Organic Acids Regulation of Chemical–Microbial Phosphorus Transformations in Soils

We have used an integrated approach to study the mobility of inorganic phosphorus (P) from soil solid phase as well as the microbial biomass P and respiration at increasing doses of citric and oxalic acid in two different soils with contrasting agronomic P status. Citric or oxalic acids significantl...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 50; no. 21; pp. 11521 - 11531
Main Authors Menezes-Blackburn, Daniel, Paredes, Cecilia, Zhang, Hao, Giles, Courtney D, Darch, Tegan, Stutter, Marc, George, Timothy S, Shand, Charles, Lumsdon, David, Cooper, Patricia, Wendler, Renate, Brown, Lawrie, Blackwell, Martin, Wearing, Catherine, Haygarth, Philip M
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 01.11.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We have used an integrated approach to study the mobility of inorganic phosphorus (P) from soil solid phase as well as the microbial biomass P and respiration at increasing doses of citric and oxalic acid in two different soils with contrasting agronomic P status. Citric or oxalic acids significantly increased soil solution P concentrations for doses over 2 mmol kg–1. However, low organic acid doses (<2 mmol kg–1) were associated with a steep increase in microbial biomass P, which was not seen for higher doses. In both soils, treatment with the tribasic citric acid led to a greater increase in soil solution P than the dibasic oxalic acid, likely due to the rapid degrading of oxalic acids in soils. After equilibration of soils with citric or oxalic acids, the adsorbed-to-solution distribution coefficient (K d) and desorption rate constants (k –1) decreased whereas an increase in the response time of solution P equilibration (T c) was observed. The extent of this effect was shown to be both soil and organic acid specific. Our results illustrate the critical thresholds of organic acid concentration necessary to mobilize sorbed and precipitated P, bringing new insight on how the exudation of organic acids regulate chemical–microbial soil phosphorus transformations.
AbstractList We have used an integrated approach to study the mobility of inorganic phosphorus (P) from soil solid phase as well as the microbial biomass P and respiration at increasing doses of citric and oxalic acid in two different soils with contrasting agronomic P status. Citric or oxalic acids significantly increased soil solution P concentrations for doses over 2 mmol kg^sup -1^. However, low organic acid doses (<2 mmol kg^sup -1^) were associated with a steep increase in microbial biomass P, which was not seen for higher doses. In both soils, treatment with the tribasic citric acid led to a greater increase in soil solution P than the dibasic oxalic acid, likely due to the rapid degrading of oxalic acids in soils. After equilibration of soils with citric or oxalic acids, the adsorbed-to-solution distribution coefficient (K^sub d^) and desorption rate constants (k^sub -1^) decreased whereas an increase in the response time of solution P equilibration (T^sub c^) was observed. The extent of this effect was shown to be both soil and organic acid specific. Our results illustrate the critical thresholds of organic acid concentration necessary to mobilize sorbed and precipitated P, bringing new insight on how the exudation of organic acids regulate chemical-microbial soil phosphorus transformations.
We have used an integrated approach to study the mobility of inorganic phosphorus (P) from soil solid phase as well as the microbial biomass P and respiration at increasing doses of citric and oxalic acid in two different soils with contrasting agronomic P status. Citric or oxalic acids significantly increased soil solution P concentrations for doses over 2 mmol kg super( -1). However, low organic acid doses (<2 mmol kg super( -1)) were associated with a steep increase in microbial biomass P, which was not seen for higher doses. In both soils, treatment with the tribasic citric acid led to a greater increase in soil solution P than the dibasic oxalic acid, likely due to the rapid degrading of oxalic acids in soils. After equilibration of soils with citric or oxalic acids, the adsorbed-to-solution distribution coefficient (K sub( d)) and desorption rate constants (k sub( -1)) decreased whereas an increase in the response time of solution P equilibration (T sub( c)) was observed. The extent of this effect was shown to be both soil and organic acid specific. Our results illustrate the critical thresholds of organic acid concentration necessary to mobilize sorbed and precipitated P, bringing new insight on how the exudation of organic acids regulate chemical-microbial soil phosphorus transformations.
We have used an integrated approach to study the mobility of inorganic phosphorus (P) from soil solid phase as well as the microbial biomass P and respiration at increasing doses of citric and oxalic acid in two different soils with contrasting agronomic P status. Citric or oxalic acids significantly increased soil solution P concentrations for doses over 2 mmol kg–¹. However, low organic acid doses (<2 mmol kg–¹) were associated with a steep increase in microbial biomass P, which was not seen for higher doses. In both soils, treatment with the tribasic citric acid led to a greater increase in soil solution P than the dibasic oxalic acid, likely due to the rapid degrading of oxalic acids in soils. After equilibration of soils with citric or oxalic acids, the adsorbed-to-solution distribution coefficient (Kd) and desorption rate constants (k–₁) decreased whereas an increase in the response time of solution P equilibration (Tc) was observed. The extent of this effect was shown to be both soil and organic acid specific. Our results illustrate the critical thresholds of organic acid concentration necessary to mobilize sorbed and precipitated P, bringing new insight on how the exudation of organic acids regulate chemical–microbial soil phosphorus transformations.
We have used an integrated approach to study the mobility of inorganic phosphorus (P) from soil solid phase as well as the microbial biomass P and respiration at increasing doses of citric and oxalic acid in two different soils with contrasting agronomic P status. Citric or oxalic acids significantly increased soil solution P concentrations for doses over 2 mmol kg–1. However, low organic acid doses (<2 mmol kg–1) were associated with a steep increase in microbial biomass P, which was not seen for higher doses. In both soils, treatment with the tribasic citric acid led to a greater increase in soil solution P than the dibasic oxalic acid, likely due to the rapid degrading of oxalic acids in soils. After equilibration of soils with citric or oxalic acids, the adsorbed-to-solution distribution coefficient (K d) and desorption rate constants (k –1) decreased whereas an increase in the response time of solution P equilibration (T c) was observed. The extent of this effect was shown to be both soil and organic acid specific. Our results illustrate the critical thresholds of organic acid concentration necessary to mobilize sorbed and precipitated P, bringing new insight on how the exudation of organic acids regulate chemical–microbial soil phosphorus transformations.
We have used an integrated approach to study the mobility of inorganic phosphorus (P) from soil solid phase as well as the microbial biomass P and respiration at increasing doses of citric and oxalic acid in two different soils with contrasting agronomic P status. Citric or oxalic acids significantly increased soil solution P concentrations for doses over 2 mmol kg-1. However, low organic acid doses (<2 mmol kg-1) were associated with a steep increase in microbial biomass P, which was not seen for higher doses. In both soils, treatment with the tribasic citric acid led to a greater increase in soil solution P than the dibasic oxalic acid, likely due to the rapid degrading of oxalic acids in soils. After equilibration of soils with citric or oxalic acids, the adsorbed-to-solution distribution coefficient (Kd) and desorption rate constants (k-1) decreased whereas an increase in the response time of solution P equilibration (Tc) was observed. The extent of this effect was shown to be both soil and organic acid specific. Our results illustrate the critical thresholds of organic acid concentration necessary to mobilize sorbed and precipitated P, bringing new insight on how the exudation of organic acids regulate chemical-microbial soil phosphorus transformations.We have used an integrated approach to study the mobility of inorganic phosphorus (P) from soil solid phase as well as the microbial biomass P and respiration at increasing doses of citric and oxalic acid in two different soils with contrasting agronomic P status. Citric or oxalic acids significantly increased soil solution P concentrations for doses over 2 mmol kg-1. However, low organic acid doses (<2 mmol kg-1) were associated with a steep increase in microbial biomass P, which was not seen for higher doses. In both soils, treatment with the tribasic citric acid led to a greater increase in soil solution P than the dibasic oxalic acid, likely due to the rapid degrading of oxalic acids in soils. After equilibration of soils with citric or oxalic acids, the adsorbed-to-solution distribution coefficient (Kd) and desorption rate constants (k-1) decreased whereas an increase in the response time of solution P equilibration (Tc) was observed. The extent of this effect was shown to be both soil and organic acid specific. Our results illustrate the critical thresholds of organic acid concentration necessary to mobilize sorbed and precipitated P, bringing new insight on how the exudation of organic acids regulate chemical-microbial soil phosphorus transformations.
We have used an integrated approach to study the mobility of inorganic phosphorus (P) from soil solid phase as well as the microbial biomass P and respiration at increasing doses of citric and oxalic acid in two different soils with contrasting agronomic P status. Citric or oxalic acids significantly increased soil solution P concentrations for doses over 2 mmol kg . However, low organic acid doses (<2 mmol kg ) were associated with a steep increase in microbial biomass P, which was not seen for higher doses. In both soils, treatment with the tribasic citric acid led to a greater increase in soil solution P than the dibasic oxalic acid, likely due to the rapid degrading of oxalic acids in soils. After equilibration of soils with citric or oxalic acids, the adsorbed-to-solution distribution coefficient (K ) and desorption rate constants (k ) decreased whereas an increase in the response time of solution P equilibration (T ) was observed. The extent of this effect was shown to be both soil and organic acid specific. Our results illustrate the critical thresholds of organic acid concentration necessary to mobilize sorbed and precipitated P, bringing new insight on how the exudation of organic acids regulate chemical-microbial soil phosphorus transformations.
Author George, Timothy S
Cooper, Patricia
Brown, Lawrie
Haygarth, Philip M
Giles, Courtney D
Paredes, Cecilia
Blackwell, Martin
Zhang, Hao
Darch, Tegan
Wearing, Catherine
Shand, Charles
Stutter, Marc
Menezes-Blackburn, Daniel
Lumsdon, David
Wendler, Renate
AuthorAffiliation Scientific and Technological Bioresource Nucleus (BIOREN)
James Hutton Institute
The James Hutton Institute
Lancaster Environment Centre
Universidad de La Frontera
Lancaster University
AuthorAffiliation_xml – name: Scientific and Technological Bioresource Nucleus (BIOREN)
– name: James Hutton Institute
– name: Lancaster Environment Centre
– name: Lancaster University
– name: Universidad de La Frontera
– name: The James Hutton Institute
Author_xml – sequence: 1
  givenname: Daniel
  surname: Menezes-Blackburn
  fullname: Menezes-Blackburn, Daniel
  email: d.blackburn@lancaster.ac.uk
– sequence: 2
  givenname: Cecilia
  surname: Paredes
  fullname: Paredes, Cecilia
– sequence: 3
  givenname: Hao
  surname: Zhang
  fullname: Zhang, Hao
  email: h.zhang@lancaster.ac.uk
– sequence: 4
  givenname: Courtney D
  surname: Giles
  fullname: Giles, Courtney D
– sequence: 5
  givenname: Tegan
  surname: Darch
  fullname: Darch, Tegan
– sequence: 6
  givenname: Marc
  surname: Stutter
  fullname: Stutter, Marc
– sequence: 7
  givenname: Timothy S
  surname: George
  fullname: George, Timothy S
– sequence: 8
  givenname: Charles
  surname: Shand
  fullname: Shand, Charles
– sequence: 9
  givenname: David
  surname: Lumsdon
  fullname: Lumsdon, David
– sequence: 10
  givenname: Patricia
  surname: Cooper
  fullname: Cooper, Patricia
– sequence: 11
  givenname: Renate
  surname: Wendler
  fullname: Wendler, Renate
– sequence: 12
  givenname: Lawrie
  surname: Brown
  fullname: Brown, Lawrie
– sequence: 13
  givenname: Martin
  surname: Blackwell
  fullname: Blackwell, Martin
– sequence: 14
  givenname: Catherine
  surname: Wearing
  fullname: Wearing, Catherine
– sequence: 15
  givenname: Philip M
  surname: Haygarth
  fullname: Haygarth, Philip M
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27700099$$D View this record in MEDLINE/PubMed
BookMark eNqNkctKJDEUhsOgaLe6nt1Q4GZgqDaXSlWybJoZFRRFW3BXnKRTdpqqSk9StXDnO8wb-iSTvqggjOMqhHzfIef_h2inda1B6CvBI4IpOQEdRiZ0o1xhhknxBQ0IpzjlgpMdNMCYsFSy_H4fDUNYYIwpw2IP7dOiiBcpB2h65R-gtToZazsLyY156GvorGsTVyWTuWmshvr56c-l1d4pC3VyPXdhOXe-D8nUQxsq55u1ERLbJrfO1uEQ7VZQB3O0PQ_Q3a-f08lZenF1ej4ZX6SQ5aJLK66AZAVw0JmWBnOZZ9lMKqWxYSBoUVFllJZAFRWcUShMVQlNpcRKz7RkB-j7Zu7Su999zKFsbNCmrqE1rg8ljUuymBMn_0WJ4LgQvBD5J1CWSUllLiJ6_A5duN63cecVlXNBcsoi9W1L9aoxs3LpbQP-sXxpIQInGyBmHII31StCcLnquYw9l6vx256jwd8Z2nbrFjoPtv7A-7HxVg9vf_0H_Rf-ybzn
CODEN ESTHAG
CitedBy_id crossref_primary_10_1007_s11104_017_3365_z
crossref_primary_10_1080_00103624_2022_2071935
crossref_primary_10_1007_s11368_018_2034_z
crossref_primary_10_3389_ffgc_2020_550884
crossref_primary_10_1007_s12665_021_09447_3
crossref_primary_10_1080_00103624_2021_1956522
crossref_primary_10_1007_s11356_021_12611_8
crossref_primary_10_1007_s42729_021_00534_9
crossref_primary_10_1007_s42729_021_00745_0
crossref_primary_10_3390_plants13081153
crossref_primary_10_1016_j_rhisph_2024_101007
crossref_primary_10_1016_j_jenvman_2021_113984
crossref_primary_10_1016_j_envpol_2022_119582
crossref_primary_10_1021_acs_est_2c00099
crossref_primary_10_3390_soilsystems4010015
crossref_primary_10_1016_j_jenvman_2024_120431
crossref_primary_10_1016_j_still_2019_104316
crossref_primary_10_1016_j_jhazmat_2017_02_053
crossref_primary_10_1007_s12275_023_00072_2
crossref_primary_10_1007_s11104_023_06442_4
crossref_primary_10_3389_fenvs_2022_932833
crossref_primary_10_1186_s12934_023_02105_2
crossref_primary_10_3390_microorganisms8091337
crossref_primary_10_1016_j_ecoenv_2023_115046
crossref_primary_10_1021_acs_est_1c05358
crossref_primary_10_1021_acs_est_0c07206
crossref_primary_10_1016_j_jhazmat_2021_126731
crossref_primary_10_3390_f15081284
crossref_primary_10_1016_j_scitotenv_2020_139295
crossref_primary_10_1080_01490451_2023_2168799
crossref_primary_10_1016_j_foreco_2020_118772
crossref_primary_10_1007_s10533_022_00974_0
crossref_primary_10_1016_j_scitotenv_2020_139572
crossref_primary_10_1007_s11104_017_3200_6
crossref_primary_10_1016_j_geoderma_2022_115964
crossref_primary_10_2139_ssrn_3985465
crossref_primary_10_3934_agrfood_2020_4_599
crossref_primary_10_47280_RevFacAgron_LUZ__v41_n4_10
crossref_primary_10_1007_s11104_020_04699_7
crossref_primary_10_1016_j_geoderma_2021_115150
crossref_primary_10_2139_ssrn_4179206
crossref_primary_10_1080_01904167_2022_2071734
crossref_primary_10_1007_s42729_025_02253_x
crossref_primary_10_1016_j_agee_2024_109449
crossref_primary_10_1080_10643389_2022_2120317
crossref_primary_10_1007_s00374_023_01766_w
crossref_primary_10_1016_j_scitotenv_2019_02_072
crossref_primary_10_1007_s44246_023_00048_2
crossref_primary_10_1007_s11104_023_06156_7
crossref_primary_10_3390_membranes12060572
crossref_primary_10_1016_j_scitotenv_2023_165770
crossref_primary_10_1007_s00374_018_1316_3
crossref_primary_10_1016_j_geoderma_2018_09_056
crossref_primary_10_1021_acs_est_3c02071
crossref_primary_10_1111_sum_12439
crossref_primary_10_1002_jsfa_9447
crossref_primary_10_3389_fmicb_2022_971836
crossref_primary_10_1002_jeq2_20037
crossref_primary_10_1016_j_scitotenv_2024_172331
crossref_primary_10_1016_j_jafr_2024_101433
crossref_primary_10_1080_25740881_2021_1995417
crossref_primary_10_5424_sjar_2022201_18299
crossref_primary_10_1016_j_pedobi_2024_151005
crossref_primary_10_1007_s11104_017_3362_2
crossref_primary_10_1155_2022_5071907
crossref_primary_10_1016_j_scitotenv_2022_160195
crossref_primary_10_1016_j_jes_2021_12_045
crossref_primary_10_1007_s11629_022_7707_9
crossref_primary_10_2139_ssrn_4200089
crossref_primary_10_1038_s41598_020_73398_1
crossref_primary_10_1007_s00253_021_11629_9
crossref_primary_10_1016_j_soilbio_2020_108050
crossref_primary_10_1016_j_soilbio_2024_109382
crossref_primary_10_1016_j_scitotenv_2022_153769
crossref_primary_10_1016_j_biortech_2018_09_007
crossref_primary_10_1016_j_jece_2024_114783
crossref_primary_10_1007_s10533_022_01008_5
crossref_primary_10_1016_j_envres_2024_118421
crossref_primary_10_1080_10962247_2019_1607689
crossref_primary_10_5194_acp_17_8411_2017
crossref_primary_10_1021_acssuschemeng_1c08537
crossref_primary_10_3390_agronomy14123036
crossref_primary_10_1016_j_geoderma_2017_10_039
crossref_primary_10_3389_fbioe_2023_1180431
crossref_primary_10_3389_fpls_2020_00633
crossref_primary_10_1016_j_jhazmat_2017_05_038
crossref_primary_10_3390_pr11010216
crossref_primary_10_1007_s00203_022_03321_x
crossref_primary_10_1016_j_catena_2023_107501
crossref_primary_10_1016_j_rhisph_2024_100904
crossref_primary_10_1080_00103624_2022_2130932
crossref_primary_10_1016_j_catena_2021_105328
crossref_primary_10_15302_J_FASE_2019274
crossref_primary_10_3389_fpls_2022_804058
crossref_primary_10_1080_00103624_2024_2359579
crossref_primary_10_1111_ppl_12718
crossref_primary_10_1016_j_chemosphere_2022_136653
crossref_primary_10_1080_10643389_2021_1900765
crossref_primary_10_1016_j_apsoil_2023_105253
crossref_primary_10_1186_s40538_022_00302_6
crossref_primary_10_1016_j_geoderma_2020_114360
crossref_primary_10_1016_j_geoderma_2019_06_011
crossref_primary_10_1071_FP16398
crossref_primary_10_3389_fsufs_2022_1032708
crossref_primary_10_1021_acs_est_9b00320
crossref_primary_10_3389_fpls_2022_770179
Cites_doi 10.1002/jpln.201500047
10.1104/pp.112.207142
10.1021/es9704388
10.1016/0038-0717(89)90157-0
10.1021/acs.est.5b05395
10.1128/AEM.69.6.3593-3599.2003
10.1371/journal.pone.0055731
10.1111/j.1365-3040.1989.tb01942.x
10.2136/sssaj1982.03615995004600050017x
10.1046/j.1469-8137.2003.00695.x
10.1023/A:1022304332313
10.1038/74531
10.1016/j.geoderma.2015.03.020
10.1071/EN09010
10.1016/S0016-7037(98)00186-0
10.1097/SS.0b013e318272f83f
10.1021/ac101450j
10.1002/jpln.19941570104
10.1016/0038-0717(86)90050-7
10.1023/A:1013351617532
10.1007/s11104-013-1594-3
10.1002/(SICI)1522-2624(200004)163:2<207::AID-JPLN207>3.0.CO;2-P
10.1021/ac00115a005
10.1111/ppl.12150
10.1080/00103620600623558
10.1016/j.envexpbot.2010.08.010
10.1016/S0003-2670(00)88444-5
10.1021/es0352597
10.1104/pp.109.147462
10.1016/j.soilbio.2015.02.019
10.1186/1472-6750-10-2
10.1007/BF00570634
10.1074/jbc.M112.433300
10.1023/A:1004356007312
10.1016/S1364-8152(99)00027-4
10.1071/CP07125
10.1094/MPMI-19-0250
ContentType Journal Article
Copyright Copyright © 2016 American Chemical Society
Copyright American Chemical Society Nov 1, 2016
Copyright_xml – notice: Copyright © 2016 American Chemical Society
– notice: Copyright American Chemical Society Nov 1, 2016
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7S9
L.6
DOI 10.1021/acs.est.6b03017
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Biotechnology Research Abstracts
Engineering Research Database
AGRICOLA

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1520-5851
EndPage 11531
ExternalDocumentID 4240631291
27700099
10_1021_acs_est_6b03017
a731144451
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GrantInformation_xml – fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/K018167/1
GroupedDBID -
.K2
1AW
3R3
4R4
53G
55A
5GY
5VS
63O
7~N
85S
AABXI
ABFLS
ABMVS
ABOGM
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACPRK
ACS
AEESW
AENEX
AFEFF
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
K2
LG6
MS
PQEST
PQQKQ
ROL
RXW
TN5
TWZ
U5U
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
XZL
YZZ
---
-DZ
-~X
..I
.DC
4.4
6TJ
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
ADUKH
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
MS~
MW2
XSW
ZCA
CGR
CUY
CVF
ECM
EIF
NPM
YIN
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7S9
L.6
ID FETCH-LOGICAL-a468t-f5ba147a5ac4c9e059644d9bbc0e3a827f2bebc9a2b28532a7eff8c2990bcdc93
IEDL.DBID ACS
ISSN 0013-936X
1520-5851
IngestDate Thu Jul 10 19:57:56 EDT 2025
Thu Jul 10 17:35:08 EDT 2025
Fri Jul 11 04:49:20 EDT 2025
Sun Jun 29 15:32:07 EDT 2025
Wed Feb 19 02:40:38 EST 2025
Tue Jul 01 04:29:11 EDT 2025
Thu Apr 24 23:05:42 EDT 2025
Fri Dec 18 21:25:37 EST 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
License http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a468t-f5ba147a5ac4c9e059644d9bbc0e3a827f2bebc9a2b28532a7eff8c2990bcdc93
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://pubs.acs.org/doi/pdf/10.1021/acs.est.6b03017
PMID 27700099
PQID 1836581623
PQPubID 45412
PageCount 11
ParticipantIDs proquest_miscellaneous_2000310251
proquest_miscellaneous_1850785786
proquest_miscellaneous_1834992968
proquest_journals_1836581623
pubmed_primary_27700099
crossref_primary_10_1021_acs_est_6b03017
crossref_citationtrail_10_1021_acs_est_6b03017
acs_journals_10_1021_acs_est_6b03017
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20161101
2016-11-01
PublicationDateYYYYMMDD 2016-11-01
PublicationDate_xml – month: 11
  year: 2016
  text: 20161101
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Easton
PublicationTitle Environmental science & technology
PublicationTitleAlternate Environ. Sci. Technol
PublicationYear 2016
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
Zheng Z. (ref37/cit37) 2011; 1
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref28/cit28
ref40/cit40
ref20/cit20
Sims J. T. (ref24/cit24) 2000
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
Rosas A. (ref9/cit9) 2008; 8
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref38/cit38
ref7/cit7
References_xml – volume: 8
  start-page: 233
  issue: 3
  year: 2008
  ident: ref9/cit9
  publication-title: J. Soil Sci. Plant Nutr.
– ident: ref12/cit12
  doi: 10.1002/jpln.201500047
– ident: ref6/cit6
  doi: 10.1104/pp.112.207142
– ident: ref23/cit23
  doi: 10.1021/es9704388
– ident: ref28/cit28
  doi: 10.1016/0038-0717(89)90157-0
– ident: ref13/cit13
  doi: 10.1021/acs.est.5b05395
– ident: ref27/cit27
  doi: 10.1128/AEM.69.6.3593-3599.2003
– ident: ref31/cit31
  doi: 10.1371/journal.pone.0055731
– ident: ref41/cit41
  doi: 10.1111/j.1365-3040.1989.tb01942.x
– ident: ref30/cit30
  doi: 10.2136/sssaj1982.03615995004600050017x
– ident: ref1/cit1
  doi: 10.1046/j.1469-8137.2003.00695.x
– ident: ref14/cit14
  doi: 10.1023/A:1022304332313
– ident: ref5/cit5
  doi: 10.1038/74531
– ident: ref25/cit25
  doi: 10.1016/j.geoderma.2015.03.020
– ident: ref15/cit15
  doi: 10.1071/EN09010
– ident: ref19/cit19
  doi: 10.1016/S0016-7037(98)00186-0
– ident: ref11/cit11
  doi: 10.1097/SS.0b013e318272f83f
– ident: ref18/cit18
  doi: 10.1021/ac101450j
– ident: ref36/cit36
  doi: 10.1002/jpln.19941570104
– ident: ref26/cit26
  doi: 10.1016/0038-0717(86)90050-7
– ident: ref2/cit2
  doi: 10.1023/A:1013351617532
– ident: ref40/cit40
  doi: 10.1007/s11104-013-1594-3
– ident: ref10/cit10
  doi: 10.1002/(SICI)1522-2624(200004)163:2<207::AID-JPLN207>3.0.CO;2-P
– ident: ref20/cit20
  doi: 10.1021/ac00115a005
– ident: ref7/cit7
  doi: 10.1111/ppl.12150
– ident: ref35/cit35
  doi: 10.1080/00103620600623558
– start-page: 20
  year: 2000
  ident: ref24/cit24
  publication-title: Methods of Phosphorus Analysis for Soils, Sediments, Residuals, and Waters
– ident: ref39/cit39
  doi: 10.1016/j.envexpbot.2010.08.010
– ident: ref16/cit16
  doi: 10.1016/S0003-2670(00)88444-5
– ident: ref21/cit21
  doi: 10.1021/es0352597
– ident: ref32/cit32
  doi: 10.1104/pp.109.147462
– ident: ref8/cit8
  doi: 10.1016/j.soilbio.2015.02.019
– ident: ref29/cit29
  doi: 10.1186/1472-6750-10-2
– ident: ref17/cit17
  doi: 10.1021/ac00115a005
– ident: ref34/cit34
  doi: 10.1007/BF00570634
– ident: ref33/cit33
  doi: 10.1074/jbc.M112.433300
– ident: ref3/cit3
  doi: 10.1023/A:1004356007312
– ident: ref22/cit22
  doi: 10.1016/S1364-8152(99)00027-4
– volume: 1
  start-page: 19
  volume-title: Soil Fertility Improvement and Integrated Nutrient Management: A Global Perspective
  year: 2011
  ident: ref37/cit37
– ident: ref4/cit4
  doi: 10.1071/CP07125
– ident: ref38/cit38
  doi: 10.1094/MPMI-19-0250
SSID ssj0002308
Score 2.5295854
Snippet We have used an integrated approach to study the mobility of inorganic phosphorus (P) from soil solid phase as well as the microbial biomass P and respiration...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 11521
SubjectTerms Acids
Biomass
citric acid
Desorption
exudation
inorganic phosphorus
Integrated approach
microbial biomass
Organic Chemicals
oxalic acid
Phosphorus
Soil
Soil microorganisms
Soil Pollutants
soil solution
Title Organic Acids Regulation of Chemical–Microbial Phosphorus Transformations in Soils
URI http://dx.doi.org/10.1021/acs.est.6b03017
https://www.ncbi.nlm.nih.gov/pubmed/27700099
https://www.proquest.com/docview/1836581623
https://www.proquest.com/docview/1834992968
https://www.proquest.com/docview/1850785786
https://www.proquest.com/docview/2000310251
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3NTuMwEMdHwF7gACwfu4UuMhIHLgmNk9rOsUIghARCUKTeIttxREWVINxeOPEOvOE-yY6TNC2gLlzbcWTZM56fZfs_AEcdpjRivbvUHqaek-zGmEulJ7TspLFITVwqMV1ds4v76HLQHczEoj-e4NPgRGrr4wLpM-XonS_DD8oEd_us3ulds-giSYtpsYI4ZINGxefTB1wa0vZ9GlrAlmWOOd-obmfZUprQXS159Cdj5euXz8KNX3d_E9Zr0iS9yjV-wpLJt2BtTn9wC3bPZs_c0LSOc7sN_eqJpiY9PUwtua0K1uMUkiIjU42Bv69vV8NSxwnb3jwU9umheJ5Y0p9jYfRpMszJXTEc2R24Pz_rn154df0FT0ZMjL2sq2QQcdmVOtKxcYV6oiiNldIdE0pBeUaVwamWVFHM-lRyk2VCuwSndKrjcBdW8iI3v4HgrkTGyH4SATNikivBVSZYJ42ykAdGteAIByqp48cm5dE4DRL3I45eUo9eC_zprCW61jB3pTRGixscNw2eKvmOxabtqRvM9UOEiGgBMmILDpu_MQLdsYrMTTEpbXDbSGMm_meD3C1wdWSLbdyjKYRtBM4W_KrcsOkz5byE-b3vjdM-rCLYserNZBtWxs8T8wfhaawOyrD5B__JFbs
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB5V5QAcChQKCwWMVCQuWTZO1nYOHFal1ZZ2K0S30t6C7Th01Sqp6l0hOPEOvACvwqvwJIydny6gRVwqcU3G0cQ_M9_IM98AbPWY0gjrXVJ7lAWOshvPXCYDoWUvS0RmEs_ENDpkw-P4zaQ_WYFvTS0MKmHxS9Zf4l-yC4Qv3TO0k12mHIjndRrlvvn0EYM0-2rvNa7oc0p3d8bbw6DuIxDImIlZkPeVDGMu-1LHOjGu4UwcZ4lSumciKSjPqTKosqSKoveikps8F9oZaqUz7eiW0MhfQ-hDXXg32D5qbT0CeNH0SEgiNmnJg_5Q2Hk_bX_1fksgrXdtu7fgezspPqPltDufqa7-_Btf5P88a7dhrcbVZFAdhDuwYop1uLnAtrgOGzuXRX0oWls1exfGVUGqJgM9zSx5Zz7UPc1ImZOGUeHHl6-jqWetwrFvT0p7flJezC0ZLyB_PMFkWpCjcnpm78HxlfzvBqwWZWEeAMEYTCaIdCXC6ZhJrgRXuWC9LM4jHhrVgS1cmLS2Fjb1iQA0TN1DXK20Xq0OdJvNkuqasd01DjlbPuBFO-C8IitZLrrZ7L4FPUSEgDRERNyBZ-1rtDfuEkkWppx7GQySacLE32QwyhDoC9hyGVcihqEFwusO3K92f6sz5dyHLg__bZ6ewvXheHSQHuwd7j-CGwhpWVUtugmrs4u5eYywcaae-JNL4P1Vb_qfrU57bA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3BbtQwEB1VRUJwKFAoLBQwUpG4ZNk4Wcc5cFi1XbWUVhXdSnsLtuPQVatkVe8KwYl_4Bf4FX6EL2HsOGEBLeJSiWsyjia2Z-aN7HkDsNVjUiGst5faozywlN1oc7kIuBK9POW5Th0T0-ER2zuNX4_74xX42tTCoBIGv2TcIb616mleeIaB8KV9jr6yy6QF8om_SnmgP37ARM282t_BVX1O6XB3tL0X-F4CgYgZnwVFX4owTkRfqFil2jadieM8lVL1dCQ4TQoqNaotqKQYwahIdFFwZZ21VLmylEvo6K_ZQ0Kb4g22T1p_jyCeN30S0oiNWwKhPxS2EVCZXyPgEljrwtvwFnxrJ8bdajnvzmeyqz79xhn5v8_cbVjz-JoMaoO4Ayu6XIebC6yL67Cx-7O4D0W9dzN3YVQXpioyUJPckLf6ve9tRqqCNMwK3z9_OZw49ioce3xWmelZdTk3ZLSQAaAlk0lJTqrJhbkHp1fyvxuwWlalfgAEczGRIuIVCKtjJhLJE1lw1svjIkpCLTuwhQuTea9hMnchgIaZfYirlfnV6kC32TCZ8szttoHIxfIBL9oB05q0ZLnoZrMDF_TgEQLTEJFxB561r9Hv2MMkUepq7mQwWaYp43-TwWyDY0xgy2VsqRimGAizO3C_toBWZ5okLoV5-G_z9BSuH-8Mszf7RweP4AYiW1YXjW7C6uxyrh8jepzJJ854Cby76j3_A_Gzfe8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Organic+Acids+Regulation+of+Chemical%E2%80%93Microbial+Phosphorus+Transformations+in+Soils&rft.jtitle=Environmental+science+%26+technology&rft.au=Menezes-Blackburn%2C+Daniel&rft.au=Paredes%2C+Cecilia&rft.au=Zhang%2C+Hao&rft.au=Giles%2C+Courtney+D&rft.date=2016-11-01&rft.pub=American+Chemical+Society&rft.issn=0013-936X&rft.eissn=1520-5851&rft.volume=50&rft.issue=21&rft.spage=11521&rft.epage=11531&rft_id=info:doi/10.1021%2Facs.est.6b03017&rft.externalDocID=a731144451
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon