007_s11157_015_9377_3
crossref_primary_10_1016_j_jes_2022_10_020
crossref_primary_10_3389_fmicb_2016_01015
crossref_primary_10_1016_j_jhazmat_2015_02_075
crossref_primary_10_1016_j_watres_2013_04_021
crossref_primary_10_1007_s11270_015_2438_y
crossref_primary_10_1016_j_jwpe_2021_102538
crossref_primary_10_1016_j_biortech_2018_04_009
crossref_primary_10_1007_s11356_020_11616_z
crossref_primary_10_1016_j_jwpe_2024_105683
crossref_primary_10_1039_D0RA02062A
crossref_primary_10_1016_j_jece_2024_112013
crossref_primary_10_1016_j_jhazmat_2022_128335
crossref_primary_10_1007_s11814_016_0345_6
crossref_primary_10_1016_j_chemosphere_2021_129730
crossref_primary_10_1016_j_watres_2017_04_040
crossref_primary_10_1007_s11356_020_09829_3
crossref_primary_10_1016_j_enmm_2022_100747
crossref_primary_10_1016_j_watres_2022_119494
crossref_primary_10_1007_s11356_017_0853_x
crossref_primary_10_2166_wst_2015_484
crossref_primary_10_1016_j_biortech_2021_125527
crossref_primary_10_1016_j_heliyon_2024_e33317
crossref_primary_10_1016_j_biortech_2017_03_189
crossref_primary_10_1007_s11274_020_2798_3
crossref_primary_10_1016_j_biortech_2020_124161
crossref_primary_10_1002_asia_202101105
crossref_primary_10_1007_s11356_022_22033_9
crossref_primary_10_1016_j_scitotenv_2022_157987
crossref_primary_10_1007_s11356_021_16676_3
crossref_primary_10_1016_j_seppur_2024_129712
crossref_primary_10_15407_biotech14_03_021
crossref_primary_10_3390_catal11070761
crossref_primary_10_1080_03601234_2022_2026124
crossref_primary_10_1016_j_scitotenv_2015_12_010
crossref_primary_10_1016_j_envpol_2012_11_008
crossref_primary_10_1016_j_vacuum_2021_110634
crossref_primary_10_2166_wst_2022_293
crossref_primary_10_3390_molecules27175402
crossref_primary_10_1016_j_ibiod_2024_105786
crossref_primary_10_1016_j_bej_2013_10_002
crossref_primary_10_1016_j_ccr_2018_05_019
crossref_primary_10_1016_j_bios_2015_10_069
crossref_primary_10_1016_j_biortech_2018_11_058
crossref_primary_10_1007_s11696_022_02063_w
crossref_primary_10_1016_j_scitotenv_2020_139742
crossref_primary_10_1080_01496395_2020_1717533
crossref_primary_10_1007_s00128_020_02952_4
crossref_primary_10_1016_j_cej_2024_152555
crossref_primary_10_1016_j_jhazmat_2024_136875
crossref_primary_10_1007_s11356_015_5431_5
crossref_primary_10_1016_j_scitotenv_2022_159815
crossref_primary_10_1016_j_susmat_2024_e00825
crossref_primary_10_1039_c2pp25068c
crossref_primary_10_3390_ijms150610083
crossref_primary_10_1007_s00253_012_4326_3
crossref_primary_10_1080_23312009_2017_1290021
crossref_primary_10_1016_j_jes_2022_11_014
crossref_primary_10_1039_c3em30682h
crossref_primary_10_1016_j_cej_2024_150239
crossref_primary_10_2139_ssrn_4103365
crossref_primary_10_1007_s11356_017_8587_3
crossref_primary_10_1016_j_chemosphere_2018_01_003
crossref_primary_10_1016_j_envpol_2017_12_060
crossref_primary_10_1557_s43578_024_01331_7
crossref_primary_10_1016_j_jenvman_2024_120709
crossref_primary_10_1002_clen_201700101
crossref_primary_10_1021_ie301401a
crossref_primary_10_3390_ijerph16234681
crossref_primary_10_3390_ijerph182010610
crossref_primary_10_1016_j_carbpol_2020_117343
crossref_primary_10_1016_j_envres_2020_110455
crossref_primary_10_1039_C6RA00277C
crossref_primary_10_1016_j_jece_2022_108775
crossref_primary_10_1007_s00284_014_0731_4
crossref_primary_10_1016_j_jhazmat_2012_05_106
crossref_primary_10_1007_s11356_021_17365_x
crossref_primary_10_1093_ismejo_wrad040
crossref_primary_10_3390_w14091351
crossref_primary_10_1016_j_scitotenv_2013_03_010
crossref_primary_10_1016_j_scitotenv_2023_167881
crossref_primary_10_3390_ijerph17061973
crossref_primary_10_1016_j_chemosphere_2022_136892
crossref_primary_10_1016_j_jcis_2024_05_055
crossref_primary_10_1016_j_watres_2019_115303
crossref_primary_10_1007_s11356_018_3413_0
crossref_primary_10_1007_s40201_019_00426_2
crossref_primary_10_1016_j_envres_2022_115012
crossref_primary_10_1016_j_chemosphere_2014_05_072
crossref_primary_10_1016_j_marpolbul_2020_111671
crossref_primary_10_1021_es301145m
crossref_primary_10_1016_j_jece_2017_11_031
crossref_primary_10_1007_s11356_015_4831_x
crossref_primary_10_1002_etc_4015
crossref_primary_10_1007_s10653_019_00392_6
crossref_primary_10_1016_j_jenvman_2020_111040
crossref_primary_10_3390_w13152105
crossref_primary_10_1061__ASCE_EE_1943_7870_0000850
crossref_primary_10_1039_C4AY00708E
crossref_primary_10_1016_j_jwpe_2022_102914
crossref_primary_10_1089_ees_2010_0420
crossref_primary_10_1007_s00253_013_5333_8
crossref_primary_10_1016_j_jes_2016_10_006
crossref_primary_10_1016_j_biortech_2016_08_102
crossref_primary_10_1016_j_jhazmat_2019_121016
crossref_primary_10_1002_jctb_3774
crossref_primary_10_1016_j_seppur_2022_120878
crossref_primary_10_1016_j_seppur_2021_120334
crossref_primary_10_3390_plasma6030037
crossref_primary_10_1016_j_cej_2011_09_003
crossref_primary_10_1016_j_scitotenv_2022_157418
crossref_primary_10_1038_s41598_020_70943_w
crossref_primary_10_1007_s10098_013_0611_9
crossref_primary_10_1016_j_jenvman_2013_06_003
crossref_primary_10_1002_jobm_201700497
crossref_primary_10_1016_j_watres_2013_06_009
crossref_primary_10_1016_j_jhazmat_2015_04_048
crossref_primary_10_1039_C5RA08438E
crossref_primary_10_1080_09593330_2017_1380714
crossref_primary_10_2166_wst_2023_324
crossref_primary_10_2166_wh_2023_183
crossref_primary_10_1016_j_heliyon_2022_e11688
crossref_primary_10_1016_j_seppur_2018_12_062
crossref_primary_10_1007_s13738_020_02052_4
crossref_primary_10_1016_j_scitotenv_2020_137532
crossref_primary_10_1016_j_envpol_2021_118095
crossref_primary_10_1002_jctb_5962
crossref_primary_10_1039_D4AY00914B
crossref_primary_10_1002_app_41803
crossref_primary_10_1186_s11671_017_2295_2
crossref_primary_10_1021_ie300146h
crossref_primary_10_1128_mSphere_00058_20
crossref_primary_10_1021_acsomega_8b02049
crossref_primary_10_1007_s11270_024_07169_3
crossref_primary_10_1016_j_chemosphere_2019_01_016
crossref_primary_10_1016_j_envpol_2019_02_090
crossref_primary_10_1016_j_fuel_2012_10_043
crossref_primary_10_1016_j_scitotenv_2014_08_075
crossref_primary_10_1016_j_chemosphere_2017_04_121
crossref_primary_10_1016_j_scitotenv_2012_05_096
crossref_primary_10_1016_j_jallcom_2023_171312
crossref_primary_10_1016_j_eti_2020_100919
crossref_primary_10_1016_j_jenvman_2020_110368
crossref_primary_10_3390_ijerph15091911
crossref_primary_10_1016_j_scitotenv_2016_04_176
crossref_primary_10_1016_j_envpol_2023_121922
crossref_primary_10_1016_j_ecoenv_2022_113652
crossref_primary_10_1007_s10098_018_1524_4
crossref_primary_10_1016_j_jhazmat_2022_128540
crossref_primary_10_1007_s11356_013_2070_6
crossref_primary_10_1016_j_cej_2014_03_077
crossref_primary_10_1016_j_jhazmat_2014_03_063
crossref_primary_10_1039_C8TA11343B
crossref_primary_10_1016_j_envres_2024_118418
crossref_primary_10_1016_j_wroa_2024_100235
crossref_primary_10_1038_srep28336
crossref_primary_10_1016_j_jhazmat_2020_122574
crossref_primary_10_1007_s11356_012_1442_7
crossref_primary_10_1016_j_cej_2018_02_013
crossref_primary_10_1016_j_scitotenv_2019_02_183
crossref_primary_10_1016_j_watres_2018_02_057
crossref_primary_10_1016_j_cej_2021_130582
crossref_primary_10_1007_s10532_023_10018_5
crossref_primary_10_1002_clen_202200328
crossref_primary_10_1039_C8NJ06031B
crossref_primary_10_1016_j_ese_2022_100212
crossref_primary_10_1016_j_clwat_2025_100067
crossref_primary_10_1016_j_emcon_2016_07_001
crossref_primary_10_1007_s11164_017_3028_y
crossref_primary_10_1016_j_jenvman_2019_04_070
crossref_primary_10_1021_acs_iecr_2c02635
crossref_primary_10_1016_j_jhazmat_2014_10_026
crossref_primary_10_3390_ma11112133
crossref_primary_10_3390_antibiotics12010028
crossref_primary_10_1002_ep_12118
crossref_primary_10_1016_j_watres_2018_02_061
crossref_primary_10_1016_j_cej_2019_123285
crossref_primary_10_1016_j_jes_2014_06_002
crossref_primary_10_1016_j_jenvman_2019_02_006
crossref_primary_10_2139_ssrn_4147071
crossref_primary_10_1016_j_chemosphere_2021_132487
crossref_primary_10_1016_j_scitotenv_2023_169170
crossref_primary_10_1016_j_cej_2019_05_064
crossref_primary_10_1016_j_jphotochem_2018_04_014
crossref_primary_10_1021_acs_est_9b00881
crossref_primary_10_1038_srep06844
crossref_primary_10_3390_ijms22062932
crossref_primary_10_1021_acs_est_7b05913
crossref_primary_10_1039_C8RA04904A
crossref_primary_10_1016_j_apcatb_2022_121408
crossref_primary_10_1016_j_cej_2018_01_149
crossref_primary_10_1016_j_jhazmat_2021_127248
crossref_primary_10_1016_j_envpol_2023_121981
crossref_primary_10_3389_fmicb_2020_00867
crossref_primary_10_1007_s00253_014_5939_5
crossref_primary_10_1016_j_jclepro_2021_129722
crossref_primary_10_1016_j_scitotenv_2013_12_008
crossref_primary_10_1016_j_envres_2020_109718
crossref_primary_10_1186_s12866_025_03753_7
crossref_primary_10_1039_C4EM00457D
crossref_primary_10_1016_j_jwpe_2022_102847
crossref_primary_10_1061__ASCE_HZ_2153_5515_0000592
crossref_primary_10_1016_j_jece_2023_109765
crossref_primary_10_1016_j_marpolbul_2017_03_003
crossref_primary_10_1016_j_scitotenv_2023_163464
crossref_primary_10_35118_apjmbb_2024_032_2_11
crossref_primary_10_1039_D1EN00841B
crossref_primary_10_1016_j_cej_2019_123017
crossref_primary_10_1016_j_scitotenv_2013_06_018
crossref_primary_10_1016_j_scitotenv_2018_07_450
crossref_primary_10_3389_fmicb_2022_828922
crossref_primary_10_1016_j_envint_2018_02_003
crossref_primary_10_1007_s10529_020_03068_9
crossref_primary_10_1016_j_envres_2021_111091
crossref_primary_10_1021_es500351e
crossref_primary_10_1016_j_heliyon_2020_e03348
crossref_primary_10_1016_j_jhazmat_2022_128500
crossref_primary_10_2166_wst_2017_003
crossref_primary_10_1002_clen_202300259
crossref_primary_10_1016_j_biortech_2022_128352
crossref_primary_10_2166_wrd_2017_143
crossref_primary_10_5004_dwt_2020_25765
crossref_primary_10_1016_j_cej_2022_137055
crossref_primary_10_3390_ijerph14101188
crossref_primary_10_3390_molecules30030625
crossref_primary_10_1016_j_micromeso_2022_111857
crossref_primary_10_1016_j_ecoenv_2020_111831
crossref_primary_10_1016_j_scitotenv_2020_142077
crossref_primary_10_1016_j_jenvman_2020_111896
crossref_primary_10_1016_j_bej_2015_04_014
crossref_primary_10_1016_j_chemosphere_2022_136724
crossref_primary_10_1016_j_scitotenv_2013_06_027
crossref_primary_10_1016_j_psep_2022_02_013
crossref_primary_10_1016_j_jes_2017_04_011
crossref_primary_10_3389_fmicb_2018_01047
crossref_primary_10_1016_j_jallcom_2019_152664
crossref_primary_10_1016_j_cej_2016_06_105
crossref_primary_10_1016_j_biortech_2022_127054
crossref_primary_10_1016_j_jece_2018_03_004
crossref_primary_10_1016_j_cej_2018_01_125
crossref_primary_10_1007_s10098_015_0968_z
crossref_primary_10_1007_s12010_024_05165_1
crossref_primary_10_1016_j_jes_2022_10_051
crossref_primary_10_3390_membranes10100282
crossref_primary_10_1016_j_etap_2017_04_022
crossref_primary_10_1016_j_jhazmat_2024_133558
crossref_primary_10_1016_j_envpol_2019_112990
crossref_primary_10_1016_j_fuel_2024_131700
crossref_primary_10_1016_j_scitotenv_2016_09_201
crossref_primary_10_1021_acs_iecr_1c04104
crossref_primary_10_1080_19443994_2015_1042064
crossref_primary_10_1007_s11783_018_1048_5
crossref_primary_10_1016_j_cej_2018_01_012
crossref_primary_10_1016_j_enmm_2019_100274
crossref_primary_10_1016_j_jwpe_2025_107514
crossref_primary_10_1016_j_watres_2019_05_057
crossref_primary_10_1016_j_watres_2022_118891
crossref_primary_10_1007_s13762_022_04194_9
crossref_primary_10_1021_acs_est_2c00268
crossref_primary_10_1007_s10965_023_03802_7
crossref_primary_10_1038_s41598_024_73142_z
crossref_primary_10_1016_j_biortech_2017_04_023
crossref_primary_10_1016_j_biortech_2022_127286
crossref_primary_10_1016_j_ibiod_2018_12_011
crossref_primary_10_5004_dwt_2017_20935
crossref_primary_10_1016_j_scitotenv_2012_10_026
crossref_primary_10_1016_j_talanta_2012_11_080
crossref_primary_10_5004_dwt_2017_20937
crossref_primary_10_5004_dwt_2021_27223
crossref_primary_10_1007_s13399_023_05092_x
crossref_primary_10_1289_ehp_1206446
crossref_primary_10_1016_j_biortech_2019_122707
crossref_primary_10_1016_j_scitotenv_2018_07_422
crossref_primary_10_1016_j_molliq_2020_113150
crossref_primary_10_1016_j_watres_2023_119924
crossref_primary_10_1016_j_jaubas_2016_09_002
crossref_primary_10_1061__ASCE_HZ_2153_5515_0000346
crossref_primary_10_1063_1674_0068_cjcp2106111
crossref_primary_10_1016_j_chroma_2014_09_089
crossref_primary_10_1080_09593330_2017_1334710
crossref_primary_10_1016_j_chemosphere_2023_139034
crossref_primary_10_1016_j_cej_2017_01_083
crossref_primary_10_1016_j_scitotenv_2017_06_215
crossref_primary_10_1016_j_jhazmat_2015_06_058
crossref_primary_10_3390_min11050518
crossref_primary_10_1002_jeq2_20515
crossref_primary_10_1016_j_jece_2024_111880
crossref_primary_10_1007_s11104_018_3843_y
crossref_primary_10_1021_acs_est_6b02231
crossref_primary_10_1186_s40249_022_01000_z
crossref_primary_10_3390_antibiotics2020191
crossref_primary_10_1007_s11356_022_23243_x
crossref_primary_10_1007_s11356_024_35275_6
crossref_primary_10_1016_j_chemosphere_2013_08_091
crossref_primary_10_1007_s10532_017_9789_6
crossref_primary_10_1007_s11356_024_33758_0
crossref_primary_10_1016_j_scitotenv_2024_177381
crossref_primary_10_1007_s13762_022_04047_5
crossref_primary_10_1007_s11783_019_1115_6
crossref_primary_10_3390_nano11030568
crossref_primary_10_1007_s11783_014_0661_1
crossref_primary_10_2166_wh_2020_013
crossref_primary_10_1007_s10532_021_09959_6
crossref_primary_10_1016_j_jhazmat_2020_123374
crossref_primary_10_1016_j_jenvman_2024_121522
crossref_primary_10_1002_gch2_202000116
crossref_primary_10_1016_j_chemosphere_2014_12_004
crossref_primary_10_1016_j_colsurfa_2023_132395
crossref_primary_10_1016_j_jenvman_2019_02_068
crossref_primary_10_1038_s41598_017_06303_y
crossref_primary_10_1016_j_jwpe_2021_102089
crossref_primary_10_1016_j_chemosphere_2017_12_062
crossref_primary_10_1016_j_scitotenv_2019_134899
crossref_primary_10_1016_j_jwpe_2022_103348
crossref_primary_10_1016_j_cej_2022_138624
crossref_primary_10_1002_bmc_1621
crossref_primary_10_3390_app132111963
crossref_primary_10_1016_j_cej_2019_123346
crossref_primary_10_3390_ijerph191811256
crossref_primary_10_1016_j_biortech_2013_07_031
crossref_primary_10_1016_j_scitotenv_2016_07_085
crossref_primary_10_1016_j_cej_2018_07_011
crossref_primary_10_1016_j_chemosphere_2017_03_135
crossref_primary_10_1016_j_molstruc_2024_137729
crossref_primary_10_1016_j_jenvman_2024_122403
crossref_primary_10_3390_ijerph20043593
crossref_primary_10_1016_j_jece_2017_08_028
crossref_primary_10_1016_j_cej_2021_128665
crossref_primary_10_1016_j_jhazmat_2022_128910
crossref_primary_10_1016_j_jhazmat_2021_125126
crossref_primary_10_1016_j_jwpe_2022_103124
crossref_primary_10_1007_s10811_019_01823_8
crossref_primary_10_1016_j_eti_2020_100726
crossref_primary_10_1016_j_jwpe_2024_106030
crossref_primary_10_1016_j_talanta_2021_122923
crossref_primary_10_1016_j_biortech_2020_123886
crossref_primary_10_1016_j_chemosphere_2018_04_135
crossref_primary_10_1016_j_chemosphere_2018_04_138
crossref_primary_10_1016_j_scitotenv_2018_07_199
crossref_primary_10_1007_s11356_013_1924_2
crossref_primary_10_1016_j_ijbiomac_2019_05_165
crossref_primary_10_1039_C7RA06852B
crossref_primary_10_3390_polym10020220
crossref_primary_10_1016_j_cej_2019_122103
crossref_primary_10_1016_j_watres_2016_11_048
crossref_primary_10_1007_s13738_014_0450_6
crossref_primary_10_1016_j_cej_2023_148356
crossref_primary_10_1016_j_jes_2019_06_017
crossref_primary_10_1007_s11270_024_07213_2
crossref_primary_10_1016_j_cclet_2020_04_048
crossref_primary_10_1007_s11356_021_18431_0
crossref_primary_10_1016_j_scitotenv_2022_153822
crossref_primary_10_1016_j_watres_2024_122513
crossref_primary_10_1007_s11270_020_04576_0
crossref_primary_10_1016_j_jece_2023_110020
crossref_primary_10_1016_j_ibiod_2016_10_020
crossref_primary_10_1016_j_biortech_2011_10_011
crossref_primary_10_1016_j_envpol_2023_121552
crossref_primary_10_1016_j_jclepro_2021_127359
crossref_primary_10_1016_j_ijbiomac_2024_131760
crossref_primary_10_2166_wst_2019_053
crossref_primary_10_1007_s13762_021_03519_4
crossref_primary_10_1016_j_biortech_2016_05_124
crossref_primary_10_1016_j_biortech_2013_09_125
crossref_primary_10_1016_j_cej_2023_145074
crossref_primary_10_1016_j_envpol_2021_116603
crossref_primary_10_1021_acs_est_8b05827
crossref_primary_10_1021_es502615e
crossref_primary_10_1186_s12302_021_00505_y
crossref_primary_10_1016_j_apcatb_2016_12_032
crossref_primary_10_1016_j_optmat_2021_111035
crossref_primary_10_1016_j_scitotenv_2018_06_016
crossref_primary_10_1016_j_biortech_2018_01_063
crossref_primary_10_1016_j_watres_2011_12_035
crossref_primary_10_1016_j_jenvman_2016_06_046
crossref_primary_10_1002_wer_1299
crossref_primary_10_1016_j_eti_2024_103778
crossref_primary_10_1016_j_scitotenv_2017_12_243
crossref_primary_10_1016_j_chemosphere_2022_134807
crossref_primary_10_1016_j_scitotenv_2023_161678
crossref_primary_10_1016_j_cej_2016_04_110
crossref_primary_10_1016_j_envint_2015_10_001
crossref_primary_10_1016_j_chemosphere_2021_130050
crossref_primary_10_1016_j_scitotenv_2020_142246
crossref_primary_10_1002_wer_1060
crossref_primary_10_1016_j_apsusc_2014_08_133
crossref_primary_10_1007_s11356_013_2060_8
crossref_primary_10_1016_j_jwpe_2023_103537
crossref_primary_10_1016_j_scitotenv_2021_145906
crossref_primary_10_1016_j_scitotenv_2014_02_075
crossref_primary_10_1080_19443994_2014_892031
crossref_primary_10_1007_s11356_022_21252_4
crossref_primary_10_1016_j_scitotenv_2023_162772
crossref_primary_10_12677_HJCET_2022_124040
crossref_primary_10_1016_j_envpol_2020_115589
crossref_primary_10_1002_ep_12391
crossref_primary_10_1007_s11356_016_8062_6
crossref_primary_10_1007_s11356_024_34567_1
crossref_primary_10_1016_j_envpol_2021_116797
crossref_primary_10_3390_antibiotics11101362
crossref_primary_10_1016_j_jenvman_2018_09_025
crossref_primary_10_1016_j_molliq_2014_06_017
crossref_primary_10_1016_j_watres_2024_122658
crossref_primary_10_3390_app11093975
crossref_primary_10_1016_j_jhazmat_2019_120823
crossref_primary_10_1016_j_chemosphere_2017_03_125
crossref_primary_10_1002_clen_201300989
crossref_primary_10_1002_jctb_4165
crossref_primary_10_1016_j_jhazmat_2020_124025
crossref_primary_10_1590_S1413_41522013000300002
crossref_primary_10_1007_s00449_015_1495_3
crossref_primary_10_1002_bio_4906
crossref_primary_10_1016_j_biortech_2019_121683
crossref_primary_10_1021_acs_iecr_2c02458
crossref_primary_10_1088_1755_1315_186_3_012051
crossref_primary_10_1016_j_chemosphere_2011_03_002
crossref_primary_10_1016_j_envpol_2019_03_111
crossref_primary_10_1016_j_scitotenv_2018_12_236
crossref_primary_10_1016_j_biortech_2020_123974
crossref_primary_10_1016_j_eti_2023_103006
crossref_primary_10_2139_ssrn_3996869
crossref_primary_10_1016_j_eti_2023_103370
crossref_primary_10_1016_j_jes_2014_06_022
crossref_primary_10_3390_su12187611
crossref_primary_10_1016_j_eti_2023_103373
crossref_primary_10_1016_j_cej_2020_128152
crossref_primary_10_1016_j_jes_2021_08_052
crossref_primary_10_3390_antibiotics12030440
crossref_primary_10_3390_ma12203296
crossref_primary_10_1016_j_envpol_2018_02_024
crossref_primary_10_3390_w14182896
crossref_primary_10_7717_peerj_1359
crossref_primary_10_1016_j_scitotenv_2017_06_155
crossref_primary_10_1080_19443994_2013_842504
crossref_primary_10_1016_j_chemosphere_2017_11_056
crossref_primary_10_1016_j_memsci_2022_120762
crossref_primary_10_1016_j_jwpe_2024_106074
crossref_primary_10_1016_j_seppur_2022_121291
crossref_primary_10_1016_j_cej_2024_155372
crossref_primary_10_1016_j_apcatb_2017_06_029
crossref_primary_10_1039_C4EM00596A
crossref_primary_10_1016_j_jhazmat_2023_131452
crossref_primary_10_5004_dwt_2021_26540
crossref_primary_10_1007_s11783_019_1118_3
crossref_primary_10_1016_j_ecoenv_2015_12_020
crossref_primary_10_1016_j_scitotenv_2014_02_095
crossref_primary_10_1016_j_biortech_2019_02_089
crossref_primary_10_1016_j_ecoenv_2018_01_016
crossref_primary_10_2166_wrd_2016_099
crossref_primary_10_1016_j_scitotenv_2017_04_102
crossref_primary_10_1016_j_jes_2019_04_004
crossref_primary_10_1016_j_envint_2012_09_010
crossref_primary_10_1016_j_envpol_2019_05_080
crossref_primary_10_1007_s40710_014_0034_6
crossref_primary_10_1080_22297928_2017_1423244
crossref_primary_10_1016_j_envint_2019_105156
crossref_primary_10_1016_j_ceja_2021_100160
crossref_primary_10_1016_j_eti_2023_103225
crossref_primary_10_1016_j_cej_2019_02_088
crossref_primary_10_1016_j_envres_2024_118564
crossref_primary_10_1016_j_jece_2023_111437
crossref_primary_10_1016_j_cej_2022_135298
crossref_primary_10_1007_s42768_021_00089_6
crossref_primary_10_1016_j_envint_2021_106863
crossref_primary_10_1016_j_ceramint_2024_04_142
crossref_primary_10_1007_s11356_023_28823_z
crossref_primary_10_1007_s11356_022_18629_w
crossref_primary_10_1016_j_biortech_2018_08_028
crossref_primary_10_1016_j_chemosphere_2014_08_028
crossref_primary_10_1007_s11356_024_33844_3
crossref_primary_10_1016_j_chemosphere_2021_132566
crossref_primary_10_1016_j_jafr_2025_101815
crossref_primary_10_1016_j_psep_2011_08_008
crossref_primary_10_1021_acs_est_9b01131
crossref_primary_10_1016_j_chemosphere_2017_11_051
crossref_primary_10_1016_j_chemosphere_2021_132681
Cites_doi 10.1093/jac/dkg293
10.1016/j.watres.2007.07.031
10.1016/0048-9697(96)05039-5
10.1016/S0039-9140(03)00171-1
10.1016/j.chroma.2006.02.086
10.1021/es032519b
10.1021/es030653q
10.1021/es048603o
10.1016/j.watres.2007.04.005
10.1016/j.watres.2007.06.023
10.1021/es048143z
10.1021/ac050141p
10.1016/j.chroma.2005.05.051
10.1021/es050006u
10.1002/etc.5620191011
10.1016/j.watres.2006.02.014
10.1016/j.aca.2006.01.054
10.1007/978-3-662-04634-0
10.1080/15287390600975137
10.1126/science.1159483
10.1021/es0264448
10.1021/ac015588m
10.1021/es049509a
10.1021/es0342087
10.1897/04-211R.1
10.1016/j.scitotenv.2005.04.031
10.1016/j.clay.2007.08.003
10.1016/j.scitotenv.2008.02.042
10.1021/es060835v
10.1021/ic00290a022
10.1016/j.scitotenv.2005.06.030
10.1016/j.aca.2009.04.042
10.1021/es051321j
10.1016/j.jhazmat.2008.09.113
10.1021/es034368i
10.1016/j.chemosphere.2007.01.008
10.1016/j.chroma.2008.03.029
10.1021/es048550a
10.1016/j.chroma.2008.10.090
10.1021/es0256212
10.1016/j.watres.2009.02.005
10.1021/jp9824050
10.2533/000942903777679064
ContentType Journal Article
Copyright Copyright © 2010 American Chemical Society
2015 INIST-CNRS
Copyright American Chemical Society May 1, 2010
Copyright_xml – notice: Copyright © 2010 American Chemical Society
– notice: 2015 INIST-CNRS
– notice: Copyright American Chemical Society May 1, 2010
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7QH
7UA
F1W
H97
L.G
DOI 10.1021/es903490h
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
MEDLINE - Academic
Aqualine
Water Resources Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ASFA: Aquatic Sciences and Fisheries Abstracts
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
DatabaseTitleList Biotechnology Research Abstracts
MEDLINE - Academic

MEDLINE
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
Applied Sciences
EISSN 1520-5851
EndPage 3473
ExternalDocumentID 2041237331
20384353
22735114
10_1021_es903490h
c699431999
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GeographicLocations Hong Kong
Asia
China
GroupedDBID -
.K2
1AW
3R3
4.4
4R4
53G
55A
5GY
5VS
63O
7~N
85S
AABXI
ABFLS
ABMVS
ABOGM
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACPRK
ACS
AEESW
AENEX
AFEFF
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
K2
LG6
MS
PQEST
PQQKQ
ROL
RXW
TN5
TWZ
U5U
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
XZL
YZZ
---
-DZ
-~X
..I
.DC
6TJ
AAHBH
AAYOK
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
ADMHC
ADUKH
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
MS~
MW2
XSW
ZCA
.HR
186
1WB
42X
8WZ
A6W
ABHMW
ACKIV
ACRPL
ADNMO
AETEA
AEYZD
AGQPQ
ANPPW
ANTXH
IHE
IQODW
MVM
NHB
OHT
RNS
TAE
UBC
UBX
UBY
UQL
VJK
VOH
YV5
ZCG
ZY4
~A~
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7QH
7UA
F1W
H97
L.G
ID FETCH-LOGICAL-a469t-7376d9cc136c73b2a4abdfd9789f666ffa7356b40df14ada237b1938846cff083
IEDL.DBID ACS
ISSN 0013-936X
IngestDate Fri Jul 11 16:48:27 EDT 2025
Tue Aug 05 09:40:45 EDT 2025
Fri Jul 25 04:38:25 EDT 2025
Thu Apr 03 07:04:56 EDT 2025
Mon Jul 21 09:16:13 EDT 2025
Tue Jul 01 02:10:23 EDT 2025
Thu Apr 24 23:11:25 EDT 2025
Thu Aug 27 13:43:21 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Biodegradation
Drug
Activated sludge
Sulfonamide
Biodegradability
Operating conditions
Biological purification
Salinity
Hydrolysis
Persistence
Antibiotic
Adsorption
Batchwise
Volatilization
Micropollutant
Urban waste water
Kinetics
Waste water purification
Organic compounds
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a469t-7376d9cc136c73b2a4abdfd9789f666ffa7356b40df14ada237b1938846cff083
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 20384353
PQID 325112318
PQPubID 45412
PageCount 6
ParticipantIDs proquest_miscellaneous_754545042
proquest_miscellaneous_733403080
proquest_journals_325112318
pubmed_primary_20384353
pascalfrancis_primary_22735114
crossref_primary_10_1021_es903490h
crossref_citationtrail_10_1021_es903490h
acs_journals_10_1021_es903490h
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-05-01
PublicationDateYYYYMMDD 2010-05-01
PublicationDate_xml – month: 05
  year: 2010
  text: 2010-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
– name: Easton
PublicationTitle Environmental science & technology
PublicationTitleAlternate Environ. Sci. Technol
PublicationYear 2010
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Xu W. H. (ref17/cit17) 2007; 41
Abegglen C. (ref43/cit43) 2009; 43
Roberts P. H. (ref24/cit24) 2006; 356
Spongberg A. L. (ref20/cit20) 2008; 397
Hernando M. D. (ref9/cit9) 2004
Göbel A. (ref16/cit16) 2005; 1085
Andreozzi R. (ref33/cit33) 2004; 38
Hamscher G. (ref5/cit5) 2002; 74
Joss A. (ref29/cit29) 2006; 40
Watkinson A. J. (ref4/cit4) 2007; 41
Miao X. S. (ref15/cit15) 2004; 38
Martinez J. L. (ref10/cit10) 2008; 321
Golet E. M. (ref12/cit12) 2002; 36
McArdell C. S. (ref14/cit14) 2003; 37
Turiel E. (ref35/cit35) 2006; 562
Gulkowska A. (ref18/cit18) 2008; 42
Kim S. (ref31/cit31) 2007; 10
Batt A. L. (ref28/cit28) 2006; 40
Gu C. (ref37/cit37) 2005; 39
Kim S. (ref26/cit26) 2005; 39
Göbel A. (ref8/cit8) 2005; 39
Li B. (ref22/cit22) 2009; 645
Diaz-Cruz M. S. (ref3/cit3) 2008; 1193
Rogers H. R. (ref36/cit36) 1996; 185
Parolo M. E. (ref40/cit40) 2008; 40
Lindberg R. H. (ref23/cit23) 2005; 39
Karthikeyan K. G. (ref19/cit19) 2006; 361
Golet E. M. (ref6/cit6) 2003; 37
Chang P. H. (ref39/cit39) 2009; 165
Figueroa R. A. (ref38/cit38) 2004; 38
Kümmerer K. (ref13/cit13) 2003; 52
Wessels J. M. (ref41/cit41) 1998; 102
Junker T. (ref30/cit30) 2006; 40
Xiao Y. (ref1/cit1) 2008; 1214
Kümmerer K. (ref2/cit2) 2001
Boxall A. B. A. (ref7/cit7) 2003; 37
El-Kommos M. E. (ref34/cit34) 2003; 60
Eichhorn P. (ref44/cit44) 2005; 77
Ingerslev F. (ref25/cit25) 2000; 19
Batt A. L. (ref21/cit21) 2007; 68
Pérez S. (ref27/cit27) 2005; 24
Cha J. M. (ref32/cit32) 2006; 1115
(ref45/cit45) 2004
Giger W. (ref11/cit11) 2003; 57
Lambs L. (ref42/cit42) 1988; 27
References_xml – start-page: 334
  volume-title: 1st Workshop on Validation of Robustness of Sensors and Bioassays for Screening Polluatants
  year: 2004
  ident: ref9/cit9
– volume: 52
  start-page: 5
  issue: 1
  year: 2003
  ident: ref13/cit13
  publication-title: J. Antimicrob. Chemother.
  doi: 10.1093/jac/dkg293
– volume: 42
  start-page: 395
  issue: 1
  year: 2008
  ident: ref18/cit18
  publication-title: Water Res.
  doi: 10.1016/j.watres.2007.07.031
– volume: 185
  start-page: 3
  issue: 1
  year: 1996
  ident: ref36/cit36
  publication-title: Sci. Total Environ.
  doi: 10.1016/0048-9697(96)05039-5
– volume: 60
  start-page: 1033
  issue: 5
  year: 2003
  ident: ref34/cit34
  publication-title: Talanta.
  doi: 10.1016/S0039-9140(03)00171-1
– volume: 1115
  start-page: 46
  issue: 1
  year: 2006
  ident: ref32/cit32
  publication-title: J. Chromatogr., A.
  doi: 10.1016/j.chroma.2006.02.086
– volume: 37
  start-page: 286A
  issue: 15
  year: 2003
  ident: ref7/cit7
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es032519b
– volume: 38
  start-page: 3533
  issue: 13
  year: 2004
  ident: ref15/cit15
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es030653q
– volume: 39
  start-page: 2660
  issue: 8
  year: 2005
  ident: ref37/cit37
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es048603o
– volume: 41
  start-page: 4164
  issue: 18
  year: 2007
  ident: ref4/cit4
  publication-title: Water Res.
  doi: 10.1016/j.watres.2007.04.005
– volume: 41
  start-page: 4526
  issue: 19
  year: 2007
  ident: ref17/cit17
  publication-title: Water Res.
  doi: 10.1016/j.watres.2007.06.023
– volume: 39
  start-page: 3421
  issue: 10
  year: 2005
  ident: ref23/cit23
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es048143z
– volume: 77
  start-page: 4176
  issue: 13
  year: 2005
  ident: ref44/cit44
  publication-title: Anal. Chem.
  doi: 10.1021/ac050141p
– volume: 1085
  start-page: 179
  issue: 2
  year: 2005
  ident: ref16/cit16
  publication-title: J. Chromatogr., A.
  doi: 10.1016/j.chroma.2005.05.051
– volume: 39
  start-page: 5816
  issue: 15
  year: 2005
  ident: ref26/cit26
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es050006u
– volume: 19
  start-page: 2467
  issue: 10
  year: 2000
  ident: ref25/cit25
  publication-title: Environ. Toxicol. Chem.
  doi: 10.1002/etc.5620191011
– volume: 40
  start-page: 1686
  issue: 8
  year: 2006
  ident: ref29/cit29
  publication-title: Water Res.
  doi: 10.1016/j.watres.2006.02.014
– volume: 562
  start-page: 30
  issue: 1
  year: 2006
  ident: ref35/cit35
  publication-title: Anal. Chim. Acta.
  doi: 10.1016/j.aca.2006.01.054
– volume-title: Pharmaceuticals in the Environment: Sources, Fate, Effects and Risks
  year: 2001
  ident: ref2/cit2
  doi: 10.1007/978-3-662-04634-0
– volume-title: Wastewater Engineering: Treatment and Reuse
  year: 2004
  ident: ref45/cit45
– volume: 10
  start-page: 559
  issue: 8
  year: 2007
  ident: ref31/cit31
  publication-title: J. Toxicol. Environ. Health, Part B.
  doi: 10.1080/15287390600975137
– volume: 321
  start-page: 365
  issue: 5887
  year: 2008
  ident: ref10/cit10
  publication-title: Science.
  doi: 10.1126/science.1159483
– volume: 37
  start-page: 3243
  issue: 15
  year: 2003
  ident: ref6/cit6
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0264448
– volume: 74
  start-page: 1509
  issue: 7
  year: 2002
  ident: ref5/cit5
  publication-title: Anal. Chem.
  doi: 10.1021/ac015588m
– volume: 38
  start-page: 6832
  issue: 24
  year: 2004
  ident: ref33/cit33
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es049509a
– volume: 38
  start-page: 476
  issue: 2
  year: 2004
  ident: ref38/cit38
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0342087
– volume: 24
  start-page: 1361
  issue: 6
  year: 2005
  ident: ref27/cit27
  publication-title: Environ. Toxicol. Chem.
  doi: 10.1897/04-211R.1
– volume: 356
  start-page: 143
  issue: 1
  year: 2006
  ident: ref24/cit24
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2005.04.031
– volume: 40
  start-page: 179
  issue: 1
  year: 2008
  ident: ref40/cit40
  publication-title: Appl. Clay Sci.
  doi: 10.1016/j.clay.2007.08.003
– volume: 397
  start-page: 148
  issue: 1
  year: 2008
  ident: ref20/cit20
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2008.02.042
– volume: 40
  start-page: 7367
  issue: 23
  year: 2006
  ident: ref28/cit28
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es060835v
– volume: 27
  start-page: 3001
  issue: 17
  year: 1988
  ident: ref42/cit42
  publication-title: Inorg. Chem.
  doi: 10.1021/ic00290a022
– volume: 361
  start-page: 196
  issue: 1
  year: 2006
  ident: ref19/cit19
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2005.06.030
– volume: 645
  start-page: 64
  issue: 1
  year: 2009
  ident: ref22/cit22
  publication-title: Anal. Chim. Acta.
  doi: 10.1016/j.aca.2009.04.042
– volume: 40
  start-page: 318
  issue: 1
  year: 2006
  ident: ref30/cit30
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es051321j
– volume: 165
  start-page: 148
  issue: 1
  year: 2009
  ident: ref39/cit39
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2008.09.113
– volume: 37
  start-page: 5479
  issue: 24
  year: 2003
  ident: ref14/cit14
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es034368i
– volume: 68
  start-page: 428
  issue: 3
  year: 2007
  ident: ref21/cit21
  publication-title: Chemosphere.
  doi: 10.1016/j.chemosphere.2007.01.008
– volume: 1193
  start-page: 50
  issue: 1
  year: 2008
  ident: ref3/cit3
  publication-title: J. Chromatogr., A.
  doi: 10.1016/j.chroma.2008.03.029
– volume: 39
  start-page: 3981
  issue: 11
  year: 2005
  ident: ref8/cit8
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es048550a
– volume: 1214
  start-page: 100
  issue: 1
  year: 2008
  ident: ref1/cit1
  publication-title: J. Chromatogr., A.
  doi: 10.1016/j.chroma.2008.10.090
– volume: 36
  start-page: 3645
  issue: 17
  year: 2002
  ident: ref12/cit12
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0256212
– volume: 43
  start-page: 2036
  issue: 7
  year: 2009
  ident: ref43/cit43
  publication-title: Water Res.
  doi: 10.1016/j.watres.2009.02.005
– volume: 102
  start-page: 9323
  issue: 46
  year: 1998
  ident: ref41/cit41
  publication-title: J. Phys. Chem. B.
  doi: 10.1021/jp9824050
– volume: 57
  start-page: 485
  issue: 9
  year: 2003
  ident: ref11/cit11
  publication-title: Chimia.
  doi: 10.2533/000942903777679064
SSID ssj0002308
Score 2.5490131
Snippet The removal of 11 antibiotics of 6 classes, that is, two β-lactams (ampicillin and cefalexin), two sulfonamides (sulfamethoxazole and sulfadiazine), three...
The removal of 11 antibiotics of 6 classes, that is, two beta-lactams (ampicillin and cefalexin), two sulfonamides (sulfamethoxazole and sulfadiazine), three...
The removal of 11 antibiotics of 6 classes, that is, two *b-lactams (ampicillin and cefalexin), two sulfonamides (sulfamethoxazole and sulfadiazine), three...
SourceID proquest
pubmed
pascalfrancis
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3468
SubjectTerms Adsorption
Anti-Bacterial Agents - chemistry
Antibiotics
Applied sciences
Biodegradation
Biodegradation, Environmental
Biological and medical sciences
Biological treatment of waters
Bioremediation
Biotechnology
Cations
Environment and pollution
Environmental science
Exact sciences and technology
Fluoroquinolones - chemistry
Fresh water
Fundamental and applied biological sciences. Psychology
Industrial applications and implications. Economical aspects
Kinetics
Magnesium - chemistry
Mass Spectrometry - methods
Other wastewaters
Pollution
Remediation and Control Technologies
Saline water
Sewage
Sludge
Time Factors
Waste Disposal, Fluid - methods
Wastewaters
Water Pollutants, Chemical - analysis
Water Purification
Water treatment and pollution
Title Biodegradation and Adsorption of Antibiotics in the Activated Sludge Process
URI http://dx.doi.org/10.1021/es903490h
https://www.ncbi.nlm.nih.gov/pubmed/20384353
https://www.proquest.com/docview/325112318
https://www.proquest.com/docview/733403080
https://www.proquest.com/docview/754545042
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwEB5RemmF2kJLSSkrq-2hl9Ak9trxMeUhhKAXQNpb5CdFRQkiu5f--o7zWhCPnjNRHI9n5huN5xuAb1pKhtmxjoURMmbcqThX3MeZl4zqDGNSWy44_cWPLtjxbDpbga9PVPCz9IdrZOBQSX6_gJcZz0XIsIq9s9HdIobOhzEFkvLZQB9099UQekxzL_Ss3agGd8F34yuexpdtnDl8C_tDt053veTP7mKud83fh-SNz_3CO3jT40xSdAdjHVZctQGv77APbsDmwbLJDUV7K2_ew8nPq9oGEolu3hJRlSWFberb1r2Q2pOiCq0mdaB4JlcVQRBJCtMOSnOWnF0v7KUjfQvCB7g4PDjfO4r7qQuxwlR5Hgt0OVYak1JuBKpLMaWtt5htSo-5jvdK0CnXLLE-ZbiQjAqNKDBHIGO8R0S3CatVXbktIIn2mmkmhVKcaZ4q4wR6AC-M4rmlJoIJqqXsraYp24J4lpbjfkXwfdBYaXrO8jA64_ox0S-j6E1H1PGY0OSe2kfJDFEcQk8WwfZwDpbLoiENQxycR0DGp2iFobSiKlcvmlJQygLzT_KMCGJVNkUfGcHH7oAtv57QHGEr_fS__diGV8PthST9DKvz24XbQVA015PWKP4Bng0FdA
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcoAK8SgUlsJiIZC4pCSxN04OHEJptaXbXtpKewt-0ooqqepdIfgp_BX-HOO8tkUFTpU4Z2Q79njmG43nG4BXMssYRscy4IpnAUuMCFKR2CC2GaMyRp9Upwv29pPxEfs4HU2X4EdXC4OLcDiSq5P4C3aB6K1xmadSCY_bB5S75ttXDM_cu50PeJav43h763BzHLQdBAKBYd8s4Hh9dKZURBPFcWrBhNRWY-SUWcTt1gpOR4lkobYRE1rElEtENCk6ZWUtohMc9wbcRNAT-8Au3zzorTxC97TrjpDRZNqxFl1cqvd4yl3yeHfOhMPNt03XjD_D2tq9bd-Dn_3G1K9avmzMZ3JDff-NM_L_3Ln7cLdF1SRvrsEDWDLlKqxc4FpchbWtRUkfirY2zT2EyfuTSnvKjKa7FBGlJrl21XltTEllSV76wprKE1qTk5IgZCa5qtvCGU0OTuf6syFtwcUjOLqW_1yD5bIqzRMgobSSSZZxIRImk0gow9HeWa5EkmqqBjDE4ylaG-GKOv0fR0V_PgN40ylKoVqGdt8o5PQq0Ze96FlDS3KV0PCStvWSMWJWBNpsAOud-i2WRX3Qiag_HQDpv6LN8YkkUZpq7gpOKfM8R-FfRBCZsxF6hAE8bvR6MXtIUwTp9Om_9uMF3Bof7k2Kyc7-7jrc7t5thNEzWJ6dz81zhIMzOazvJYFP163OvwDDSGid
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VIiEQ4lEohMJiIZC4pCSxN04OHJa2q5aWCqlU2lvws62oklW9KwQ_hr_CX2Oc17aowKkS54xsx57HNxr7G4CXMs8ZZscy5IrnIUuNCDOR2jCxOaMywZhUlws-7Kfbh-z9ZDhZgh_dWxhchMORXF3E91Y91bZlGIjfGJd7OpXouL1EuWu-fcUUzb3d2cTzfJUk461PG9th20UgFJj6zUKOJqRzpWKaKo7TCyakthqzp9widrdWcDpMJYu0jZnQIqFcIqrJMDAraxGh4LjX4LovD_rkbrRx0Ht6hO9Z1yEhp-mkYy46v1Qf9ZS7EPVuT4XDA7BN54w_Q9s6xI3vws9-c-qbLV_W5zO5rr7_xhv5_-7ePbjTomsyaszhPiyZcgVuneNcXIHVrcXTPhRtfZt7AHvvTirtqTOaLlNElJqMtKvOaqdKKktGpX9gU3lia3JSEoTOZKTq9nBGk4PTuT4ypH148RAOr-Q_V2G5rErzGEgkrWSS5VyIlMk0Fspw9HuWK5FmmqoABnhEResrXFFfA0jioj-fAF53ylKolqndNww5vUz0RS86behJLhMaXNC4XjJB7IqAmwWw1qngYlnUJ5-I_rMASP8VfY8vKInSVHNXcEqZ5zuK_iKCCJ0NMTIE8KjR7cXsEc0QrNMn_9qP53Dj4-a42NvZ312Dm931jSh-Csuzs7l5hqhwJge1aRL4fNXa_Auig2sg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biodegradation+and+Adsorption+of+Antibiotics+in+the+Activated+Sludge+Process&rft.jtitle=Environmental+science+%26+technology&rft.au=Li%2C+Bing&rft.au=Zhang%2C+Tong&rft.date=2010-05-01&rft.pub=American+Chemical+Society&rft.issn=0013-936X&rft.volume=44&rft.issue=9&rft.spage=3468&rft_id=info:doi/10.1021%2Fes903490h&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2041237331
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon