Surface Charge and Cellular Processing of Covalently Functionalized Multiwall Carbon Nanotubes Determine Pulmonary Toxicity

Functionalized carbon nanotubes (f-CNTs) are being produced in increased volume because of the ease of dispersion and maintenance of the pristine material physicochemical properties when used in composite materials as well as for other commercial applications. However, the potential adverse effects...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 7; no. 3; pp. 2352 - 2368
Main Authors Li, Ruibin, Wang, Xiang, Ji, Zhaoxia, Sun, Bingbing, Zhang, Haiyuan, Chang, Chong Hyun, Lin, Sijie, Meng, Huan, Liao, Yu-Pei, Wang, Meiying, Li, Zongxi, Hwang, Angela A, Song, Tze-Bin, Xu, Run, Yang, Yang, Zink, Jeffrey I, Nel, André E, Xia, Tian
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 26.03.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Functionalized carbon nanotubes (f-CNTs) are being produced in increased volume because of the ease of dispersion and maintenance of the pristine material physicochemical properties when used in composite materials as well as for other commercial applications. However, the potential adverse effects of f-CNTs have not been quantitatively or systematically explored. In this study, we used a library of covalently functionalized multiwall carbon nanotubes (f-MWCNTs), established from the same starting material, to assess the impact of surface charge in a predictive toxicological model that relates the tubes’ pro-inflammatory and pro-fibrogenic effects at cellular level to the development of pulmonary fibrosis. Carboxylate (COOH), polyethylene glycol (PEG), amine (NH2), sidewall amine (sw-NH2), and polyetherimide (PEI)-modified MWCNTs were successfully established from raw or as-prepared (AP-) MWCNTs and comprehensively characterized by TEM, XPS, FTIR, and DLS to obtain information about morphology, length, degree of functionalization, hydrodynamic size, and surface charge. Cellular screening in BEAS-2B and THP-1 cells showed that, compared to AP-MWCNTs, anionic functionalization (COOH and PEG) decreased the production of pro-fibrogenic cytokines and growth factors (including IL-1β, TGF-β1, and PDGF-AA), while neutral and weak cationic functionalization (NH2 and sw-NH2) showed intermediary effects. In contrast, the strongly cationic PEI-functionalized tubes induced robust biological effects. These differences could be attributed to differences in cellular uptake and NLRP3 inflammasome activation, which depends on the propensity toward lysosomal damage and cathepsin B release in macrophages. Moreover, the in vitro hazard ranking was validated by the pro-fibrogenic potential of the tubes in vivo. Compared to pristine MWCNTs, strong cationic PEI-MWCNTs induced significant lung fibrosis, while carboxylation significantly decreased the extent of pulmonary fibrosis. These results demonstrate that surface charge plays an important role in the structure–activity relationships that determine the pro-fibrogenic potential of f-CNTs in the lung.
AbstractList Functionalized carbon nanotubes ( f -CNTs) are being produced in increased volume because of the ease of dispersion and maintenance of the pristine material physicochemical properties when used in composite materials as well as for other commercial applications. However, the potential adverse effects of f -CNTs have not been quantitatively or systematically explored, and in this study we used a library of covalently functionalized multiwall carbon nanotubes ( f -MWCNTs), established from the same starting material, to assess the impact of surface charge in a predictive toxicological model that relates the tubes’ pro-inflammatory and pro-fibrogenic effects at cellular level to the development of pulmonary fibrosis. Carboxylated (COOH), polyethylene glycol (PEG), amine (NH 2 ), sidewall amine (sw-NH 2 ) and polyetherimide (PEI) modified MWCNTs were successfully established from raw or as-prepared (AP-) MWCNTs, and comprehensively characterized by TEM, XPS, FTIR and DLS to obtain information about morphology, length, degree of functionalization, hydrodynamic size and surface charge. Cellular screening in BEAS-2B and THP-1 cells showed that, compared to AP-MWCNTs, anionic functionalization (COOH and PEG) decreased the production of pro-fibrogenic cytokines and growth factors (including IL-1β, TGF-β1 and PDGF-AA), while neutral and weak cationic functionalization (NH 2 and sw-NH 2 ) showed intermediary effects. In contrast, the strongly cationic PEI-functionalized tubes induced robust biological effects. These differences could be attributed to differences in cellular uptake and NLRP3 inflammasome activation, which depends on the propensity towards lysosomal damage and cathepsin B release in macrophages. Moreover, the in vitro hazard ranking was validated by the pro-fibrogenic potential of the tubes in vivo . Compared to pristine MWCNTs, strong cationic PEIMWCNTs induced significant lung fibrosis, while carboxylation significantly decreased the extent of pulmonary fibrosis. These results demonstrate that surface charge plays an important role in the structure-activity relationships that determine the pro-fibrogenic potential of f -CNTs in the lung.
Functionalized carbon nanotubes (f-CNTs) are being produced in increased volume because of the ease of dispersion and maintenance of the pristine material physicochemical properties when used in composite materials as well as for other commercial applications. However, the potential adverse effects of f-CNTs have not been quantitatively or systematically explored. In this study, we used a library of covalently functionalized multiwall carbon nanotubes (f-MWCNTs), established from the same starting material, to assess the impact of surface charge in a predictive toxicological model that relates the tubes’ pro-inflammatory and pro-fibrogenic effects at cellular level to the development of pulmonary fibrosis. Carboxylate (COOH), polyethylene glycol (PEG), amine (NH2), sidewall amine (sw-NH2), and polyetherimide (PEI)-modified MWCNTs were successfully established from raw or as-prepared (AP-) MWCNTs and comprehensively characterized by TEM, XPS, FTIR, and DLS to obtain information about morphology, length, degree of functionalization, hydrodynamic size, and surface charge. Cellular screening in BEAS-2B and THP-1 cells showed that, compared to AP-MWCNTs, anionic functionalization (COOH and PEG) decreased the production of pro-fibrogenic cytokines and growth factors (including IL-1β, TGF-β1, and PDGF-AA), while neutral and weak cationic functionalization (NH2 and sw-NH2) showed intermediary effects. In contrast, the strongly cationic PEI-functionalized tubes induced robust biological effects. These differences could be attributed to differences in cellular uptake and NLRP3 inflammasome activation, which depends on the propensity toward lysosomal damage and cathepsin B release in macrophages. Moreover, the in vitro hazard ranking was validated by the pro-fibrogenic potential of the tubes in vivo. Compared to pristine MWCNTs, strong cationic PEI-MWCNTs induced significant lung fibrosis, while carboxylation significantly decreased the extent of pulmonary fibrosis. These results demonstrate that surface charge plays an important role in the structure–activity relationships that determine the pro-fibrogenic potential of f-CNTs in the lung.
Functionalized carbon nanotubes (f-CNTs) are being produced in increased volume because of the ease of dispersion and maintenance of the pristine material physicochemical properties when used in composite materials as well as for other commercial applications. However, the potential adverse effects of f-CNTs have not been quantitatively or systematically explored. In this study, we used a library of covalently functionalized multiwall carbon nanotubes (f-MWCNTs), established from the same starting material, to assess the impact of surface charge in a predictive toxicological model that relates the tubes' pro-inflammatory and pro-fibrogenic effects at cellular level to the development of pulmonary fibrosis. Carboxylate (COOH), polyethylene glycol (PEG), amine (NH2), sidewall amine (sw-NH2), and polyetherimide (PEI)-modified MWCNTs were successfully established from raw or as-prepared (AP-) MWCNTs and comprehensively characterized by TEM, XPS, FTIR, and DLS to obtain information about morphology, length, degree of functionalization, hydrodynamic size, and surface charge. Cellular screening in BEAS-2B and THP-1 cells showed that, compared to AP-MWCNTs, anionic functionalization (COOH and PEG) decreased the production of pro-fibrogenic cytokines and growth factors (including IL-1β, TGF-β1, and PDGF-AA), while neutral and weak cationic functionalization (NH2 and sw-NH2) showed intermediary effects. In contrast, the strongly cationic PEI-functionalized tubes induced robust biological effects. These differences could be attributed to differences in cellular uptake and NLRP3 inflammasome activation, which depends on the propensity toward lysosomal damage and cathepsin B release in macrophages. Moreover, the in vitro hazard ranking was validated by the pro-fibrogenic potential of the tubes in vivo. Compared to pristine MWCNTs, strong cationic PEI-MWCNTs induced significant lung fibrosis, while carboxylation significantly decreased the extent of pulmonary fibrosis. These results demonstrate that surface charge plays an important role in the structure-activity relationships that determine the pro-fibrogenic potential of f-CNTs in the lung.Functionalized carbon nanotubes (f-CNTs) are being produced in increased volume because of the ease of dispersion and maintenance of the pristine material physicochemical properties when used in composite materials as well as for other commercial applications. However, the potential adverse effects of f-CNTs have not been quantitatively or systematically explored. In this study, we used a library of covalently functionalized multiwall carbon nanotubes (f-MWCNTs), established from the same starting material, to assess the impact of surface charge in a predictive toxicological model that relates the tubes' pro-inflammatory and pro-fibrogenic effects at cellular level to the development of pulmonary fibrosis. Carboxylate (COOH), polyethylene glycol (PEG), amine (NH2), sidewall amine (sw-NH2), and polyetherimide (PEI)-modified MWCNTs were successfully established from raw or as-prepared (AP-) MWCNTs and comprehensively characterized by TEM, XPS, FTIR, and DLS to obtain information about morphology, length, degree of functionalization, hydrodynamic size, and surface charge. Cellular screening in BEAS-2B and THP-1 cells showed that, compared to AP-MWCNTs, anionic functionalization (COOH and PEG) decreased the production of pro-fibrogenic cytokines and growth factors (including IL-1β, TGF-β1, and PDGF-AA), while neutral and weak cationic functionalization (NH2 and sw-NH2) showed intermediary effects. In contrast, the strongly cationic PEI-functionalized tubes induced robust biological effects. These differences could be attributed to differences in cellular uptake and NLRP3 inflammasome activation, which depends on the propensity toward lysosomal damage and cathepsin B release in macrophages. Moreover, the in vitro hazard ranking was validated by the pro-fibrogenic potential of the tubes in vivo. Compared to pristine MWCNTs, strong cationic PEI-MWCNTs induced significant lung fibrosis, while carboxylation significantly decreased the extent of pulmonary fibrosis. These results demonstrate that surface charge plays an important role in the structure-activity relationships that determine the pro-fibrogenic potential of f-CNTs in the lung.
Functionalized carbon nanotubes (f-CNTs) are being produced in increased volume because of the ease of dispersion and maintenance of the pristine material physicochemical properties when used in composite materials as well as for other commercial applications. However, the potential adverse effects of f-CNTs have not been quantitatively or systematically explored. In this study, we used a library of covalently functionalized multiwall carbon nanotubes (f-MWCNTs), established from the same starting material, to assess the impact of surface charge in a predictive toxicological model that relates the tubes' pro-inflammatory and pro-fibrogenic effects at cellular level to the development of pulmonary fibrosis. Carboxylate (COOH), polyethylene glycol (PEG), amine (NH sub(2)), sidewall amine (sw-NH sub(2)), and polyetherimide (PEI)-modified MWCNTs were successfully established from raw or as-prepared (AP-) MWCNTs and comprehensively characterized by TEM, XPS, FTIR, and DLS to obtain information about morphology, length, degree of functionalization, hydrodynamic size, and surface charge. Cellular screening in BEAS-2B and THP-1 cells showed that, compared to AP-MWCNTs, anionic functionalization (COOH and PEG) decreased the production of pro-fibrogenic cytokines and growth factors (including IL-1 beta , TGF- beta 1, and PDGF-AA), while neutral and weak cationic functionalization (NH sub(2) and sw-NH sub(2)) showed intermediary effects. In contrast, the strongly cationic PEI-functionalized tubes induced robust biological effects. These differences could be attributed to differences in cellular uptake and NLRP3 inflammasome activation, which depends on the propensity toward lysosomal damage and cathepsin B release in macrophages. Moreover, the in vitro hazard ranking was validated by the pro-fibrogenic potential of the tubes in vivo. Compared to pristine MWCNTs, strong cationic PEI-MWCNTs induced significant lung fibrosis, while carboxylation significantly decreased the extent of pulmonary fibrosis. These results demonstrate that surface charge plays an important role in the structure-activity relationships that determine the pro-fibrogenic potential of f-CNTs in the lung.
Author Sun, Bingbing
Liao, Yu-Pei
Wang, Meiying
Chang, Chong Hyun
Meng, Huan
Song, Tze-Bin
Nel, André E
Yang, Yang
Li, Zongxi
Wang, Xiang
Ji, Zhaoxia
Zink, Jeffrey I
Hwang, Angela A
Li, Ruibin
Lin, Sijie
Xia, Tian
Zhang, Haiyuan
Xu, Run
AuthorAffiliation Division of NanoMedicine, Department of Medicine
University of California
California NanoSystems Institute
Department of Materials Science and Engineering
Department of Chemistry & Biochemisty
AuthorAffiliation_xml – name: California NanoSystems Institute
– name: University of California
– name: Division of NanoMedicine, Department of Medicine
– name: Department of Chemistry & Biochemisty
– name: Department of Materials Science and Engineering
– name: Department of chemistry & Biochemisty, University of California, Los Angeles, CA 90095, United States
– name: Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, United States
– name: California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States
– name: Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095, United States
Author_xml – sequence: 1
  givenname: Ruibin
  surname: Li
  fullname: Li, Ruibin
– sequence: 2
  givenname: Xiang
  surname: Wang
  fullname: Wang, Xiang
– sequence: 3
  givenname: Zhaoxia
  surname: Ji
  fullname: Ji, Zhaoxia
– sequence: 4
  givenname: Bingbing
  surname: Sun
  fullname: Sun, Bingbing
– sequence: 5
  givenname: Haiyuan
  surname: Zhang
  fullname: Zhang, Haiyuan
– sequence: 6
  givenname: Chong Hyun
  surname: Chang
  fullname: Chang, Chong Hyun
– sequence: 7
  givenname: Sijie
  surname: Lin
  fullname: Lin, Sijie
– sequence: 8
  givenname: Huan
  surname: Meng
  fullname: Meng, Huan
– sequence: 9
  givenname: Yu-Pei
  surname: Liao
  fullname: Liao, Yu-Pei
– sequence: 10
  givenname: Meiying
  surname: Wang
  fullname: Wang, Meiying
– sequence: 11
  givenname: Zongxi
  surname: Li
  fullname: Li, Zongxi
– sequence: 12
  givenname: Angela A
  surname: Hwang
  fullname: Hwang, Angela A
– sequence: 13
  givenname: Tze-Bin
  surname: Song
  fullname: Song, Tze-Bin
– sequence: 14
  givenname: Run
  surname: Xu
  fullname: Xu, Run
– sequence: 15
  givenname: Yang
  surname: Yang
  fullname: Yang, Yang
– sequence: 16
  givenname: Jeffrey I
  surname: Zink
  fullname: Zink, Jeffrey I
– sequence: 17
  givenname: André E
  surname: Nel
  fullname: Nel, André E
– sequence: 18
  givenname: Tian
  surname: Xia
  fullname: Xia, Tian
  email: txia@ucla.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23414138$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9rFTEUxYNUbPt04ReQbARdPJs_k2RmI8hoq9BqwQruQiaTvKZkkjaZVJ_98qa8-qhScJUL-Z3Luefsg50QgwHgOUZvMCL4IASKGOMiPwJ7uKN8iVr-fWc7M7wL9nO-QIiJVvAnYJfQBjeYtnvg5mtJVmkD-3OVVgaqMMLeeF-8SvA0RW1ydmEFo4V9vFbehNmv4WEJenYxKO9-mRGeFD-7H8p72Ks0xAA_qxDnMpgM35vZpMkFA0-Ln6oireFZ_Om0m9dPwWOrfDbP7t4F-Hb44az_uDz-cvSpf3e8VA3v5iUXlrE6MoWxsXxoEUWcMTJqxo0liIuOD9yOgjPSaCxIxxs2CoaosMQKQRfg7WbvZRkmM-p6Q1JeXiY3VTsyKif__gnuXK7itWwQJryGuACv7hakeFVMnuXksq4pqWBiyRILThDrOCX_RylBuBUYtRV9cd_W1s-fcirwegPoFHNOxm4RjORt8XJbfGUP_mFrwuq2o3qR8w8qXm4USmd5EUuqbeYHuN8Jd72L
CitedBy_id crossref_primary_10_1021_acs_jmedchem_5b01770
crossref_primary_10_1089_aivt_2017_0033
crossref_primary_10_1038_s41467_018_06869_9
crossref_primary_10_1021_acsaem_4c01968
crossref_primary_10_1016_j_ecoenv_2018_09_077
crossref_primary_10_3390_nano13030472
crossref_primary_10_1016_j_impact_2019_100152
crossref_primary_10_1016_j_talanta_2015_10_020
crossref_primary_10_1021_acsnano_6b01560
crossref_primary_10_1021_acs_langmuir_9b02578
crossref_primary_10_1080_08958378_2020_1723746
crossref_primary_10_1016_j_fct_2015_06_008
crossref_primary_10_1002_wnan_1794
crossref_primary_10_1016_j_biomaterials_2016_11_005
crossref_primary_10_1007_s11434_016_1069_z
crossref_primary_10_1021_acsnano_7b03038
crossref_primary_10_3389_fbioe_2022_1001572
crossref_primary_10_1002_jbm_a_35416
crossref_primary_10_1016_j_etap_2016_09_013
crossref_primary_10_1021_acsnano_6b04143
crossref_primary_10_1080_17435390_2021_1988171
crossref_primary_10_1021_acsnano_5b04751
crossref_primary_10_1002_smll_201700776
crossref_primary_10_1039_D0NR08478F
crossref_primary_10_1088_0957_4484_27_41_412002
crossref_primary_10_1039_C6EN00009F
crossref_primary_10_5620_eht_e2015007
crossref_primary_10_1080_17435390_2018_1425503
crossref_primary_10_1016_j_colsurfb_2017_05_008
crossref_primary_10_1016_j_tox_2015_03_008
crossref_primary_10_1021_acsbiomaterials_5b00465
crossref_primary_10_1186_s12989_018_0245_5
crossref_primary_10_1016_j_biomaterials_2014_02_002
crossref_primary_10_1039_C6EN00579A
crossref_primary_10_1186_s12989_019_0298_0
crossref_primary_10_1039_D4BM01349B
crossref_primary_10_1021_acsnano_7b07737
crossref_primary_10_1021_acs_est_7b04231
crossref_primary_10_1016_j_envint_2022_107258
crossref_primary_10_1016_j_fuel_2022_127213
crossref_primary_10_3390_lubricants12100359
crossref_primary_10_1002_smll_202000673
crossref_primary_10_1021_nn5012754
crossref_primary_10_3390_ijms21155335
crossref_primary_10_1002_jbm_a_36168
crossref_primary_10_1186_s12989_019_0299_z
crossref_primary_10_1021_acsnano_5b03443
crossref_primary_10_1080_17435390_2017_1332253
crossref_primary_10_1016_j_tiv_2017_04_027
crossref_primary_10_1007_s13770_023_00530_3
crossref_primary_10_3109_17435390_2015_1022887
crossref_primary_10_1016_j_snb_2013_10_056
crossref_primary_10_1021_acsnano_8b03285
crossref_primary_10_1021_acssuschemeng_2c06673
crossref_primary_10_1289_EHP6508
crossref_primary_10_1021_nn4037927
crossref_primary_10_1016_j_nantod_2022_101624
crossref_primary_10_1007_s00204_016_1717_8
crossref_primary_10_1016_j_ijpharm_2019_118521
crossref_primary_10_1246_cl_210195
crossref_primary_10_1016_j_impact_2019_100190
crossref_primary_10_1080_15685551_2019_1565664
crossref_primary_10_1016_j_tiv_2018_12_016
crossref_primary_10_1021_acs_est_7b04938
crossref_primary_10_1088_1402_4896_acd668
crossref_primary_10_1088_2043_6254_ab7c56
crossref_primary_10_1016_j_carbon_2018_02_058
crossref_primary_10_3390_ijms22010385
crossref_primary_10_1039_C8EN00242H
crossref_primary_10_1016_j_cbi_2015_06_031
crossref_primary_10_1016_j_carbon_2015_05_022
crossref_primary_10_1080_15287394_2014_951756
crossref_primary_10_1016_j_envres_2022_114580
crossref_primary_10_1016_j_chemosphere_2024_143923
crossref_primary_10_3390_gels9100822
crossref_primary_10_1016_j_biomaterials_2015_11_061
crossref_primary_10_1021_acs_est_2c03675
crossref_primary_10_1021_acsnano_6b03874
crossref_primary_10_1186_1479_5876_12_138
crossref_primary_10_3390_toxics11060491
crossref_primary_10_1021_nn503887r
crossref_primary_10_1155_2014_670815
crossref_primary_10_1093_toxsci_kfy100
crossref_primary_10_1186_s12989_022_00460_3
crossref_primary_10_1016_j_csbj_2022_03_014
crossref_primary_10_1039_C4RA17002D
crossref_primary_10_1016_j_jconrel_2022_09_021
crossref_primary_10_1021_acsnano_5b00941
crossref_primary_10_1371_journal_pone_0134722
crossref_primary_10_2147_IJN_S314308
crossref_primary_10_1021_acs_nanolett_8b01805
crossref_primary_10_3390_nano7110355
crossref_primary_10_2217_nnm_15_48
crossref_primary_10_1016_j_matt_2023_10_026
crossref_primary_10_1080_10937404_2015_1051611
crossref_primary_10_1016_j_nano_2019_102037
crossref_primary_10_1080_10408444_2016_1206061
crossref_primary_10_1088_2043_6254_ab4875
crossref_primary_10_1002_adfm_202004886
crossref_primary_10_4028_www_scientific_net_AMR_1118_149
crossref_primary_10_1021_acs_est_6b04280
crossref_primary_10_1038_s41578_023_00611_8
crossref_primary_10_1002_jat_3075
crossref_primary_10_1093_nsr_nww064
crossref_primary_10_1007_s11434_014_0700_0
crossref_primary_10_1186_s12989_021_00440_z
crossref_primary_10_1039_D2EN00145D
crossref_primary_10_1021_envhealth_3c00034
crossref_primary_10_1021_acsbiomaterials_7b00824
crossref_primary_10_3390_ijms24129824
crossref_primary_10_1021_nn406166n
crossref_primary_10_1021_acsnano_1c11353
crossref_primary_10_1111_jmi_12251
crossref_primary_10_1002_smll_202000603
crossref_primary_10_1016_j_jsamd_2024_100762
crossref_primary_10_1016_j_carbon_2013_09_090
crossref_primary_10_1007_s40572_016_0112_1
crossref_primary_10_1016_j_snb_2017_02_124
crossref_primary_10_1039_D2TB01741E
crossref_primary_10_1021_acsanm_3c04413
crossref_primary_10_1016_j_vaccine_2015_07_101
crossref_primary_10_1016_j_addr_2013_05_012
crossref_primary_10_1039_C6NH00227G
crossref_primary_10_1007_s11051_014_2761_z
crossref_primary_10_3109_17435390_2015_1088588
crossref_primary_10_1016_j_jconrel_2016_01_030
crossref_primary_10_1021_acsnano_8b08517
crossref_primary_10_1002_smll_201301597
crossref_primary_10_1007_s13346_020_00818_0
crossref_primary_10_1007_s00204_016_1742_7
crossref_primary_10_1016_j_copbio_2013_11_008
crossref_primary_10_1111_risa_12642
crossref_primary_10_1007_s11051_015_3181_4
crossref_primary_10_1016_j_impact_2016_08_002
crossref_primary_10_2217_nnm_14_42
crossref_primary_10_1038_icb_2014_21
crossref_primary_10_1016_j_nantod_2022_101525
crossref_primary_10_1016_j_jhazmat_2018_04_025
crossref_primary_10_3389_fimmu_2018_01120
crossref_primary_10_1186_s12989_016_0172_2
crossref_primary_10_1186_s12989_020_00390_y
crossref_primary_10_3390_ijms19020354
crossref_primary_10_1021_envhealth_4c00148
crossref_primary_10_1098_rstb_2014_0162
crossref_primary_10_1016_j_abb_2019_02_015
crossref_primary_10_1186_s12989_024_00616_3
crossref_primary_10_1007_s00216_018_1289_y
crossref_primary_10_3389_fphar_2018_01401
crossref_primary_10_1016_j_jes_2021_04_021
crossref_primary_10_1021_acs_molpharmaceut_5b00161
crossref_primary_10_1007_s11095_014_1415_2
crossref_primary_10_1016_j_tiv_2014_10_008
crossref_primary_10_1088_0957_4484_25_49_495102
crossref_primary_10_1016_j_nanoen_2019_02_011
crossref_primary_10_1021_nn505002w
crossref_primary_10_1186_s12989_016_0123_y
crossref_primary_10_1515_ntrev_2022_0063
crossref_primary_10_1021_nn507243w
crossref_primary_10_3390_nano12050735
crossref_primary_10_1002_smll_201603830
crossref_primary_10_1080_17435390_2018_1472309
crossref_primary_10_1038_s41467_020_17300_7
crossref_primary_10_1039_C7RA04933A
crossref_primary_10_1007_s12094_023_03117_5
crossref_primary_10_1016_j_memsci_2015_06_006
crossref_primary_10_1016_j_mssp_2014_11_030
crossref_primary_10_1016_j_ejpb_2015_03_007
crossref_primary_10_2217_nnm_2016_0305
crossref_primary_10_3390_nano13061059
crossref_primary_10_1186_1743_8977_10_52
crossref_primary_10_1016_j_nanoen_2019_06_045
crossref_primary_10_1021_acs_est_4c06186
crossref_primary_10_1021_acs_analchem_6b03751
crossref_primary_10_1016_j_addr_2013_09_005
crossref_primary_10_1186_s12951_020_00747_7
crossref_primary_10_1002_smll_201500906
crossref_primary_10_1016_j_lfs_2020_118059
crossref_primary_10_1039_C4BM00421C
crossref_primary_10_1007_s11051_018_4438_5
crossref_primary_10_1149_1945_7111_abef85
crossref_primary_10_1186_1743_8977_10_53
crossref_primary_10_1186_1743_8977_11_28
crossref_primary_10_1111_joim_12109
crossref_primary_10_1002_smll_202000528
crossref_primary_10_1093_nsr_nwx120
crossref_primary_10_1007_s12221_016_6388_9
crossref_primary_10_1039_C4EN00102H
crossref_primary_10_1002_smll_201703915
crossref_primary_10_1016_j_jconrel_2019_01_017
crossref_primary_10_1080_15287394_2014_958421
crossref_primary_10_1016_j_seppur_2024_130254
crossref_primary_10_1021_acsnano_5b00439
crossref_primary_10_1080_15287394_2014_955158
crossref_primary_10_1002_adbi_201800212
crossref_primary_10_1021_acsnano_6b03013
crossref_primary_10_1016_j_cossms_2022_101043
crossref_primary_10_1021_acsomega_4c01867
crossref_primary_10_1016_j_impact_2022_100380
crossref_primary_10_1039_C5NR05401J
crossref_primary_10_3390_nano12213908
crossref_primary_10_1016_j_jconrel_2015_03_002
crossref_primary_10_1016_j_aca_2018_03_034
crossref_primary_10_1080_15287394_2016_1207117
crossref_primary_10_1016_j_carbon_2016_11_040
crossref_primary_10_1002_adma_201705691
crossref_primary_10_1016_j_apmt_2023_102023
crossref_primary_10_1021_acs_jpcc_5b11236
crossref_primary_10_1002_smll_201907663
crossref_primary_10_1016_j_enmm_2022_100764
crossref_primary_10_1016_j_carbon_2016_11_049
crossref_primary_10_1007_s11356_016_6290_4
crossref_primary_10_1039_C5TB00179J
crossref_primary_10_1186_s12989_020_00392_w
crossref_primary_10_1039_C6RA11610H
crossref_primary_10_1186_s12989_016_0155_3
crossref_primary_10_1039_C6NR06041B
crossref_primary_10_1021_acsami_7b12011
crossref_primary_10_1152_ajplung_00002_2015
crossref_primary_10_1002_smll_202501185
crossref_primary_10_1016_j_ymthe_2017_03_011
crossref_primary_10_1002_adma_201505395
crossref_primary_10_1080_17435390_2018_1530392
crossref_primary_10_1038_srep24982
crossref_primary_10_1002_adma_201602423
crossref_primary_10_1002_wnan_1498
crossref_primary_10_1021_acsnano_1c00324
crossref_primary_10_1016_j_msec_2018_03_016
crossref_primary_10_1039_C5EN00238A
crossref_primary_10_1016_j_nano_2014_03_007
crossref_primary_10_1049_iet_nbt_2018_5085
crossref_primary_10_1016_j_tox_2021_152717
crossref_primary_10_1038_srep39558
crossref_primary_10_1080_17435390_2018_1465142
crossref_primary_10_1073_pnas_1605030113
Cites_doi 10.1021/ja016954m
10.1080/08958370801942238
10.1016/j.watres.2009.11.041
10.1021/bc200189f
10.1016/j.jpowsour.2010.04.015
10.1021/nl300895y
10.1016/j.nano.2010.06.008
10.1084/jem.20092121
10.1002/anie.200704488
10.1021/ar300004a
10.1166/jnn.2010.2688
10.1186/1743-8977-7-36
10.1016/j.ijpharm.2011.02.009
10.1016/j.carbon.2011.01.003
10.1016/j.tox.2009.10.017
10.1021/nn3012114
10.1021/nn2033055
10.1088/0957-4484/18/37/375502
10.1038/sj.cdd.4401264
10.1021/nn3010087
10.1016/0079-6816(93)90013-L
10.1021/nn102112b
10.1038/srep00406
10.1186/1743-8977-8-3
10.1039/B911099M
10.1016/j.desal.2011.10.039
10.1126/science.280.5367.1253
10.1039/c0nr01005g
10.1021/cr050569o
10.1002/adfm.201002257
10.1165/ajrcmb/6.2.235
10.1016/j.carbon.2004.08.033
10.1021/nn9011225
10.1021/jp055834o
10.1016/j.snb.2007.03.018
10.1016/S0300-483X(97)00151-0
10.1093/toxsci/kfg243
10.1038/nmat2766
10.1021/nn200328m
10.1007/s10875-010-9440-3
10.1038/nnano.2009.241
10.1021/jp110830y
10.1126/science.1156995
10.1002/anie.200501613
10.1016/j.cell.2010.01.040
10.1021/cm102406h
10.1093/toxsci/kfg228
10.1002/jgm.1587
10.1186/1755-1536-3-15
10.1016/j.scitotenv.2009.09.027
10.1016/j.aca.2008.07.052
10.1242/jcs.113.17.2955
10.1021/nn700256c
ContentType Journal Article
Copyright Copyright © 2013 American Chemical Society
Copyright_xml – notice: Copyright © 2013 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
5PM
DOI 10.1021/nn305567s
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList

MEDLINE - Academic
Materials Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 2368
ExternalDocumentID PMC4012619
23414138
10_1021_nn305567s
a862459976
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIEHS NIH HHS
  grantid: U19 ES019528
– fundername: NIEHS NIH HHS
  grantid: R01 ES016746
GroupedDBID -
23M
4.4
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
LG6
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
5VS
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
5PM
ID FETCH-LOGICAL-a469t-67f55a465a11ef6b80306552dc56ef206796b6fd76524c1729645d75037f2f773
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Thu Aug 21 18:01:17 EDT 2025
Fri Jul 11 08:37:01 EDT 2025
Fri Jul 11 09:28:49 EDT 2025
Mon Jul 21 05:48:45 EDT 2025
Tue Jul 01 01:33:30 EDT 2025
Thu Apr 24 23:09:50 EDT 2025
Thu Aug 27 13:42:28 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords multiwall carbon nanotube
charge
NLRP3 inflammasome
lung fibrosis
surface functionalization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a469t-67f55a465a11ef6b80306552dc56ef206796b6fd76524c1729645d75037f2f773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 23414138
PQID 1320187108
PQPubID 23479
PageCount 17
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4012619
proquest_miscellaneous_1762059632
proquest_miscellaneous_1320187108
pubmed_primary_23414138
crossref_primary_10_1021_nn305567s
crossref_citationtrail_10_1021_nn305567s
acs_journals_10_1021_nn305567s
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-03-26
PublicationDateYYYYMMDD 2013-03-26
PublicationDate_xml – month: 03
  year: 2013
  text: 2013-03-26
  day: 26
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2013
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Hong S. Y. (ref19/cit19) 2010; 9
Stone K. C. (ref59/cit59) 1992; 6
Wilson M. S. (ref38/cit38) 2010; 207
Wu W. (ref20/cit20) 2005; 44
Lam C. W. (ref23/cit23) 2004; 77
Jin C. C. (ref45/cit45) 2010; 30
Porter D. W. (ref58/cit58) 2010; 269
Li R. B. (ref8/cit8) 2010; 4
Zhang H. Y. (ref36/cit36) 2012; 6
Tabet L. (ref27/cit27) 2011; 8
Schroder K. (ref43/cit43) 2010; 140
Rahimpour A. (ref13/cit13) 2012; 286
Hu X. G. (ref51/cit51) 2006; 110
Wang X. (ref26/cit26) 2010; 10
Nagai H. (ref41/cit41) 2011; 108
Dostert C. (ref44/cit44) 2008; 320
Castellano F. (ref42/cit42) 2000; 113
Derjaguin B. (ref32/cit32) 1993; 43
Warheit D. B. (ref22/cit22) 2004; 77
Shvedova A. A. (ref48/cit48) 2005; 289
Schnorr J. M. (ref1/cit1) 2011; 23
Liu W. B. (ref4/cit4) 2011; 21
Wu H. C. (ref2/cit2) 2010; 20
Bonner J. C. (ref39/cit39) 2010; 3
Hentze H. (ref46/cit46) 2003; 10
Liu M. (ref16/cit16) 2011; 22
ref54/cit54
Wang X. (ref35/cit35) 2010; 4
Li R. B. (ref9/cit9) 2011; 49
Kuempel E. D. (ref55/cit55) 2012
Liu J. (ref12/cit12) 1998; 280
Roda E. (ref28/cit28) 2011; 26
Saha M. S. (ref10/cit10) 2010; 195
Kostarelos K. (ref11/cit11) 2009; 4
Hinderliter P. M. (ref60/cit60) 2010; 7
Georgakilas V. (ref18/cit18) 2002; 124
Xu M. S. (ref31/cit31) 2012; 2
Han J. H. (ref56/cit56) 2008; 20
ref57/cit57
Vairavapandian D. (ref5/cit5) 2008; 626
Malich G. (ref37/cit37) 1997; 124
Porter D. W. (ref47/cit47) 2010; 269
Upadhyayula V. K. K. (ref7/cit7) 2009; 408
Khaydarov R. A. (ref52/cit52) 2010; 44
Xia T. (ref29/cit29) 2008; 2
Kayat J. (ref40/cit40) 2011; 7
Niu L. (ref14/cit14) 2007; 126
Ji Z. (ref61/cit61) 2012; 6
Vardharajula S. (ref21/cit21) 2012; 7
Wang X. (ref25/cit25) 2012; 12
Hanzlikova M. (ref53/cit53) 2011; 13
Zhang H. Y. (ref33/cit33) 2011; 5
Foillard S. (ref15/cit15) 2011; 3
Kuzmych O. (ref50/cit50) 2007; 18
Tasis D. (ref3/cit3) 2006; 106
Gasse P. (ref49/cit49) 2007; 117
Okpalugo T. I. T. (ref34/cit34) 2005; 43
Wang X. (ref24/cit24) 2011; 5
Varkouhi A. K. (ref17/cit17) 2011; 416
Kauffman D. R. (ref6/cit6) 2008; 47
Gonzalez-Dominguez J. M. (ref30/cit30) 2011; 115
20303873 - Cell. 2010 Mar 19;140(6):821-32
21121361 - J Nanosci Nanotechnol. 2010 Dec;10(12):8516-26
19819525 - Sci Total Environ. 2009 Dec 15;408(1):1-13
18403674 - Science. 2008 May 2;320(5876):674-7
15951334 - Am J Physiol Lung Cell Mol Physiol. 2005 Nov;289(5):L698-708
22546002 - Nano Lett. 2012 Jun 13;12(6):3050-61
22047207 - ACS Nano. 2011 Dec 27;5(12):9772-87
22586516 - Sci Rep. 2012;2:406
19206551 - ACS Nano. 2008 Jan;2(1):85-96
21320582 - Int J Pharm. 2011 Sep 20;416(2):419-25
21366263 - ACS Nano. 2011 Apr 26;5(4):2756-69
14514968 - Toxicol Sci. 2004 Jan;77(1):117-25
11817945 - J Am Chem Soc. 2002 Feb 6;124(5):760-1
18790113 - Anal Chim Acta. 2008 Sep 26;626(2):119-29
14514958 - Toxicol Sci. 2004 Jan;77(1):126-34
20589420 - J Clin Immunol. 2010 Sep;30(5):628-31
18642264 - Angew Chem Int Ed Engl. 2008;47(35):6550-70
21210349 - Histol Histopathol. 2011 Mar;26(3):357-67
21118529 - Part Fibre Toxicol. 2010;7(1):36
17992263 - J Clin Invest. 2007 Dec;117(12):3786-99
22084097 - Proc Natl Acad Sci U S A. 2011 Dec 6;108(49):E1330-8
21067152 - ACS Nano. 2010 Dec 28;4(12):7241-52
23210709 - Acc Chem Res. 2013 Mar 19;46(3):642-9
1540387 - Am J Respir Cell Mol Biol. 1992 Feb;6(2):235-43
20473287 - Nat Mater. 2010 Jun;9(6):485-90
20148593 - ACS Nano. 2010 Mar 23;4(3):1399-408
10934035 - J Cell Sci. 2000 Sep;113 ( Pt 17):2955-61
9596576 - Science. 1998 May 22;280(5367):1253-6
19809452 - Nat Nanotechnol. 2009 Oct;4(10):627-33
16138384 - Angew Chem Int Ed Engl. 2005 Oct 7;44(39):6358-62
9482120 - Toxicology. 1997 Dec 31;124(3):179-92
20738867 - Fibrogenesis Tissue Repair. 2010 Aug 25;3:15
21995530 - Bioconjug Chem. 2011 Nov 16;22(11):2237-43
21255417 - Part Fibre Toxicol. 2011;8:3
20031184 - Water Res. 2010 Mar;44(6):1927-33
26504427 - J Nanopart Res. 2012 Sep;14:1029
20620235 - Nanomedicine. 2011 Feb;7(1):40-9
23091380 - Int J Nanomedicine. 2012;7:5361-74
22502734 - ACS Nano. 2012 May 22;6(5):4349-68
18569096 - Inhal Toxicol. 2008 Jun;20(8):741-9
16522018 - Chem Rev. 2006 Mar;106(3):1105-36
22564147 - ACS Nano. 2012 Jun 26;6(6):5366-80
12934070 - Cell Death Differ. 2003 Sep;10(9):956-68
16471615 - J Phys Chem B. 2006 Jan 19;110(2):853-7
21301705 - Nanoscale. 2011 Apr;3(4):1461-4
19857541 - Toxicology. 2010 Mar 10;269(2-3):136-47
21721076 - J Gene Med. 2011 Jul;13(7-8):402-9
20176803 - J Exp Med. 2010 Mar 15;207(3):535-52
References_xml – volume: 124
  start-page: 760
  year: 2002
  ident: ref18/cit18
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja016954m
– volume: 20
  start-page: 741
  year: 2008
  ident: ref56/cit56
  publication-title: Inhal. Toxicol.
  doi: 10.1080/08958370801942238
– volume: 44
  start-page: 1927
  year: 2010
  ident: ref52/cit52
  publication-title: Water Res.
  doi: 10.1016/j.watres.2009.11.041
– volume: 22
  start-page: 2237
  year: 2011
  ident: ref16/cit16
  publication-title: Bioconjugate Chem.
  doi: 10.1021/bc200189f
– volume: 195
  start-page: 6255
  year: 2010
  ident: ref10/cit10
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.04.015
– volume: 12
  start-page: 3050
  year: 2012
  ident: ref25/cit25
  publication-title: Nano Lett.
  doi: 10.1021/nl300895y
– volume: 7
  start-page: 40
  year: 2011
  ident: ref40/cit40
  publication-title: Nanomedicine
  doi: 10.1016/j.nano.2010.06.008
– volume: 207
  start-page: 535
  year: 2010
  ident: ref38/cit38
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20092121
– volume: 47
  start-page: 6550
  year: 2008
  ident: ref6/cit6
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200704488
– ident: ref54/cit54
  doi: 10.1021/ar300004a
– volume: 10
  start-page: 8516
  year: 2010
  ident: ref26/cit26
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2010.2688
– volume: 7
  start-page: 20
  year: 2010
  ident: ref60/cit60
  publication-title: Part. Fibre Toxicol.
  doi: 10.1186/1743-8977-7-36
– volume: 416
  start-page: 419
  year: 2011
  ident: ref17/cit17
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2011.02.009
– volume: 289
  start-page: L698
  year: 2005
  ident: ref48/cit48
  publication-title: Am. J. Physiol.
– volume: 49
  start-page: 1797
  year: 2011
  ident: ref9/cit9
  publication-title: Carbon
  doi: 10.1016/j.carbon.2011.01.003
– volume: 269
  start-page: 136
  year: 2010
  ident: ref47/cit47
  publication-title: Toxicology
  doi: 10.1016/j.tox.2009.10.017
– volume: 6
  start-page: 5366
  year: 2012
  ident: ref61/cit61
  publication-title: ACS Nano
  doi: 10.1021/nn3012114
– volume: 108
  start-page: E1330
  year: 2011
  ident: ref41/cit41
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 269
  start-page: 136
  year: 2010
  ident: ref58/cit58
  publication-title: Toxicology
  doi: 10.1016/j.tox.2009.10.017
– start-page: 14
  year: 2012
  ident: ref55/cit55
  publication-title: J. Nanopart. Res.
– volume: 5
  start-page: 9772
  year: 2011
  ident: ref24/cit24
  publication-title: ACS Nano
  doi: 10.1021/nn2033055
– volume: 18
  start-page: 7
  year: 2007
  ident: ref50/cit50
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/18/37/375502
– volume: 10
  start-page: 956
  year: 2003
  ident: ref46/cit46
  publication-title: Cell Death Differ.
  doi: 10.1038/sj.cdd.4401264
– volume: 6
  start-page: 4349
  year: 2012
  ident: ref36/cit36
  publication-title: ACS Nano
  doi: 10.1021/nn3010087
– volume: 43
  start-page: 30
  year: 1993
  ident: ref32/cit32
  publication-title: Prog. Surf. Sci.
  doi: 10.1016/0079-6816(93)90013-L
– volume: 4
  start-page: 7241
  year: 2010
  ident: ref35/cit35
  publication-title: ACS Nano
  doi: 10.1021/nn102112b
– volume: 2
  start-page: 406
  year: 2012
  ident: ref31/cit31
  publication-title: Sci. Rep.
  doi: 10.1038/srep00406
– volume: 8
  start-page: 13
  year: 2011
  ident: ref27/cit27
  publication-title: Part. Fibre Toxicol.
  doi: 10.1186/1743-8977-8-3
– volume: 20
  start-page: 1036
  year: 2010
  ident: ref2/cit2
  publication-title: J. Mater. Chem.
  doi: 10.1039/B911099M
– volume: 286
  start-page: 99
  year: 2012
  ident: ref13/cit13
  publication-title: Desalination
  doi: 10.1016/j.desal.2011.10.039
– volume: 117
  start-page: 3786
  year: 2007
  ident: ref49/cit49
  publication-title: J. Clin. Invest.
– volume: 280
  start-page: 1253
  year: 1998
  ident: ref12/cit12
  publication-title: Science
  doi: 10.1126/science.280.5367.1253
– volume: 3
  start-page: 1461
  year: 2011
  ident: ref15/cit15
  publication-title: Nanoscale
  doi: 10.1039/c0nr01005g
– volume: 26
  start-page: 357
  year: 2011
  ident: ref28/cit28
  publication-title: Histol. Histopath.
– volume: 106
  start-page: 1105
  year: 2006
  ident: ref3/cit3
  publication-title: Chem. Rev.
  doi: 10.1021/cr050569o
– volume: 21
  start-page: 2330
  year: 2011
  ident: ref4/cit4
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201002257
– volume: 6
  start-page: 235
  year: 1992
  ident: ref59/cit59
  publication-title: Am. J. Respir. Cell Mol. Biol.
  doi: 10.1165/ajrcmb/6.2.235
– volume: 43
  start-page: 153
  year: 2005
  ident: ref34/cit34
  publication-title: Carbon
  doi: 10.1016/j.carbon.2004.08.033
– volume: 4
  start-page: 1399
  year: 2010
  ident: ref8/cit8
  publication-title: ACS Nano
  doi: 10.1021/nn9011225
– volume: 110
  start-page: 853
  year: 2006
  ident: ref51/cit51
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp055834o
– volume: 126
  start-page: 361
  year: 2007
  ident: ref14/cit14
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2007.03.018
– volume: 124
  start-page: 179
  year: 1997
  ident: ref37/cit37
  publication-title: Toxicology
  doi: 10.1016/S0300-483X(97)00151-0
– volume: 77
  start-page: 126
  year: 2004
  ident: ref23/cit23
  publication-title: Toxicol. Sci.
  doi: 10.1093/toxsci/kfg243
– volume: 9
  start-page: 485
  year: 2010
  ident: ref19/cit19
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2766
– volume: 5
  start-page: 2756
  year: 2011
  ident: ref33/cit33
  publication-title: ACS Nano
  doi: 10.1021/nn200328m
– ident: ref57/cit57
– volume: 30
  start-page: 628
  year: 2010
  ident: ref45/cit45
  publication-title: J. Clin. Immunol.
  doi: 10.1007/s10875-010-9440-3
– volume: 4
  start-page: 627
  year: 2009
  ident: ref11/cit11
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2009.241
– volume: 115
  start-page: 7238
  year: 2011
  ident: ref30/cit30
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp110830y
– volume: 320
  start-page: 674
  year: 2008
  ident: ref44/cit44
  publication-title: Science
  doi: 10.1126/science.1156995
– volume: 44
  start-page: 6358
  year: 2005
  ident: ref20/cit20
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200501613
– volume: 140
  start-page: 821
  year: 2010
  ident: ref43/cit43
  publication-title: Cell
  doi: 10.1016/j.cell.2010.01.040
– volume: 7
  start-page: 5361
  year: 2012
  ident: ref21/cit21
  publication-title: Int. J. Nanomed.
– volume: 23
  start-page: 646
  year: 2011
  ident: ref1/cit1
  publication-title: Chem. Mater.
  doi: 10.1021/cm102406h
– volume: 77
  start-page: 117
  year: 2004
  ident: ref22/cit22
  publication-title: Toxicol. Sci.
  doi: 10.1093/toxsci/kfg228
– volume: 13
  start-page: 402
  year: 2011
  ident: ref53/cit53
  publication-title: J. Gene Med.
  doi: 10.1002/jgm.1587
– volume: 3
  start-page: 15
  year: 2010
  ident: ref39/cit39
  publication-title: Fibrogenesis Tissue Repair
  doi: 10.1186/1755-1536-3-15
– volume: 408
  start-page: 1
  year: 2009
  ident: ref7/cit7
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2009.09.027
– volume: 626
  start-page: 119
  year: 2008
  ident: ref5/cit5
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2008.07.052
– volume: 113
  start-page: 2955
  year: 2000
  ident: ref42/cit42
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.113.17.2955
– volume: 2
  start-page: 85
  year: 2008
  ident: ref29/cit29
  publication-title: ACS Nano
  doi: 10.1021/nn700256c
– reference: 14514958 - Toxicol Sci. 2004 Jan;77(1):126-34
– reference: 19857541 - Toxicology. 2010 Mar 10;269(2-3):136-47
– reference: 18790113 - Anal Chim Acta. 2008 Sep 26;626(2):119-29
– reference: 12934070 - Cell Death Differ. 2003 Sep;10(9):956-68
– reference: 9596576 - Science. 1998 May 22;280(5367):1253-6
– reference: 18569096 - Inhal Toxicol. 2008 Jun;20(8):741-9
– reference: 21118529 - Part Fibre Toxicol. 2010;7(1):36
– reference: 21721076 - J Gene Med. 2011 Jul;13(7-8):402-9
– reference: 21320582 - Int J Pharm. 2011 Sep 20;416(2):419-25
– reference: 21995530 - Bioconjug Chem. 2011 Nov 16;22(11):2237-43
– reference: 23210709 - Acc Chem Res. 2013 Mar 19;46(3):642-9
– reference: 14514968 - Toxicol Sci. 2004 Jan;77(1):117-25
– reference: 21121361 - J Nanosci Nanotechnol. 2010 Dec;10(12):8516-26
– reference: 18642264 - Angew Chem Int Ed Engl. 2008;47(35):6550-70
– reference: 22084097 - Proc Natl Acad Sci U S A. 2011 Dec 6;108(49):E1330-8
– reference: 19819525 - Sci Total Environ. 2009 Dec 15;408(1):1-13
– reference: 11817945 - J Am Chem Soc. 2002 Feb 6;124(5):760-1
– reference: 15951334 - Am J Physiol Lung Cell Mol Physiol. 2005 Nov;289(5):L698-708
– reference: 20738867 - Fibrogenesis Tissue Repair. 2010 Aug 25;3:15
– reference: 16522018 - Chem Rev. 2006 Mar;106(3):1105-36
– reference: 20620235 - Nanomedicine. 2011 Feb;7(1):40-9
– reference: 20148593 - ACS Nano. 2010 Mar 23;4(3):1399-408
– reference: 20176803 - J Exp Med. 2010 Mar 15;207(3):535-52
– reference: 22546002 - Nano Lett. 2012 Jun 13;12(6):3050-61
– reference: 21366263 - ACS Nano. 2011 Apr 26;5(4):2756-69
– reference: 21210349 - Histol Histopathol. 2011 Mar;26(3):357-67
– reference: 16471615 - J Phys Chem B. 2006 Jan 19;110(2):853-7
– reference: 20589420 - J Clin Immunol. 2010 Sep;30(5):628-31
– reference: 20303873 - Cell. 2010 Mar 19;140(6):821-32
– reference: 22564147 - ACS Nano. 2012 Jun 26;6(6):5366-80
– reference: 9482120 - Toxicology. 1997 Dec 31;124(3):179-92
– reference: 17992263 - J Clin Invest. 2007 Dec;117(12):3786-99
– reference: 1540387 - Am J Respir Cell Mol Biol. 1992 Feb;6(2):235-43
– reference: 23091380 - Int J Nanomedicine. 2012;7:5361-74
– reference: 10934035 - J Cell Sci. 2000 Sep;113 ( Pt 17):2955-61
– reference: 19206551 - ACS Nano. 2008 Jan;2(1):85-96
– reference: 20031184 - Water Res. 2010 Mar;44(6):1927-33
– reference: 18403674 - Science. 2008 May 2;320(5876):674-7
– reference: 21067152 - ACS Nano. 2010 Dec 28;4(12):7241-52
– reference: 22047207 - ACS Nano. 2011 Dec 27;5(12):9772-87
– reference: 16138384 - Angew Chem Int Ed Engl. 2005 Oct 7;44(39):6358-62
– reference: 20473287 - Nat Mater. 2010 Jun;9(6):485-90
– reference: 26504427 - J Nanopart Res. 2012 Sep;14:1029
– reference: 22586516 - Sci Rep. 2012;2:406
– reference: 19809452 - Nat Nanotechnol. 2009 Oct;4(10):627-33
– reference: 21255417 - Part Fibre Toxicol. 2011;8:3
– reference: 21301705 - Nanoscale. 2011 Apr;3(4):1461-4
– reference: 22502734 - ACS Nano. 2012 May 22;6(5):4349-68
SSID ssj0057876
Score 2.5460129
Snippet Functionalized carbon nanotubes (f-CNTs) are being produced in increased volume because of the ease of dispersion and maintenance of the pristine material...
Functionalized carbon nanotubes ( f -CNTs) are being produced in increased volume because of the ease of dispersion and maintenance of the pristine material...
SourceID pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2352
SubjectTerms Animals
Biocompatibility
Biological Transport, Active
Cationic
Cell Line
Cellular
Cytokines - biosynthesis
Fibrosis
Humans
Inflammasomes - drug effects
Inflammasomes - metabolism
Lung - drug effects
Lung - metabolism
Lung - pathology
Lung Injury - chemically induced
Male
Mathematical models
Mice
Mice, Inbred C57BL
Multi wall carbon nanotubes
Nanotechnology
Nanotubes, Carbon - chemistry
Nanotubes, Carbon - toxicity
Nanotubes, Carbon - ultrastructure
Polyethylene glycol
Pulmonary Fibrosis - chemically induced
Pulmonary Fibrosis - pathology
Spectroscopy, Fourier Transform Infrared
Static Electricity
Surface charge
Surface Properties
Tubes
Title Surface Charge and Cellular Processing of Covalently Functionalized Multiwall Carbon Nanotubes Determine Pulmonary Toxicity
URI http://dx.doi.org/10.1021/nn305567s
https://www.ncbi.nlm.nih.gov/pubmed/23414138
https://www.proquest.com/docview/1320187108
https://www.proquest.com/docview/1762059632
https://pubmed.ncbi.nlm.nih.gov/PMC4012619
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT-MwEB514cIeljeUl7zAgUugcWKnPaJAhVbaFRIgcYvsxIaKyEFtooXy5xnnUbU8b5EylhN77PnG4_kG4FB7ymVKB46WLnd86VJHxAjkfM4ll72uSpjNHf77j1_c-H9u2W0LDj6J4FP3xJiSxSoY_YB5ynHxWvwTXjXbrdU4XoWO0TVG_NDQB003taYnHs2annd48u21yCk701-EsyZbp7pe8nBc5PI4Hr8nb_zqF5bgV40zyWmlGMvQUmYFfk6xD67Cy1Ux1CJWxIbc7xQRJiGhSlN7MZXUCQQoSDJNwgwVEr83fSZ9NITV-eFgrBJSJvD-F2lKQjGUmSG4XWd5IdWInNU3bRS5LFLUdjF8JtfZ0yBG4L8GN_3z6_DCqWsxOAId6NzhgWYMH5lwXaW57FpfgzGaxIwrTcvjKMl1EnBG_RhRUY_7LLFB0kBTHQTeOsyZzKhNINhOC49aXnfhM09KJf2O7AopejiZWrRhDycrqtfSKCrD5NSNJqPYhqNmHqO4ZjK3BTXSj0T3J6KPFX3HR0K_G2WIcHHZiIkwKiuwa4_aooVup_uFDJoTW8PIo23YqBRo0hVFjIAoAVsHM6o1EbDk3rNvzOC-JPlGv9c6t1vfDcY2LNCyQofnUL4Dc_mwULuIk3K5V66TVzVED6w
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFLYYHLYdBmxsKz89tAOXAHFiJz2iQNUxWiHRStwiO7G3apEzNYkG7J_fs5OUFqptt0h5jh372e97fvb3EPqsPOlSqQJHCZc5vnCJwxMAcj5jgoluKFNq7g4Phqw_9i9v6W1Dk2PuwkAjCvhSYYP4j-wC7onWlswqKF6gNQAhxGjzWXTTrrpG8VgdQQYPGWBEyyI0X9RYoKRYtEDPYOXT05Fz5qa3Xuctsg21p0x-HFelOE4ennA4_t-fbKA3DerEZ7WabKIVqd-i13NchO_Q75tqqngisQnAf5OY6xRHMsvMMVXcXCcAQZwrHOWgntDs7B73wCzWu4mTB5lie533F88yHPGpyDWGxTsvKyELfN6cu5H4uspA9_n0Ho_yu0kCbsAWGvcuRlHfaTIzOBzc6dJhgaIUHil3XamYCI3nQSlJE8qkInZzSjCVBjBQfgIYqct8mpqQaaCICgLvPVrVuZYfEYZyinvEsLxzn3pCSOGfipAL3oUxVbyD9qET42ZmFbENmhM3nvViBx21wxknDa-5Sa-RLRM9nIn-rMk8lgl9anUihqlm4idcy7yCqj1iUhi6p-FfZMC4mIxGHumgD7UezaoigBgAM0DpYEHDZgKG6nvxjZ58t5Tf4AUbV3f7X51xgF72R4Or-OrL8OsOekVs7g7PIWwXrZbTSu4BgirFvp06fwDM6BgN
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDLdgSAgeGN8cgxEQD7x0rGmT3j1OHafxNSZtk_ZWJW2ynajS6doKNv557LRX3Y0JeKtUp0kTO7Zj52eAtzYyoTA2CawOZRDrkAcqR0MullJLPRmbQtDd4a_7cu84_nQiTnpHke7C4CBq_FLtg_gk1eeF7REGwvfOeUCrpL4JtyhcRxy9kx4udl5iPtlFkdFLRlNigSS03JS0UF6vaqE_TMurGZJLKme6Dt-GwfpMk-9bbaO38ssrOI7__zf34V5vfbKdjl0ewA3jHsLdJUzCR_DrsJ1blRtGgfhTw5QrWGrKktJVWX-tAAlZZVlaIZvi0MsLNkX12J0qzi5Nwfy13h-qLFmq5rpyDDfxqmm1qdlun39j2EFbogyo-QU7qn7OcnQHHsPx9MNRuhf0FRoChW51E8jECoGPQoWhsVKPyQMRghe5kMZyf0ilpS0SKXico600kbEoKHSaWG6TJHoCa65y5hkwbGdVxAntXcUi0troeFuPlVYTXFerRrCJE5n1ElZnPnjOw2yYxRG8Wyxplvf45lRmo7yO9M1Aet6BelxH9HrBFxmKHMVRlDNVi11HnEoZhtvjv9CgkqHKRhEfwdOOl4auOFoOaDtg62SFywYCgvxefeNmZx76G71hcnmf_2syXsHtg91p9uXj_ucNuMN9CY8o4PIFrDXz1rxEQ6rRm156fgPBZhqQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface+charge+and+cellular+processing+of+covalently+functionalized+multiwall+carbon+nanotubes+determine+pulmonary+toxicity&rft.jtitle=ACS+nano&rft.au=Li%2C+Ruibin&rft.au=Wang%2C+Xiang&rft.au=Ji%2C+Zhaoxia&rft.au=Sun%2C+Bingbing&rft.date=2013-03-26&rft.eissn=1936-086X&rft.volume=7&rft.issue=3&rft.spage=2352&rft_id=info:doi/10.1021%2Fnn305567s&rft_id=info%3Apmid%2F23414138&rft.externalDocID=23414138
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon