Surface Charge and Cellular Processing of Covalently Functionalized Multiwall Carbon Nanotubes Determine Pulmonary Toxicity
Functionalized carbon nanotubes (f-CNTs) are being produced in increased volume because of the ease of dispersion and maintenance of the pristine material physicochemical properties when used in composite materials as well as for other commercial applications. However, the potential adverse effects...
Saved in:
Published in | ACS nano Vol. 7; no. 3; pp. 2352 - 2368 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
26.03.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Functionalized carbon nanotubes (f-CNTs) are being produced in increased volume because of the ease of dispersion and maintenance of the pristine material physicochemical properties when used in composite materials as well as for other commercial applications. However, the potential adverse effects of f-CNTs have not been quantitatively or systematically explored. In this study, we used a library of covalently functionalized multiwall carbon nanotubes (f-MWCNTs), established from the same starting material, to assess the impact of surface charge in a predictive toxicological model that relates the tubes’ pro-inflammatory and pro-fibrogenic effects at cellular level to the development of pulmonary fibrosis. Carboxylate (COOH), polyethylene glycol (PEG), amine (NH2), sidewall amine (sw-NH2), and polyetherimide (PEI)-modified MWCNTs were successfully established from raw or as-prepared (AP-) MWCNTs and comprehensively characterized by TEM, XPS, FTIR, and DLS to obtain information about morphology, length, degree of functionalization, hydrodynamic size, and surface charge. Cellular screening in BEAS-2B and THP-1 cells showed that, compared to AP-MWCNTs, anionic functionalization (COOH and PEG) decreased the production of pro-fibrogenic cytokines and growth factors (including IL-1β, TGF-β1, and PDGF-AA), while neutral and weak cationic functionalization (NH2 and sw-NH2) showed intermediary effects. In contrast, the strongly cationic PEI-functionalized tubes induced robust biological effects. These differences could be attributed to differences in cellular uptake and NLRP3 inflammasome activation, which depends on the propensity toward lysosomal damage and cathepsin B release in macrophages. Moreover, the in vitro hazard ranking was validated by the pro-fibrogenic potential of the tubes in vivo. Compared to pristine MWCNTs, strong cationic PEI-MWCNTs induced significant lung fibrosis, while carboxylation significantly decreased the extent of pulmonary fibrosis. These results demonstrate that surface charge plays an important role in the structure–activity relationships that determine the pro-fibrogenic potential of f-CNTs in the lung. |
---|---|
AbstractList | Functionalized carbon nanotubes (
f
-CNTs) are being produced in increased volume because of the ease of dispersion and maintenance of the pristine material physicochemical properties when used in composite materials as well as for other commercial applications. However, the potential adverse effects of
f
-CNTs have not been quantitatively or systematically explored, and in this study we used a library of covalently functionalized multiwall carbon nanotubes (
f
-MWCNTs), established from the same starting material, to assess the impact of surface charge in a predictive toxicological model that relates the tubes’ pro-inflammatory and pro-fibrogenic effects at cellular level to the development of pulmonary fibrosis. Carboxylated (COOH), polyethylene glycol (PEG), amine (NH
2
), sidewall amine (sw-NH
2
) and polyetherimide (PEI) modified MWCNTs were successfully established from raw or as-prepared (AP-) MWCNTs, and comprehensively characterized by TEM, XPS, FTIR and DLS to obtain information about morphology, length, degree of functionalization, hydrodynamic size and surface charge. Cellular screening in BEAS-2B and THP-1 cells showed that, compared to AP-MWCNTs, anionic functionalization (COOH and PEG) decreased the production of pro-fibrogenic cytokines and growth factors (including IL-1β, TGF-β1 and PDGF-AA), while neutral and weak cationic functionalization (NH
2
and sw-NH
2
) showed intermediary effects. In contrast, the strongly cationic PEI-functionalized tubes induced robust biological effects. These differences could be attributed to differences in cellular uptake and NLRP3 inflammasome activation, which depends on the propensity towards lysosomal damage and cathepsin B release in macrophages. Moreover, the
in vitro
hazard ranking was validated by the pro-fibrogenic potential of the tubes
in vivo
. Compared to pristine MWCNTs, strong cationic PEIMWCNTs induced significant lung fibrosis, while carboxylation significantly decreased the extent of pulmonary fibrosis. These results demonstrate that surface charge plays an important role in the structure-activity relationships that determine the pro-fibrogenic potential of
f
-CNTs in the lung. Functionalized carbon nanotubes (f-CNTs) are being produced in increased volume because of the ease of dispersion and maintenance of the pristine material physicochemical properties when used in composite materials as well as for other commercial applications. However, the potential adverse effects of f-CNTs have not been quantitatively or systematically explored. In this study, we used a library of covalently functionalized multiwall carbon nanotubes (f-MWCNTs), established from the same starting material, to assess the impact of surface charge in a predictive toxicological model that relates the tubes’ pro-inflammatory and pro-fibrogenic effects at cellular level to the development of pulmonary fibrosis. Carboxylate (COOH), polyethylene glycol (PEG), amine (NH2), sidewall amine (sw-NH2), and polyetherimide (PEI)-modified MWCNTs were successfully established from raw or as-prepared (AP-) MWCNTs and comprehensively characterized by TEM, XPS, FTIR, and DLS to obtain information about morphology, length, degree of functionalization, hydrodynamic size, and surface charge. Cellular screening in BEAS-2B and THP-1 cells showed that, compared to AP-MWCNTs, anionic functionalization (COOH and PEG) decreased the production of pro-fibrogenic cytokines and growth factors (including IL-1β, TGF-β1, and PDGF-AA), while neutral and weak cationic functionalization (NH2 and sw-NH2) showed intermediary effects. In contrast, the strongly cationic PEI-functionalized tubes induced robust biological effects. These differences could be attributed to differences in cellular uptake and NLRP3 inflammasome activation, which depends on the propensity toward lysosomal damage and cathepsin B release in macrophages. Moreover, the in vitro hazard ranking was validated by the pro-fibrogenic potential of the tubes in vivo. Compared to pristine MWCNTs, strong cationic PEI-MWCNTs induced significant lung fibrosis, while carboxylation significantly decreased the extent of pulmonary fibrosis. These results demonstrate that surface charge plays an important role in the structure–activity relationships that determine the pro-fibrogenic potential of f-CNTs in the lung. Functionalized carbon nanotubes (f-CNTs) are being produced in increased volume because of the ease of dispersion and maintenance of the pristine material physicochemical properties when used in composite materials as well as for other commercial applications. However, the potential adverse effects of f-CNTs have not been quantitatively or systematically explored. In this study, we used a library of covalently functionalized multiwall carbon nanotubes (f-MWCNTs), established from the same starting material, to assess the impact of surface charge in a predictive toxicological model that relates the tubes' pro-inflammatory and pro-fibrogenic effects at cellular level to the development of pulmonary fibrosis. Carboxylate (COOH), polyethylene glycol (PEG), amine (NH2), sidewall amine (sw-NH2), and polyetherimide (PEI)-modified MWCNTs were successfully established from raw or as-prepared (AP-) MWCNTs and comprehensively characterized by TEM, XPS, FTIR, and DLS to obtain information about morphology, length, degree of functionalization, hydrodynamic size, and surface charge. Cellular screening in BEAS-2B and THP-1 cells showed that, compared to AP-MWCNTs, anionic functionalization (COOH and PEG) decreased the production of pro-fibrogenic cytokines and growth factors (including IL-1β, TGF-β1, and PDGF-AA), while neutral and weak cationic functionalization (NH2 and sw-NH2) showed intermediary effects. In contrast, the strongly cationic PEI-functionalized tubes induced robust biological effects. These differences could be attributed to differences in cellular uptake and NLRP3 inflammasome activation, which depends on the propensity toward lysosomal damage and cathepsin B release in macrophages. Moreover, the in vitro hazard ranking was validated by the pro-fibrogenic potential of the tubes in vivo. Compared to pristine MWCNTs, strong cationic PEI-MWCNTs induced significant lung fibrosis, while carboxylation significantly decreased the extent of pulmonary fibrosis. These results demonstrate that surface charge plays an important role in the structure-activity relationships that determine the pro-fibrogenic potential of f-CNTs in the lung.Functionalized carbon nanotubes (f-CNTs) are being produced in increased volume because of the ease of dispersion and maintenance of the pristine material physicochemical properties when used in composite materials as well as for other commercial applications. However, the potential adverse effects of f-CNTs have not been quantitatively or systematically explored. In this study, we used a library of covalently functionalized multiwall carbon nanotubes (f-MWCNTs), established from the same starting material, to assess the impact of surface charge in a predictive toxicological model that relates the tubes' pro-inflammatory and pro-fibrogenic effects at cellular level to the development of pulmonary fibrosis. Carboxylate (COOH), polyethylene glycol (PEG), amine (NH2), sidewall amine (sw-NH2), and polyetherimide (PEI)-modified MWCNTs were successfully established from raw or as-prepared (AP-) MWCNTs and comprehensively characterized by TEM, XPS, FTIR, and DLS to obtain information about morphology, length, degree of functionalization, hydrodynamic size, and surface charge. Cellular screening in BEAS-2B and THP-1 cells showed that, compared to AP-MWCNTs, anionic functionalization (COOH and PEG) decreased the production of pro-fibrogenic cytokines and growth factors (including IL-1β, TGF-β1, and PDGF-AA), while neutral and weak cationic functionalization (NH2 and sw-NH2) showed intermediary effects. In contrast, the strongly cationic PEI-functionalized tubes induced robust biological effects. These differences could be attributed to differences in cellular uptake and NLRP3 inflammasome activation, which depends on the propensity toward lysosomal damage and cathepsin B release in macrophages. Moreover, the in vitro hazard ranking was validated by the pro-fibrogenic potential of the tubes in vivo. Compared to pristine MWCNTs, strong cationic PEI-MWCNTs induced significant lung fibrosis, while carboxylation significantly decreased the extent of pulmonary fibrosis. These results demonstrate that surface charge plays an important role in the structure-activity relationships that determine the pro-fibrogenic potential of f-CNTs in the lung. Functionalized carbon nanotubes (f-CNTs) are being produced in increased volume because of the ease of dispersion and maintenance of the pristine material physicochemical properties when used in composite materials as well as for other commercial applications. However, the potential adverse effects of f-CNTs have not been quantitatively or systematically explored. In this study, we used a library of covalently functionalized multiwall carbon nanotubes (f-MWCNTs), established from the same starting material, to assess the impact of surface charge in a predictive toxicological model that relates the tubes' pro-inflammatory and pro-fibrogenic effects at cellular level to the development of pulmonary fibrosis. Carboxylate (COOH), polyethylene glycol (PEG), amine (NH sub(2)), sidewall amine (sw-NH sub(2)), and polyetherimide (PEI)-modified MWCNTs were successfully established from raw or as-prepared (AP-) MWCNTs and comprehensively characterized by TEM, XPS, FTIR, and DLS to obtain information about morphology, length, degree of functionalization, hydrodynamic size, and surface charge. Cellular screening in BEAS-2B and THP-1 cells showed that, compared to AP-MWCNTs, anionic functionalization (COOH and PEG) decreased the production of pro-fibrogenic cytokines and growth factors (including IL-1 beta , TGF- beta 1, and PDGF-AA), while neutral and weak cationic functionalization (NH sub(2) and sw-NH sub(2)) showed intermediary effects. In contrast, the strongly cationic PEI-functionalized tubes induced robust biological effects. These differences could be attributed to differences in cellular uptake and NLRP3 inflammasome activation, which depends on the propensity toward lysosomal damage and cathepsin B release in macrophages. Moreover, the in vitro hazard ranking was validated by the pro-fibrogenic potential of the tubes in vivo. Compared to pristine MWCNTs, strong cationic PEI-MWCNTs induced significant lung fibrosis, while carboxylation significantly decreased the extent of pulmonary fibrosis. These results demonstrate that surface charge plays an important role in the structure-activity relationships that determine the pro-fibrogenic potential of f-CNTs in the lung. |
Author | Sun, Bingbing Liao, Yu-Pei Wang, Meiying Chang, Chong Hyun Meng, Huan Song, Tze-Bin Nel, André E Yang, Yang Li, Zongxi Wang, Xiang Ji, Zhaoxia Zink, Jeffrey I Hwang, Angela A Li, Ruibin Lin, Sijie Xia, Tian Zhang, Haiyuan Xu, Run |
AuthorAffiliation | Division of NanoMedicine, Department of Medicine University of California California NanoSystems Institute Department of Materials Science and Engineering Department of Chemistry & Biochemisty |
AuthorAffiliation_xml | – name: California NanoSystems Institute – name: University of California – name: Division of NanoMedicine, Department of Medicine – name: Department of Chemistry & Biochemisty – name: Department of Materials Science and Engineering – name: Department of chemistry & Biochemisty, University of California, Los Angeles, CA 90095, United States – name: Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, United States – name: California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States – name: Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095, United States |
Author_xml | – sequence: 1 givenname: Ruibin surname: Li fullname: Li, Ruibin – sequence: 2 givenname: Xiang surname: Wang fullname: Wang, Xiang – sequence: 3 givenname: Zhaoxia surname: Ji fullname: Ji, Zhaoxia – sequence: 4 givenname: Bingbing surname: Sun fullname: Sun, Bingbing – sequence: 5 givenname: Haiyuan surname: Zhang fullname: Zhang, Haiyuan – sequence: 6 givenname: Chong Hyun surname: Chang fullname: Chang, Chong Hyun – sequence: 7 givenname: Sijie surname: Lin fullname: Lin, Sijie – sequence: 8 givenname: Huan surname: Meng fullname: Meng, Huan – sequence: 9 givenname: Yu-Pei surname: Liao fullname: Liao, Yu-Pei – sequence: 10 givenname: Meiying surname: Wang fullname: Wang, Meiying – sequence: 11 givenname: Zongxi surname: Li fullname: Li, Zongxi – sequence: 12 givenname: Angela A surname: Hwang fullname: Hwang, Angela A – sequence: 13 givenname: Tze-Bin surname: Song fullname: Song, Tze-Bin – sequence: 14 givenname: Run surname: Xu fullname: Xu, Run – sequence: 15 givenname: Yang surname: Yang fullname: Yang, Yang – sequence: 16 givenname: Jeffrey I surname: Zink fullname: Zink, Jeffrey I – sequence: 17 givenname: André E surname: Nel fullname: Nel, André E – sequence: 18 givenname: Tian surname: Xia fullname: Xia, Tian email: txia@ucla.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23414138$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9rFTEUxYNUbPt04ReQbARdPJs_k2RmI8hoq9BqwQruQiaTvKZkkjaZVJ_98qa8-qhScJUL-Z3Luefsg50QgwHgOUZvMCL4IASKGOMiPwJ7uKN8iVr-fWc7M7wL9nO-QIiJVvAnYJfQBjeYtnvg5mtJVmkD-3OVVgaqMMLeeF-8SvA0RW1ydmEFo4V9vFbehNmv4WEJenYxKO9-mRGeFD-7H8p72Ks0xAA_qxDnMpgM35vZpMkFA0-Ln6oireFZ_Om0m9dPwWOrfDbP7t4F-Hb44az_uDz-cvSpf3e8VA3v5iUXlrE6MoWxsXxoEUWcMTJqxo0liIuOD9yOgjPSaCxIxxs2CoaosMQKQRfg7WbvZRkmM-p6Q1JeXiY3VTsyKif__gnuXK7itWwQJryGuACv7hakeFVMnuXksq4pqWBiyRILThDrOCX_RylBuBUYtRV9cd_W1s-fcirwegPoFHNOxm4RjORt8XJbfGUP_mFrwuq2o3qR8w8qXm4USmd5EUuqbeYHuN8Jd72L |
CitedBy_id | crossref_primary_10_1021_acs_jmedchem_5b01770 crossref_primary_10_1089_aivt_2017_0033 crossref_primary_10_1038_s41467_018_06869_9 crossref_primary_10_1021_acsaem_4c01968 crossref_primary_10_1016_j_ecoenv_2018_09_077 crossref_primary_10_3390_nano13030472 crossref_primary_10_1016_j_impact_2019_100152 crossref_primary_10_1016_j_talanta_2015_10_020 crossref_primary_10_1021_acsnano_6b01560 crossref_primary_10_1021_acs_langmuir_9b02578 crossref_primary_10_1080_08958378_2020_1723746 crossref_primary_10_1016_j_fct_2015_06_008 crossref_primary_10_1002_wnan_1794 crossref_primary_10_1016_j_biomaterials_2016_11_005 crossref_primary_10_1007_s11434_016_1069_z crossref_primary_10_1021_acsnano_7b03038 crossref_primary_10_3389_fbioe_2022_1001572 crossref_primary_10_1002_jbm_a_35416 crossref_primary_10_1016_j_etap_2016_09_013 crossref_primary_10_1021_acsnano_6b04143 crossref_primary_10_1080_17435390_2021_1988171 crossref_primary_10_1021_acsnano_5b04751 crossref_primary_10_1002_smll_201700776 crossref_primary_10_1039_D0NR08478F crossref_primary_10_1088_0957_4484_27_41_412002 crossref_primary_10_1039_C6EN00009F crossref_primary_10_5620_eht_e2015007 crossref_primary_10_1080_17435390_2018_1425503 crossref_primary_10_1016_j_colsurfb_2017_05_008 crossref_primary_10_1016_j_tox_2015_03_008 crossref_primary_10_1021_acsbiomaterials_5b00465 crossref_primary_10_1186_s12989_018_0245_5 crossref_primary_10_1016_j_biomaterials_2014_02_002 crossref_primary_10_1039_C6EN00579A crossref_primary_10_1186_s12989_019_0298_0 crossref_primary_10_1039_D4BM01349B crossref_primary_10_1021_acsnano_7b07737 crossref_primary_10_1021_acs_est_7b04231 crossref_primary_10_1016_j_envint_2022_107258 crossref_primary_10_1016_j_fuel_2022_127213 crossref_primary_10_3390_lubricants12100359 crossref_primary_10_1002_smll_202000673 crossref_primary_10_1021_nn5012754 crossref_primary_10_3390_ijms21155335 crossref_primary_10_1002_jbm_a_36168 crossref_primary_10_1186_s12989_019_0299_z crossref_primary_10_1021_acsnano_5b03443 crossref_primary_10_1080_17435390_2017_1332253 crossref_primary_10_1016_j_tiv_2017_04_027 crossref_primary_10_1007_s13770_023_00530_3 crossref_primary_10_3109_17435390_2015_1022887 crossref_primary_10_1016_j_snb_2013_10_056 crossref_primary_10_1021_acsnano_8b03285 crossref_primary_10_1021_acssuschemeng_2c06673 crossref_primary_10_1289_EHP6508 crossref_primary_10_1021_nn4037927 crossref_primary_10_1016_j_nantod_2022_101624 crossref_primary_10_1007_s00204_016_1717_8 crossref_primary_10_1016_j_ijpharm_2019_118521 crossref_primary_10_1246_cl_210195 crossref_primary_10_1016_j_impact_2019_100190 crossref_primary_10_1080_15685551_2019_1565664 crossref_primary_10_1016_j_tiv_2018_12_016 crossref_primary_10_1021_acs_est_7b04938 crossref_primary_10_1088_1402_4896_acd668 crossref_primary_10_1088_2043_6254_ab7c56 crossref_primary_10_1016_j_carbon_2018_02_058 crossref_primary_10_3390_ijms22010385 crossref_primary_10_1039_C8EN00242H crossref_primary_10_1016_j_cbi_2015_06_031 crossref_primary_10_1016_j_carbon_2015_05_022 crossref_primary_10_1080_15287394_2014_951756 crossref_primary_10_1016_j_envres_2022_114580 crossref_primary_10_1016_j_chemosphere_2024_143923 crossref_primary_10_3390_gels9100822 crossref_primary_10_1016_j_biomaterials_2015_11_061 crossref_primary_10_1021_acs_est_2c03675 crossref_primary_10_1021_acsnano_6b03874 crossref_primary_10_1186_1479_5876_12_138 crossref_primary_10_3390_toxics11060491 crossref_primary_10_1021_nn503887r crossref_primary_10_1155_2014_670815 crossref_primary_10_1093_toxsci_kfy100 crossref_primary_10_1186_s12989_022_00460_3 crossref_primary_10_1016_j_csbj_2022_03_014 crossref_primary_10_1039_C4RA17002D crossref_primary_10_1016_j_jconrel_2022_09_021 crossref_primary_10_1021_acsnano_5b00941 crossref_primary_10_1371_journal_pone_0134722 crossref_primary_10_2147_IJN_S314308 crossref_primary_10_1021_acs_nanolett_8b01805 crossref_primary_10_3390_nano7110355 crossref_primary_10_2217_nnm_15_48 crossref_primary_10_1016_j_matt_2023_10_026 crossref_primary_10_1080_10937404_2015_1051611 crossref_primary_10_1016_j_nano_2019_102037 crossref_primary_10_1080_10408444_2016_1206061 crossref_primary_10_1088_2043_6254_ab4875 crossref_primary_10_1002_adfm_202004886 crossref_primary_10_4028_www_scientific_net_AMR_1118_149 crossref_primary_10_1021_acs_est_6b04280 crossref_primary_10_1038_s41578_023_00611_8 crossref_primary_10_1002_jat_3075 crossref_primary_10_1093_nsr_nww064 crossref_primary_10_1007_s11434_014_0700_0 crossref_primary_10_1186_s12989_021_00440_z crossref_primary_10_1039_D2EN00145D crossref_primary_10_1021_envhealth_3c00034 crossref_primary_10_1021_acsbiomaterials_7b00824 crossref_primary_10_3390_ijms24129824 crossref_primary_10_1021_nn406166n crossref_primary_10_1021_acsnano_1c11353 crossref_primary_10_1111_jmi_12251 crossref_primary_10_1002_smll_202000603 crossref_primary_10_1016_j_jsamd_2024_100762 crossref_primary_10_1016_j_carbon_2013_09_090 crossref_primary_10_1007_s40572_016_0112_1 crossref_primary_10_1016_j_snb_2017_02_124 crossref_primary_10_1039_D2TB01741E crossref_primary_10_1021_acsanm_3c04413 crossref_primary_10_1016_j_vaccine_2015_07_101 crossref_primary_10_1016_j_addr_2013_05_012 crossref_primary_10_1039_C6NH00227G crossref_primary_10_1007_s11051_014_2761_z crossref_primary_10_3109_17435390_2015_1088588 crossref_primary_10_1016_j_jconrel_2016_01_030 crossref_primary_10_1021_acsnano_8b08517 crossref_primary_10_1002_smll_201301597 crossref_primary_10_1007_s13346_020_00818_0 crossref_primary_10_1007_s00204_016_1742_7 crossref_primary_10_1016_j_copbio_2013_11_008 crossref_primary_10_1111_risa_12642 crossref_primary_10_1007_s11051_015_3181_4 crossref_primary_10_1016_j_impact_2016_08_002 crossref_primary_10_2217_nnm_14_42 crossref_primary_10_1038_icb_2014_21 crossref_primary_10_1016_j_nantod_2022_101525 crossref_primary_10_1016_j_jhazmat_2018_04_025 crossref_primary_10_3389_fimmu_2018_01120 crossref_primary_10_1186_s12989_016_0172_2 crossref_primary_10_1186_s12989_020_00390_y crossref_primary_10_3390_ijms19020354 crossref_primary_10_1021_envhealth_4c00148 crossref_primary_10_1098_rstb_2014_0162 crossref_primary_10_1016_j_abb_2019_02_015 crossref_primary_10_1186_s12989_024_00616_3 crossref_primary_10_1007_s00216_018_1289_y crossref_primary_10_3389_fphar_2018_01401 crossref_primary_10_1016_j_jes_2021_04_021 crossref_primary_10_1021_acs_molpharmaceut_5b00161 crossref_primary_10_1007_s11095_014_1415_2 crossref_primary_10_1016_j_tiv_2014_10_008 crossref_primary_10_1088_0957_4484_25_49_495102 crossref_primary_10_1016_j_nanoen_2019_02_011 crossref_primary_10_1021_nn505002w crossref_primary_10_1186_s12989_016_0123_y crossref_primary_10_1515_ntrev_2022_0063 crossref_primary_10_1021_nn507243w crossref_primary_10_3390_nano12050735 crossref_primary_10_1002_smll_201603830 crossref_primary_10_1080_17435390_2018_1472309 crossref_primary_10_1038_s41467_020_17300_7 crossref_primary_10_1039_C7RA04933A crossref_primary_10_1007_s12094_023_03117_5 crossref_primary_10_1016_j_memsci_2015_06_006 crossref_primary_10_1016_j_mssp_2014_11_030 crossref_primary_10_1016_j_ejpb_2015_03_007 crossref_primary_10_2217_nnm_2016_0305 crossref_primary_10_3390_nano13061059 crossref_primary_10_1186_1743_8977_10_52 crossref_primary_10_1016_j_nanoen_2019_06_045 crossref_primary_10_1021_acs_est_4c06186 crossref_primary_10_1021_acs_analchem_6b03751 crossref_primary_10_1016_j_addr_2013_09_005 crossref_primary_10_1186_s12951_020_00747_7 crossref_primary_10_1002_smll_201500906 crossref_primary_10_1016_j_lfs_2020_118059 crossref_primary_10_1039_C4BM00421C crossref_primary_10_1007_s11051_018_4438_5 crossref_primary_10_1149_1945_7111_abef85 crossref_primary_10_1186_1743_8977_10_53 crossref_primary_10_1186_1743_8977_11_28 crossref_primary_10_1111_joim_12109 crossref_primary_10_1002_smll_202000528 crossref_primary_10_1093_nsr_nwx120 crossref_primary_10_1007_s12221_016_6388_9 crossref_primary_10_1039_C4EN00102H crossref_primary_10_1002_smll_201703915 crossref_primary_10_1016_j_jconrel_2019_01_017 crossref_primary_10_1080_15287394_2014_958421 crossref_primary_10_1016_j_seppur_2024_130254 crossref_primary_10_1021_acsnano_5b00439 crossref_primary_10_1080_15287394_2014_955158 crossref_primary_10_1002_adbi_201800212 crossref_primary_10_1021_acsnano_6b03013 crossref_primary_10_1016_j_cossms_2022_101043 crossref_primary_10_1021_acsomega_4c01867 crossref_primary_10_1016_j_impact_2022_100380 crossref_primary_10_1039_C5NR05401J crossref_primary_10_3390_nano12213908 crossref_primary_10_1016_j_jconrel_2015_03_002 crossref_primary_10_1016_j_aca_2018_03_034 crossref_primary_10_1080_15287394_2016_1207117 crossref_primary_10_1016_j_carbon_2016_11_040 crossref_primary_10_1002_adma_201705691 crossref_primary_10_1016_j_apmt_2023_102023 crossref_primary_10_1021_acs_jpcc_5b11236 crossref_primary_10_1002_smll_201907663 crossref_primary_10_1016_j_enmm_2022_100764 crossref_primary_10_1016_j_carbon_2016_11_049 crossref_primary_10_1007_s11356_016_6290_4 crossref_primary_10_1039_C5TB00179J crossref_primary_10_1186_s12989_020_00392_w crossref_primary_10_1039_C6RA11610H crossref_primary_10_1186_s12989_016_0155_3 crossref_primary_10_1039_C6NR06041B crossref_primary_10_1021_acsami_7b12011 crossref_primary_10_1152_ajplung_00002_2015 crossref_primary_10_1002_smll_202501185 crossref_primary_10_1016_j_ymthe_2017_03_011 crossref_primary_10_1002_adma_201505395 crossref_primary_10_1080_17435390_2018_1530392 crossref_primary_10_1038_srep24982 crossref_primary_10_1002_adma_201602423 crossref_primary_10_1002_wnan_1498 crossref_primary_10_1021_acsnano_1c00324 crossref_primary_10_1016_j_msec_2018_03_016 crossref_primary_10_1039_C5EN00238A crossref_primary_10_1016_j_nano_2014_03_007 crossref_primary_10_1049_iet_nbt_2018_5085 crossref_primary_10_1016_j_tox_2021_152717 crossref_primary_10_1038_srep39558 crossref_primary_10_1080_17435390_2018_1465142 crossref_primary_10_1073_pnas_1605030113 |
Cites_doi | 10.1021/ja016954m 10.1080/08958370801942238 10.1016/j.watres.2009.11.041 10.1021/bc200189f 10.1016/j.jpowsour.2010.04.015 10.1021/nl300895y 10.1016/j.nano.2010.06.008 10.1084/jem.20092121 10.1002/anie.200704488 10.1021/ar300004a 10.1166/jnn.2010.2688 10.1186/1743-8977-7-36 10.1016/j.ijpharm.2011.02.009 10.1016/j.carbon.2011.01.003 10.1016/j.tox.2009.10.017 10.1021/nn3012114 10.1021/nn2033055 10.1088/0957-4484/18/37/375502 10.1038/sj.cdd.4401264 10.1021/nn3010087 10.1016/0079-6816(93)90013-L 10.1021/nn102112b 10.1038/srep00406 10.1186/1743-8977-8-3 10.1039/B911099M 10.1016/j.desal.2011.10.039 10.1126/science.280.5367.1253 10.1039/c0nr01005g 10.1021/cr050569o 10.1002/adfm.201002257 10.1165/ajrcmb/6.2.235 10.1016/j.carbon.2004.08.033 10.1021/nn9011225 10.1021/jp055834o 10.1016/j.snb.2007.03.018 10.1016/S0300-483X(97)00151-0 10.1093/toxsci/kfg243 10.1038/nmat2766 10.1021/nn200328m 10.1007/s10875-010-9440-3 10.1038/nnano.2009.241 10.1021/jp110830y 10.1126/science.1156995 10.1002/anie.200501613 10.1016/j.cell.2010.01.040 10.1021/cm102406h 10.1093/toxsci/kfg228 10.1002/jgm.1587 10.1186/1755-1536-3-15 10.1016/j.scitotenv.2009.09.027 10.1016/j.aca.2008.07.052 10.1242/jcs.113.17.2955 10.1021/nn700256c |
ContentType | Journal Article |
Copyright | Copyright © 2013 American Chemical Society |
Copyright_xml | – notice: Copyright © 2013 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M 5PM |
DOI | 10.1021/nn305567s |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | MEDLINE - Academic Materials Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 2368 |
ExternalDocumentID | PMC4012619 23414138 10_1021_nn305567s a862459976 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIEHS NIH HHS grantid: U19 ES019528 – fundername: NIEHS NIH HHS grantid: R01 ES016746 |
GroupedDBID | - 23M 4.4 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ LG6 P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 5VS 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV AHGAQ BAANH CITATION CUPRZ GGK CGR CUY CVF ECM EIF NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M 5PM |
ID | FETCH-LOGICAL-a469t-67f55a465a11ef6b80306552dc56ef206796b6fd76524c1729645d75037f2f773 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Thu Aug 21 18:01:17 EDT 2025 Fri Jul 11 08:37:01 EDT 2025 Fri Jul 11 09:28:49 EDT 2025 Mon Jul 21 05:48:45 EDT 2025 Tue Jul 01 01:33:30 EDT 2025 Thu Apr 24 23:09:50 EDT 2025 Thu Aug 27 13:42:28 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | multiwall carbon nanotube charge NLRP3 inflammasome lung fibrosis surface functionalization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a469t-67f55a465a11ef6b80306552dc56ef206796b6fd76524c1729645d75037f2f773 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 23414138 |
PQID | 1320187108 |
PQPubID | 23479 |
PageCount | 17 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4012619 proquest_miscellaneous_1762059632 proquest_miscellaneous_1320187108 pubmed_primary_23414138 crossref_primary_10_1021_nn305567s crossref_citationtrail_10_1021_nn305567s acs_journals_10_1021_nn305567s |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-03-26 |
PublicationDateYYYYMMDD | 2013-03-26 |
PublicationDate_xml | – month: 03 year: 2013 text: 2013-03-26 day: 26 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2013 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Hong S. Y. (ref19/cit19) 2010; 9 Stone K. C. (ref59/cit59) 1992; 6 Wilson M. S. (ref38/cit38) 2010; 207 Wu W. (ref20/cit20) 2005; 44 Lam C. W. (ref23/cit23) 2004; 77 Jin C. C. (ref45/cit45) 2010; 30 Porter D. W. (ref58/cit58) 2010; 269 Li R. B. (ref8/cit8) 2010; 4 Zhang H. Y. (ref36/cit36) 2012; 6 Tabet L. (ref27/cit27) 2011; 8 Schroder K. (ref43/cit43) 2010; 140 Rahimpour A. (ref13/cit13) 2012; 286 Hu X. G. (ref51/cit51) 2006; 110 Wang X. (ref26/cit26) 2010; 10 Nagai H. (ref41/cit41) 2011; 108 Dostert C. (ref44/cit44) 2008; 320 Castellano F. (ref42/cit42) 2000; 113 Derjaguin B. (ref32/cit32) 1993; 43 Warheit D. B. (ref22/cit22) 2004; 77 Shvedova A. A. (ref48/cit48) 2005; 289 Schnorr J. M. (ref1/cit1) 2011; 23 Liu W. B. (ref4/cit4) 2011; 21 Wu H. C. (ref2/cit2) 2010; 20 Bonner J. C. (ref39/cit39) 2010; 3 Hentze H. (ref46/cit46) 2003; 10 Liu M. (ref16/cit16) 2011; 22 ref54/cit54 Wang X. (ref35/cit35) 2010; 4 Li R. B. (ref9/cit9) 2011; 49 Kuempel E. D. (ref55/cit55) 2012 Liu J. (ref12/cit12) 1998; 280 Roda E. (ref28/cit28) 2011; 26 Saha M. S. (ref10/cit10) 2010; 195 Kostarelos K. (ref11/cit11) 2009; 4 Hinderliter P. M. (ref60/cit60) 2010; 7 Georgakilas V. (ref18/cit18) 2002; 124 Xu M. S. (ref31/cit31) 2012; 2 Han J. H. (ref56/cit56) 2008; 20 ref57/cit57 Vairavapandian D. (ref5/cit5) 2008; 626 Malich G. (ref37/cit37) 1997; 124 Porter D. W. (ref47/cit47) 2010; 269 Upadhyayula V. K. K. (ref7/cit7) 2009; 408 Khaydarov R. A. (ref52/cit52) 2010; 44 Xia T. (ref29/cit29) 2008; 2 Kayat J. (ref40/cit40) 2011; 7 Niu L. (ref14/cit14) 2007; 126 Ji Z. (ref61/cit61) 2012; 6 Vardharajula S. (ref21/cit21) 2012; 7 Wang X. (ref25/cit25) 2012; 12 Hanzlikova M. (ref53/cit53) 2011; 13 Zhang H. Y. (ref33/cit33) 2011; 5 Foillard S. (ref15/cit15) 2011; 3 Kuzmych O. (ref50/cit50) 2007; 18 Tasis D. (ref3/cit3) 2006; 106 Gasse P. (ref49/cit49) 2007; 117 Okpalugo T. I. T. (ref34/cit34) 2005; 43 Wang X. (ref24/cit24) 2011; 5 Varkouhi A. K. (ref17/cit17) 2011; 416 Kauffman D. R. (ref6/cit6) 2008; 47 Gonzalez-Dominguez J. M. (ref30/cit30) 2011; 115 20303873 - Cell. 2010 Mar 19;140(6):821-32 21121361 - J Nanosci Nanotechnol. 2010 Dec;10(12):8516-26 19819525 - Sci Total Environ. 2009 Dec 15;408(1):1-13 18403674 - Science. 2008 May 2;320(5876):674-7 15951334 - Am J Physiol Lung Cell Mol Physiol. 2005 Nov;289(5):L698-708 22546002 - Nano Lett. 2012 Jun 13;12(6):3050-61 22047207 - ACS Nano. 2011 Dec 27;5(12):9772-87 22586516 - Sci Rep. 2012;2:406 19206551 - ACS Nano. 2008 Jan;2(1):85-96 21320582 - Int J Pharm. 2011 Sep 20;416(2):419-25 21366263 - ACS Nano. 2011 Apr 26;5(4):2756-69 14514968 - Toxicol Sci. 2004 Jan;77(1):117-25 11817945 - J Am Chem Soc. 2002 Feb 6;124(5):760-1 18790113 - Anal Chim Acta. 2008 Sep 26;626(2):119-29 14514958 - Toxicol Sci. 2004 Jan;77(1):126-34 20589420 - J Clin Immunol. 2010 Sep;30(5):628-31 18642264 - Angew Chem Int Ed Engl. 2008;47(35):6550-70 21210349 - Histol Histopathol. 2011 Mar;26(3):357-67 21118529 - Part Fibre Toxicol. 2010;7(1):36 17992263 - J Clin Invest. 2007 Dec;117(12):3786-99 22084097 - Proc Natl Acad Sci U S A. 2011 Dec 6;108(49):E1330-8 21067152 - ACS Nano. 2010 Dec 28;4(12):7241-52 23210709 - Acc Chem Res. 2013 Mar 19;46(3):642-9 1540387 - Am J Respir Cell Mol Biol. 1992 Feb;6(2):235-43 20473287 - Nat Mater. 2010 Jun;9(6):485-90 20148593 - ACS Nano. 2010 Mar 23;4(3):1399-408 10934035 - J Cell Sci. 2000 Sep;113 ( Pt 17):2955-61 9596576 - Science. 1998 May 22;280(5367):1253-6 19809452 - Nat Nanotechnol. 2009 Oct;4(10):627-33 16138384 - Angew Chem Int Ed Engl. 2005 Oct 7;44(39):6358-62 9482120 - Toxicology. 1997 Dec 31;124(3):179-92 20738867 - Fibrogenesis Tissue Repair. 2010 Aug 25;3:15 21995530 - Bioconjug Chem. 2011 Nov 16;22(11):2237-43 21255417 - Part Fibre Toxicol. 2011;8:3 20031184 - Water Res. 2010 Mar;44(6):1927-33 26504427 - J Nanopart Res. 2012 Sep;14:1029 20620235 - Nanomedicine. 2011 Feb;7(1):40-9 23091380 - Int J Nanomedicine. 2012;7:5361-74 22502734 - ACS Nano. 2012 May 22;6(5):4349-68 18569096 - Inhal Toxicol. 2008 Jun;20(8):741-9 16522018 - Chem Rev. 2006 Mar;106(3):1105-36 22564147 - ACS Nano. 2012 Jun 26;6(6):5366-80 12934070 - Cell Death Differ. 2003 Sep;10(9):956-68 16471615 - J Phys Chem B. 2006 Jan 19;110(2):853-7 21301705 - Nanoscale. 2011 Apr;3(4):1461-4 19857541 - Toxicology. 2010 Mar 10;269(2-3):136-47 21721076 - J Gene Med. 2011 Jul;13(7-8):402-9 20176803 - J Exp Med. 2010 Mar 15;207(3):535-52 |
References_xml | – volume: 124 start-page: 760 year: 2002 ident: ref18/cit18 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja016954m – volume: 20 start-page: 741 year: 2008 ident: ref56/cit56 publication-title: Inhal. Toxicol. doi: 10.1080/08958370801942238 – volume: 44 start-page: 1927 year: 2010 ident: ref52/cit52 publication-title: Water Res. doi: 10.1016/j.watres.2009.11.041 – volume: 22 start-page: 2237 year: 2011 ident: ref16/cit16 publication-title: Bioconjugate Chem. doi: 10.1021/bc200189f – volume: 195 start-page: 6255 year: 2010 ident: ref10/cit10 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.04.015 – volume: 12 start-page: 3050 year: 2012 ident: ref25/cit25 publication-title: Nano Lett. doi: 10.1021/nl300895y – volume: 7 start-page: 40 year: 2011 ident: ref40/cit40 publication-title: Nanomedicine doi: 10.1016/j.nano.2010.06.008 – volume: 207 start-page: 535 year: 2010 ident: ref38/cit38 publication-title: J. Exp. Med. doi: 10.1084/jem.20092121 – volume: 47 start-page: 6550 year: 2008 ident: ref6/cit6 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200704488 – ident: ref54/cit54 doi: 10.1021/ar300004a – volume: 10 start-page: 8516 year: 2010 ident: ref26/cit26 publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2010.2688 – volume: 7 start-page: 20 year: 2010 ident: ref60/cit60 publication-title: Part. Fibre Toxicol. doi: 10.1186/1743-8977-7-36 – volume: 416 start-page: 419 year: 2011 ident: ref17/cit17 publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2011.02.009 – volume: 289 start-page: L698 year: 2005 ident: ref48/cit48 publication-title: Am. J. Physiol. – volume: 49 start-page: 1797 year: 2011 ident: ref9/cit9 publication-title: Carbon doi: 10.1016/j.carbon.2011.01.003 – volume: 269 start-page: 136 year: 2010 ident: ref47/cit47 publication-title: Toxicology doi: 10.1016/j.tox.2009.10.017 – volume: 6 start-page: 5366 year: 2012 ident: ref61/cit61 publication-title: ACS Nano doi: 10.1021/nn3012114 – volume: 108 start-page: E1330 year: 2011 ident: ref41/cit41 publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 269 start-page: 136 year: 2010 ident: ref58/cit58 publication-title: Toxicology doi: 10.1016/j.tox.2009.10.017 – start-page: 14 year: 2012 ident: ref55/cit55 publication-title: J. Nanopart. Res. – volume: 5 start-page: 9772 year: 2011 ident: ref24/cit24 publication-title: ACS Nano doi: 10.1021/nn2033055 – volume: 18 start-page: 7 year: 2007 ident: ref50/cit50 publication-title: Nanotechnology doi: 10.1088/0957-4484/18/37/375502 – volume: 10 start-page: 956 year: 2003 ident: ref46/cit46 publication-title: Cell Death Differ. doi: 10.1038/sj.cdd.4401264 – volume: 6 start-page: 4349 year: 2012 ident: ref36/cit36 publication-title: ACS Nano doi: 10.1021/nn3010087 – volume: 43 start-page: 30 year: 1993 ident: ref32/cit32 publication-title: Prog. Surf. Sci. doi: 10.1016/0079-6816(93)90013-L – volume: 4 start-page: 7241 year: 2010 ident: ref35/cit35 publication-title: ACS Nano doi: 10.1021/nn102112b – volume: 2 start-page: 406 year: 2012 ident: ref31/cit31 publication-title: Sci. Rep. doi: 10.1038/srep00406 – volume: 8 start-page: 13 year: 2011 ident: ref27/cit27 publication-title: Part. Fibre Toxicol. doi: 10.1186/1743-8977-8-3 – volume: 20 start-page: 1036 year: 2010 ident: ref2/cit2 publication-title: J. Mater. Chem. doi: 10.1039/B911099M – volume: 286 start-page: 99 year: 2012 ident: ref13/cit13 publication-title: Desalination doi: 10.1016/j.desal.2011.10.039 – volume: 117 start-page: 3786 year: 2007 ident: ref49/cit49 publication-title: J. Clin. Invest. – volume: 280 start-page: 1253 year: 1998 ident: ref12/cit12 publication-title: Science doi: 10.1126/science.280.5367.1253 – volume: 3 start-page: 1461 year: 2011 ident: ref15/cit15 publication-title: Nanoscale doi: 10.1039/c0nr01005g – volume: 26 start-page: 357 year: 2011 ident: ref28/cit28 publication-title: Histol. Histopath. – volume: 106 start-page: 1105 year: 2006 ident: ref3/cit3 publication-title: Chem. Rev. doi: 10.1021/cr050569o – volume: 21 start-page: 2330 year: 2011 ident: ref4/cit4 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201002257 – volume: 6 start-page: 235 year: 1992 ident: ref59/cit59 publication-title: Am. J. Respir. Cell Mol. Biol. doi: 10.1165/ajrcmb/6.2.235 – volume: 43 start-page: 153 year: 2005 ident: ref34/cit34 publication-title: Carbon doi: 10.1016/j.carbon.2004.08.033 – volume: 4 start-page: 1399 year: 2010 ident: ref8/cit8 publication-title: ACS Nano doi: 10.1021/nn9011225 – volume: 110 start-page: 853 year: 2006 ident: ref51/cit51 publication-title: J. Phys. Chem. B doi: 10.1021/jp055834o – volume: 126 start-page: 361 year: 2007 ident: ref14/cit14 publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2007.03.018 – volume: 124 start-page: 179 year: 1997 ident: ref37/cit37 publication-title: Toxicology doi: 10.1016/S0300-483X(97)00151-0 – volume: 77 start-page: 126 year: 2004 ident: ref23/cit23 publication-title: Toxicol. Sci. doi: 10.1093/toxsci/kfg243 – volume: 9 start-page: 485 year: 2010 ident: ref19/cit19 publication-title: Nat. Mater. doi: 10.1038/nmat2766 – volume: 5 start-page: 2756 year: 2011 ident: ref33/cit33 publication-title: ACS Nano doi: 10.1021/nn200328m – ident: ref57/cit57 – volume: 30 start-page: 628 year: 2010 ident: ref45/cit45 publication-title: J. Clin. Immunol. doi: 10.1007/s10875-010-9440-3 – volume: 4 start-page: 627 year: 2009 ident: ref11/cit11 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2009.241 – volume: 115 start-page: 7238 year: 2011 ident: ref30/cit30 publication-title: J. Phys. Chem. C doi: 10.1021/jp110830y – volume: 320 start-page: 674 year: 2008 ident: ref44/cit44 publication-title: Science doi: 10.1126/science.1156995 – volume: 44 start-page: 6358 year: 2005 ident: ref20/cit20 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200501613 – volume: 140 start-page: 821 year: 2010 ident: ref43/cit43 publication-title: Cell doi: 10.1016/j.cell.2010.01.040 – volume: 7 start-page: 5361 year: 2012 ident: ref21/cit21 publication-title: Int. J. Nanomed. – volume: 23 start-page: 646 year: 2011 ident: ref1/cit1 publication-title: Chem. Mater. doi: 10.1021/cm102406h – volume: 77 start-page: 117 year: 2004 ident: ref22/cit22 publication-title: Toxicol. Sci. doi: 10.1093/toxsci/kfg228 – volume: 13 start-page: 402 year: 2011 ident: ref53/cit53 publication-title: J. Gene Med. doi: 10.1002/jgm.1587 – volume: 3 start-page: 15 year: 2010 ident: ref39/cit39 publication-title: Fibrogenesis Tissue Repair doi: 10.1186/1755-1536-3-15 – volume: 408 start-page: 1 year: 2009 ident: ref7/cit7 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2009.09.027 – volume: 626 start-page: 119 year: 2008 ident: ref5/cit5 publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2008.07.052 – volume: 113 start-page: 2955 year: 2000 ident: ref42/cit42 publication-title: J. Cell Sci. doi: 10.1242/jcs.113.17.2955 – volume: 2 start-page: 85 year: 2008 ident: ref29/cit29 publication-title: ACS Nano doi: 10.1021/nn700256c – reference: 14514958 - Toxicol Sci. 2004 Jan;77(1):126-34 – reference: 19857541 - Toxicology. 2010 Mar 10;269(2-3):136-47 – reference: 18790113 - Anal Chim Acta. 2008 Sep 26;626(2):119-29 – reference: 12934070 - Cell Death Differ. 2003 Sep;10(9):956-68 – reference: 9596576 - Science. 1998 May 22;280(5367):1253-6 – reference: 18569096 - Inhal Toxicol. 2008 Jun;20(8):741-9 – reference: 21118529 - Part Fibre Toxicol. 2010;7(1):36 – reference: 21721076 - J Gene Med. 2011 Jul;13(7-8):402-9 – reference: 21320582 - Int J Pharm. 2011 Sep 20;416(2):419-25 – reference: 21995530 - Bioconjug Chem. 2011 Nov 16;22(11):2237-43 – reference: 23210709 - Acc Chem Res. 2013 Mar 19;46(3):642-9 – reference: 14514968 - Toxicol Sci. 2004 Jan;77(1):117-25 – reference: 21121361 - J Nanosci Nanotechnol. 2010 Dec;10(12):8516-26 – reference: 18642264 - Angew Chem Int Ed Engl. 2008;47(35):6550-70 – reference: 22084097 - Proc Natl Acad Sci U S A. 2011 Dec 6;108(49):E1330-8 – reference: 19819525 - Sci Total Environ. 2009 Dec 15;408(1):1-13 – reference: 11817945 - J Am Chem Soc. 2002 Feb 6;124(5):760-1 – reference: 15951334 - Am J Physiol Lung Cell Mol Physiol. 2005 Nov;289(5):L698-708 – reference: 20738867 - Fibrogenesis Tissue Repair. 2010 Aug 25;3:15 – reference: 16522018 - Chem Rev. 2006 Mar;106(3):1105-36 – reference: 20620235 - Nanomedicine. 2011 Feb;7(1):40-9 – reference: 20148593 - ACS Nano. 2010 Mar 23;4(3):1399-408 – reference: 20176803 - J Exp Med. 2010 Mar 15;207(3):535-52 – reference: 22546002 - Nano Lett. 2012 Jun 13;12(6):3050-61 – reference: 21366263 - ACS Nano. 2011 Apr 26;5(4):2756-69 – reference: 21210349 - Histol Histopathol. 2011 Mar;26(3):357-67 – reference: 16471615 - J Phys Chem B. 2006 Jan 19;110(2):853-7 – reference: 20589420 - J Clin Immunol. 2010 Sep;30(5):628-31 – reference: 20303873 - Cell. 2010 Mar 19;140(6):821-32 – reference: 22564147 - ACS Nano. 2012 Jun 26;6(6):5366-80 – reference: 9482120 - Toxicology. 1997 Dec 31;124(3):179-92 – reference: 17992263 - J Clin Invest. 2007 Dec;117(12):3786-99 – reference: 1540387 - Am J Respir Cell Mol Biol. 1992 Feb;6(2):235-43 – reference: 23091380 - Int J Nanomedicine. 2012;7:5361-74 – reference: 10934035 - J Cell Sci. 2000 Sep;113 ( Pt 17):2955-61 – reference: 19206551 - ACS Nano. 2008 Jan;2(1):85-96 – reference: 20031184 - Water Res. 2010 Mar;44(6):1927-33 – reference: 18403674 - Science. 2008 May 2;320(5876):674-7 – reference: 21067152 - ACS Nano. 2010 Dec 28;4(12):7241-52 – reference: 22047207 - ACS Nano. 2011 Dec 27;5(12):9772-87 – reference: 16138384 - Angew Chem Int Ed Engl. 2005 Oct 7;44(39):6358-62 – reference: 20473287 - Nat Mater. 2010 Jun;9(6):485-90 – reference: 26504427 - J Nanopart Res. 2012 Sep;14:1029 – reference: 22586516 - Sci Rep. 2012;2:406 – reference: 19809452 - Nat Nanotechnol. 2009 Oct;4(10):627-33 – reference: 21255417 - Part Fibre Toxicol. 2011;8:3 – reference: 21301705 - Nanoscale. 2011 Apr;3(4):1461-4 – reference: 22502734 - ACS Nano. 2012 May 22;6(5):4349-68 |
SSID | ssj0057876 |
Score | 2.5460129 |
Snippet | Functionalized carbon nanotubes (f-CNTs) are being produced in increased volume because of the ease of dispersion and maintenance of the pristine material... Functionalized carbon nanotubes ( f -CNTs) are being produced in increased volume because of the ease of dispersion and maintenance of the pristine material... |
SourceID | pubmedcentral proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2352 |
SubjectTerms | Animals Biocompatibility Biological Transport, Active Cationic Cell Line Cellular Cytokines - biosynthesis Fibrosis Humans Inflammasomes - drug effects Inflammasomes - metabolism Lung - drug effects Lung - metabolism Lung - pathology Lung Injury - chemically induced Male Mathematical models Mice Mice, Inbred C57BL Multi wall carbon nanotubes Nanotechnology Nanotubes, Carbon - chemistry Nanotubes, Carbon - toxicity Nanotubes, Carbon - ultrastructure Polyethylene glycol Pulmonary Fibrosis - chemically induced Pulmonary Fibrosis - pathology Spectroscopy, Fourier Transform Infrared Static Electricity Surface charge Surface Properties Tubes |
Title | Surface Charge and Cellular Processing of Covalently Functionalized Multiwall Carbon Nanotubes Determine Pulmonary Toxicity |
URI | http://dx.doi.org/10.1021/nn305567s https://www.ncbi.nlm.nih.gov/pubmed/23414138 https://www.proquest.com/docview/1320187108 https://www.proquest.com/docview/1762059632 https://pubmed.ncbi.nlm.nih.gov/PMC4012619 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT-MwEB514cIeljeUl7zAgUugcWKnPaJAhVbaFRIgcYvsxIaKyEFtooXy5xnnUbU8b5EylhN77PnG4_kG4FB7ymVKB46WLnd86VJHxAjkfM4ll72uSpjNHf77j1_c-H9u2W0LDj6J4FP3xJiSxSoY_YB5ynHxWvwTXjXbrdU4XoWO0TVG_NDQB003taYnHs2annd48u21yCk701-EsyZbp7pe8nBc5PI4Hr8nb_zqF5bgV40zyWmlGMvQUmYFfk6xD67Cy1Ux1CJWxIbc7xQRJiGhSlN7MZXUCQQoSDJNwgwVEr83fSZ9NITV-eFgrBJSJvD-F2lKQjGUmSG4XWd5IdWInNU3bRS5LFLUdjF8JtfZ0yBG4L8GN_3z6_DCqWsxOAId6NzhgWYMH5lwXaW57FpfgzGaxIwrTcvjKMl1EnBG_RhRUY_7LLFB0kBTHQTeOsyZzKhNINhOC49aXnfhM09KJf2O7AopejiZWrRhDycrqtfSKCrD5NSNJqPYhqNmHqO4ZjK3BTXSj0T3J6KPFX3HR0K_G2WIcHHZiIkwKiuwa4_aooVup_uFDJoTW8PIo23YqBRo0hVFjIAoAVsHM6o1EbDk3rNvzOC-JPlGv9c6t1vfDcY2LNCyQofnUL4Dc_mwULuIk3K5V66TVzVED6w |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFLYYHLYdBmxsKz89tAOXAHFiJz2iQNUxWiHRStwiO7G3apEzNYkG7J_fs5OUFqptt0h5jh372e97fvb3EPqsPOlSqQJHCZc5vnCJwxMAcj5jgoluKFNq7g4Phqw_9i9v6W1Dk2PuwkAjCvhSYYP4j-wC7onWlswqKF6gNQAhxGjzWXTTrrpG8VgdQQYPGWBEyyI0X9RYoKRYtEDPYOXT05Fz5qa3Xuctsg21p0x-HFelOE4ennA4_t-fbKA3DerEZ7WabKIVqd-i13NchO_Q75tqqngisQnAf5OY6xRHMsvMMVXcXCcAQZwrHOWgntDs7B73wCzWu4mTB5lie533F88yHPGpyDWGxTsvKyELfN6cu5H4uspA9_n0Ho_yu0kCbsAWGvcuRlHfaTIzOBzc6dJhgaIUHil3XamYCI3nQSlJE8qkInZzSjCVBjBQfgIYqct8mpqQaaCICgLvPVrVuZYfEYZyinvEsLxzn3pCSOGfipAL3oUxVbyD9qET42ZmFbENmhM3nvViBx21wxknDa-5Sa-RLRM9nIn-rMk8lgl9anUihqlm4idcy7yCqj1iUhi6p-FfZMC4mIxGHumgD7UezaoigBgAM0DpYEHDZgKG6nvxjZ58t5Tf4AUbV3f7X51xgF72R4Or-OrL8OsOekVs7g7PIWwXrZbTSu4BgirFvp06fwDM6BgN |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDLdgSAgeGN8cgxEQD7x0rGmT3j1OHafxNSZtk_ZWJW2ynajS6doKNv557LRX3Y0JeKtUp0kTO7Zj52eAtzYyoTA2CawOZRDrkAcqR0MullJLPRmbQtDd4a_7cu84_nQiTnpHke7C4CBq_FLtg_gk1eeF7REGwvfOeUCrpL4JtyhcRxy9kx4udl5iPtlFkdFLRlNigSS03JS0UF6vaqE_TMurGZJLKme6Dt-GwfpMk-9bbaO38ssrOI7__zf34V5vfbKdjl0ewA3jHsLdJUzCR_DrsJ1blRtGgfhTw5QrWGrKktJVWX-tAAlZZVlaIZvi0MsLNkX12J0qzi5Nwfy13h-qLFmq5rpyDDfxqmm1qdlun39j2EFbogyo-QU7qn7OcnQHHsPx9MNRuhf0FRoChW51E8jECoGPQoWhsVKPyQMRghe5kMZyf0ilpS0SKXico600kbEoKHSaWG6TJHoCa65y5hkwbGdVxAntXcUi0troeFuPlVYTXFerRrCJE5n1ElZnPnjOw2yYxRG8Wyxplvf45lRmo7yO9M1Aet6BelxH9HrBFxmKHMVRlDNVi11HnEoZhtvjv9CgkqHKRhEfwdOOl4auOFoOaDtg62SFywYCgvxefeNmZx76G71hcnmf_2syXsHtg91p9uXj_ucNuMN9CY8o4PIFrDXz1rxEQ6rRm156fgPBZhqQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface+charge+and+cellular+processing+of+covalently+functionalized+multiwall+carbon+nanotubes+determine+pulmonary+toxicity&rft.jtitle=ACS+nano&rft.au=Li%2C+Ruibin&rft.au=Wang%2C+Xiang&rft.au=Ji%2C+Zhaoxia&rft.au=Sun%2C+Bingbing&rft.date=2013-03-26&rft.eissn=1936-086X&rft.volume=7&rft.issue=3&rft.spage=2352&rft_id=info:doi/10.1021%2Fnn305567s&rft_id=info%3Apmid%2F23414138&rft.externalDocID=23414138 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |