Organic Acids Regulation of Chemical–Microbial Phosphorus Transformations in Soils
We have used an integrated approach to study the mobility of inorganic phosphorus (P) from soil solid phase as well as the microbial biomass P and respiration at increasing doses of citric and oxalic acid in two different soils with contrasting agronomic P status. Citric or oxalic acids significantl...
Saved in:
Published in | Environmental science & technology Vol. 50; no. 21; pp. 11521 - 11531 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
01.11.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We have used an integrated approach to study the mobility of inorganic phosphorus (P) from soil solid phase as well as the microbial biomass P and respiration at increasing doses of citric and oxalic acid in two different soils with contrasting agronomic P status. Citric or oxalic acids significantly increased soil solution P concentrations for doses over 2 mmol kg–1. However, low organic acid doses (<2 mmol kg–1) were associated with a steep increase in microbial biomass P, which was not seen for higher doses. In both soils, treatment with the tribasic citric acid led to a greater increase in soil solution P than the dibasic oxalic acid, likely due to the rapid degrading of oxalic acids in soils. After equilibration of soils with citric or oxalic acids, the adsorbed-to-solution distribution coefficient (K d) and desorption rate constants (k –1) decreased whereas an increase in the response time of solution P equilibration (T c) was observed. The extent of this effect was shown to be both soil and organic acid specific. Our results illustrate the critical thresholds of organic acid concentration necessary to mobilize sorbed and precipitated P, bringing new insight on how the exudation of organic acids regulate chemical–microbial soil phosphorus transformations. |
---|---|
AbstractList | We have used an integrated approach to study the mobility of inorganic phosphorus (P) from soil solid phase as well as the microbial biomass P and respiration at increasing doses of citric and oxalic acid in two different soils with contrasting agronomic P status. Citric or oxalic acids significantly increased soil solution P concentrations for doses over 2 mmol kg^sup -1^. However, low organic acid doses (<2 mmol kg^sup -1^) were associated with a steep increase in microbial biomass P, which was not seen for higher doses. In both soils, treatment with the tribasic citric acid led to a greater increase in soil solution P than the dibasic oxalic acid, likely due to the rapid degrading of oxalic acids in soils. After equilibration of soils with citric or oxalic acids, the adsorbed-to-solution distribution coefficient (K^sub d^) and desorption rate constants (k^sub -1^) decreased whereas an increase in the response time of solution P equilibration (T^sub c^) was observed. The extent of this effect was shown to be both soil and organic acid specific. Our results illustrate the critical thresholds of organic acid concentration necessary to mobilize sorbed and precipitated P, bringing new insight on how the exudation of organic acids regulate chemical-microbial soil phosphorus transformations. We have used an integrated approach to study the mobility of inorganic phosphorus (P) from soil solid phase as well as the microbial biomass P and respiration at increasing doses of citric and oxalic acid in two different soils with contrasting agronomic P status. Citric or oxalic acids significantly increased soil solution P concentrations for doses over 2 mmol kg super( -1). However, low organic acid doses (<2 mmol kg super( -1)) were associated with a steep increase in microbial biomass P, which was not seen for higher doses. In both soils, treatment with the tribasic citric acid led to a greater increase in soil solution P than the dibasic oxalic acid, likely due to the rapid degrading of oxalic acids in soils. After equilibration of soils with citric or oxalic acids, the adsorbed-to-solution distribution coefficient (K sub( d)) and desorption rate constants (k sub( -1)) decreased whereas an increase in the response time of solution P equilibration (T sub( c)) was observed. The extent of this effect was shown to be both soil and organic acid specific. Our results illustrate the critical thresholds of organic acid concentration necessary to mobilize sorbed and precipitated P, bringing new insight on how the exudation of organic acids regulate chemical-microbial soil phosphorus transformations. We have used an integrated approach to study the mobility of inorganic phosphorus (P) from soil solid phase as well as the microbial biomass P and respiration at increasing doses of citric and oxalic acid in two different soils with contrasting agronomic P status. Citric or oxalic acids significantly increased soil solution P concentrations for doses over 2 mmol kg–¹. However, low organic acid doses (<2 mmol kg–¹) were associated with a steep increase in microbial biomass P, which was not seen for higher doses. In both soils, treatment with the tribasic citric acid led to a greater increase in soil solution P than the dibasic oxalic acid, likely due to the rapid degrading of oxalic acids in soils. After equilibration of soils with citric or oxalic acids, the adsorbed-to-solution distribution coefficient (Kd) and desorption rate constants (k–₁) decreased whereas an increase in the response time of solution P equilibration (Tc) was observed. The extent of this effect was shown to be both soil and organic acid specific. Our results illustrate the critical thresholds of organic acid concentration necessary to mobilize sorbed and precipitated P, bringing new insight on how the exudation of organic acids regulate chemical–microbial soil phosphorus transformations. We have used an integrated approach to study the mobility of inorganic phosphorus (P) from soil solid phase as well as the microbial biomass P and respiration at increasing doses of citric and oxalic acid in two different soils with contrasting agronomic P status. Citric or oxalic acids significantly increased soil solution P concentrations for doses over 2 mmol kg–1. However, low organic acid doses (<2 mmol kg–1) were associated with a steep increase in microbial biomass P, which was not seen for higher doses. In both soils, treatment with the tribasic citric acid led to a greater increase in soil solution P than the dibasic oxalic acid, likely due to the rapid degrading of oxalic acids in soils. After equilibration of soils with citric or oxalic acids, the adsorbed-to-solution distribution coefficient (K d) and desorption rate constants (k –1) decreased whereas an increase in the response time of solution P equilibration (T c) was observed. The extent of this effect was shown to be both soil and organic acid specific. Our results illustrate the critical thresholds of organic acid concentration necessary to mobilize sorbed and precipitated P, bringing new insight on how the exudation of organic acids regulate chemical–microbial soil phosphorus transformations. We have used an integrated approach to study the mobility of inorganic phosphorus (P) from soil solid phase as well as the microbial biomass P and respiration at increasing doses of citric and oxalic acid in two different soils with contrasting agronomic P status. Citric or oxalic acids significantly increased soil solution P concentrations for doses over 2 mmol kg-1. However, low organic acid doses (<2 mmol kg-1) were associated with a steep increase in microbial biomass P, which was not seen for higher doses. In both soils, treatment with the tribasic citric acid led to a greater increase in soil solution P than the dibasic oxalic acid, likely due to the rapid degrading of oxalic acids in soils. After equilibration of soils with citric or oxalic acids, the adsorbed-to-solution distribution coefficient (Kd) and desorption rate constants (k-1) decreased whereas an increase in the response time of solution P equilibration (Tc) was observed. The extent of this effect was shown to be both soil and organic acid specific. Our results illustrate the critical thresholds of organic acid concentration necessary to mobilize sorbed and precipitated P, bringing new insight on how the exudation of organic acids regulate chemical-microbial soil phosphorus transformations.We have used an integrated approach to study the mobility of inorganic phosphorus (P) from soil solid phase as well as the microbial biomass P and respiration at increasing doses of citric and oxalic acid in two different soils with contrasting agronomic P status. Citric or oxalic acids significantly increased soil solution P concentrations for doses over 2 mmol kg-1. However, low organic acid doses (<2 mmol kg-1) were associated with a steep increase in microbial biomass P, which was not seen for higher doses. In both soils, treatment with the tribasic citric acid led to a greater increase in soil solution P than the dibasic oxalic acid, likely due to the rapid degrading of oxalic acids in soils. After equilibration of soils with citric or oxalic acids, the adsorbed-to-solution distribution coefficient (Kd) and desorption rate constants (k-1) decreased whereas an increase in the response time of solution P equilibration (Tc) was observed. The extent of this effect was shown to be both soil and organic acid specific. Our results illustrate the critical thresholds of organic acid concentration necessary to mobilize sorbed and precipitated P, bringing new insight on how the exudation of organic acids regulate chemical-microbial soil phosphorus transformations. We have used an integrated approach to study the mobility of inorganic phosphorus (P) from soil solid phase as well as the microbial biomass P and respiration at increasing doses of citric and oxalic acid in two different soils with contrasting agronomic P status. Citric or oxalic acids significantly increased soil solution P concentrations for doses over 2 mmol kg . However, low organic acid doses (<2 mmol kg ) were associated with a steep increase in microbial biomass P, which was not seen for higher doses. In both soils, treatment with the tribasic citric acid led to a greater increase in soil solution P than the dibasic oxalic acid, likely due to the rapid degrading of oxalic acids in soils. After equilibration of soils with citric or oxalic acids, the adsorbed-to-solution distribution coefficient (K ) and desorption rate constants (k ) decreased whereas an increase in the response time of solution P equilibration (T ) was observed. The extent of this effect was shown to be both soil and organic acid specific. Our results illustrate the critical thresholds of organic acid concentration necessary to mobilize sorbed and precipitated P, bringing new insight on how the exudation of organic acids regulate chemical-microbial soil phosphorus transformations. |
Author | George, Timothy S Cooper, Patricia Brown, Lawrie Haygarth, Philip M Giles, Courtney D Paredes, Cecilia Blackwell, Martin Zhang, Hao Darch, Tegan Wearing, Catherine Shand, Charles Stutter, Marc Menezes-Blackburn, Daniel Lumsdon, David Wendler, Renate |
AuthorAffiliation | Scientific and Technological Bioresource Nucleus (BIOREN) James Hutton Institute The James Hutton Institute Lancaster Environment Centre Universidad de La Frontera Lancaster University |
AuthorAffiliation_xml | – name: Scientific and Technological Bioresource Nucleus (BIOREN) – name: James Hutton Institute – name: Lancaster Environment Centre – name: Lancaster University – name: Universidad de La Frontera – name: The James Hutton Institute |
Author_xml | – sequence: 1 givenname: Daniel surname: Menezes-Blackburn fullname: Menezes-Blackburn, Daniel email: d.blackburn@lancaster.ac.uk – sequence: 2 givenname: Cecilia surname: Paredes fullname: Paredes, Cecilia – sequence: 3 givenname: Hao surname: Zhang fullname: Zhang, Hao email: h.zhang@lancaster.ac.uk – sequence: 4 givenname: Courtney D surname: Giles fullname: Giles, Courtney D – sequence: 5 givenname: Tegan surname: Darch fullname: Darch, Tegan – sequence: 6 givenname: Marc surname: Stutter fullname: Stutter, Marc – sequence: 7 givenname: Timothy S surname: George fullname: George, Timothy S – sequence: 8 givenname: Charles surname: Shand fullname: Shand, Charles – sequence: 9 givenname: David surname: Lumsdon fullname: Lumsdon, David – sequence: 10 givenname: Patricia surname: Cooper fullname: Cooper, Patricia – sequence: 11 givenname: Renate surname: Wendler fullname: Wendler, Renate – sequence: 12 givenname: Lawrie surname: Brown fullname: Brown, Lawrie – sequence: 13 givenname: Martin surname: Blackwell fullname: Blackwell, Martin – sequence: 14 givenname: Catherine surname: Wearing fullname: Wearing, Catherine – sequence: 15 givenname: Philip M surname: Haygarth fullname: Haygarth, Philip M |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27700099$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkctKJDEUhsOgaLe6nt1Q4GZgqDaXSlWybJoZFRRFW3BXnKRTdpqqSk9StXDnO8wb-iSTvqggjOMqhHzfIef_h2inda1B6CvBI4IpOQEdRiZ0o1xhhknxBQ0IpzjlgpMdNMCYsFSy_H4fDUNYYIwpw2IP7dOiiBcpB2h65R-gtToZazsLyY156GvorGsTVyWTuWmshvr56c-l1d4pC3VyPXdhOXe-D8nUQxsq55u1ERLbJrfO1uEQ7VZQB3O0PQ_Q3a-f08lZenF1ej4ZX6SQ5aJLK66AZAVw0JmWBnOZZ9lMKqWxYSBoUVFllJZAFRWcUShMVQlNpcRKz7RkB-j7Zu7Su999zKFsbNCmrqE1rg8ljUuymBMn_0WJ4LgQvBD5J1CWSUllLiJ6_A5duN63cecVlXNBcsoi9W1L9aoxs3LpbQP-sXxpIQInGyBmHII31StCcLnquYw9l6vx256jwd8Z2nbrFjoPtv7A-7HxVg9vf_0H_Rf-ybzn |
CODEN | ESTHAG |
CitedBy_id | crossref_primary_10_1007_s11104_017_3365_z crossref_primary_10_1080_00103624_2022_2071935 crossref_primary_10_1007_s11368_018_2034_z crossref_primary_10_3389_ffgc_2020_550884 crossref_primary_10_1007_s12665_021_09447_3 crossref_primary_10_1080_00103624_2021_1956522 crossref_primary_10_1007_s11356_021_12611_8 crossref_primary_10_1007_s42729_021_00534_9 crossref_primary_10_1007_s42729_021_00745_0 crossref_primary_10_3390_plants13081153 crossref_primary_10_1016_j_rhisph_2024_101007 crossref_primary_10_1016_j_jenvman_2021_113984 crossref_primary_10_1016_j_envpol_2022_119582 crossref_primary_10_1021_acs_est_2c00099 crossref_primary_10_3390_soilsystems4010015 crossref_primary_10_1016_j_jenvman_2024_120431 crossref_primary_10_1016_j_still_2019_104316 crossref_primary_10_1016_j_jhazmat_2017_02_053 crossref_primary_10_1007_s12275_023_00072_2 crossref_primary_10_1007_s11104_023_06442_4 crossref_primary_10_3389_fenvs_2022_932833 crossref_primary_10_1186_s12934_023_02105_2 crossref_primary_10_3390_microorganisms8091337 crossref_primary_10_1016_j_ecoenv_2023_115046 crossref_primary_10_1021_acs_est_1c05358 crossref_primary_10_1021_acs_est_0c07206 crossref_primary_10_1016_j_jhazmat_2021_126731 crossref_primary_10_3390_f15081284 crossref_primary_10_1016_j_scitotenv_2020_139295 crossref_primary_10_1080_01490451_2023_2168799 crossref_primary_10_1016_j_foreco_2020_118772 crossref_primary_10_1007_s10533_022_00974_0 crossref_primary_10_1016_j_scitotenv_2020_139572 crossref_primary_10_1007_s11104_017_3200_6 crossref_primary_10_1016_j_geoderma_2022_115964 crossref_primary_10_2139_ssrn_3985465 crossref_primary_10_3934_agrfood_2020_4_599 crossref_primary_10_47280_RevFacAgron_LUZ__v41_n4_10 crossref_primary_10_1007_s11104_020_04699_7 crossref_primary_10_1016_j_geoderma_2021_115150 crossref_primary_10_2139_ssrn_4179206 crossref_primary_10_1080_01904167_2022_2071734 crossref_primary_10_1007_s42729_025_02253_x crossref_primary_10_1016_j_agee_2024_109449 crossref_primary_10_1080_10643389_2022_2120317 crossref_primary_10_1007_s00374_023_01766_w crossref_primary_10_1016_j_scitotenv_2019_02_072 crossref_primary_10_1007_s44246_023_00048_2 crossref_primary_10_1007_s11104_023_06156_7 crossref_primary_10_3390_membranes12060572 crossref_primary_10_1016_j_scitotenv_2023_165770 crossref_primary_10_1007_s00374_018_1316_3 crossref_primary_10_1016_j_geoderma_2018_09_056 crossref_primary_10_1021_acs_est_3c02071 crossref_primary_10_1111_sum_12439 crossref_primary_10_1002_jsfa_9447 crossref_primary_10_3389_fmicb_2022_971836 crossref_primary_10_1002_jeq2_20037 crossref_primary_10_1016_j_scitotenv_2024_172331 crossref_primary_10_1016_j_jafr_2024_101433 crossref_primary_10_1080_25740881_2021_1995417 crossref_primary_10_5424_sjar_2022201_18299 crossref_primary_10_1016_j_pedobi_2024_151005 crossref_primary_10_1007_s11104_017_3362_2 crossref_primary_10_1155_2022_5071907 crossref_primary_10_1016_j_scitotenv_2022_160195 crossref_primary_10_1016_j_jes_2021_12_045 crossref_primary_10_1007_s11629_022_7707_9 crossref_primary_10_2139_ssrn_4200089 crossref_primary_10_1038_s41598_020_73398_1 crossref_primary_10_1007_s00253_021_11629_9 crossref_primary_10_1016_j_soilbio_2020_108050 crossref_primary_10_1016_j_soilbio_2024_109382 crossref_primary_10_1016_j_scitotenv_2022_153769 crossref_primary_10_1016_j_biortech_2018_09_007 crossref_primary_10_1016_j_jece_2024_114783 crossref_primary_10_1007_s10533_022_01008_5 crossref_primary_10_1016_j_envres_2024_118421 crossref_primary_10_1080_10962247_2019_1607689 crossref_primary_10_5194_acp_17_8411_2017 crossref_primary_10_1021_acssuschemeng_1c08537 crossref_primary_10_3390_agronomy14123036 crossref_primary_10_1016_j_geoderma_2017_10_039 crossref_primary_10_3389_fbioe_2023_1180431 crossref_primary_10_3389_fpls_2020_00633 crossref_primary_10_1016_j_jhazmat_2017_05_038 crossref_primary_10_3390_pr11010216 crossref_primary_10_1007_s00203_022_03321_x crossref_primary_10_1016_j_catena_2023_107501 crossref_primary_10_1016_j_rhisph_2024_100904 crossref_primary_10_1080_00103624_2022_2130932 crossref_primary_10_1016_j_catena_2021_105328 crossref_primary_10_15302_J_FASE_2019274 crossref_primary_10_3389_fpls_2022_804058 crossref_primary_10_1080_00103624_2024_2359579 crossref_primary_10_1111_ppl_12718 crossref_primary_10_1016_j_chemosphere_2022_136653 crossref_primary_10_1080_10643389_2021_1900765 crossref_primary_10_1016_j_apsoil_2023_105253 crossref_primary_10_1186_s40538_022_00302_6 crossref_primary_10_1016_j_geoderma_2020_114360 crossref_primary_10_1016_j_geoderma_2019_06_011 crossref_primary_10_1071_FP16398 crossref_primary_10_3389_fsufs_2022_1032708 crossref_primary_10_1021_acs_est_9b00320 crossref_primary_10_3389_fpls_2022_770179 |
Cites_doi | 10.1002/jpln.201500047 10.1104/pp.112.207142 10.1021/es9704388 10.1016/0038-0717(89)90157-0 10.1021/acs.est.5b05395 10.1128/AEM.69.6.3593-3599.2003 10.1371/journal.pone.0055731 10.1111/j.1365-3040.1989.tb01942.x 10.2136/sssaj1982.03615995004600050017x 10.1046/j.1469-8137.2003.00695.x 10.1023/A:1022304332313 10.1038/74531 10.1016/j.geoderma.2015.03.020 10.1071/EN09010 10.1016/S0016-7037(98)00186-0 10.1097/SS.0b013e318272f83f 10.1021/ac101450j 10.1002/jpln.19941570104 10.1016/0038-0717(86)90050-7 10.1023/A:1013351617532 10.1007/s11104-013-1594-3 10.1002/(SICI)1522-2624(200004)163:2<207::AID-JPLN207>3.0.CO;2-P 10.1021/ac00115a005 10.1111/ppl.12150 10.1080/00103620600623558 10.1016/j.envexpbot.2010.08.010 10.1016/S0003-2670(00)88444-5 10.1021/es0352597 10.1104/pp.109.147462 10.1016/j.soilbio.2015.02.019 10.1186/1472-6750-10-2 10.1007/BF00570634 10.1074/jbc.M112.433300 10.1023/A:1004356007312 10.1016/S1364-8152(99)00027-4 10.1071/CP07125 10.1094/MPMI-19-0250 |
ContentType | Journal Article |
Copyright | Copyright © 2016 American Chemical Society Copyright American Chemical Society Nov 1, 2016 |
Copyright_xml | – notice: Copyright © 2016 American Chemical Society – notice: Copyright American Chemical Society Nov 1, 2016 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7S9 L.6 |
DOI | 10.1021/acs.est.6b03017 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Biotechnology Research Abstracts Engineering Research Database AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1520-5851 |
EndPage | 11531 |
ExternalDocumentID | 4240631291 27700099 10_1021_acs_est_6b03017 a731144451 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GrantInformation_xml | – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/K018167/1 |
GroupedDBID | - .K2 1AW 3R3 4R4 53G 55A 5GY 5VS 63O 7~N 85S AABXI ABFLS ABMVS ABOGM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACPRK ACS AEESW AENEX AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ K2 LG6 MS PQEST PQQKQ ROL RXW TN5 TWZ U5U UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK XZL YZZ --- -DZ -~X ..I .DC 4.4 6TJ AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV ADUKH AGXLV AHGAQ CITATION CUPRZ GGK MS~ MW2 XSW ZCA CGR CUY CVF ECM EIF NPM YIN 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a468t-f5ba147a5ac4c9e059644d9bbc0e3a827f2bebc9a2b28532a7eff8c2990bcdc93 |
IEDL.DBID | ACS |
ISSN | 0013-936X 1520-5851 |
IngestDate | Thu Jul 10 19:57:56 EDT 2025 Thu Jul 10 17:35:08 EDT 2025 Fri Jul 11 04:49:20 EDT 2025 Sun Jun 29 15:32:07 EDT 2025 Wed Feb 19 02:40:38 EST 2025 Tue Jul 01 04:29:11 EDT 2025 Thu Apr 24 23:05:42 EDT 2025 Fri Dec 18 21:25:37 EST 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Language | English |
License | http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a468t-f5ba147a5ac4c9e059644d9bbc0e3a827f2bebc9a2b28532a7eff8c2990bcdc93 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://pubs.acs.org/doi/pdf/10.1021/acs.est.6b03017 |
PMID | 27700099 |
PQID | 1836581623 |
PQPubID | 45412 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2000310251 proquest_miscellaneous_1850785786 proquest_miscellaneous_1834992968 proquest_journals_1836581623 pubmed_primary_27700099 crossref_primary_10_1021_acs_est_6b03017 crossref_citationtrail_10_1021_acs_est_6b03017 acs_journals_10_1021_acs_est_6b03017 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20161101 2016-11-01 |
PublicationDateYYYYMMDD | 2016-11-01 |
PublicationDate_xml | – month: 11 year: 2016 text: 20161101 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Easton |
PublicationTitle | Environmental science & technology |
PublicationTitleAlternate | Environ. Sci. Technol |
PublicationYear | 2016 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 Zheng Z. (ref37/cit37) 2011; 1 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref34/cit34 ref28/cit28 ref40/cit40 ref20/cit20 Sims J. T. (ref24/cit24) 2000 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 Rosas A. (ref9/cit9) 2008; 8 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref38/cit38 ref7/cit7 |
References_xml | – volume: 8 start-page: 233 issue: 3 year: 2008 ident: ref9/cit9 publication-title: J. Soil Sci. Plant Nutr. – ident: ref12/cit12 doi: 10.1002/jpln.201500047 – ident: ref6/cit6 doi: 10.1104/pp.112.207142 – ident: ref23/cit23 doi: 10.1021/es9704388 – ident: ref28/cit28 doi: 10.1016/0038-0717(89)90157-0 – ident: ref13/cit13 doi: 10.1021/acs.est.5b05395 – ident: ref27/cit27 doi: 10.1128/AEM.69.6.3593-3599.2003 – ident: ref31/cit31 doi: 10.1371/journal.pone.0055731 – ident: ref41/cit41 doi: 10.1111/j.1365-3040.1989.tb01942.x – ident: ref30/cit30 doi: 10.2136/sssaj1982.03615995004600050017x – ident: ref1/cit1 doi: 10.1046/j.1469-8137.2003.00695.x – ident: ref14/cit14 doi: 10.1023/A:1022304332313 – ident: ref5/cit5 doi: 10.1038/74531 – ident: ref25/cit25 doi: 10.1016/j.geoderma.2015.03.020 – ident: ref15/cit15 doi: 10.1071/EN09010 – ident: ref19/cit19 doi: 10.1016/S0016-7037(98)00186-0 – ident: ref11/cit11 doi: 10.1097/SS.0b013e318272f83f – ident: ref18/cit18 doi: 10.1021/ac101450j – ident: ref36/cit36 doi: 10.1002/jpln.19941570104 – ident: ref26/cit26 doi: 10.1016/0038-0717(86)90050-7 – ident: ref2/cit2 doi: 10.1023/A:1013351617532 – ident: ref40/cit40 doi: 10.1007/s11104-013-1594-3 – ident: ref10/cit10 doi: 10.1002/(SICI)1522-2624(200004)163:2<207::AID-JPLN207>3.0.CO;2-P – ident: ref20/cit20 doi: 10.1021/ac00115a005 – ident: ref7/cit7 doi: 10.1111/ppl.12150 – ident: ref35/cit35 doi: 10.1080/00103620600623558 – start-page: 20 year: 2000 ident: ref24/cit24 publication-title: Methods of Phosphorus Analysis for Soils, Sediments, Residuals, and Waters – ident: ref39/cit39 doi: 10.1016/j.envexpbot.2010.08.010 – ident: ref16/cit16 doi: 10.1016/S0003-2670(00)88444-5 – ident: ref21/cit21 doi: 10.1021/es0352597 – ident: ref32/cit32 doi: 10.1104/pp.109.147462 – ident: ref8/cit8 doi: 10.1016/j.soilbio.2015.02.019 – ident: ref29/cit29 doi: 10.1186/1472-6750-10-2 – ident: ref17/cit17 doi: 10.1021/ac00115a005 – ident: ref34/cit34 doi: 10.1007/BF00570634 – ident: ref33/cit33 doi: 10.1074/jbc.M112.433300 – ident: ref3/cit3 doi: 10.1023/A:1004356007312 – ident: ref22/cit22 doi: 10.1016/S1364-8152(99)00027-4 – volume: 1 start-page: 19 volume-title: Soil Fertility Improvement and Integrated Nutrient Management: A Global Perspective year: 2011 ident: ref37/cit37 – ident: ref4/cit4 doi: 10.1071/CP07125 – ident: ref38/cit38 doi: 10.1094/MPMI-19-0250 |
SSID | ssj0002308 |
Score | 2.5295854 |
Snippet | We have used an integrated approach to study the mobility of inorganic phosphorus (P) from soil solid phase as well as the microbial biomass P and respiration... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 11521 |
SubjectTerms | Acids Biomass citric acid Desorption exudation inorganic phosphorus Integrated approach microbial biomass Organic Chemicals oxalic acid Phosphorus Soil Soil microorganisms Soil Pollutants soil solution |
Title | Organic Acids Regulation of Chemical–Microbial Phosphorus Transformations in Soils |
URI | http://dx.doi.org/10.1021/acs.est.6b03017 https://www.ncbi.nlm.nih.gov/pubmed/27700099 https://www.proquest.com/docview/1836581623 https://www.proquest.com/docview/1834992968 https://www.proquest.com/docview/1850785786 https://www.proquest.com/docview/2000310251 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3NTuMwEMdHwF7gACwfu4UuMhIHLgmNk9rOsUIghARCUKTeIttxREWVINxeOPEOvOE-yY6TNC2gLlzbcWTZM56fZfs_AEcdpjRivbvUHqaek-zGmEulJ7TspLFITVwqMV1ds4v76HLQHczEoj-e4NPgRGrr4wLpM-XonS_DD8oEd_us3ulds-giSYtpsYI4ZINGxefTB1wa0vZ9GlrAlmWOOd-obmfZUprQXS159Cdj5euXz8KNX3d_E9Zr0iS9yjV-wpLJt2BtTn9wC3bPZs_c0LSOc7sN_eqJpiY9PUwtua0K1uMUkiIjU42Bv69vV8NSxwnb3jwU9umheJ5Y0p9jYfRpMszJXTEc2R24Pz_rn154df0FT0ZMjL2sq2QQcdmVOtKxcYV6oiiNldIdE0pBeUaVwamWVFHM-lRyk2VCuwSndKrjcBdW8iI3v4HgrkTGyH4SATNikivBVSZYJ42ykAdGteAIByqp48cm5dE4DRL3I45eUo9eC_zprCW61jB3pTRGixscNw2eKvmOxabtqRvM9UOEiGgBMmILDpu_MQLdsYrMTTEpbXDbSGMm_meD3C1wdWSLbdyjKYRtBM4W_KrcsOkz5byE-b3vjdM-rCLYserNZBtWxs8T8wfhaawOyrD5B__JFbs |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB5V5QAcChQKCwWMVCQuWTZO1nYOHFal1ZZ2K0S30t6C7Th01Sqp6l0hOPEOvACvwqvwJIydny6gRVwqcU3G0cQ_M9_IM98AbPWY0gjrXVJ7lAWOshvPXCYDoWUvS0RmEs_ENDpkw-P4zaQ_WYFvTS0MKmHxS9Zf4l-yC4Qv3TO0k12mHIjndRrlvvn0EYM0-2rvNa7oc0p3d8bbw6DuIxDImIlZkPeVDGMu-1LHOjGu4UwcZ4lSumciKSjPqTKosqSKoveikps8F9oZaqUz7eiW0MhfQ-hDXXg32D5qbT0CeNH0SEgiNmnJg_5Q2Hk_bX_1fksgrXdtu7fgezspPqPltDufqa7-_Btf5P88a7dhrcbVZFAdhDuwYop1uLnAtrgOGzuXRX0oWls1exfGVUGqJgM9zSx5Zz7UPc1ImZOGUeHHl6-jqWetwrFvT0p7flJezC0ZLyB_PMFkWpCjcnpm78HxlfzvBqwWZWEeAMEYTCaIdCXC6ZhJrgRXuWC9LM4jHhrVgS1cmLS2Fjb1iQA0TN1DXK20Xq0OdJvNkuqasd01DjlbPuBFO-C8IitZLrrZ7L4FPUSEgDRERNyBZ-1rtDfuEkkWppx7GQySacLE32QwyhDoC9hyGVcihqEFwusO3K92f6sz5dyHLg__bZ6ewvXheHSQHuwd7j-CGwhpWVUtugmrs4u5eYywcaae-JNL4P1Vb_qfrU57bA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3BbtQwEB1VRUJwKFAoLBQwUpG4ZNk4Wcc5cFi1XbWUVhXdSnsLtuPQVatkVe8KwYl_4Bf4FX6EL2HsOGEBLeJSiWsyjia2Z-aN7HkDsNVjUiGst5faozywlN1oc7kIuBK9POW5Th0T0-ER2zuNX4_74xX42tTCoBIGv2TcIb616mleeIaB8KV9jr6yy6QF8om_SnmgP37ARM282t_BVX1O6XB3tL0X-F4CgYgZnwVFX4owTkRfqFil2jadieM8lVL1dCQ4TQoqNaotqKQYwahIdFFwZZ21VLmylEvo6K_ZQ0Kb4g22T1p_jyCeN30S0oiNWwKhPxS2EVCZXyPgEljrwtvwFnxrJ8bdajnvzmeyqz79xhn5v8_cbVjz-JoMaoO4Ayu6XIebC6yL67Cx-7O4D0W9dzN3YVQXpioyUJPckLf6ve9tRqqCNMwK3z9_OZw49ioce3xWmelZdTk3ZLSQAaAlk0lJTqrJhbkHp1fyvxuwWlalfgAEczGRIuIVCKtjJhLJE1lw1svjIkpCLTuwhQuTea9hMnchgIaZfYirlfnV6kC32TCZ8szttoHIxfIBL9oB05q0ZLnoZrMDF_TgEQLTEJFxB561r9Hv2MMkUepq7mQwWaYp43-TwWyDY0xgy2VsqRimGAizO3C_toBWZ5okLoV5-G_z9BSuH-8Mszf7RweP4AYiW1YXjW7C6uxyrh8jepzJJ854Cby76j3_A_Gzfe8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Organic+Acids+Regulation+of+Chemical%E2%80%93Microbial+Phosphorus+Transformations+in+Soils&rft.jtitle=Environmental+science+%26+technology&rft.au=Menezes-Blackburn%2C+Daniel&rft.au=Paredes%2C+Cecilia&rft.au=Zhang%2C+Hao&rft.au=Giles%2C+Courtney+D&rft.date=2016-11-01&rft.pub=American+Chemical+Society&rft.issn=0013-936X&rft.eissn=1520-5851&rft.volume=50&rft.issue=21&rft.spage=11521&rft.epage=11531&rft_id=info:doi/10.1021%2Facs.est.6b03017&rft.externalDocID=a731144451 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon |