Influence of Ionic Strength, pH, and Cation Valence on Aggregation Kinetics of Titanium Dioxide Nanoparticles

The extensive use of titanium dioxide nanoparticles (nano-TiO2) in many consumer products has raised concerns about possible risks to the environment. The magnitude of the threat may depend on whether nano-TiO2 remains dispersed in the environment, or forms much larger-sized aggregates or clusters....

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 43; no. 5; pp. 1354 - 1359
Main Authors French, Rebecca A, Jacobson, Astrid R, Kim, Bojeong, Isley, Sara L, Penn, R. Lee, Baveye, Philippe C
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 01.03.2009
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The extensive use of titanium dioxide nanoparticles (nano-TiO2) in many consumer products has raised concerns about possible risks to the environment. The magnitude of the threat may depend on whether nano-TiO2 remains dispersed in the environment, or forms much larger-sized aggregates or clusters. Currently, limited information is available on the issue. In this context, the purpose of the present article is to report initial measurements of the morphology and rate of formation of nano-TiO2 aggregates in aqueous suspensions as a function of ionic strength and of the nature of the electrolyte in a moderately acid to circumneutral pH range typical of soil and surface water conditions. Dynamic light scattering results show that 4−5 nm titanium dioxide particles readily form stable aggregates with an average diameter of 50−60 nm at pH ∼4.5 in a NaCl suspension adjusted to an ionic strength of 0.0045 M. Holding the pH constant, but increasing the ionic strength to 0.0165 M, leads to the formation of micron-sized aggregates within 15 min. At all other pH values tested (5.8−8.2), micron-sized aggregates form in less than 5 min (minimum detection time), even at low ionic strength (0.0084−0.0099 M with NaCl). In contrast, micron-sized aggregates form within 5 min in an aqueous suspension of CaCl2 at an ionic strength of 0.0128 M and pH of 4.8, which is significantly faster than observed for NaCl suspensions with similar ionic strength and pH. This result indicates that divalent cations may enhance aggregation of nano-TiO2 in soils and surface waters. Optical micrographs show branching aggregates of sizes ranging from the 1 μm optical limit of the microscope to tens of micrometers in diameter.
AbstractList The extensive use of titanium dioxide nanoparticles (nano-...) in many consumer products has raised concerns about possible risks to the environment. The magnitude of the threat may depend on whether nano-... remains dispersed in the environment, or forms much larger- sized aggregates or clusters. Currently, limited information is available on the issue. In this context, the purpose of the present article is to report initial measurements of the morphology and rate of formation of nano-... aggregates in aqueous suspensions as a function of ionic strength and of the nature of the electrolyte in a moderately acid to circumneutral pH range typical of soil and surface water conditions. Dynamic light scattering results show that 4-5 nm titanium dioxide particles readily form stable aggregates with an average diameter of 50-60 nm at pH ...4.5 in a NaCl suspension adjusted to an ionic strength of 0.0045 M. Holding the pH constant, but increasing the ionic strength to 0.0165 M, leads to the formation of micron-sized aggregates within 15 min. At all other pH values tested (5.8-8.2), micron-sized aggregates form in less than 5 min (minimum detection time), even at low ionic strength (0.0084-0.0099 M with NaCl). In contrast, micron-sized aggregates form within 5 mm in an aqueous suspension of ... at an ionic strength of 0.0128 M and pH of 4.8, which is significantly faster than observed for NaCl suspensions with similar ionic strength and pH. This result indicates that divalent cations may enhance aggregation of nano-... in soils and surface waters. Optical micrographs show branching aggregates of sizes ranging from the 1 ...m optical limit of the microscope to tens of micrometers in diameter. (ProQuest: ... denotes formulae/symbols omitted.)
The extensive use of titanium dioxide nanoparticles (nano-TiO2) in many consumer products has raised concerns about possible risks to the environment. The magnitude of the threat may depend on whether nano-TiO2 remains dispersed in the environment, or forms much larger-sized aggregates or clusters. Currently, limited information is available on the issue. In this context, the purpose of the present article is to report initial measurements of the morphology and rate of formation of nano-TiO2 aggregates in aqueous suspensions as a function of ionic strength and of the nature of the electrolyte in a moderately acid to circumneutral pH range typical of soil and surface water conditions. Dynamic light scattering results show that 4-5 nm titanium dioxide particles readily form stable aggregates with an average diameter of 50-60 nm at pH 4.5 in a NaCl suspension adjusted to an ionic strength of 0.0045 M. Holding the pH constant, but increasing the ionic strength to 0.0165 M, leads to the formation of micron-sized aggregates within 15 min. At all other pH values tested (5.8-8.2), micron-sized aggregates form in less than 5 min (minimum detection time), even at low ionic strength (0.0084-0.0099 M with NaCl). In contrast, micron-sized aggregates form within 5 min in an aqueous suspension of CaCl2 at an ionic strength of 0.0128 M and pH of 4.8, which is significantly faster than observed for NaCl suspensions with similar ionic strength and pH. This result indicates that divalent cations may enhance aggregation of nano-TiO2 in soils and surface waters. Optical micrographs show branching aggregates of sizes ranging from the 1 *mm optical limit of the microscope to tens of micrometers in diameter.
The extensive use of titanium dioxide nanoparticles (nano-TiO2) in many consumer products has raised concerns about possible risks to the environment The magnitude of the threat may depend on whether nano-TiO2 remains dispersed in the environment, or forms much larger-sized aggregates or clusters. Currently, limited information is available on the issue. In this context, the purpose of the present article is to report initial measurements of the morphology and rate of formation of nano-TiO2 aggregates in aqueous suspensions as a function of ionic strength and of the nature of the electrolyte in a moderately acid to circumneutral pH range typical of soil and surface water conditions. Dynamic light scattering results show that 4-5 nm titanium dioxide particles readily form stable aggregates with an average diameter of 50-60 nm at pH approximately 4.5 in a NaCl suspension adjusted to an ionic strength of 0.0045 M. Holding the pH constant but increasing the ionic strength to 0.0165 M, leads to the formation of micron-sized aggregates within 15 min. At all other pH values tested (5.8-8.2), micron-sized aggregates form in less than 5 min (minimum detection time), even at low ionic strength (0.0084-0.0099 M with NaCl). In contrast, micron-sized aggregates form within 5 min in an aqueous suspension of CaCl2 at an ionic strength of 0.0128 M and pH of 4.8, which is significantly faster than observed for NaCI suspensions with similar ionic strength and pH. This result indicates that divalent cations may enhance aggregation of nano-TiO2 in soils and surface waters. Optical micrographs show branching aggregates of sizes ranging from the 1 microm optical limit of the microscope to tens of micrometers in diameter.
The extensive use of titanium dioxide nanoparticles (nano-TiO2) in many consumer products has raised concerns about possible risks to the environment The magnitude of the threat may depend on whether nano-TiO2 remains dispersed in the environment, or forms much larger-sized aggregates or clusters. Currently, limited information is available on the issue. In this context, the purpose of the present article is to report initial measurements of the morphology and rate of formation of nano-TiO2 aggregates in aqueous suspensions as a function of ionic strength and of the nature of the electrolyte in a moderately acid to circumneutral pH range typical of soil and surface water conditions. Dynamic light scattering results show that 4-5 nm titanium dioxide particles readily form stable aggregates with an average diameter of 50-60 nm at pH approximately 4.5 in a NaCl suspension adjusted to an ionic strength of 0.0045 M. Holding the pH constant but increasing the ionic strength to 0.0165 M, leads to the formation of micron-sized aggregates within 15 min. At all other pH values tested (5.8-8.2), micron-sized aggregates form in less than 5 min (minimum detection time), even at low ionic strength (0.0084-0.0099 M with NaCl). In contrast, micron-sized aggregates form within 5 min in an aqueous suspension of CaCl2 at an ionic strength of 0.0128 M and pH of 4.8, which is significantly faster than observed for NaCI suspensions with similar ionic strength and pH. This result indicates that divalent cations may enhance aggregation of nano-TiO2 in soils and surface waters. Optical micrographs show branching aggregates of sizes ranging from the 1 microm optical limit of the microscope to tens of micrometers in diameter.The extensive use of titanium dioxide nanoparticles (nano-TiO2) in many consumer products has raised concerns about possible risks to the environment The magnitude of the threat may depend on whether nano-TiO2 remains dispersed in the environment, or forms much larger-sized aggregates or clusters. Currently, limited information is available on the issue. In this context, the purpose of the present article is to report initial measurements of the morphology and rate of formation of nano-TiO2 aggregates in aqueous suspensions as a function of ionic strength and of the nature of the electrolyte in a moderately acid to circumneutral pH range typical of soil and surface water conditions. Dynamic light scattering results show that 4-5 nm titanium dioxide particles readily form stable aggregates with an average diameter of 50-60 nm at pH approximately 4.5 in a NaCl suspension adjusted to an ionic strength of 0.0045 M. Holding the pH constant but increasing the ionic strength to 0.0165 M, leads to the formation of micron-sized aggregates within 15 min. At all other pH values tested (5.8-8.2), micron-sized aggregates form in less than 5 min (minimum detection time), even at low ionic strength (0.0084-0.0099 M with NaCl). In contrast, micron-sized aggregates form within 5 min in an aqueous suspension of CaCl2 at an ionic strength of 0.0128 M and pH of 4.8, which is significantly faster than observed for NaCI suspensions with similar ionic strength and pH. This result indicates that divalent cations may enhance aggregation of nano-TiO2 in soils and surface waters. Optical micrographs show branching aggregates of sizes ranging from the 1 microm optical limit of the microscope to tens of micrometers in diameter.
The extensive use of titanium dioxide nanoparticles (nano-TiO2) in many consumer products has raised concerns about possible risks to the environment. The magnitude of the threat may depend on whether nano-TiO2 remains dispersed in the environment, or forms much larger-sized aggregates or clusters. Currently, limited information is available on the issue. In this context, the purpose of the present article is to report initial measurements of the morphology and rate of formation of nano-TiO2 aggregates in aqueous suspensions as a function of ionic strength and of the nature of the electrolyte in a moderately acid to circumneutral pH range typical of soil and surface water conditions. Dynamic light scattering results show that 4−5 nm titanium dioxide particles readily form stable aggregates with an average diameter of 50−60 nm at pH ∼4.5 in a NaCl suspension adjusted to an ionic strength of 0.0045 M. Holding the pH constant, but increasing the ionic strength to 0.0165 M, leads to the formation of micron-sized aggregates within 15 min. At all other pH values tested (5.8−8.2), micron-sized aggregates form in less than 5 min (minimum detection time), even at low ionic strength (0.0084−0.0099 M with NaCl). In contrast, micron-sized aggregates form within 5 min in an aqueous suspension of CaCl2 at an ionic strength of 0.0128 M and pH of 4.8, which is significantly faster than observed for NaCl suspensions with similar ionic strength and pH. This result indicates that divalent cations may enhance aggregation of nano-TiO2 in soils and surface waters. Optical micrographs show branching aggregates of sizes ranging from the 1 μm optical limit of the microscope to tens of micrometers in diameter.
Author Isley, Sara L
Baveye, Philippe C
Kim, Bojeong
Penn, R. Lee
French, Rebecca A
Jacobson, Astrid R
Author_xml – sequence: 1
  givenname: Rebecca A
  surname: French
  fullname: French, Rebecca A
– sequence: 2
  givenname: Astrid R
  surname: Jacobson
  fullname: Jacobson, Astrid R
– sequence: 3
  givenname: Bojeong
  surname: Kim
  fullname: Kim, Bojeong
– sequence: 4
  givenname: Sara L
  surname: Isley
  fullname: Isley, Sara L
– sequence: 5
  givenname: R. Lee
  surname: Penn
  fullname: Penn, R. Lee
– sequence: 6
  givenname: Philippe C
  surname: Baveye
  fullname: Baveye, Philippe C
  email: P.Baveye@Abertay.ac.uk
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22378722$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19350903$$D View this record in MEDLINE/PubMed
BookMark eNp90V1rFDEUBuAgFbutXvgHJAgqQsfmezKXZat2seiFVbwbMpmTNWUm2SYzoP--WXZtoYpXgeQ5h5zzHqGDEAMg9JySd5QwegpZE6aYDo_QgkpGKqklPUALQiivGq5-HKKjnK8JIYwT_QQd0oZL0hC-QOMquGGGYAFHh1cxeIu_TgnCevp5gjcXJ9iEHi_N5GPA382wkwGfrdcJ1rvrTz7A5G3edrjykwl-HvG5j798D_izCXFjUnkfID9Fj50ZMjzbn8fo24f3V8uL6vLLx9Xy7LIyQump6inpRceV6IUBp62jpHO27pra9UxY1jSGSwuOCtY7JzUF5bSrrVCUStUxfoze7PpuUryZIU_t6LOFYTAB4pzbWgopOKtpka__K1VNWaO5KvDlA3gd5xTKFG1ZKhWN0qKgF3s0dyP07Sb50aTf7Z99F_BqD0y2ZnDJBOvznWOM17pm2wHe7pxNMecE7r4VabeZt3eZF3v6wNoSwjaZKRk__LNi_wtj8_0Yf7tbBX64sQ
CODEN ESTHAG
CitedBy_id crossref_primary_10_1002_app_52393
crossref_primary_10_1016_j_colsurfa_2019_06_025
crossref_primary_10_1016_j_petsci_2021_11_011
crossref_primary_10_1007_s00216_018_1136_1
crossref_primary_10_1016_j_jconhyd_2015_06_007
crossref_primary_10_1016_j_pcrysgrow_2012_07_001
crossref_primary_10_1016_j_envpol_2018_09_106
crossref_primary_10_1016_j_jece_2021_106058
crossref_primary_10_1007_s10646_011_0808_9
crossref_primary_10_2166_wst_2019_109
crossref_primary_10_1002_smll_201704111
crossref_primary_10_1016_j_scitotenv_2025_178927
crossref_primary_10_1016_j_watres_2022_119286
crossref_primary_10_1016_j_jenvman_2012_01_010
crossref_primary_10_1002_etc_2812
crossref_primary_10_1039_C8NA00053K
crossref_primary_10_1021_es902987d
crossref_primary_10_1016_j_seppur_2019_02_043
crossref_primary_10_3390_polym13162609
crossref_primary_10_1016_j_jhazmat_2012_02_025
crossref_primary_10_1016_j_scitotenv_2019_134133
crossref_primary_10_1016_j_impact_2016_06_005
crossref_primary_10_1016_j_cattod_2021_03_022
crossref_primary_10_1016_j_chemosphere_2020_128397
crossref_primary_10_1016_j_envint_2020_105646
crossref_primary_10_1021_es101355k
crossref_primary_10_1016_j_scitotenv_2013_03_082
crossref_primary_10_1021_acsnano_8b04909
crossref_primary_10_1016_j_jhazmat_2012_10_056
crossref_primary_10_1016_j_jksus_2022_101896
crossref_primary_10_1016_j_still_2021_105092
crossref_primary_10_1016_j_jcis_2011_06_085
crossref_primary_10_1016_j_cej_2021_134399
crossref_primary_10_1021_acsomega_4c05253
crossref_primary_10_1016_j_scitotenv_2020_143791
crossref_primary_10_1016_j_scitotenv_2023_165387
crossref_primary_10_5004_dwt_2017_20232
crossref_primary_10_1016_j_jhazmat_2011_07_112
crossref_primary_10_1016_j_envpol_2013_07_001
crossref_primary_10_1016_j_envpol_2021_118619
crossref_primary_10_1021_nn504684k
crossref_primary_10_1080_00986445_2019_1674813
crossref_primary_10_1016_j_jconrel_2016_11_033
crossref_primary_10_1021_acs_est_7b06654
crossref_primary_10_1016_j_jcis_2015_04_010
crossref_primary_10_1016_j_envpol_2017_07_007
crossref_primary_10_1021_es4003247
crossref_primary_10_1021_sc500230c
crossref_primary_10_2139_ssrn_3999111
crossref_primary_10_1016_j_molliq_2017_06_086
crossref_primary_10_1080_03650340_2016_1256475
crossref_primary_10_1016_j_cej_2019_01_080
crossref_primary_10_1371_journal_pone_0132457
crossref_primary_10_1021_acs_est_2c05237
crossref_primary_10_1016_j_ijhydene_2023_04_081
crossref_primary_10_1016_j_seppur_2021_120139
crossref_primary_10_1021_es900329d
crossref_primary_10_1016_j_cattod_2013_10_072
crossref_primary_10_1021_es304985w
crossref_primary_10_1016_j_aquatox_2013_12_021
crossref_primary_10_1016_j_microc_2018_03_015
crossref_primary_10_1016_j_aquatox_2013_12_024
crossref_primary_10_1021_acsestengg_3c00173
crossref_primary_10_2217_nnm_10_62
crossref_primary_10_1016_j_chemosphere_2018_10_031
crossref_primary_10_4491_eer_2021_470
crossref_primary_10_3390_chemengineering3010028
crossref_primary_10_1016_j_bbrep_2016_12_014
crossref_primary_10_3389_fenvs_2020_00060
crossref_primary_10_1061__ASCE_EE_1943_7870_0001101
crossref_primary_10_1016_j_scitotenv_2018_12_091
crossref_primary_10_1007_s11814_016_0059_9
crossref_primary_10_1016_j_aquatox_2023_106442
crossref_primary_10_1089_ees_2016_0364
crossref_primary_10_1155_2015_851928
crossref_primary_10_1016_j_fuel_2020_119115
crossref_primary_10_1021_acs_est_5b05054
crossref_primary_10_1089_ees_2017_0134
crossref_primary_10_1007_s11051_012_0959_5
crossref_primary_10_1016_j_envpol_2020_115189
crossref_primary_10_1039_C6NR04042J
crossref_primary_10_1007_s11051_013_1684_4
crossref_primary_10_1021_es400138c
crossref_primary_10_1038_s41598_018_37788_w
crossref_primary_10_1016_j_scitotenv_2021_148477
crossref_primary_10_1063_1674_0068_27_04_419_427
crossref_primary_10_1016_j_ecoenv_2013_05_022
crossref_primary_10_1080_10643389_2014_921975
crossref_primary_10_3390_ijerph16030510
crossref_primary_10_1039_D3EN00811H
crossref_primary_10_1016_j_watres_2016_08_044
crossref_primary_10_14233_ajchem_2021_23169
crossref_primary_10_1016_j_envpol_2021_118442
crossref_primary_10_1016_j_watres_2016_10_023
crossref_primary_10_1016_j_scitotenv_2017_09_292
crossref_primary_10_1002_smll_201600345
crossref_primary_10_1002_smll_201201789
crossref_primary_10_1021_es100598h
crossref_primary_10_1039_C5EN00094G
crossref_primary_10_1007_s00216_009_3249_z
crossref_primary_10_1007_s11051_012_0924_3
crossref_primary_10_1016_j_colsurfa_2013_11_004
crossref_primary_10_1016_j_scitotenv_2015_05_031
crossref_primary_10_1016_j_impact_2017_01_002
crossref_primary_10_1016_j_jenvman_2015_05_011
crossref_primary_10_1016_j_seppur_2022_121667
crossref_primary_10_1016_j_watres_2013_02_008
crossref_primary_10_1039_C6CP08531H
crossref_primary_10_1002_pc_22903
crossref_primary_10_1155_2024_2970861
crossref_primary_10_1002_mabi_202300345
crossref_primary_10_1016_j_heliyon_2024_e27966
crossref_primary_10_1038_srep34135
crossref_primary_10_1080_01932691_2016_1165114
crossref_primary_10_1016_j_seppur_2020_117833
crossref_primary_10_1186_s12864_020_07042_7
crossref_primary_10_1016_j_envpol_2017_08_080
crossref_primary_10_1089_ees_2017_0470
crossref_primary_10_1016_j_envpol_2016_05_025
crossref_primary_10_1016_j_ijheatmasstransfer_2017_12_150
crossref_primary_10_1016_j_jhazmat_2013_11_015
crossref_primary_10_1089_ees_2012_0327
crossref_primary_10_1016_j_apcatb_2010_12_045
crossref_primary_10_1016_j_jfluchem_2012_08_010
crossref_primary_10_1016_j_ecoenv_2015_03_012
crossref_primary_10_1186_s12302_024_00903_y
crossref_primary_10_1080_17435390_2022_2085207
crossref_primary_10_1088_0957_4484_26_4_045708
crossref_primary_10_3390_powders2010001
crossref_primary_10_1016_j_bios_2016_03_044
crossref_primary_10_1021_acs_est_7b04037
crossref_primary_10_1039_C4EM00044G
crossref_primary_10_1080_03067319_2021_2012171
crossref_primary_10_3390_w14081297
crossref_primary_10_3390_nano7010021
crossref_primary_10_1039_D1RA08981A
crossref_primary_10_1016_j_jes_2016_06_009
crossref_primary_10_1016_j_watres_2014_05_041
crossref_primary_10_1080_09593330_2018_1537310
crossref_primary_10_1016_j_surfcoat_2019_125024
crossref_primary_10_1021_acs_est_9b03036
crossref_primary_10_1039_C7EN00445A
crossref_primary_10_1007_s42860_019_00039_8
crossref_primary_10_1016_j_watres_2016_03_038
crossref_primary_10_1016_j_jphotochemrev_2016_09_001
crossref_primary_10_1039_C9GC02291K
crossref_primary_10_1016_j_envpol_2015_03_043
crossref_primary_10_1002_etc_4266
crossref_primary_10_1186_s42834_022_00119_w
crossref_primary_10_1016_j_biomaterials_2014_05_020
crossref_primary_10_1016_j_pnsc_2016_08_005
crossref_primary_10_1039_C2EM30625E
crossref_primary_10_1016_j_ecoenv_2020_110776
crossref_primary_10_1016_j_jhazmat_2024_134388
crossref_primary_10_1039_C9EM00428A
crossref_primary_10_1016_j_envpol_2020_115942
crossref_primary_10_1007_s10661_014_3874_7
crossref_primary_10_1038_s41598_018_29605_1
crossref_primary_10_1021_acs_langmuir_9b02199
crossref_primary_10_1080_19443994_2015_1092889
crossref_primary_10_1007_s11051_011_0548_z
crossref_primary_10_1021_es9017046
crossref_primary_10_1016_j_jwpe_2025_107098
crossref_primary_10_1039_C9RA02419K
crossref_primary_10_1038_s41467_020_19164_3
crossref_primary_10_1007_s11631_023_00645_3
crossref_primary_10_1039_c000729c
crossref_primary_10_2134_jeq2009_0462
crossref_primary_10_4028_www_scientific_net_AMR_1010_1012_55
crossref_primary_10_1016_j_jhazmat_2016_12_044
crossref_primary_10_1016_j_watres_2019_04_006
crossref_primary_10_1002_smll_201001832
crossref_primary_10_1021_es301599f
crossref_primary_10_1007_s11356_015_5200_5
crossref_primary_10_1039_C5EN00280J
crossref_primary_10_1039_C5EN00050E
crossref_primary_10_1016_j_envpol_2021_118005
crossref_primary_10_1016_j_jhazmat_2016_05_099
crossref_primary_10_1039_C6EN00230G
crossref_primary_10_3390_ma17020330
crossref_primary_10_1021_es204530n
crossref_primary_10_1016_j_scitotenv_2021_148324
crossref_primary_10_1021_acs_energyfuels_8b02449
crossref_primary_10_1016_j_jenvman_2019_06_070
crossref_primary_10_1007_s11814_013_0073_0
crossref_primary_10_1002_wer_1313
crossref_primary_10_1016_j_scitotenv_2019_02_457
crossref_primary_10_1016_j_watres_2012_11_047
crossref_primary_10_3390_s25051506
crossref_primary_10_1007_s10646_019_02085_3
crossref_primary_10_1007_s00396_023_05092_3
crossref_primary_10_1016_j_envpol_2019_07_036
crossref_primary_10_1021_ar2003368
crossref_primary_10_1039_D1EN00879J
crossref_primary_10_1007_s11051_012_1014_2
crossref_primary_10_1016_j_jhazmat_2016_11_013
crossref_primary_10_1021_acs_energyfuels_9b03501
crossref_primary_10_1007_BF03216516
crossref_primary_10_1016_j_jcis_2023_05_182
crossref_primary_10_1021_acs_energyfuels_6b00051
crossref_primary_10_1039_C5CS00041F
crossref_primary_10_1016_j_jhazmat_2016_03_030
crossref_primary_10_1021_es202134p
crossref_primary_10_1007_s12088_022_01018_9
crossref_primary_10_1016_j_chemosphere_2018_08_108
crossref_primary_10_1007_s42452_022_04948_7
crossref_primary_10_1021_es202570g
crossref_primary_10_1039_C6NR06614C
crossref_primary_10_1080_09542299_2018_1520050
crossref_primary_10_1016_j_chemosphere_2018_01_052
crossref_primary_10_1007_s12011_011_9010_4
crossref_primary_10_1016_j_watres_2017_04_023
crossref_primary_10_1016_j_jcis_2009_09_059
crossref_primary_10_1016_j_minpro_2015_04_003
crossref_primary_10_1111_jace_12371
crossref_primary_10_1021_acs_jpcc_9b02894
crossref_primary_10_1016_j_colsurfa_2019_124328
crossref_primary_10_3109_17435390_2014_980758
crossref_primary_10_1016_j_colsurfa_2023_131955
crossref_primary_10_1016_j_jcis_2013_05_061
crossref_primary_10_1016_j_watres_2010_09_013
crossref_primary_10_1016_j_matpr_2015_04_055
crossref_primary_10_1021_acs_jafc_0c06644
crossref_primary_10_1007_s11356_016_7556_6
crossref_primary_10_1080_10643389_2013_790747
crossref_primary_10_1039_D1EN00162K
crossref_primary_10_1039_c1em10056d
crossref_primary_10_1016_j_ecoenv_2018_06_051
crossref_primary_10_2139_ssrn_4053162
crossref_primary_10_1039_C5EN00174A
crossref_primary_10_1007_s11051_013_1899_4
crossref_primary_10_1021_es301027a
crossref_primary_10_3390_ijerph18105128
crossref_primary_10_1016_j_scitotenv_2016_09_065
crossref_primary_10_1021_jf500232f
crossref_primary_10_1016_j_scitotenv_2015_06_024
crossref_primary_10_3390_ijerph13060575
crossref_primary_10_1016_j_clay_2019_105393
crossref_primary_10_1071_EN09110
crossref_primary_10_1016_j_watres_2012_11_061
crossref_primary_10_1007_s42452_019_0960_z
crossref_primary_10_1016_j_apsusc_2014_10_078
crossref_primary_10_1208_s12249_020_01752_7
crossref_primary_10_1371_journal_pone_0048719
crossref_primary_10_1039_C7RA02520C
crossref_primary_10_1016_j_nano_2015_04_008
crossref_primary_10_1016_j_aquatox_2017_02_012
crossref_primary_10_1016_j_jphotochem_2017_06_003
crossref_primary_10_1016_j_jes_2020_02_028
crossref_primary_10_2134_jeq2009_0423
crossref_primary_10_1016_j_clay_2015_05_028
crossref_primary_10_1016_j_impact_2018_05_002
crossref_primary_10_1021_acsomega_0c02526
crossref_primary_10_3390_antiox12020431
crossref_primary_10_1128_AEM_00324_10
crossref_primary_10_1016_j_cej_2017_01_126
crossref_primary_10_1016_j_talanta_2014_05_060
crossref_primary_10_1021_jacs_9b13360
crossref_primary_10_1080_10643380903488664
crossref_primary_10_1016_j_cej_2013_04_010
crossref_primary_10_1016_j_jhazmat_2020_124834
crossref_primary_10_1016_j_scitotenv_2017_02_060
crossref_primary_10_1016_j_apsoil_2024_105669
crossref_primary_10_1016_j_scitotenv_2018_01_210
crossref_primary_10_1016_j_envpol_2017_12_063
crossref_primary_10_1063_5_0003322
crossref_primary_10_1007_s11051_015_2863_2
crossref_primary_10_1002_ange_201405050
crossref_primary_10_1021_acs_langmuir_6b04116
crossref_primary_10_1002_chem_201405039
crossref_primary_10_1016_j_jcis_2017_01_101
crossref_primary_10_1016_j_jhazmat_2018_07_035
crossref_primary_10_1016_j_watres_2015_09_039
crossref_primary_10_1016_j_chemosphere_2013_02_048
crossref_primary_10_3390_w11040721
crossref_primary_10_1016_j_aquatox_2020_105502
crossref_primary_10_1080_17435390_2018_1530391
crossref_primary_10_1016_j_jhazmat_2014_01_043
crossref_primary_10_1016_j_scitotenv_2014_12_054
crossref_primary_10_1021_es2023225
crossref_primary_10_3390_pr9101764
crossref_primary_10_1007_s10532_016_9758_5
crossref_primary_10_1007_s11569_010_0090_y
crossref_primary_10_1007_s11051_012_1259_9
crossref_primary_10_1021_acs_est_8b05180
crossref_primary_10_1016_j_cep_2014_01_010
crossref_primary_10_1089_ees_2013_0269
crossref_primary_10_1016_j_colsurfb_2012_08_034
crossref_primary_10_1016_j_envpol_2014_08_011
crossref_primary_10_1039_C2BM00066K
crossref_primary_10_1002_smll_201802337
crossref_primary_10_1016_j_scitotenv_2017_09_113
crossref_primary_10_1371_journal_pone_0126021
crossref_primary_10_3390_nano6050090
crossref_primary_10_3390_w10050660
crossref_primary_10_1016_j_scitotenv_2018_02_009
crossref_primary_10_3390_en10081151
crossref_primary_10_1016_j_jpowsour_2024_234309
crossref_primary_10_1039_C6NR09245D
crossref_primary_10_1016_j_jece_2017_11_068
crossref_primary_10_1038_s41598_023_51119_8
crossref_primary_10_2118_203825_PA
crossref_primary_10_3390_nano12091536
crossref_primary_10_1016_j_chemosphere_2012_12_077
crossref_primary_10_1016_j_scitotenv_2016_03_001
crossref_primary_10_1016_j_chemosphere_2016_11_033
crossref_primary_10_1016_j_cis_2014_07_015
crossref_primary_10_1007_s11051_015_3207_y
crossref_primary_10_1038_s41598_021_00446_9
crossref_primary_10_1007_s10661_024_12642_x
crossref_primary_10_1002_ejic_202400496
crossref_primary_10_1016_j_jes_2017_05_026
crossref_primary_10_3390_catal6040056
crossref_primary_10_1007_s11051_013_1874_0
crossref_primary_10_3390_lubricants8030023
crossref_primary_10_3390_catal10070759
crossref_primary_10_1039_C9RE00456D
crossref_primary_10_1007_s11356_015_4661_x
crossref_primary_10_1021_cm504406a
crossref_primary_10_1016_j_jddst_2020_101965
crossref_primary_10_1016_j_proenv_2016_02_105
crossref_primary_10_1016_j_scitotenv_2018_07_131
crossref_primary_10_1246_cl_2011_230
crossref_primary_10_1016_j_scitotenv_2015_02_037
crossref_primary_10_1021_acs_est_5b00243
crossref_primary_10_1016_j_ecoenv_2012_08_024
crossref_primary_10_3390_nano7100326
crossref_primary_10_3390_w12092509
crossref_primary_10_1021_acs_iecr_6b04572
crossref_primary_10_1016_j_clay_2018_05_002
crossref_primary_10_1016_j_envpol_2017_12_014
crossref_primary_10_1016_j_chemosphere_2013_06_075
crossref_primary_10_3389_fenvs_2023_1285752
crossref_primary_10_1007_s11356_020_08323_0
crossref_primary_10_1021_jasms_1c00021
crossref_primary_10_3109_17435390_2013_818173
crossref_primary_10_1016_j_seppur_2015_05_036
crossref_primary_10_1039_C4CS00487F
crossref_primary_10_1039_C5EN00155B
crossref_primary_10_1016_j_envpol_2019_01_045
crossref_primary_10_1038_srep14264
crossref_primary_10_1039_c3en00054k
crossref_primary_10_3390_nano14040373
crossref_primary_10_1016_j_envpol_2019_02_084
crossref_primary_10_1007_s42452_020_2952_4
crossref_primary_10_1177_0734242X17695884
crossref_primary_10_1016_j_jece_2015_06_026
crossref_primary_10_1016_j_marenvres_2018_02_029
crossref_primary_10_1061__ASCE_EE_1943_7870_0001090
crossref_primary_10_1016_j_scitotenv_2020_144174
crossref_primary_10_1039_C6EN00105J
crossref_primary_10_1016_j_jece_2021_105539
crossref_primary_10_1016_j_watres_2013_07_034
crossref_primary_10_1016_j_jcis_2013_05_034
crossref_primary_10_1016_j_watres_2018_09_047
crossref_primary_10_1016_j_molliq_2019_111375
crossref_primary_10_3390_molecules191118192
crossref_primary_10_1016_j_jconhyd_2022_104014
crossref_primary_10_1071_EN13001
crossref_primary_10_1021_acs_iecr_2c02620
crossref_primary_10_1111_ics_12165
crossref_primary_10_1016_j_envres_2014_12_006
crossref_primary_10_1016_j_marpolbul_2025_117627
crossref_primary_10_1016_j_envpol_2017_05_025
crossref_primary_10_1021_acsapm_2c01471
crossref_primary_10_1039_C9RA08270K
crossref_primary_10_1016_j_chemosphere_2022_133744
crossref_primary_10_1016_j_jhazmat_2014_09_045
crossref_primary_10_1039_C6EN00530F
crossref_primary_10_1016_j_jphotobiol_2016_02_010
crossref_primary_10_1016_j_chemosphere_2019_02_162
crossref_primary_10_1016_j_scitotenv_2016_11_135
crossref_primary_10_3390_catal15020190
crossref_primary_10_1016_j_scitotenv_2015_09_116
crossref_primary_10_1016_j_envpol_2012_10_026
crossref_primary_10_1016_j_scitotenv_2016_12_175
crossref_primary_10_1021_es403377p
crossref_primary_10_1155_2016_6539581
crossref_primary_10_1007_s11095_018_2542_y
crossref_primary_10_1039_C9EN01007F
crossref_primary_10_1061__ASCE_HZ_2153_5515_0000263
crossref_primary_10_1016_j_matpr_2019_10_068
crossref_primary_10_1039_b919917a
crossref_primary_10_1016_j_cis_2017_05_012
crossref_primary_10_1016_j_envres_2020_109700
crossref_primary_10_1039_C6CS00921B
crossref_primary_10_1016_j_jconhyd_2010_09_013
crossref_primary_10_1016_j_jhazmat_2017_07_041
crossref_primary_10_1016_j_jhazmat_2017_07_046
crossref_primary_10_1021_acs_analchem_7b02205
crossref_primary_10_1088_2053_1591_ab0690
crossref_primary_10_1016_j_scitotenv_2020_137607
crossref_primary_10_1039_c3en00061c
crossref_primary_10_1016_j_envpol_2015_10_035
crossref_primary_10_1007_s11051_023_05725_2
crossref_primary_10_1007_s11356_018_2795_3
crossref_primary_10_1007_s11368_023_03631_7
crossref_primary_10_1021_ac2034437
crossref_primary_10_1016_j_scitotenv_2015_08_143
crossref_primary_10_3390_separations5010013
crossref_primary_10_1016_j_chemosphere_2019_03_077
crossref_primary_10_1016_j_coesh_2018_07_014
crossref_primary_10_1016_j_cej_2018_10_114
crossref_primary_10_1016_j_chemosphere_2019_01_073
crossref_primary_10_2118_191318_PA
crossref_primary_10_1038_s41598_019_40047_1
crossref_primary_10_1016_j_colsurfa_2022_129000
crossref_primary_10_1016_j_scitotenv_2015_11_157
crossref_primary_10_1080_19443994_2015_1136242
crossref_primary_10_1007_s11595_020_2314_5
crossref_primary_10_1111_ics_12113
crossref_primary_10_1016_j_scitotenv_2013_06_022
crossref_primary_10_1016_j_cej_2015_11_045
crossref_primary_10_1016_j_envint_2016_04_022
crossref_primary_10_1007_s11051_015_3250_8
crossref_primary_10_1021_acs_langmuir_8b00020
crossref_primary_10_1016_j_carres_2024_109310
crossref_primary_10_1007_s11356_019_06132_8
crossref_primary_10_1007_s11434_010_4332_8
crossref_primary_10_1007_s00128_018_2336_2
crossref_primary_10_1016_j_ecoenv_2018_05_090
crossref_primary_10_1080_10426914_2015_1070424
crossref_primary_10_1016_j_jhazmat_2024_134972
crossref_primary_10_1039_C5SC02124C
crossref_primary_10_1007_BF03216507
crossref_primary_10_1016_j_colsurfa_2013_05_010
crossref_primary_10_1208_s12249_018_1275_x
crossref_primary_10_1016_j_bbrc_2022_07_064
crossref_primary_10_1039_C0EM00499E
crossref_primary_10_1371_journal_pone_0081239
crossref_primary_10_1038_srep31422
crossref_primary_10_5942_jawwa_2013_105_0154
crossref_primary_10_1016_j_envpol_2025_125922
crossref_primary_10_1016_j_jconhyd_2015_02_005
crossref_primary_10_1021_es3004427
crossref_primary_10_1016_j_scitotenv_2022_155652
crossref_primary_10_1093_toxsci_kfy100
crossref_primary_10_1016_j_cej_2013_02_047
crossref_primary_10_1039_C3CE41584H
crossref_primary_10_1039_c4ra02759k
crossref_primary_10_1016_j_chemgeo_2012_09_043
crossref_primary_10_1080_17435390_2017_1290845
crossref_primary_10_1016_j_envint_2014_01_012
crossref_primary_10_1016_j_watres_2013_07_021
crossref_primary_10_1021_nl504840b
crossref_primary_10_1021_acsomega_3c00734
crossref_primary_10_3390_nano12030552
crossref_primary_10_1002_ange_200906684
crossref_primary_10_1002_ceat_202000260
crossref_primary_10_1088_1742_6596_304_1_012058
crossref_primary_10_1016_j_cis_2016_10_005
crossref_primary_10_1016_j_apsusc_2016_11_169
crossref_primary_10_1016_j_jece_2025_115435
crossref_primary_10_1016_j_colsurfa_2019_03_088
crossref_primary_10_1021_es903456e
crossref_primary_10_1007_s00216_020_02412_2
crossref_primary_10_1016_j_apcatb_2010_05_001
crossref_primary_10_1002_anie_200906684
crossref_primary_10_1080_00986445_2014_891508
crossref_primary_10_1016_j_envpol_2011_01_039
crossref_primary_10_1016_j_chemosphere_2016_12_063
crossref_primary_10_1016_j_scitotenv_2019_01_345
crossref_primary_10_1002_etc_3325
crossref_primary_10_1016_j_ccr_2014_12_014
crossref_primary_10_1007_s11051_015_3031_4
crossref_primary_10_1021_acs_langmuir_2c01010
crossref_primary_10_1039_C4CP04733H
crossref_primary_10_1371_journal_pone_0128602
crossref_primary_10_1016_j_biochi_2016_08_005
crossref_primary_10_1016_j_cej_2014_10_044
crossref_primary_10_1016_j_chemosphere_2024_141525
crossref_primary_10_1007_s11051_012_1293_7
crossref_primary_10_1186_2190_4715_24_30
crossref_primary_10_2166_wh_2024_051
crossref_primary_10_1016_j_electacta_2019_02_102
crossref_primary_10_1007_s11270_019_4123_z
crossref_primary_10_1016_j_chemosphere_2010_10_068
crossref_primary_10_1016_j_jcis_2010_06_063
crossref_primary_10_1016_j_jappgeo_2011_11_009
crossref_primary_10_1016_j_envpol_2019_03_049
crossref_primary_10_1016_j_copbio_2024_103128
crossref_primary_10_1016_j_jcis_2017_08_076
crossref_primary_10_1080_09593330_2017_1334093
crossref_primary_10_1002_ente_202100469
crossref_primary_10_1016_j_conbuildmat_2018_02_032
crossref_primary_10_1007_s11368_024_03716_x
crossref_primary_10_1016_j_cclet_2020_11_010
crossref_primary_10_1139_er_2018_0022
crossref_primary_10_1002_adbi_201800303
crossref_primary_10_1016_j_apt_2020_10_003
crossref_primary_10_1021_es5019652
crossref_primary_10_1016_j_chemosphere_2017_10_105
crossref_primary_10_1039_C6JA00079G
crossref_primary_10_1039_C2EM30680H
crossref_primary_10_1039_C7EN01046J
crossref_primary_10_3390_ijms140714395
crossref_primary_10_1016_j_watres_2013_08_026
crossref_primary_10_2217_nnm_09_40
crossref_primary_10_1016_j_jhazmat_2014_04_058
crossref_primary_10_1016_j_scitotenv_2016_06_042
crossref_primary_10_1007_s11356_021_17086_1
crossref_primary_10_1021_es203623z
crossref_primary_10_1039_C7QM00557A
crossref_primary_10_1080_10934520903263231
crossref_primary_10_1016_j_fuel_2017_11_091
crossref_primary_10_7762_cnr_2016_5_3_172
crossref_primary_10_1039_C5EN00139K
crossref_primary_10_1016_j_jes_2020_10_007
crossref_primary_10_1016_j_biotechadv_2013_11_006
crossref_primary_10_1038_s41428_022_00673_5
crossref_primary_10_1021_es403079h
crossref_primary_10_1515_bnm_2013_0011
crossref_primary_10_1016_j_chemosphere_2015_03_052
crossref_primary_10_1016_j_ijhydene_2020_08_066
crossref_primary_10_7567_JJAP_57_02CB17
crossref_primary_10_1007_s11356_015_5209_9
crossref_primary_10_1016_j_scitotenv_2018_05_350
crossref_primary_10_1016_j_jclepro_2020_123924
crossref_primary_10_1016_j_jhazmat_2021_126695
crossref_primary_10_1149_1_3529238
crossref_primary_10_1111_1750_3841_14354
crossref_primary_10_1039_D3EN00860F
crossref_primary_10_1016_j_scitotenv_2013_01_058
crossref_primary_10_1016_j_scitotenv_2012_06_076
crossref_primary_10_1021_acs_jpcc_3c00445
crossref_primary_10_1016_j_envpol_2014_05_029
crossref_primary_10_1007_s10311_012_0381_3
crossref_primary_10_1371_journal_pone_0037363
crossref_primary_10_1016_j_chemosphere_2013_07_023
crossref_primary_10_1016_j_chemosphere_2016_02_046
crossref_primary_10_1021_la200251v
crossref_primary_10_1088_1742_6596_304_1_012018
crossref_primary_10_1515_ijcre_2017_0014
crossref_primary_10_1016_j_jallcom_2016_12_112
crossref_primary_10_1088_1361_6528_aba2a1
crossref_primary_10_3390_nano11081903
crossref_primary_10_1016_j_colsurfa_2014_03_030
crossref_primary_10_1029_2012WR011887
crossref_primary_10_1039_D2NJ05578C
crossref_primary_10_1021_acs_est_5b05746
crossref_primary_10_1016_j_scitotenv_2021_146952
crossref_primary_10_1016_j_colsurfb_2018_06_050
crossref_primary_10_1134_S2635167621020178
crossref_primary_10_3390_nano7090268
crossref_primary_10_1016_j_scitotenv_2018_07_189
crossref_primary_10_1089_ees_2014_0288
crossref_primary_10_1016_j_cej_2012_11_117
crossref_primary_10_1007_s11051_017_4086_1
crossref_primary_10_1016_j_envpol_2011_07_013
crossref_primary_10_1016_j_scitotenv_2023_168076
crossref_primary_10_1021_acs_est_5b04368
crossref_primary_10_1007_s00216_011_5443_z
crossref_primary_10_1071_EN14273
crossref_primary_10_1080_01932691_2011_567886
crossref_primary_10_1007_s10971_015_3823_0
crossref_primary_10_1016_j_watres_2015_10_025
crossref_primary_10_1155_2013_856387
crossref_primary_10_1016_j_jhazmat_2011_02_072
crossref_primary_10_1039_C9RE00152B
crossref_primary_10_1016_j_envpol_2010_05_007
crossref_primary_10_1007_s10498_014_9245_8
crossref_primary_10_1016_j_ijbiomac_2025_141717
crossref_primary_10_1016_j_watres_2018_09_019
crossref_primary_10_1080_10826068_2024_2419862
crossref_primary_10_1080_19443994_2016_1163513
crossref_primary_10_1021_acs_langmuir_8b00300
crossref_primary_10_1016_j_scitotenv_2013_09_063
crossref_primary_10_1016_j_colsurfa_2010_07_019
crossref_primary_10_1021_es504188a
crossref_primary_10_1002_etc_2616
crossref_primary_10_1016_j_msec_2020_111290
crossref_primary_10_1016_j_watres_2013_01_056
crossref_primary_10_1039_C6EN00339G
crossref_primary_10_1021_es301406q
crossref_primary_10_1038_s41598_022_25577_5
crossref_primary_10_1016_j_colsurfb_2013_12_047
crossref_primary_10_1007_s11051_020_05080_6
crossref_primary_10_1016_j_jhazmat_2014_10_004
crossref_primary_10_1002_etc_1880
crossref_primary_10_1007_s11356_018_3123_7
crossref_primary_10_1016_j_envres_2015_06_028
crossref_primary_10_3390_app10186431
crossref_primary_10_1021_ja106091q
crossref_primary_10_1039_D3RE00417A
crossref_primary_10_1016_j_jenvman_2022_115217
crossref_primary_10_1021_acsbiomaterials_6b00006
crossref_primary_10_1016_j_aquatox_2023_106713
crossref_primary_10_1002_anie_201405050
crossref_primary_10_1142_S1088424619500238
crossref_primary_10_1016_j_scitotenv_2021_149163
crossref_primary_10_1016_j_chroma_2017_07_098
crossref_primary_10_1016_j_jhazmat_2011_09_059
crossref_primary_10_1021_acs_langmuir_4c01182
crossref_primary_10_1002_etc_1898
crossref_primary_10_1016_j_chemosphere_2016_03_059
crossref_primary_10_1016_j_jhazmat_2014_12_066
crossref_primary_10_1021_acssuschemeng_8b02639
crossref_primary_10_1016_j_apcatb_2015_04_053
crossref_primary_10_1016_j_colsurfa_2021_126302
crossref_primary_10_1016_j_jcis_2011_04_111
crossref_primary_10_1080_10643389_2019_1629799
crossref_primary_10_1002_etc_2865
crossref_primary_10_1371_journal_pone_0155111
crossref_primary_10_1016_j_jpcs_2015_10_014
crossref_primary_10_1016_j_scitotenv_2019_01_180
crossref_primary_10_1016_j_chemosphere_2019_124561
crossref_primary_10_1016_j_chemosphere_2016_10_085
crossref_primary_10_1039_c1em00002k
crossref_primary_10_1007_s11051_014_2503_2
crossref_primary_10_1016_j_impact_2016_07_002
crossref_primary_10_1039_D3EN00622K
crossref_primary_10_1016_j_colsurfa_2011_09_047
crossref_primary_10_1021_acssuschemeng_7b00364
crossref_primary_10_1016_j_aquatox_2017_06_021
crossref_primary_10_1021_la200570n
crossref_primary_10_1007_s13762_018_2148_2
crossref_primary_10_1039_C4NR05088F
crossref_primary_10_1016_j_ecoenv_2015_12_028
crossref_primary_10_1007_s11356_016_6742_x
crossref_primary_10_1016_j_colsurfa_2024_133955
crossref_primary_10_1016_j_envpol_2016_09_080
crossref_primary_10_1016_j_envpol_2017_01_065
crossref_primary_10_1080_02726351_2017_1302536
crossref_primary_10_1016_j_apsusc_2015_09_142
crossref_primary_10_1016_j_scitotenv_2022_153866
crossref_primary_10_1007_s00709_019_01420_z
crossref_primary_10_1021_acs_est_3c00532
crossref_primary_10_1016_j_advwatres_2020_103694
crossref_primary_10_1007_s11051_014_2747_x
crossref_primary_10_1038_s41598_017_09699_9
crossref_primary_10_1016_j_chemosphere_2019_124699
crossref_primary_10_4028_www_scientific_net_MSF_922_8
crossref_primary_10_1016_j_marenvres_2020_105146
crossref_primary_10_12677_OJFR_2020_71009
crossref_primary_10_1016_j_jcis_2010_04_045
crossref_primary_10_1016_j_jcis_2019_01_036
crossref_primary_10_1016_j_seppur_2017_09_027
crossref_primary_10_1016_j_cattod_2010_09_027
crossref_primary_10_1021_acsnano_5b06074
crossref_primary_10_1016_j_scitotenv_2013_08_038
crossref_primary_10_1039_C7CP08054A
crossref_primary_10_1155_2014_563131
crossref_primary_10_1021_acsaenm_3c00511
crossref_primary_10_1371_journal_pone_0110247
crossref_primary_10_1016_j_impact_2018_01_003
Cites_doi 10.1021/es060847g
10.1016/S0927-7757(98)00763-8
10.1021/la061774h
10.1021/es052040e
10.1038/nbt875
10.1021/es062726m
10.1021/la049334i
10.1021/es035354f
10.1021/es061349a
10.1089/ees.2007.24.85
10.1016/j.watres.2006.08.004
10.1021/la049153g
10.1201/9781420008005
10.1006/jcis.1998.5440
10.1021/es0522635
10.1897/05-278R.1
10.1021/es060589n
10.1289/ehp.10915
10.2136/sssaj2002.1207
10.1016/j.jcis.2004.08.075
10.1016/j.jcis.2006.03.008
10.1021/jp061417f
10.1021/es071936b
10.1021/jp984574q
10.1016/j.jcis.2005.08.003
10.1006/jcis.2002.8476
10.1016/j.jcis.2007.04.038
10.1007/s10646-008-0214-0
10.1021/es0352303
10.1021/jp063822c
10.1007/s11051-007-9315-6
10.1016/j.jphotochemrev.2007.12.003
ContentType Journal Article
Copyright Copyright © 2009 American Chemical Society
2015 INIST-CNRS
Copyright American Chemical Society Mar 1, 2009
Copyright_xml – notice: Copyright © 2009 American Chemical Society
– notice: 2015 INIST-CNRS
– notice: Copyright American Chemical Society Mar 1, 2009
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7QH
7U1
7UA
F1W
H97
L.G
DOI 10.1021/es802628n
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
MEDLINE - Academic
Aqualine
Risk Abstracts
Water Resources Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
Risk Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ASFA: Aquatic Sciences and Fisheries Abstracts
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
DatabaseTitleList Biotechnology Research Abstracts
Risk Abstracts
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
Applied Sciences
EISSN 1520-5851
EndPage 1359
ExternalDocumentID 1655161211
19350903
22378722
10_1021_es802628n
i04593362
Genre Journal Article
Feature
GroupedDBID -
.K2
1AW
3R3
4.4
4R4
53G
55A
5GY
5VS
63O
7~N
85S
AABXI
ABFLS
ABMVS
ABOGM
ABPPZ
ABPTK
ABUCX
ABUFD
ACDCL
ACGFS
ACGOD
ACIWK
ACJ
ACPRK
ACS
AEESW
AENEX
AFEFF
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
K2
LG6
MS
PQEST
PQQKQ
ROL
RXW
TN5
TWZ
U5U
UHB
UI2
UKR
UPT
UQL
VF5
VG9
VQA
W1F
WH7
X
XFK
XZL
YZZ
---
-DZ
-~X
..I
.DC
6TJ
AAHBH
AAYOK
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
ADMHC
ADUKH
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
MS~
MW2
XSW
ZCA
.HR
186
1WB
42X
8WZ
A6W
ABHMW
ACKIV
ACRPL
ADNMO
AETEA
AEYZD
AGQPQ
ANPPW
ANTXH
IHE
IQODW
MVM
NHB
OHT
RNS
TAE
UBC
UBX
UBY
VJK
VOH
YV5
ZCG
ZY4
~A~
CGR
CUY
CVF
ECM
EIF
NPM
YIN
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7QH
7U1
7UA
F1W
H97
L.G
ID FETCH-LOGICAL-a468t-d10d4b364d4aef8cf10bfc7b97fd24c299a35cef142dff581e6f8f7c461156b23
IEDL.DBID ACS
ISSN 0013-936X
IngestDate Thu Jul 10 18:16:11 EDT 2025
Fri Jul 11 01:06:43 EDT 2025
Fri Jul 25 08:48:49 EDT 2025
Wed Feb 19 02:34:51 EST 2025
Mon Jul 21 09:18:41 EDT 2025
Tue Jul 01 02:10:15 EDT 2025
Thu Apr 24 22:56:19 EDT 2025
Fri Dec 18 21:25:39 EST 2020
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Ionic strength
Nanoparticle
Light scattering
Morphology
Surface water
Kinetics
Titanium oxide
Catalyst
Interstitial water
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a468t-d10d4b364d4aef8cf10bfc7b97fd24c299a35cef142dff581e6f8f7c461156b23
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 19350903
PQID 230149684
PQPubID 45412
PageCount 6
ParticipantIDs proquest_miscellaneous_754543271
proquest_miscellaneous_67129836
proquest_journals_230149684
pubmed_primary_19350903
pascalfrancis_primary_22378722
crossref_primary_10_1021_es802628n
crossref_citationtrail_10_1021_es802628n
acs_journals_10_1021_es802628n
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-03-01
PublicationDateYYYYMMDD 2009-03-01
PublicationDate_xml – month: 03
  year: 2009
  text: 2009-03-01
  day: 01
PublicationDecade 2000
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
– name: Easton
PublicationTitle Environmental science & technology
PublicationTitleAlternate Environ. Sci. Technol
PublicationYear 2009
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Guzman K. A. D. (ref15/cit15) 2006; 40
Liufu S. C. (ref35/cit35) 2005; 281
Lovern S. B. (ref9/cit9) 2006; 25
ref25/cit25
Kallay N. (ref29/cit29) 2002; 253
Phenrat T. (ref30/cit30) 2008; 10
Fernandez-Nieves A. (ref36/cit36) 1999; 148
Rengel Z. (ref32/cit32) 2006
Gilbert B. (ref14/cit14) 2007; 313
Colvin V. L. (ref1/cit1) 2003; 21
ref23/cit23
Mylon S. E. (ref38/cit38) 2004; 20
Gaya U. I. (ref6/cit6) 2008; 9
McBride M. B. (ref21/cit21) 2002; 66
Miller D. T. (ref31/cit31) 1998
Phenrat T. (ref24/cit24) 2007; 41
Lecoanet H. F. (ref28/cit28) 2004; 38
Kretzschmar R. (ref37/cit37) 1998; 202
Isley S. L. (ref17/cit17) 2006; 110
ref26/cit26
Rothen-Rutishauser B. M. (ref10/cit10) 2006; 40
Lecoanet H. F. (ref27/cit27) 2004; 38
Gao Y. (ref3/cit3) 2004; 20
Tkachenko N. H. (ref34/cit34) 2006; 299
Ise N. (ref19/cit19) 2005
Illes E. (ref22/cit22) 2006; 295
Adams L. K. (ref8/cit8) 2006; 40
Baveye P. C. (ref13/cit13) 2008; 116
Wiesner M. R. (ref2/cit2) 2006; 40
Smalley M. (ref20/cit20) 2006
Pena M. (ref7/cit7) 2006; 40
Ridley M. K. (ref16/cit16) 2006; 22
Zhang H. Z. (ref5/cit5) 1999; 103
Saleh N. (ref33/cit33) 2008; 42
Giammar D. E. (ref4/cit4) 2007; 24
Finnegan M. P. (ref18/cit18) 2007; 111
Long T. C. (ref11/cit11) 2006; 40
Navarro E. (ref12/cit12) 2008; 17
References_xml – volume: 40
  start-page: 7688
  year: 2006
  ident: ref15/cit15
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es060847g
– volume: 148
  start-page: 231
  year: 1999
  ident: ref36/cit36
  publication-title: Colloids Surf. A
  doi: 10.1016/S0927-7757(98)00763-8
– volume: 22
  start-page: 10972
  year: 2006
  ident: ref16/cit16
  publication-title: Langmuir
  doi: 10.1021/la061774h
– ident: ref26/cit26
– volume: 40
  start-page: 1257
  year: 2006
  ident: ref7/cit7
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es052040e
– volume: 21
  start-page: 1166
  year: 2003
  ident: ref1/cit1
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt875
– ident: ref25/cit25
– volume: 40
  start-page: 4336
  year: 2006
  ident: ref2/cit2
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es062726m
– volume: 20
  start-page: 9585
  year: 2004
  ident: ref3/cit3
  publication-title: Langmuir
  doi: 10.1021/la049334i
– volume: 38
  start-page: 4377
  year: 2004
  ident: ref28/cit28
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es035354f
– volume: 41
  start-page: 284
  year: 2007
  ident: ref24/cit24
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es061349a
– volume: 24
  start-page: 85
  year: 2007
  ident: ref4/cit4
  publication-title: Environ. Eng. Sci.
  doi: 10.1089/ees.2007.24.85
– volume: 40
  start-page: 3527
  year: 2006
  ident: ref8/cit8
  publication-title: Water Res.
  doi: 10.1016/j.watres.2006.08.004
– start-page: 198
  volume-title: Encyclopedia of Soil Science
  year: 2006
  ident: ref32/cit32
– volume: 20
  start-page: 9000
  year: 2004
  ident: ref38/cit38
  publication-title: Langmuir
  doi: 10.1021/la049153g
– volume-title: Clay Swelling and Colloidal Stability
  year: 2006
  ident: ref20/cit20
  doi: 10.1201/9781420008005
– volume: 202
  start-page: 95
  year: 1998
  ident: ref37/cit37
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.1998.5440
– volume: 40
  start-page: 4353
  year: 2006
  ident: ref10/cit10
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0522635
– volume: 25
  start-page: 1132
  year: 2006
  ident: ref9/cit9
  publication-title: Environ. Toxicol. Chem.
  doi: 10.1897/05-278R.1
– volume: 40
  start-page: 4346
  year: 2006
  ident: ref11/cit11
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es060589n
– volume: 116
  start-page: A152−A152
  year: 2008
  ident: ref13/cit13
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.10915
– volume-title: Structure Formation in Solution: Ionic Polymers and Colloidal Particles
  year: 2005
  ident: ref19/cit19
– volume: 66
  start-page: 1207
  year: 2002
  ident: ref21/cit21
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2002.1207
– volume: 281
  start-page: 155
  year: 2005
  ident: ref35/cit35
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2004.08.075
– volume: 299
  start-page: 686
  year: 2006
  ident: ref34/cit34
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2006.03.008
– ident: ref23/cit23
– volume-title: Soils in Our Environment
  year: 1998
  ident: ref31/cit31
– volume: 110
  start-page: 15134
  year: 2006
  ident: ref17/cit17
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp061417f
– volume: 42
  start-page: 3349
  year: 2008
  ident: ref33/cit33
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es071936b
– volume: 103
  start-page: 4656
  year: 1999
  ident: ref5/cit5
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp984574q
– volume: 295
  start-page: 115
  year: 2006
  ident: ref22/cit22
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2005.08.003
– volume: 253
  start-page: 70
  year: 2002
  ident: ref29/cit29
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.2002.8476
– volume: 313
  start-page: 52
  year: 2007
  ident: ref14/cit14
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2007.04.038
– volume: 17
  start-page: 372
  year: 2008
  ident: ref12/cit12
  publication-title: Ecotoxicology
  doi: 10.1007/s10646-008-0214-0
– volume: 38
  start-page: 5164
  year: 2004
  ident: ref27/cit27
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0352303
– volume: 111
  start-page: 1962
  year: 2007
  ident: ref18/cit18
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp063822c
– volume: 10
  start-page: 795
  year: 2008
  ident: ref30/cit30
  publication-title: J. Nanopart. Res.
  doi: 10.1007/s11051-007-9315-6
– volume: 9
  start-page: 1
  year: 2008
  ident: ref6/cit6
  publication-title: J. Photochem. Photobiol. C
  doi: 10.1016/j.jphotochemrev.2007.12.003
SSID ssj0002308
Score 2.5166929
Snippet The extensive use of titanium dioxide nanoparticles (nano-TiO2) in many consumer products has raised concerns about possible risks to the environment. The...
The extensive use of titanium dioxide nanoparticles (nano-TiO2) in many consumer products has raised concerns about possible risks to the environment The...
The extensive use of titanium dioxide nanoparticles (nano-...) in many consumer products has raised concerns about possible risks to the environment. The...
SourceID proquest
pubmed
pascalfrancis
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1354
SubjectTerms Animal, plant and microbial ecology
Applied ecology
Applied sciences
Biological and medical sciences
Cations, Divalent - chemistry
Cations, Monovalent - chemistry
Chemical compounds
Chemical reactions
Consumer goods
Ecotoxicology, biological effects of pollution
Environment
Environmental Processes
Environmental science
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
Hydrogen-Ion Concentration
Ions
Kinetics
Nanoparticles
Nanoparticles - chemistry
Nanoparticles - ultrastructure
Osmolar Concentration
Pollution
Reaction kinetics
Soil
Suspensions
Time Factors
Titanium
Titanium - chemistry
Title Influence of Ionic Strength, pH, and Cation Valence on Aggregation Kinetics of Titanium Dioxide Nanoparticles
URI http://dx.doi.org/10.1021/es802628n
https://www.ncbi.nlm.nih.gov/pubmed/19350903
https://www.proquest.com/docview/230149684
https://www.proquest.com/docview/67129836
https://www.proquest.com/docview/754543271
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwED-N8QKa2BhsZGPFAh54WEbtOLbzWHWbOhC8sKG-RbYTdxVbWpFUQvz1nJuPbmKF1-SS-OPO97uc_TuA96bvLC77USi1YyG3mQ4NUyZ0yicPaeIS688Of_kqRlf80zgeb8C7NRl8Rj_mpcI4ganiETxmQkkfYQ2G37rlFjG0assUJJEYt_RBdx_1rseW91zP1lyXOAquLl-xHl8u_cz5Npy2p3Xq7SU_ThaVObG__yZv_FcXduBZgzPJoFaM57CRF7vw9A774C7sna0OuaFoY-XlC7i9aCuXkJkjF548l_jsdTGpro_JfHRMdJGR4XJOyXd9U0sWZDDB4H1SX_6M3_EM0P4Nl1NEoNPFLTmdzn5Ns5zgko6xerMl7yVcnZ9dDkdhU5Yh1FyoKsxoP-MmEjzjOnfKOto3zkqTSJcxbtG_6Si2uaOcZc7FiubCKSctF4g-hWHRHmwWsyJ_BSRxSkhtjPM09omQ6BpjJjWlGRPO9kUAPZy3tDGrMl1mzBlNuwEN4EM7paltSM19bY2bh0TfdqLzmsnjIaHePb3oJBFF4dLGWACHraKsmsV8XJoIxQN4091FM_W5F13ks0WZConASkXYI7JGQiKW5RGTNID9WgFXzUyi2P9PO_jfcBzCkzrb5ffIvYbN6uciP0LQVJne0mj-ADNXET8
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_BeACE-BgbhEFnIR54WEbtuLbzWJVNLft4oUN9i2wnLhVbWpFUQvz1nPPVDW2C1-SS-OvufpezfwfwwfSdRbMfhVI7FnKb6tAwZUKnfPKQxi62_uzw2bkYX_Avs8GsocnxZ2GwEQW-qaiS-Bt2AfopKxSGC0zl9-EBghDmA63h6GtndRFKq7ZaQRyJWcsidP1R74FsccMDPVnpAgfD1VUs7oaZlbs5flbXLaoaWu0y-XG4Ls2h_f0Xh-P_9eQ5PG1QJxnWy-QF3MvybXh8jYtwG3aPNkfeULTR-eIlXE3aOiZk6cjEU-kSn8vO5-X3A7IaHxCdp2RUzTD5pi9ryZwM5xjKz-vLJ_gdzwft3zBdIB5drK_I58Xy1yLNCBp4jNybDXo7cHF8NB2Nw6ZIQ6i5UGWY0n7KTSR4ynXmlHW0b5yVJpYuZdyit9PRwGaOcpY6N1A0E045ablALCoMi3ZhK1_m2WsgsVNCamOcJ7WPhURHifOsKU2ZcLYvAujheCaNkhVJlT9nNOkGNICP7cwmtqE495U2Lm8Tfd-Jrmpej9uEejeWRyeJmAoNHWMB7LXrZdMs5qPUWCgewH53F5XWZ2J0ni3XRSIkwiwVYY_IHRISkS2PmKQBvKrX4aaZcTTwf9fe_Gs49uHheHp2mpxOzk_24FGdB_O7597CVvlznb1DOFWaXqVHfwAkaRmg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_BkBAI8TEYhEFnIR54WEbjOLbzWHWrWgYDiQ31LfJHXCq2tCKthPjrOeerG9oEr8klsc8-3-9y9u8A3uq-M7jsx6FQjobMWBVqKnXopE8eRqlLjT87_OmEj8_Yh2kybQJFfxYGG1Him8oqie-temldwzAQvc9LiSEDlcVtuOPTdT7YGgy_disvwmnZVixIYz5tmYQuP-q9kCmveKEHS1WiQlxdyeJmqFm5nNEj-Nw1ttpp8uNgvdIH5vdfPI7_35vH8LBBn2RQT5cncCsvtuH-JU7Cbdg52hx9Q9HG9suncDFp65mQhSMTT6lLfE67mK2-75PleJ-owpJhNdLkmzqvJQsymGFIP6svH-N3PC-0f8PpHHHpfH1BDueLX3ObE1zoMYJvNuo9g7PR0elwHDbFGkLFuFyFNupbpmPOLFO5k8ZFfe2M0KlwljKDXk_FicldxKh1LpFRzp10wjCOmJRrGu_AVrEo8hdAUie5UFo7T26fcoEOM6FCRZGl3Jk-D6CHOs0aYyuzKo9Oo6xTaADv2tHNTEN17itunF8n-qYTXdb8HtcJ9a5MkU4SsRUueJQGsNvOmU2zqI9WUy5ZAHvdXTRen5FRRb5YlxkXCLdkjD0iN0gIRLgspiIK4Hk9FzfNTOPE_2V7-S917MHdL4ej7OPk5HgX7tXpML-J7hVsrX6u89eIqla6V5nSHzxFHCM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+ionic+strength%2C+pH%2C+and+cation+valence+on+aggregation+kinetics+of+titanium+dioxide+nanoparticles&rft.jtitle=Environmental+science+%26+technology&rft.au=French%2C+Rebecca+A&rft.au=Jacobson%2C+Astrid+R&rft.au=Kim%2C+Bojeong&rft.au=Isley%2C+Sara+L&rft.date=2009-03-01&rft.issn=0013-936X&rft.volume=43&rft.issue=5&rft.spage=1354&rft_id=info:doi/10.1021%2Fes802628n&rft_id=info%3Apmid%2F19350903&rft.externalDocID=19350903
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon