Influence of Ionic Strength, pH, and Cation Valence on Aggregation Kinetics of Titanium Dioxide Nanoparticles
The extensive use of titanium dioxide nanoparticles (nano-TiO2) in many consumer products has raised concerns about possible risks to the environment. The magnitude of the threat may depend on whether nano-TiO2 remains dispersed in the environment, or forms much larger-sized aggregates or clusters....
Saved in:
Published in | Environmental science & technology Vol. 43; no. 5; pp. 1354 - 1359 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
01.03.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The extensive use of titanium dioxide nanoparticles (nano-TiO2) in many consumer products has raised concerns about possible risks to the environment. The magnitude of the threat may depend on whether nano-TiO2 remains dispersed in the environment, or forms much larger-sized aggregates or clusters. Currently, limited information is available on the issue. In this context, the purpose of the present article is to report initial measurements of the morphology and rate of formation of nano-TiO2 aggregates in aqueous suspensions as a function of ionic strength and of the nature of the electrolyte in a moderately acid to circumneutral pH range typical of soil and surface water conditions. Dynamic light scattering results show that 4−5 nm titanium dioxide particles readily form stable aggregates with an average diameter of 50−60 nm at pH ∼4.5 in a NaCl suspension adjusted to an ionic strength of 0.0045 M. Holding the pH constant, but increasing the ionic strength to 0.0165 M, leads to the formation of micron-sized aggregates within 15 min. At all other pH values tested (5.8−8.2), micron-sized aggregates form in less than 5 min (minimum detection time), even at low ionic strength (0.0084−0.0099 M with NaCl). In contrast, micron-sized aggregates form within 5 min in an aqueous suspension of CaCl2 at an ionic strength of 0.0128 M and pH of 4.8, which is significantly faster than observed for NaCl suspensions with similar ionic strength and pH. This result indicates that divalent cations may enhance aggregation of nano-TiO2 in soils and surface waters. Optical micrographs show branching aggregates of sizes ranging from the 1 μm optical limit of the microscope to tens of micrometers in diameter. |
---|---|
AbstractList | The extensive use of titanium dioxide nanoparticles (nano-...) in many consumer products has raised concerns about possible risks to the environment. The magnitude of the threat may depend on whether nano-... remains dispersed in the environment, or forms much larger- sized aggregates or clusters. Currently, limited information is available on the issue. In this context, the purpose of the present article is to report initial measurements of the morphology and rate of formation of nano-... aggregates in aqueous suspensions as a function of ionic strength and of the nature of the electrolyte in a moderately acid to circumneutral pH range typical of soil and surface water conditions. Dynamic light scattering results show that 4-5 nm titanium dioxide particles readily form stable aggregates with an average diameter of 50-60 nm at pH ...4.5 in a NaCl suspension adjusted to an ionic strength of 0.0045 M. Holding the pH constant, but increasing the ionic strength to 0.0165 M, leads to the formation of micron-sized aggregates within 15 min. At all other pH values tested (5.8-8.2), micron-sized aggregates form in less than 5 min (minimum detection time), even at low ionic strength (0.0084-0.0099 M with NaCl). In contrast, micron-sized aggregates form within 5 mm in an aqueous suspension of ... at an ionic strength of 0.0128 M and pH of 4.8, which is significantly faster than observed for NaCl suspensions with similar ionic strength and pH. This result indicates that divalent cations may enhance aggregation of nano-... in soils and surface waters. Optical micrographs show branching aggregates of sizes ranging from the 1 ...m optical limit of the microscope to tens of micrometers in diameter. (ProQuest: ... denotes formulae/symbols omitted.) The extensive use of titanium dioxide nanoparticles (nano-TiO2) in many consumer products has raised concerns about possible risks to the environment. The magnitude of the threat may depend on whether nano-TiO2 remains dispersed in the environment, or forms much larger-sized aggregates or clusters. Currently, limited information is available on the issue. In this context, the purpose of the present article is to report initial measurements of the morphology and rate of formation of nano-TiO2 aggregates in aqueous suspensions as a function of ionic strength and of the nature of the electrolyte in a moderately acid to circumneutral pH range typical of soil and surface water conditions. Dynamic light scattering results show that 4-5 nm titanium dioxide particles readily form stable aggregates with an average diameter of 50-60 nm at pH 4.5 in a NaCl suspension adjusted to an ionic strength of 0.0045 M. Holding the pH constant, but increasing the ionic strength to 0.0165 M, leads to the formation of micron-sized aggregates within 15 min. At all other pH values tested (5.8-8.2), micron-sized aggregates form in less than 5 min (minimum detection time), even at low ionic strength (0.0084-0.0099 M with NaCl). In contrast, micron-sized aggregates form within 5 min in an aqueous suspension of CaCl2 at an ionic strength of 0.0128 M and pH of 4.8, which is significantly faster than observed for NaCl suspensions with similar ionic strength and pH. This result indicates that divalent cations may enhance aggregation of nano-TiO2 in soils and surface waters. Optical micrographs show branching aggregates of sizes ranging from the 1 *mm optical limit of the microscope to tens of micrometers in diameter. The extensive use of titanium dioxide nanoparticles (nano-TiO2) in many consumer products has raised concerns about possible risks to the environment The magnitude of the threat may depend on whether nano-TiO2 remains dispersed in the environment, or forms much larger-sized aggregates or clusters. Currently, limited information is available on the issue. In this context, the purpose of the present article is to report initial measurements of the morphology and rate of formation of nano-TiO2 aggregates in aqueous suspensions as a function of ionic strength and of the nature of the electrolyte in a moderately acid to circumneutral pH range typical of soil and surface water conditions. Dynamic light scattering results show that 4-5 nm titanium dioxide particles readily form stable aggregates with an average diameter of 50-60 nm at pH approximately 4.5 in a NaCl suspension adjusted to an ionic strength of 0.0045 M. Holding the pH constant but increasing the ionic strength to 0.0165 M, leads to the formation of micron-sized aggregates within 15 min. At all other pH values tested (5.8-8.2), micron-sized aggregates form in less than 5 min (minimum detection time), even at low ionic strength (0.0084-0.0099 M with NaCl). In contrast, micron-sized aggregates form within 5 min in an aqueous suspension of CaCl2 at an ionic strength of 0.0128 M and pH of 4.8, which is significantly faster than observed for NaCI suspensions with similar ionic strength and pH. This result indicates that divalent cations may enhance aggregation of nano-TiO2 in soils and surface waters. Optical micrographs show branching aggregates of sizes ranging from the 1 microm optical limit of the microscope to tens of micrometers in diameter. The extensive use of titanium dioxide nanoparticles (nano-TiO2) in many consumer products has raised concerns about possible risks to the environment The magnitude of the threat may depend on whether nano-TiO2 remains dispersed in the environment, or forms much larger-sized aggregates or clusters. Currently, limited information is available on the issue. In this context, the purpose of the present article is to report initial measurements of the morphology and rate of formation of nano-TiO2 aggregates in aqueous suspensions as a function of ionic strength and of the nature of the electrolyte in a moderately acid to circumneutral pH range typical of soil and surface water conditions. Dynamic light scattering results show that 4-5 nm titanium dioxide particles readily form stable aggregates with an average diameter of 50-60 nm at pH approximately 4.5 in a NaCl suspension adjusted to an ionic strength of 0.0045 M. Holding the pH constant but increasing the ionic strength to 0.0165 M, leads to the formation of micron-sized aggregates within 15 min. At all other pH values tested (5.8-8.2), micron-sized aggregates form in less than 5 min (minimum detection time), even at low ionic strength (0.0084-0.0099 M with NaCl). In contrast, micron-sized aggregates form within 5 min in an aqueous suspension of CaCl2 at an ionic strength of 0.0128 M and pH of 4.8, which is significantly faster than observed for NaCI suspensions with similar ionic strength and pH. This result indicates that divalent cations may enhance aggregation of nano-TiO2 in soils and surface waters. Optical micrographs show branching aggregates of sizes ranging from the 1 microm optical limit of the microscope to tens of micrometers in diameter.The extensive use of titanium dioxide nanoparticles (nano-TiO2) in many consumer products has raised concerns about possible risks to the environment The magnitude of the threat may depend on whether nano-TiO2 remains dispersed in the environment, or forms much larger-sized aggregates or clusters. Currently, limited information is available on the issue. In this context, the purpose of the present article is to report initial measurements of the morphology and rate of formation of nano-TiO2 aggregates in aqueous suspensions as a function of ionic strength and of the nature of the electrolyte in a moderately acid to circumneutral pH range typical of soil and surface water conditions. Dynamic light scattering results show that 4-5 nm titanium dioxide particles readily form stable aggregates with an average diameter of 50-60 nm at pH approximately 4.5 in a NaCl suspension adjusted to an ionic strength of 0.0045 M. Holding the pH constant but increasing the ionic strength to 0.0165 M, leads to the formation of micron-sized aggregates within 15 min. At all other pH values tested (5.8-8.2), micron-sized aggregates form in less than 5 min (minimum detection time), even at low ionic strength (0.0084-0.0099 M with NaCl). In contrast, micron-sized aggregates form within 5 min in an aqueous suspension of CaCl2 at an ionic strength of 0.0128 M and pH of 4.8, which is significantly faster than observed for NaCI suspensions with similar ionic strength and pH. This result indicates that divalent cations may enhance aggregation of nano-TiO2 in soils and surface waters. Optical micrographs show branching aggregates of sizes ranging from the 1 microm optical limit of the microscope to tens of micrometers in diameter. The extensive use of titanium dioxide nanoparticles (nano-TiO2) in many consumer products has raised concerns about possible risks to the environment. The magnitude of the threat may depend on whether nano-TiO2 remains dispersed in the environment, or forms much larger-sized aggregates or clusters. Currently, limited information is available on the issue. In this context, the purpose of the present article is to report initial measurements of the morphology and rate of formation of nano-TiO2 aggregates in aqueous suspensions as a function of ionic strength and of the nature of the electrolyte in a moderately acid to circumneutral pH range typical of soil and surface water conditions. Dynamic light scattering results show that 4−5 nm titanium dioxide particles readily form stable aggregates with an average diameter of 50−60 nm at pH ∼4.5 in a NaCl suspension adjusted to an ionic strength of 0.0045 M. Holding the pH constant, but increasing the ionic strength to 0.0165 M, leads to the formation of micron-sized aggregates within 15 min. At all other pH values tested (5.8−8.2), micron-sized aggregates form in less than 5 min (minimum detection time), even at low ionic strength (0.0084−0.0099 M with NaCl). In contrast, micron-sized aggregates form within 5 min in an aqueous suspension of CaCl2 at an ionic strength of 0.0128 M and pH of 4.8, which is significantly faster than observed for NaCl suspensions with similar ionic strength and pH. This result indicates that divalent cations may enhance aggregation of nano-TiO2 in soils and surface waters. Optical micrographs show branching aggregates of sizes ranging from the 1 μm optical limit of the microscope to tens of micrometers in diameter. |
Author | Isley, Sara L Baveye, Philippe C Kim, Bojeong Penn, R. Lee French, Rebecca A Jacobson, Astrid R |
Author_xml | – sequence: 1 givenname: Rebecca A surname: French fullname: French, Rebecca A – sequence: 2 givenname: Astrid R surname: Jacobson fullname: Jacobson, Astrid R – sequence: 3 givenname: Bojeong surname: Kim fullname: Kim, Bojeong – sequence: 4 givenname: Sara L surname: Isley fullname: Isley, Sara L – sequence: 5 givenname: R. Lee surname: Penn fullname: Penn, R. Lee – sequence: 6 givenname: Philippe C surname: Baveye fullname: Baveye, Philippe C email: P.Baveye@Abertay.ac.uk |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22378722$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/19350903$$D View this record in MEDLINE/PubMed |
BookMark | eNp90V1rFDEUBuAgFbutXvgHJAgqQsfmezKXZat2seiFVbwbMpmTNWUm2SYzoP--WXZtoYpXgeQ5h5zzHqGDEAMg9JySd5QwegpZE6aYDo_QgkpGKqklPUALQiivGq5-HKKjnK8JIYwT_QQd0oZL0hC-QOMquGGGYAFHh1cxeIu_TgnCevp5gjcXJ9iEHi_N5GPA382wkwGfrdcJ1rvrTz7A5G3edrjykwl-HvG5j798D_izCXFjUnkfID9Fj50ZMjzbn8fo24f3V8uL6vLLx9Xy7LIyQump6inpRceV6IUBp62jpHO27pra9UxY1jSGSwuOCtY7JzUF5bSrrVCUStUxfoze7PpuUryZIU_t6LOFYTAB4pzbWgopOKtpka__K1VNWaO5KvDlA3gd5xTKFG1ZKhWN0qKgF3s0dyP07Sb50aTf7Z99F_BqD0y2ZnDJBOvznWOM17pm2wHe7pxNMecE7r4VabeZt3eZF3v6wNoSwjaZKRk__LNi_wtj8_0Yf7tbBX64sQ |
CODEN | ESTHAG |
CitedBy_id | crossref_primary_10_1002_app_52393 crossref_primary_10_1016_j_colsurfa_2019_06_025 crossref_primary_10_1016_j_petsci_2021_11_011 crossref_primary_10_1007_s00216_018_1136_1 crossref_primary_10_1016_j_jconhyd_2015_06_007 crossref_primary_10_1016_j_pcrysgrow_2012_07_001 crossref_primary_10_1016_j_envpol_2018_09_106 crossref_primary_10_1016_j_jece_2021_106058 crossref_primary_10_1007_s10646_011_0808_9 crossref_primary_10_2166_wst_2019_109 crossref_primary_10_1002_smll_201704111 crossref_primary_10_1016_j_scitotenv_2025_178927 crossref_primary_10_1016_j_watres_2022_119286 crossref_primary_10_1016_j_jenvman_2012_01_010 crossref_primary_10_1002_etc_2812 crossref_primary_10_1039_C8NA00053K crossref_primary_10_1021_es902987d crossref_primary_10_1016_j_seppur_2019_02_043 crossref_primary_10_3390_polym13162609 crossref_primary_10_1016_j_jhazmat_2012_02_025 crossref_primary_10_1016_j_scitotenv_2019_134133 crossref_primary_10_1016_j_impact_2016_06_005 crossref_primary_10_1016_j_cattod_2021_03_022 crossref_primary_10_1016_j_chemosphere_2020_128397 crossref_primary_10_1016_j_envint_2020_105646 crossref_primary_10_1021_es101355k crossref_primary_10_1016_j_scitotenv_2013_03_082 crossref_primary_10_1021_acsnano_8b04909 crossref_primary_10_1016_j_jhazmat_2012_10_056 crossref_primary_10_1016_j_jksus_2022_101896 crossref_primary_10_1016_j_still_2021_105092 crossref_primary_10_1016_j_jcis_2011_06_085 crossref_primary_10_1016_j_cej_2021_134399 crossref_primary_10_1021_acsomega_4c05253 crossref_primary_10_1016_j_scitotenv_2020_143791 crossref_primary_10_1016_j_scitotenv_2023_165387 crossref_primary_10_5004_dwt_2017_20232 crossref_primary_10_1016_j_jhazmat_2011_07_112 crossref_primary_10_1016_j_envpol_2013_07_001 crossref_primary_10_1016_j_envpol_2021_118619 crossref_primary_10_1021_nn504684k crossref_primary_10_1080_00986445_2019_1674813 crossref_primary_10_1016_j_jconrel_2016_11_033 crossref_primary_10_1021_acs_est_7b06654 crossref_primary_10_1016_j_jcis_2015_04_010 crossref_primary_10_1016_j_envpol_2017_07_007 crossref_primary_10_1021_es4003247 crossref_primary_10_1021_sc500230c crossref_primary_10_2139_ssrn_3999111 crossref_primary_10_1016_j_molliq_2017_06_086 crossref_primary_10_1080_03650340_2016_1256475 crossref_primary_10_1016_j_cej_2019_01_080 crossref_primary_10_1371_journal_pone_0132457 crossref_primary_10_1021_acs_est_2c05237 crossref_primary_10_1016_j_ijhydene_2023_04_081 crossref_primary_10_1016_j_seppur_2021_120139 crossref_primary_10_1021_es900329d crossref_primary_10_1016_j_cattod_2013_10_072 crossref_primary_10_1021_es304985w crossref_primary_10_1016_j_aquatox_2013_12_021 crossref_primary_10_1016_j_microc_2018_03_015 crossref_primary_10_1016_j_aquatox_2013_12_024 crossref_primary_10_1021_acsestengg_3c00173 crossref_primary_10_2217_nnm_10_62 crossref_primary_10_1016_j_chemosphere_2018_10_031 crossref_primary_10_4491_eer_2021_470 crossref_primary_10_3390_chemengineering3010028 crossref_primary_10_1016_j_bbrep_2016_12_014 crossref_primary_10_3389_fenvs_2020_00060 crossref_primary_10_1061__ASCE_EE_1943_7870_0001101 crossref_primary_10_1016_j_scitotenv_2018_12_091 crossref_primary_10_1007_s11814_016_0059_9 crossref_primary_10_1016_j_aquatox_2023_106442 crossref_primary_10_1089_ees_2016_0364 crossref_primary_10_1155_2015_851928 crossref_primary_10_1016_j_fuel_2020_119115 crossref_primary_10_1021_acs_est_5b05054 crossref_primary_10_1089_ees_2017_0134 crossref_primary_10_1007_s11051_012_0959_5 crossref_primary_10_1016_j_envpol_2020_115189 crossref_primary_10_1039_C6NR04042J crossref_primary_10_1007_s11051_013_1684_4 crossref_primary_10_1021_es400138c crossref_primary_10_1038_s41598_018_37788_w crossref_primary_10_1016_j_scitotenv_2021_148477 crossref_primary_10_1063_1674_0068_27_04_419_427 crossref_primary_10_1016_j_ecoenv_2013_05_022 crossref_primary_10_1080_10643389_2014_921975 crossref_primary_10_3390_ijerph16030510 crossref_primary_10_1039_D3EN00811H crossref_primary_10_1016_j_watres_2016_08_044 crossref_primary_10_14233_ajchem_2021_23169 crossref_primary_10_1016_j_envpol_2021_118442 crossref_primary_10_1016_j_watres_2016_10_023 crossref_primary_10_1016_j_scitotenv_2017_09_292 crossref_primary_10_1002_smll_201600345 crossref_primary_10_1002_smll_201201789 crossref_primary_10_1021_es100598h crossref_primary_10_1039_C5EN00094G crossref_primary_10_1007_s00216_009_3249_z crossref_primary_10_1007_s11051_012_0924_3 crossref_primary_10_1016_j_colsurfa_2013_11_004 crossref_primary_10_1016_j_scitotenv_2015_05_031 crossref_primary_10_1016_j_impact_2017_01_002 crossref_primary_10_1016_j_jenvman_2015_05_011 crossref_primary_10_1016_j_seppur_2022_121667 crossref_primary_10_1016_j_watres_2013_02_008 crossref_primary_10_1039_C6CP08531H crossref_primary_10_1002_pc_22903 crossref_primary_10_1155_2024_2970861 crossref_primary_10_1002_mabi_202300345 crossref_primary_10_1016_j_heliyon_2024_e27966 crossref_primary_10_1038_srep34135 crossref_primary_10_1080_01932691_2016_1165114 crossref_primary_10_1016_j_seppur_2020_117833 crossref_primary_10_1186_s12864_020_07042_7 crossref_primary_10_1016_j_envpol_2017_08_080 crossref_primary_10_1089_ees_2017_0470 crossref_primary_10_1016_j_envpol_2016_05_025 crossref_primary_10_1016_j_ijheatmasstransfer_2017_12_150 crossref_primary_10_1016_j_jhazmat_2013_11_015 crossref_primary_10_1089_ees_2012_0327 crossref_primary_10_1016_j_apcatb_2010_12_045 crossref_primary_10_1016_j_jfluchem_2012_08_010 crossref_primary_10_1016_j_ecoenv_2015_03_012 crossref_primary_10_1186_s12302_024_00903_y crossref_primary_10_1080_17435390_2022_2085207 crossref_primary_10_1088_0957_4484_26_4_045708 crossref_primary_10_3390_powders2010001 crossref_primary_10_1016_j_bios_2016_03_044 crossref_primary_10_1021_acs_est_7b04037 crossref_primary_10_1039_C4EM00044G crossref_primary_10_1080_03067319_2021_2012171 crossref_primary_10_3390_w14081297 crossref_primary_10_3390_nano7010021 crossref_primary_10_1039_D1RA08981A crossref_primary_10_1016_j_jes_2016_06_009 crossref_primary_10_1016_j_watres_2014_05_041 crossref_primary_10_1080_09593330_2018_1537310 crossref_primary_10_1016_j_surfcoat_2019_125024 crossref_primary_10_1021_acs_est_9b03036 crossref_primary_10_1039_C7EN00445A crossref_primary_10_1007_s42860_019_00039_8 crossref_primary_10_1016_j_watres_2016_03_038 crossref_primary_10_1016_j_jphotochemrev_2016_09_001 crossref_primary_10_1039_C9GC02291K crossref_primary_10_1016_j_envpol_2015_03_043 crossref_primary_10_1002_etc_4266 crossref_primary_10_1186_s42834_022_00119_w crossref_primary_10_1016_j_biomaterials_2014_05_020 crossref_primary_10_1016_j_pnsc_2016_08_005 crossref_primary_10_1039_C2EM30625E crossref_primary_10_1016_j_ecoenv_2020_110776 crossref_primary_10_1016_j_jhazmat_2024_134388 crossref_primary_10_1039_C9EM00428A crossref_primary_10_1016_j_envpol_2020_115942 crossref_primary_10_1007_s10661_014_3874_7 crossref_primary_10_1038_s41598_018_29605_1 crossref_primary_10_1021_acs_langmuir_9b02199 crossref_primary_10_1080_19443994_2015_1092889 crossref_primary_10_1007_s11051_011_0548_z crossref_primary_10_1021_es9017046 crossref_primary_10_1016_j_jwpe_2025_107098 crossref_primary_10_1039_C9RA02419K crossref_primary_10_1038_s41467_020_19164_3 crossref_primary_10_1007_s11631_023_00645_3 crossref_primary_10_1039_c000729c crossref_primary_10_2134_jeq2009_0462 crossref_primary_10_4028_www_scientific_net_AMR_1010_1012_55 crossref_primary_10_1016_j_jhazmat_2016_12_044 crossref_primary_10_1016_j_watres_2019_04_006 crossref_primary_10_1002_smll_201001832 crossref_primary_10_1021_es301599f crossref_primary_10_1007_s11356_015_5200_5 crossref_primary_10_1039_C5EN00280J crossref_primary_10_1039_C5EN00050E crossref_primary_10_1016_j_envpol_2021_118005 crossref_primary_10_1016_j_jhazmat_2016_05_099 crossref_primary_10_1039_C6EN00230G crossref_primary_10_3390_ma17020330 crossref_primary_10_1021_es204530n crossref_primary_10_1016_j_scitotenv_2021_148324 crossref_primary_10_1021_acs_energyfuels_8b02449 crossref_primary_10_1016_j_jenvman_2019_06_070 crossref_primary_10_1007_s11814_013_0073_0 crossref_primary_10_1002_wer_1313 crossref_primary_10_1016_j_scitotenv_2019_02_457 crossref_primary_10_1016_j_watres_2012_11_047 crossref_primary_10_3390_s25051506 crossref_primary_10_1007_s10646_019_02085_3 crossref_primary_10_1007_s00396_023_05092_3 crossref_primary_10_1016_j_envpol_2019_07_036 crossref_primary_10_1021_ar2003368 crossref_primary_10_1039_D1EN00879J crossref_primary_10_1007_s11051_012_1014_2 crossref_primary_10_1016_j_jhazmat_2016_11_013 crossref_primary_10_1021_acs_energyfuels_9b03501 crossref_primary_10_1007_BF03216516 crossref_primary_10_1016_j_jcis_2023_05_182 crossref_primary_10_1021_acs_energyfuels_6b00051 crossref_primary_10_1039_C5CS00041F crossref_primary_10_1016_j_jhazmat_2016_03_030 crossref_primary_10_1021_es202134p crossref_primary_10_1007_s12088_022_01018_9 crossref_primary_10_1016_j_chemosphere_2018_08_108 crossref_primary_10_1007_s42452_022_04948_7 crossref_primary_10_1021_es202570g crossref_primary_10_1039_C6NR06614C crossref_primary_10_1080_09542299_2018_1520050 crossref_primary_10_1016_j_chemosphere_2018_01_052 crossref_primary_10_1007_s12011_011_9010_4 crossref_primary_10_1016_j_watres_2017_04_023 crossref_primary_10_1016_j_jcis_2009_09_059 crossref_primary_10_1016_j_minpro_2015_04_003 crossref_primary_10_1111_jace_12371 crossref_primary_10_1021_acs_jpcc_9b02894 crossref_primary_10_1016_j_colsurfa_2019_124328 crossref_primary_10_3109_17435390_2014_980758 crossref_primary_10_1016_j_colsurfa_2023_131955 crossref_primary_10_1016_j_jcis_2013_05_061 crossref_primary_10_1016_j_watres_2010_09_013 crossref_primary_10_1016_j_matpr_2015_04_055 crossref_primary_10_1021_acs_jafc_0c06644 crossref_primary_10_1007_s11356_016_7556_6 crossref_primary_10_1080_10643389_2013_790747 crossref_primary_10_1039_D1EN00162K crossref_primary_10_1039_c1em10056d crossref_primary_10_1016_j_ecoenv_2018_06_051 crossref_primary_10_2139_ssrn_4053162 crossref_primary_10_1039_C5EN00174A crossref_primary_10_1007_s11051_013_1899_4 crossref_primary_10_1021_es301027a crossref_primary_10_3390_ijerph18105128 crossref_primary_10_1016_j_scitotenv_2016_09_065 crossref_primary_10_1021_jf500232f crossref_primary_10_1016_j_scitotenv_2015_06_024 crossref_primary_10_3390_ijerph13060575 crossref_primary_10_1016_j_clay_2019_105393 crossref_primary_10_1071_EN09110 crossref_primary_10_1016_j_watres_2012_11_061 crossref_primary_10_1007_s42452_019_0960_z crossref_primary_10_1016_j_apsusc_2014_10_078 crossref_primary_10_1208_s12249_020_01752_7 crossref_primary_10_1371_journal_pone_0048719 crossref_primary_10_1039_C7RA02520C crossref_primary_10_1016_j_nano_2015_04_008 crossref_primary_10_1016_j_aquatox_2017_02_012 crossref_primary_10_1016_j_jphotochem_2017_06_003 crossref_primary_10_1016_j_jes_2020_02_028 crossref_primary_10_2134_jeq2009_0423 crossref_primary_10_1016_j_clay_2015_05_028 crossref_primary_10_1016_j_impact_2018_05_002 crossref_primary_10_1021_acsomega_0c02526 crossref_primary_10_3390_antiox12020431 crossref_primary_10_1128_AEM_00324_10 crossref_primary_10_1016_j_cej_2017_01_126 crossref_primary_10_1016_j_talanta_2014_05_060 crossref_primary_10_1021_jacs_9b13360 crossref_primary_10_1080_10643380903488664 crossref_primary_10_1016_j_cej_2013_04_010 crossref_primary_10_1016_j_jhazmat_2020_124834 crossref_primary_10_1016_j_scitotenv_2017_02_060 crossref_primary_10_1016_j_apsoil_2024_105669 crossref_primary_10_1016_j_scitotenv_2018_01_210 crossref_primary_10_1016_j_envpol_2017_12_063 crossref_primary_10_1063_5_0003322 crossref_primary_10_1007_s11051_015_2863_2 crossref_primary_10_1002_ange_201405050 crossref_primary_10_1021_acs_langmuir_6b04116 crossref_primary_10_1002_chem_201405039 crossref_primary_10_1016_j_jcis_2017_01_101 crossref_primary_10_1016_j_jhazmat_2018_07_035 crossref_primary_10_1016_j_watres_2015_09_039 crossref_primary_10_1016_j_chemosphere_2013_02_048 crossref_primary_10_3390_w11040721 crossref_primary_10_1016_j_aquatox_2020_105502 crossref_primary_10_1080_17435390_2018_1530391 crossref_primary_10_1016_j_jhazmat_2014_01_043 crossref_primary_10_1016_j_scitotenv_2014_12_054 crossref_primary_10_1021_es2023225 crossref_primary_10_3390_pr9101764 crossref_primary_10_1007_s10532_016_9758_5 crossref_primary_10_1007_s11569_010_0090_y crossref_primary_10_1007_s11051_012_1259_9 crossref_primary_10_1021_acs_est_8b05180 crossref_primary_10_1016_j_cep_2014_01_010 crossref_primary_10_1089_ees_2013_0269 crossref_primary_10_1016_j_colsurfb_2012_08_034 crossref_primary_10_1016_j_envpol_2014_08_011 crossref_primary_10_1039_C2BM00066K crossref_primary_10_1002_smll_201802337 crossref_primary_10_1016_j_scitotenv_2017_09_113 crossref_primary_10_1371_journal_pone_0126021 crossref_primary_10_3390_nano6050090 crossref_primary_10_3390_w10050660 crossref_primary_10_1016_j_scitotenv_2018_02_009 crossref_primary_10_3390_en10081151 crossref_primary_10_1016_j_jpowsour_2024_234309 crossref_primary_10_1039_C6NR09245D crossref_primary_10_1016_j_jece_2017_11_068 crossref_primary_10_1038_s41598_023_51119_8 crossref_primary_10_2118_203825_PA crossref_primary_10_3390_nano12091536 crossref_primary_10_1016_j_chemosphere_2012_12_077 crossref_primary_10_1016_j_scitotenv_2016_03_001 crossref_primary_10_1016_j_chemosphere_2016_11_033 crossref_primary_10_1016_j_cis_2014_07_015 crossref_primary_10_1007_s11051_015_3207_y crossref_primary_10_1038_s41598_021_00446_9 crossref_primary_10_1007_s10661_024_12642_x crossref_primary_10_1002_ejic_202400496 crossref_primary_10_1016_j_jes_2017_05_026 crossref_primary_10_3390_catal6040056 crossref_primary_10_1007_s11051_013_1874_0 crossref_primary_10_3390_lubricants8030023 crossref_primary_10_3390_catal10070759 crossref_primary_10_1039_C9RE00456D crossref_primary_10_1007_s11356_015_4661_x crossref_primary_10_1021_cm504406a crossref_primary_10_1016_j_jddst_2020_101965 crossref_primary_10_1016_j_proenv_2016_02_105 crossref_primary_10_1016_j_scitotenv_2018_07_131 crossref_primary_10_1246_cl_2011_230 crossref_primary_10_1016_j_scitotenv_2015_02_037 crossref_primary_10_1021_acs_est_5b00243 crossref_primary_10_1016_j_ecoenv_2012_08_024 crossref_primary_10_3390_nano7100326 crossref_primary_10_3390_w12092509 crossref_primary_10_1021_acs_iecr_6b04572 crossref_primary_10_1016_j_clay_2018_05_002 crossref_primary_10_1016_j_envpol_2017_12_014 crossref_primary_10_1016_j_chemosphere_2013_06_075 crossref_primary_10_3389_fenvs_2023_1285752 crossref_primary_10_1007_s11356_020_08323_0 crossref_primary_10_1021_jasms_1c00021 crossref_primary_10_3109_17435390_2013_818173 crossref_primary_10_1016_j_seppur_2015_05_036 crossref_primary_10_1039_C4CS00487F crossref_primary_10_1039_C5EN00155B crossref_primary_10_1016_j_envpol_2019_01_045 crossref_primary_10_1038_srep14264 crossref_primary_10_1039_c3en00054k crossref_primary_10_3390_nano14040373 crossref_primary_10_1016_j_envpol_2019_02_084 crossref_primary_10_1007_s42452_020_2952_4 crossref_primary_10_1177_0734242X17695884 crossref_primary_10_1016_j_jece_2015_06_026 crossref_primary_10_1016_j_marenvres_2018_02_029 crossref_primary_10_1061__ASCE_EE_1943_7870_0001090 crossref_primary_10_1016_j_scitotenv_2020_144174 crossref_primary_10_1039_C6EN00105J crossref_primary_10_1016_j_jece_2021_105539 crossref_primary_10_1016_j_watres_2013_07_034 crossref_primary_10_1016_j_jcis_2013_05_034 crossref_primary_10_1016_j_watres_2018_09_047 crossref_primary_10_1016_j_molliq_2019_111375 crossref_primary_10_3390_molecules191118192 crossref_primary_10_1016_j_jconhyd_2022_104014 crossref_primary_10_1071_EN13001 crossref_primary_10_1021_acs_iecr_2c02620 crossref_primary_10_1111_ics_12165 crossref_primary_10_1016_j_envres_2014_12_006 crossref_primary_10_1016_j_marpolbul_2025_117627 crossref_primary_10_1016_j_envpol_2017_05_025 crossref_primary_10_1021_acsapm_2c01471 crossref_primary_10_1039_C9RA08270K crossref_primary_10_1016_j_chemosphere_2022_133744 crossref_primary_10_1016_j_jhazmat_2014_09_045 crossref_primary_10_1039_C6EN00530F crossref_primary_10_1016_j_jphotobiol_2016_02_010 crossref_primary_10_1016_j_chemosphere_2019_02_162 crossref_primary_10_1016_j_scitotenv_2016_11_135 crossref_primary_10_3390_catal15020190 crossref_primary_10_1016_j_scitotenv_2015_09_116 crossref_primary_10_1016_j_envpol_2012_10_026 crossref_primary_10_1016_j_scitotenv_2016_12_175 crossref_primary_10_1021_es403377p crossref_primary_10_1155_2016_6539581 crossref_primary_10_1007_s11095_018_2542_y crossref_primary_10_1039_C9EN01007F crossref_primary_10_1061__ASCE_HZ_2153_5515_0000263 crossref_primary_10_1016_j_matpr_2019_10_068 crossref_primary_10_1039_b919917a crossref_primary_10_1016_j_cis_2017_05_012 crossref_primary_10_1016_j_envres_2020_109700 crossref_primary_10_1039_C6CS00921B crossref_primary_10_1016_j_jconhyd_2010_09_013 crossref_primary_10_1016_j_jhazmat_2017_07_041 crossref_primary_10_1016_j_jhazmat_2017_07_046 crossref_primary_10_1021_acs_analchem_7b02205 crossref_primary_10_1088_2053_1591_ab0690 crossref_primary_10_1016_j_scitotenv_2020_137607 crossref_primary_10_1039_c3en00061c crossref_primary_10_1016_j_envpol_2015_10_035 crossref_primary_10_1007_s11051_023_05725_2 crossref_primary_10_1007_s11356_018_2795_3 crossref_primary_10_1007_s11368_023_03631_7 crossref_primary_10_1021_ac2034437 crossref_primary_10_1016_j_scitotenv_2015_08_143 crossref_primary_10_3390_separations5010013 crossref_primary_10_1016_j_chemosphere_2019_03_077 crossref_primary_10_1016_j_coesh_2018_07_014 crossref_primary_10_1016_j_cej_2018_10_114 crossref_primary_10_1016_j_chemosphere_2019_01_073 crossref_primary_10_2118_191318_PA crossref_primary_10_1038_s41598_019_40047_1 crossref_primary_10_1016_j_colsurfa_2022_129000 crossref_primary_10_1016_j_scitotenv_2015_11_157 crossref_primary_10_1080_19443994_2015_1136242 crossref_primary_10_1007_s11595_020_2314_5 crossref_primary_10_1111_ics_12113 crossref_primary_10_1016_j_scitotenv_2013_06_022 crossref_primary_10_1016_j_cej_2015_11_045 crossref_primary_10_1016_j_envint_2016_04_022 crossref_primary_10_1007_s11051_015_3250_8 crossref_primary_10_1021_acs_langmuir_8b00020 crossref_primary_10_1016_j_carres_2024_109310 crossref_primary_10_1007_s11356_019_06132_8 crossref_primary_10_1007_s11434_010_4332_8 crossref_primary_10_1007_s00128_018_2336_2 crossref_primary_10_1016_j_ecoenv_2018_05_090 crossref_primary_10_1080_10426914_2015_1070424 crossref_primary_10_1016_j_jhazmat_2024_134972 crossref_primary_10_1039_C5SC02124C crossref_primary_10_1007_BF03216507 crossref_primary_10_1016_j_colsurfa_2013_05_010 crossref_primary_10_1208_s12249_018_1275_x crossref_primary_10_1016_j_bbrc_2022_07_064 crossref_primary_10_1039_C0EM00499E crossref_primary_10_1371_journal_pone_0081239 crossref_primary_10_1038_srep31422 crossref_primary_10_5942_jawwa_2013_105_0154 crossref_primary_10_1016_j_envpol_2025_125922 crossref_primary_10_1016_j_jconhyd_2015_02_005 crossref_primary_10_1021_es3004427 crossref_primary_10_1016_j_scitotenv_2022_155652 crossref_primary_10_1093_toxsci_kfy100 crossref_primary_10_1016_j_cej_2013_02_047 crossref_primary_10_1039_C3CE41584H crossref_primary_10_1039_c4ra02759k crossref_primary_10_1016_j_chemgeo_2012_09_043 crossref_primary_10_1080_17435390_2017_1290845 crossref_primary_10_1016_j_envint_2014_01_012 crossref_primary_10_1016_j_watres_2013_07_021 crossref_primary_10_1021_nl504840b crossref_primary_10_1021_acsomega_3c00734 crossref_primary_10_3390_nano12030552 crossref_primary_10_1002_ange_200906684 crossref_primary_10_1002_ceat_202000260 crossref_primary_10_1088_1742_6596_304_1_012058 crossref_primary_10_1016_j_cis_2016_10_005 crossref_primary_10_1016_j_apsusc_2016_11_169 crossref_primary_10_1016_j_jece_2025_115435 crossref_primary_10_1016_j_colsurfa_2019_03_088 crossref_primary_10_1021_es903456e crossref_primary_10_1007_s00216_020_02412_2 crossref_primary_10_1016_j_apcatb_2010_05_001 crossref_primary_10_1002_anie_200906684 crossref_primary_10_1080_00986445_2014_891508 crossref_primary_10_1016_j_envpol_2011_01_039 crossref_primary_10_1016_j_chemosphere_2016_12_063 crossref_primary_10_1016_j_scitotenv_2019_01_345 crossref_primary_10_1002_etc_3325 crossref_primary_10_1016_j_ccr_2014_12_014 crossref_primary_10_1007_s11051_015_3031_4 crossref_primary_10_1021_acs_langmuir_2c01010 crossref_primary_10_1039_C4CP04733H crossref_primary_10_1371_journal_pone_0128602 crossref_primary_10_1016_j_biochi_2016_08_005 crossref_primary_10_1016_j_cej_2014_10_044 crossref_primary_10_1016_j_chemosphere_2024_141525 crossref_primary_10_1007_s11051_012_1293_7 crossref_primary_10_1186_2190_4715_24_30 crossref_primary_10_2166_wh_2024_051 crossref_primary_10_1016_j_electacta_2019_02_102 crossref_primary_10_1007_s11270_019_4123_z crossref_primary_10_1016_j_chemosphere_2010_10_068 crossref_primary_10_1016_j_jcis_2010_06_063 crossref_primary_10_1016_j_jappgeo_2011_11_009 crossref_primary_10_1016_j_envpol_2019_03_049 crossref_primary_10_1016_j_copbio_2024_103128 crossref_primary_10_1016_j_jcis_2017_08_076 crossref_primary_10_1080_09593330_2017_1334093 crossref_primary_10_1002_ente_202100469 crossref_primary_10_1016_j_conbuildmat_2018_02_032 crossref_primary_10_1007_s11368_024_03716_x crossref_primary_10_1016_j_cclet_2020_11_010 crossref_primary_10_1139_er_2018_0022 crossref_primary_10_1002_adbi_201800303 crossref_primary_10_1016_j_apt_2020_10_003 crossref_primary_10_1021_es5019652 crossref_primary_10_1016_j_chemosphere_2017_10_105 crossref_primary_10_1039_C6JA00079G crossref_primary_10_1039_C2EM30680H crossref_primary_10_1039_C7EN01046J crossref_primary_10_3390_ijms140714395 crossref_primary_10_1016_j_watres_2013_08_026 crossref_primary_10_2217_nnm_09_40 crossref_primary_10_1016_j_jhazmat_2014_04_058 crossref_primary_10_1016_j_scitotenv_2016_06_042 crossref_primary_10_1007_s11356_021_17086_1 crossref_primary_10_1021_es203623z crossref_primary_10_1039_C7QM00557A crossref_primary_10_1080_10934520903263231 crossref_primary_10_1016_j_fuel_2017_11_091 crossref_primary_10_7762_cnr_2016_5_3_172 crossref_primary_10_1039_C5EN00139K crossref_primary_10_1016_j_jes_2020_10_007 crossref_primary_10_1016_j_biotechadv_2013_11_006 crossref_primary_10_1038_s41428_022_00673_5 crossref_primary_10_1021_es403079h crossref_primary_10_1515_bnm_2013_0011 crossref_primary_10_1016_j_chemosphere_2015_03_052 crossref_primary_10_1016_j_ijhydene_2020_08_066 crossref_primary_10_7567_JJAP_57_02CB17 crossref_primary_10_1007_s11356_015_5209_9 crossref_primary_10_1016_j_scitotenv_2018_05_350 crossref_primary_10_1016_j_jclepro_2020_123924 crossref_primary_10_1016_j_jhazmat_2021_126695 crossref_primary_10_1149_1_3529238 crossref_primary_10_1111_1750_3841_14354 crossref_primary_10_1039_D3EN00860F crossref_primary_10_1016_j_scitotenv_2013_01_058 crossref_primary_10_1016_j_scitotenv_2012_06_076 crossref_primary_10_1021_acs_jpcc_3c00445 crossref_primary_10_1016_j_envpol_2014_05_029 crossref_primary_10_1007_s10311_012_0381_3 crossref_primary_10_1371_journal_pone_0037363 crossref_primary_10_1016_j_chemosphere_2013_07_023 crossref_primary_10_1016_j_chemosphere_2016_02_046 crossref_primary_10_1021_la200251v crossref_primary_10_1088_1742_6596_304_1_012018 crossref_primary_10_1515_ijcre_2017_0014 crossref_primary_10_1016_j_jallcom_2016_12_112 crossref_primary_10_1088_1361_6528_aba2a1 crossref_primary_10_3390_nano11081903 crossref_primary_10_1016_j_colsurfa_2014_03_030 crossref_primary_10_1029_2012WR011887 crossref_primary_10_1039_D2NJ05578C crossref_primary_10_1021_acs_est_5b05746 crossref_primary_10_1016_j_scitotenv_2021_146952 crossref_primary_10_1016_j_colsurfb_2018_06_050 crossref_primary_10_1134_S2635167621020178 crossref_primary_10_3390_nano7090268 crossref_primary_10_1016_j_scitotenv_2018_07_189 crossref_primary_10_1089_ees_2014_0288 crossref_primary_10_1016_j_cej_2012_11_117 crossref_primary_10_1007_s11051_017_4086_1 crossref_primary_10_1016_j_envpol_2011_07_013 crossref_primary_10_1016_j_scitotenv_2023_168076 crossref_primary_10_1021_acs_est_5b04368 crossref_primary_10_1007_s00216_011_5443_z crossref_primary_10_1071_EN14273 crossref_primary_10_1080_01932691_2011_567886 crossref_primary_10_1007_s10971_015_3823_0 crossref_primary_10_1016_j_watres_2015_10_025 crossref_primary_10_1155_2013_856387 crossref_primary_10_1016_j_jhazmat_2011_02_072 crossref_primary_10_1039_C9RE00152B crossref_primary_10_1016_j_envpol_2010_05_007 crossref_primary_10_1007_s10498_014_9245_8 crossref_primary_10_1016_j_ijbiomac_2025_141717 crossref_primary_10_1016_j_watres_2018_09_019 crossref_primary_10_1080_10826068_2024_2419862 crossref_primary_10_1080_19443994_2016_1163513 crossref_primary_10_1021_acs_langmuir_8b00300 crossref_primary_10_1016_j_scitotenv_2013_09_063 crossref_primary_10_1016_j_colsurfa_2010_07_019 crossref_primary_10_1021_es504188a crossref_primary_10_1002_etc_2616 crossref_primary_10_1016_j_msec_2020_111290 crossref_primary_10_1016_j_watres_2013_01_056 crossref_primary_10_1039_C6EN00339G crossref_primary_10_1021_es301406q crossref_primary_10_1038_s41598_022_25577_5 crossref_primary_10_1016_j_colsurfb_2013_12_047 crossref_primary_10_1007_s11051_020_05080_6 crossref_primary_10_1016_j_jhazmat_2014_10_004 crossref_primary_10_1002_etc_1880 crossref_primary_10_1007_s11356_018_3123_7 crossref_primary_10_1016_j_envres_2015_06_028 crossref_primary_10_3390_app10186431 crossref_primary_10_1021_ja106091q crossref_primary_10_1039_D3RE00417A crossref_primary_10_1016_j_jenvman_2022_115217 crossref_primary_10_1021_acsbiomaterials_6b00006 crossref_primary_10_1016_j_aquatox_2023_106713 crossref_primary_10_1002_anie_201405050 crossref_primary_10_1142_S1088424619500238 crossref_primary_10_1016_j_scitotenv_2021_149163 crossref_primary_10_1016_j_chroma_2017_07_098 crossref_primary_10_1016_j_jhazmat_2011_09_059 crossref_primary_10_1021_acs_langmuir_4c01182 crossref_primary_10_1002_etc_1898 crossref_primary_10_1016_j_chemosphere_2016_03_059 crossref_primary_10_1016_j_jhazmat_2014_12_066 crossref_primary_10_1021_acssuschemeng_8b02639 crossref_primary_10_1016_j_apcatb_2015_04_053 crossref_primary_10_1016_j_colsurfa_2021_126302 crossref_primary_10_1016_j_jcis_2011_04_111 crossref_primary_10_1080_10643389_2019_1629799 crossref_primary_10_1002_etc_2865 crossref_primary_10_1371_journal_pone_0155111 crossref_primary_10_1016_j_jpcs_2015_10_014 crossref_primary_10_1016_j_scitotenv_2019_01_180 crossref_primary_10_1016_j_chemosphere_2019_124561 crossref_primary_10_1016_j_chemosphere_2016_10_085 crossref_primary_10_1039_c1em00002k crossref_primary_10_1007_s11051_014_2503_2 crossref_primary_10_1016_j_impact_2016_07_002 crossref_primary_10_1039_D3EN00622K crossref_primary_10_1016_j_colsurfa_2011_09_047 crossref_primary_10_1021_acssuschemeng_7b00364 crossref_primary_10_1016_j_aquatox_2017_06_021 crossref_primary_10_1021_la200570n crossref_primary_10_1007_s13762_018_2148_2 crossref_primary_10_1039_C4NR05088F crossref_primary_10_1016_j_ecoenv_2015_12_028 crossref_primary_10_1007_s11356_016_6742_x crossref_primary_10_1016_j_colsurfa_2024_133955 crossref_primary_10_1016_j_envpol_2016_09_080 crossref_primary_10_1016_j_envpol_2017_01_065 crossref_primary_10_1080_02726351_2017_1302536 crossref_primary_10_1016_j_apsusc_2015_09_142 crossref_primary_10_1016_j_scitotenv_2022_153866 crossref_primary_10_1007_s00709_019_01420_z crossref_primary_10_1021_acs_est_3c00532 crossref_primary_10_1016_j_advwatres_2020_103694 crossref_primary_10_1007_s11051_014_2747_x crossref_primary_10_1038_s41598_017_09699_9 crossref_primary_10_1016_j_chemosphere_2019_124699 crossref_primary_10_4028_www_scientific_net_MSF_922_8 crossref_primary_10_1016_j_marenvres_2020_105146 crossref_primary_10_12677_OJFR_2020_71009 crossref_primary_10_1016_j_jcis_2010_04_045 crossref_primary_10_1016_j_jcis_2019_01_036 crossref_primary_10_1016_j_seppur_2017_09_027 crossref_primary_10_1016_j_cattod_2010_09_027 crossref_primary_10_1021_acsnano_5b06074 crossref_primary_10_1016_j_scitotenv_2013_08_038 crossref_primary_10_1039_C7CP08054A crossref_primary_10_1155_2014_563131 crossref_primary_10_1021_acsaenm_3c00511 crossref_primary_10_1371_journal_pone_0110247 crossref_primary_10_1016_j_impact_2018_01_003 |
Cites_doi | 10.1021/es060847g 10.1016/S0927-7757(98)00763-8 10.1021/la061774h 10.1021/es052040e 10.1038/nbt875 10.1021/es062726m 10.1021/la049334i 10.1021/es035354f 10.1021/es061349a 10.1089/ees.2007.24.85 10.1016/j.watres.2006.08.004 10.1021/la049153g 10.1201/9781420008005 10.1006/jcis.1998.5440 10.1021/es0522635 10.1897/05-278R.1 10.1021/es060589n 10.1289/ehp.10915 10.2136/sssaj2002.1207 10.1016/j.jcis.2004.08.075 10.1016/j.jcis.2006.03.008 10.1021/jp061417f 10.1021/es071936b 10.1021/jp984574q 10.1016/j.jcis.2005.08.003 10.1006/jcis.2002.8476 10.1016/j.jcis.2007.04.038 10.1007/s10646-008-0214-0 10.1021/es0352303 10.1021/jp063822c 10.1007/s11051-007-9315-6 10.1016/j.jphotochemrev.2007.12.003 |
ContentType | Journal Article |
Copyright | Copyright © 2009 American Chemical Society 2015 INIST-CNRS Copyright American Chemical Society Mar 1, 2009 |
Copyright_xml | – notice: Copyright © 2009 American Chemical Society – notice: 2015 INIST-CNRS – notice: Copyright American Chemical Society Mar 1, 2009 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7QH 7U1 7UA F1W H97 L.G |
DOI | 10.1021/es802628n |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic Aqualine Risk Abstracts Water Resources Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic Risk Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ASFA: Aquatic Sciences and Fisheries Abstracts Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts |
DatabaseTitleList | Biotechnology Research Abstracts Risk Abstracts MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences Applied Sciences |
EISSN | 1520-5851 |
EndPage | 1359 |
ExternalDocumentID | 1655161211 19350903 22378722 10_1021_es802628n i04593362 |
Genre | Journal Article Feature |
GroupedDBID | - .K2 1AW 3R3 4.4 4R4 53G 55A 5GY 5VS 63O 7~N 85S AABXI ABFLS ABMVS ABOGM ABPPZ ABPTK ABUCX ABUFD ACDCL ACGFS ACGOD ACIWK ACJ ACPRK ACS AEESW AENEX AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ K2 LG6 MS PQEST PQQKQ ROL RXW TN5 TWZ U5U UHB UI2 UKR UPT UQL VF5 VG9 VQA W1F WH7 X XFK XZL YZZ --- -DZ -~X ..I .DC 6TJ AAHBH AAYOK AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV ADMHC ADUKH AGXLV AHGAQ CITATION CUPRZ GGK MS~ MW2 XSW ZCA .HR 186 1WB 42X 8WZ A6W ABHMW ACKIV ACRPL ADNMO AETEA AEYZD AGQPQ ANPPW ANTXH IHE IQODW MVM NHB OHT RNS TAE UBC UBX UBY VJK VOH YV5 ZCG ZY4 ~A~ CGR CUY CVF ECM EIF NPM YIN 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7QH 7U1 7UA F1W H97 L.G |
ID | FETCH-LOGICAL-a468t-d10d4b364d4aef8cf10bfc7b97fd24c299a35cef142dff581e6f8f7c461156b23 |
IEDL.DBID | ACS |
ISSN | 0013-936X |
IngestDate | Thu Jul 10 18:16:11 EDT 2025 Fri Jul 11 01:06:43 EDT 2025 Fri Jul 25 08:48:49 EDT 2025 Wed Feb 19 02:34:51 EST 2025 Mon Jul 21 09:18:41 EDT 2025 Tue Jul 01 02:10:15 EDT 2025 Thu Apr 24 22:56:19 EDT 2025 Fri Dec 18 21:25:39 EST 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Ionic strength Nanoparticle Light scattering Morphology Surface water Kinetics Titanium oxide Catalyst Interstitial water |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a468t-d10d4b364d4aef8cf10bfc7b97fd24c299a35cef142dff581e6f8f7c461156b23 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 19350903 |
PQID | 230149684 |
PQPubID | 45412 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_754543271 proquest_miscellaneous_67129836 proquest_journals_230149684 pubmed_primary_19350903 pascalfrancis_primary_22378722 crossref_primary_10_1021_es802628n crossref_citationtrail_10_1021_es802628n acs_journals_10_1021_es802628n |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-03-01 |
PublicationDateYYYYMMDD | 2009-03-01 |
PublicationDate_xml | – month: 03 year: 2009 text: 2009-03-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States – name: Easton |
PublicationTitle | Environmental science & technology |
PublicationTitleAlternate | Environ. Sci. Technol |
PublicationYear | 2009 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Guzman K. A. D. (ref15/cit15) 2006; 40 Liufu S. C. (ref35/cit35) 2005; 281 Lovern S. B. (ref9/cit9) 2006; 25 ref25/cit25 Kallay N. (ref29/cit29) 2002; 253 Phenrat T. (ref30/cit30) 2008; 10 Fernandez-Nieves A. (ref36/cit36) 1999; 148 Rengel Z. (ref32/cit32) 2006 Gilbert B. (ref14/cit14) 2007; 313 Colvin V. L. (ref1/cit1) 2003; 21 ref23/cit23 Mylon S. E. (ref38/cit38) 2004; 20 Gaya U. I. (ref6/cit6) 2008; 9 McBride M. B. (ref21/cit21) 2002; 66 Miller D. T. (ref31/cit31) 1998 Phenrat T. (ref24/cit24) 2007; 41 Lecoanet H. F. (ref28/cit28) 2004; 38 Kretzschmar R. (ref37/cit37) 1998; 202 Isley S. L. (ref17/cit17) 2006; 110 ref26/cit26 Rothen-Rutishauser B. M. (ref10/cit10) 2006; 40 Lecoanet H. F. (ref27/cit27) 2004; 38 Gao Y. (ref3/cit3) 2004; 20 Tkachenko N. H. (ref34/cit34) 2006; 299 Ise N. (ref19/cit19) 2005 Illes E. (ref22/cit22) 2006; 295 Adams L. K. (ref8/cit8) 2006; 40 Baveye P. C. (ref13/cit13) 2008; 116 Wiesner M. R. (ref2/cit2) 2006; 40 Smalley M. (ref20/cit20) 2006 Pena M. (ref7/cit7) 2006; 40 Ridley M. K. (ref16/cit16) 2006; 22 Zhang H. Z. (ref5/cit5) 1999; 103 Saleh N. (ref33/cit33) 2008; 42 Giammar D. E. (ref4/cit4) 2007; 24 Finnegan M. P. (ref18/cit18) 2007; 111 Long T. C. (ref11/cit11) 2006; 40 Navarro E. (ref12/cit12) 2008; 17 |
References_xml | – volume: 40 start-page: 7688 year: 2006 ident: ref15/cit15 publication-title: Environ. Sci. Technol. doi: 10.1021/es060847g – volume: 148 start-page: 231 year: 1999 ident: ref36/cit36 publication-title: Colloids Surf. A doi: 10.1016/S0927-7757(98)00763-8 – volume: 22 start-page: 10972 year: 2006 ident: ref16/cit16 publication-title: Langmuir doi: 10.1021/la061774h – ident: ref26/cit26 – volume: 40 start-page: 1257 year: 2006 ident: ref7/cit7 publication-title: Environ. Sci. Technol. doi: 10.1021/es052040e – volume: 21 start-page: 1166 year: 2003 ident: ref1/cit1 publication-title: Nat. Biotechnol. doi: 10.1038/nbt875 – ident: ref25/cit25 – volume: 40 start-page: 4336 year: 2006 ident: ref2/cit2 publication-title: Environ. Sci. Technol. doi: 10.1021/es062726m – volume: 20 start-page: 9585 year: 2004 ident: ref3/cit3 publication-title: Langmuir doi: 10.1021/la049334i – volume: 38 start-page: 4377 year: 2004 ident: ref28/cit28 publication-title: Environ. Sci. Technol. doi: 10.1021/es035354f – volume: 41 start-page: 284 year: 2007 ident: ref24/cit24 publication-title: Environ. Sci. Technol. doi: 10.1021/es061349a – volume: 24 start-page: 85 year: 2007 ident: ref4/cit4 publication-title: Environ. Eng. Sci. doi: 10.1089/ees.2007.24.85 – volume: 40 start-page: 3527 year: 2006 ident: ref8/cit8 publication-title: Water Res. doi: 10.1016/j.watres.2006.08.004 – start-page: 198 volume-title: Encyclopedia of Soil Science year: 2006 ident: ref32/cit32 – volume: 20 start-page: 9000 year: 2004 ident: ref38/cit38 publication-title: Langmuir doi: 10.1021/la049153g – volume-title: Clay Swelling and Colloidal Stability year: 2006 ident: ref20/cit20 doi: 10.1201/9781420008005 – volume: 202 start-page: 95 year: 1998 ident: ref37/cit37 publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.1998.5440 – volume: 40 start-page: 4353 year: 2006 ident: ref10/cit10 publication-title: Environ. Sci. Technol. doi: 10.1021/es0522635 – volume: 25 start-page: 1132 year: 2006 ident: ref9/cit9 publication-title: Environ. Toxicol. Chem. doi: 10.1897/05-278R.1 – volume: 40 start-page: 4346 year: 2006 ident: ref11/cit11 publication-title: Environ. Sci. Technol. doi: 10.1021/es060589n – volume: 116 start-page: A152−A152 year: 2008 ident: ref13/cit13 publication-title: Environ. Health Perspect. doi: 10.1289/ehp.10915 – volume-title: Structure Formation in Solution: Ionic Polymers and Colloidal Particles year: 2005 ident: ref19/cit19 – volume: 66 start-page: 1207 year: 2002 ident: ref21/cit21 publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2002.1207 – volume: 281 start-page: 155 year: 2005 ident: ref35/cit35 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2004.08.075 – volume: 299 start-page: 686 year: 2006 ident: ref34/cit34 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2006.03.008 – ident: ref23/cit23 – volume-title: Soils in Our Environment year: 1998 ident: ref31/cit31 – volume: 110 start-page: 15134 year: 2006 ident: ref17/cit17 publication-title: J. Phys. Chem. B doi: 10.1021/jp061417f – volume: 42 start-page: 3349 year: 2008 ident: ref33/cit33 publication-title: Environ. Sci. Technol. doi: 10.1021/es071936b – volume: 103 start-page: 4656 year: 1999 ident: ref5/cit5 publication-title: J. Phys. Chem. B doi: 10.1021/jp984574q – volume: 295 start-page: 115 year: 2006 ident: ref22/cit22 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2005.08.003 – volume: 253 start-page: 70 year: 2002 ident: ref29/cit29 publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.2002.8476 – volume: 313 start-page: 52 year: 2007 ident: ref14/cit14 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2007.04.038 – volume: 17 start-page: 372 year: 2008 ident: ref12/cit12 publication-title: Ecotoxicology doi: 10.1007/s10646-008-0214-0 – volume: 38 start-page: 5164 year: 2004 ident: ref27/cit27 publication-title: Environ. Sci. Technol. doi: 10.1021/es0352303 – volume: 111 start-page: 1962 year: 2007 ident: ref18/cit18 publication-title: J. Phys. Chem. C doi: 10.1021/jp063822c – volume: 10 start-page: 795 year: 2008 ident: ref30/cit30 publication-title: J. Nanopart. Res. doi: 10.1007/s11051-007-9315-6 – volume: 9 start-page: 1 year: 2008 ident: ref6/cit6 publication-title: J. Photochem. Photobiol. C doi: 10.1016/j.jphotochemrev.2007.12.003 |
SSID | ssj0002308 |
Score | 2.5166929 |
Snippet | The extensive use of titanium dioxide nanoparticles (nano-TiO2) in many consumer products has raised concerns about possible risks to the environment. The... The extensive use of titanium dioxide nanoparticles (nano-TiO2) in many consumer products has raised concerns about possible risks to the environment The... The extensive use of titanium dioxide nanoparticles (nano-...) in many consumer products has raised concerns about possible risks to the environment. The... |
SourceID | proquest pubmed pascalfrancis crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1354 |
SubjectTerms | Animal, plant and microbial ecology Applied ecology Applied sciences Biological and medical sciences Cations, Divalent - chemistry Cations, Monovalent - chemistry Chemical compounds Chemical reactions Consumer goods Ecotoxicology, biological effects of pollution Environment Environmental Processes Environmental science Exact sciences and technology Fundamental and applied biological sciences. Psychology Hydrogen-Ion Concentration Ions Kinetics Nanoparticles Nanoparticles - chemistry Nanoparticles - ultrastructure Osmolar Concentration Pollution Reaction kinetics Soil Suspensions Time Factors Titanium Titanium - chemistry |
Title | Influence of Ionic Strength, pH, and Cation Valence on Aggregation Kinetics of Titanium Dioxide Nanoparticles |
URI | http://dx.doi.org/10.1021/es802628n https://www.ncbi.nlm.nih.gov/pubmed/19350903 https://www.proquest.com/docview/230149684 https://www.proquest.com/docview/67129836 https://www.proquest.com/docview/754543271 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwED-N8QKa2BhsZGPFAh54WEbtOLbzWHWbOhC8sKG-RbYTdxVbWpFUQvz1nJuPbmKF1-SS-OPO97uc_TuA96bvLC77USi1YyG3mQ4NUyZ0yicPaeIS688Of_kqRlf80zgeb8C7NRl8Rj_mpcI4ganiETxmQkkfYQ2G37rlFjG0assUJJEYt_RBdx_1rseW91zP1lyXOAquLl-xHl8u_cz5Npy2p3Xq7SU_ThaVObG__yZv_FcXduBZgzPJoFaM57CRF7vw9A774C7sna0OuaFoY-XlC7i9aCuXkJkjF548l_jsdTGpro_JfHRMdJGR4XJOyXd9U0sWZDDB4H1SX_6M3_EM0P4Nl1NEoNPFLTmdzn5Ns5zgko6xerMl7yVcnZ9dDkdhU5Yh1FyoKsxoP-MmEjzjOnfKOto3zkqTSJcxbtG_6Si2uaOcZc7FiubCKSctF4g-hWHRHmwWsyJ_BSRxSkhtjPM09omQ6BpjJjWlGRPO9kUAPZy3tDGrMl1mzBlNuwEN4EM7paltSM19bY2bh0TfdqLzmsnjIaHePb3oJBFF4dLGWACHraKsmsV8XJoIxQN4091FM_W5F13ks0WZConASkXYI7JGQiKW5RGTNID9WgFXzUyi2P9PO_jfcBzCkzrb5ffIvYbN6uciP0LQVJne0mj-ADNXET8 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_BeACE-BgbhEFnIR54WEbtuLbzWJVNLft4oUN9i2wnLhVbWpFUQvz1nPPVDW2C1-SS-OvufpezfwfwwfSdRbMfhVI7FnKb6tAwZUKnfPKQxi62_uzw2bkYX_Avs8GsocnxZ2GwEQW-qaiS-Bt2AfopKxSGC0zl9-EBghDmA63h6GtndRFKq7ZaQRyJWcsidP1R74FsccMDPVnpAgfD1VUs7oaZlbs5flbXLaoaWu0y-XG4Ls2h_f0Xh-P_9eQ5PG1QJxnWy-QF3MvybXh8jYtwG3aPNkfeULTR-eIlXE3aOiZk6cjEU-kSn8vO5-X3A7IaHxCdp2RUzTD5pi9ryZwM5xjKz-vLJ_gdzwft3zBdIB5drK_I58Xy1yLNCBp4jNybDXo7cHF8NB2Nw6ZIQ6i5UGWY0n7KTSR4ynXmlHW0b5yVJpYuZdyit9PRwGaOcpY6N1A0E045ablALCoMi3ZhK1_m2WsgsVNCamOcJ7WPhURHifOsKU2ZcLYvAujheCaNkhVJlT9nNOkGNICP7cwmtqE495U2Lm8Tfd-Jrmpej9uEejeWRyeJmAoNHWMB7LXrZdMs5qPUWCgewH53F5XWZ2J0ni3XRSIkwiwVYY_IHRISkS2PmKQBvKrX4aaZcTTwf9fe_Gs49uHheHp2mpxOzk_24FGdB_O7597CVvlznb1DOFWaXqVHfwAkaRmg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_BkBAI8TEYhEFnIR54WEbjOLbzWHWrWgYDiQ31LfJHXCq2tCKthPjrOeerG9oEr8klsc8-3-9y9u8A3uq-M7jsx6FQjobMWBVqKnXopE8eRqlLjT87_OmEj8_Yh2kybQJFfxYGG1Him8oqie-temldwzAQvc9LiSEDlcVtuOPTdT7YGgy_disvwmnZVixIYz5tmYQuP-q9kCmveKEHS1WiQlxdyeJmqFm5nNEj-Nw1ttpp8uNgvdIH5vdfPI7_35vH8LBBn2RQT5cncCsvtuH-JU7Cbdg52hx9Q9HG9suncDFp65mQhSMTT6lLfE67mK2-75PleJ-owpJhNdLkmzqvJQsymGFIP6svH-N3PC-0f8PpHHHpfH1BDueLX3ObE1zoMYJvNuo9g7PR0elwHDbFGkLFuFyFNupbpmPOLFO5k8ZFfe2M0KlwljKDXk_FicldxKh1LpFRzp10wjCOmJRrGu_AVrEo8hdAUie5UFo7T26fcoEOM6FCRZGl3Jk-D6CHOs0aYyuzKo9Oo6xTaADv2tHNTEN17itunF8n-qYTXdb8HtcJ9a5MkU4SsRUueJQGsNvOmU2zqI9WUy5ZAHvdXTRen5FRRb5YlxkXCLdkjD0iN0gIRLgspiIK4Hk9FzfNTOPE_2V7-S917MHdL4ej7OPk5HgX7tXpML-J7hVsrX6u89eIqla6V5nSHzxFHCM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+ionic+strength%2C+pH%2C+and+cation+valence+on+aggregation+kinetics+of+titanium+dioxide+nanoparticles&rft.jtitle=Environmental+science+%26+technology&rft.au=French%2C+Rebecca+A&rft.au=Jacobson%2C+Astrid+R&rft.au=Kim%2C+Bojeong&rft.au=Isley%2C+Sara+L&rft.date=2009-03-01&rft.issn=0013-936X&rft.volume=43&rft.issue=5&rft.spage=1354&rft_id=info:doi/10.1021%2Fes802628n&rft_id=info%3Apmid%2F19350903&rft.externalDocID=19350903 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon |