Removal of Aqueous Hg(II) by Polyaniline: Sorption Characteristics and Mechanisms
A polyaniline (PAN) prepared by chemical oxidation method was studied for Hg(II) removal from aqueous solutions. Batch adsorption results showed solution pH values had a major impact on mercury adsorption by this sorbent with optimal removal observed around pH 4−6. At both acidic and alkaline soluti...
Saved in:
Published in | Environmental science & technology Vol. 43; no. 14; pp. 5223 - 5228 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
15.07.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A polyaniline (PAN) prepared by chemical oxidation method was studied for Hg(II) removal from aqueous solutions. Batch adsorption results showed solution pH values had a major impact on mercury adsorption by this sorbent with optimal removal observed around pH 4−6. At both acidic and alkaline solutions beyond this optimal pH window, sorption capacity of PAN was substantially lowered, with the impact less pronounced at pH above 6. Among the water constituents tested, only chloride and humic acid had significant inhibition on mercury removal due to competitive complexation. In the range of 0.02−0.2 M, ionic strength had less impact on Hg(II) removal by PAN while further increase in background electrolyte concentration to 1.0 M substantially decreased mercury removal. An adsorption mechanism was proposed by analyzing the XPS spectra of the key elements (N1s, Cl2p and Hg4f) on polyaniline surfaces and the change of its electrokinetic properties, both before and after Hg(II) adsorption. Specifically, at pH 5.5, it is likely that all the nitrogen-containing functional groups on the polymer matrix including imine, protonated imine and amine could be responsible for mercury adsorption, with imine having the highest affinity while the remaining two having similar strength to complex mercury. |
---|---|
AbstractList | A polyaniline (PAN) prepared by chemical oxidation method was studied for Hg(II) removal from aqueous solutions. Batch adsorption results showed solution pH values had a major impact on mercury adsorption by this sorbent with optimal removal observed around pH 4−6. At both acidic and alkaline solutions beyond this optimal pH window, sorption capacity of PAN was substantially lowered, with the impact less pronounced at pH above 6. Among the water constituents tested, only chloride and humic acid had significant inhibition on mercury removal due to competitive complexation. In the range of 0.02−0.2 M, ionic strength had less impact on Hg(II) removal by PAN while further increase in background electrolyte concentration to 1.0 M substantially decreased mercury removal. An adsorption mechanism was proposed by analyzing the XPS spectra of the key elements (N1s, Cl2p and Hg4f) on polyaniline surfaces and the change of its electrokinetic properties, both before and after Hg(II) adsorption. Specifically, at pH 5.5, it is likely that all the nitrogen-containing functional groups on the polymer matrix including imine, protonated imine and amine could be responsible for mercury adsorption, with imine having the highest affinity while the remaining two having similar strength to complex mercury. A polyaniline (PAN) prepared by chemical oxidation method was studied for Hg(II) removal from aqueous solutions. Batch adsorption results showed solution pH values had a major impact on mercury adsorption by this sorbent with optimal removal observed around pH 4-6. At both acidic and alkaline solutions beyond this optimal pH window, sorption capacity of PAN was substantially lowered, with the impact less pronounced at pH above 6. Among the water constituents tested, only chloride and humic acid had significant inhibition on mercury removal due to competitive complexation. In the range of 0.02-0.2 M, ionic strength had less impact on Hg(II) removal by PAN while further increase in background electrolyte concentration to 1.0 M substantially decreased mercury removal. An adsorption mechanism was proposed by analyzing the XPS spectra of the key elements (N(1s), Cl(2p) and Hg(4f)) on polyaniline surfaces and the change of its electrokinetic properties, both before and after Hg(II) adsorption. Specifically, at pH 5.5, it is likely that all the nitrogen-containing functional groups on the polymer matrix including imine, protonated imine and amine could be responsible for mercury adsorption, with imine having the highest affinity while the remaining two having similar strength to complex mercury. A polyaniline (PAN) prepared by chemical oxidation method was studied for Hg(II) removal from aqueous solutions. Batch adsorption results showed solution pH values had a major impact on mercury adsorption by this sorbent with optimal removal observed around pH 4 - 6. At both acidic and alkaline solutions beyond this optimal pH window, sorption capacity of PAN was substantially lowered, with the impact less pronounced at pH above 6. Among the water constituents tested, only chloride and humic acid had significant inhibition on mercury removal due to competitive complexation. In the range of 0.02 - 0.2 M, ionic strength had less impact on Hg(II) removal by PAN while further increase in background electrolyte concentration to 1.0 M substantially decreased mercury removal. An adsorption mechanism was proposed by analyzing the XPS spectra of the key elements (..., ... and ...) on polyaniline surfaces and the change of its electrokinetic properties, both before and after Hg(II) adsorption. Specifically, at pH 5.5, it is likely that all the nitrogen-containing functional groups on the polymer matrix including imine, protonated imine and amine could be responsible for mercury adsorption, with imine having the highest affinity while the remaining two having similar strength to complex mercury. (ProQuest: ... denotes formulae/symbols omitted.) A polyaniline (PAN) prepared by chemical oxidation method was studied for Hg(II) removal from aqueous solutions. Batch adsorption results showed solution pH values had a major impact on mercury adsorption by this sorbent with optimal removal observed around pH 4-6. At both acidic and alkaline solutions beyond this optimal pH window, sorption capacity of PAN was substantially lowered, with the impact less pronounced at pH above 6. Among the water constituents tested, only chloride and humic acid had significant inhibition on mercury removal due to competitive complexation. In the range of 0.02-0.2 M, ionic strength had less impact on Hg(II) removal by PAN while further increase in background electrolyte concentration to 1.0 M substantially decreased mercury removal. An adsorption mechanism was proposed by analyzing the XPS spectra of the key elements (N1s, Cl2p and Hg4f) on polyaniline surfaces and the change of its electrokinetic properties, both before and after Hg(II) adsorption. Specifically, at pH 5.5, it is likely that all the nitrogen-containing functional groups on the polymer matrix including imine, protonated imine and amine could be responsible for mercury adsorption, with imine having the highest affinity while the remaining two having similar strength to complex mercury. A polyaniline (PAN) prepared by chemical oxidation method was studied for Hg(II) removal from aqueous solutions. Batch adsorption results showed solution pH values had a major impact on mercury adsorption by this sorbent with optimal removal observed around pH 4-6. At both acidic and alkaline solutions beyond this optimal pH window, sorption capacity of PAN was substantially lowered, with the impact less pronounced at pH above 6. Among the water constituents tested, only chloride and humic acid had significant inhibition on mercury removal due to competitive complexation. In the range of 0.02-0.2 M, ionic strength had less impact on Hg(II) removal by PAN while further increase in background electrolyte concentration to 1.0 M substantially decreased mercury removal. An adsorption mechanism was proposed by analyzing the XPS spectra of the key elements (N(1s), Cl(2p) and Hg(4f)) on polyaniline surfaces and the change of its electrokinetic properties, both before and after Hg(II) adsorption. Specifically, at pH 5.5, it is likely that all the nitrogen-containing functional groups on the polymer matrix including imine, protonated imine and amine could be responsible for mercury adsorption, with imine having the highest affinity while the remaining two having similar strength to complex mercury.A polyaniline (PAN) prepared by chemical oxidation method was studied for Hg(II) removal from aqueous solutions. Batch adsorption results showed solution pH values had a major impact on mercury adsorption by this sorbent with optimal removal observed around pH 4-6. At both acidic and alkaline solutions beyond this optimal pH window, sorption capacity of PAN was substantially lowered, with the impact less pronounced at pH above 6. Among the water constituents tested, only chloride and humic acid had significant inhibition on mercury removal due to competitive complexation. In the range of 0.02-0.2 M, ionic strength had less impact on Hg(II) removal by PAN while further increase in background electrolyte concentration to 1.0 M substantially decreased mercury removal. An adsorption mechanism was proposed by analyzing the XPS spectra of the key elements (N(1s), Cl(2p) and Hg(4f)) on polyaniline surfaces and the change of its electrokinetic properties, both before and after Hg(II) adsorption. Specifically, at pH 5.5, it is likely that all the nitrogen-containing functional groups on the polymer matrix including imine, protonated imine and amine could be responsible for mercury adsorption, with imine having the highest affinity while the remaining two having similar strength to complex mercury. |
Author | Deng, Baolin Chen, Huan Wang, Xiaorong Wang, Jing Zheng, Jianzhong |
Author_xml | – sequence: 1 givenname: Jing surname: Wang fullname: Wang, Jing – sequence: 2 givenname: Baolin surname: Deng fullname: Deng, Baolin – sequence: 3 givenname: Huan surname: Chen fullname: Chen, Huan – sequence: 4 givenname: Xiaorong surname: Wang fullname: Wang, Xiaorong – sequence: 5 givenname: Jianzhong surname: Zheng fullname: Zheng, Jianzhong email: szheng@nju.edu.cn |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22104219$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/19708345$$D View this record in MEDLINE/PubMed |
BookMark | eNp90UtvEzEQB3ALFdG0cOALIAsJaA9LPX7sg1sVlTZSEW-JmzXr9VKXXTvYm0r59nXUkEoFcfLlN-P_zByQPR-8JeQ5sLfAOJzYVDNRAfv1iMxAcVaoWsEemTEGomhE-WOfHKR0zRjjgtVPyD40FauFVDPy-Ysdww0ONPT09PfKhlWiFz-PFotj2q7ppzCs0bvBefuOfg1xObng6fwKI5rJRpcmZxJF39EP1lxlmcb0lDzucUj22fY9JN_fn32bXxSXH88X89PLAmVZTwXaVqHNCTvT2YZBpQy2NQgOgMhLgQzLCiHnbForoRK2Ri47LCVaW8teHJI3d32XMeTgadKjS8YOA_rNFLpSUklRKpXl6__KsiqBg4QMXz6A12EVfZ5C58WBgqYpM3qxRat2tJ1eRjdiXOs_O83g1RZgMjj0Eb1xaec4ByY5NNmd3DkTQ0rR9tq4CTcbniK6QQPTm-vq3XVzxfGDit3n_7DbFGjS_Rh_u1svV64N |
CODEN | ESTHAG |
CitedBy_id | crossref_primary_10_1016_j_electacta_2017_11_074 crossref_primary_10_1016_j_jcis_2019_05_027 crossref_primary_10_1016_j_carbpol_2016_06_064 crossref_primary_10_2166_wst_2023_327 crossref_primary_10_5004_dwt_2012_2734 crossref_primary_10_1016_j_jhazmat_2009_10_019 crossref_primary_10_1089_ees_2015_0163 crossref_primary_10_1039_C5RA26932F crossref_primary_10_1016_j_cej_2022_137246 crossref_primary_10_1016_j_ijhydene_2020_05_028 crossref_primary_10_3390_ma15041580 crossref_primary_10_1080_01496395_2023_2225733 crossref_primary_10_2166_wst_2019_108 crossref_primary_10_1016_j_seppur_2019_05_019 crossref_primary_10_1155_2022_3181963 crossref_primary_10_1016_j_msec_2016_05_066 crossref_primary_10_1016_j_seppur_2020_117120 crossref_primary_10_1039_C0CC04860G crossref_primary_10_1002_app_44879 crossref_primary_10_1021_acs_est_7b03364 crossref_primary_10_1039_C4RA05800C crossref_primary_10_1039_D3TA02076B crossref_primary_10_1155_2016_7245829 crossref_primary_10_1080_01496395_2014_983246 crossref_primary_10_1016_j_jcis_2017_09_054 crossref_primary_10_1016_j_ijbiomac_2019_03_007 crossref_primary_10_1016_j_jhazmat_2018_10_051 crossref_primary_10_1016_j_cej_2017_01_066 crossref_primary_10_1016_j_jhazmat_2012_10_050 crossref_primary_10_1016_j_cej_2013_05_089 crossref_primary_10_1021_ie300246m crossref_primary_10_1080_19443994_2014_927798 crossref_primary_10_3390_molecules30071406 crossref_primary_10_3390_membranes11020139 crossref_primary_10_1016_j_cej_2014_06_063 crossref_primary_10_1021_am201447s crossref_primary_10_1002_kin_21693 crossref_primary_10_1016_j_cej_2013_11_006 crossref_primary_10_1002_marc_201000780 crossref_primary_10_1039_C4RA11496E crossref_primary_10_1016_j_jiec_2023_10_003 crossref_primary_10_1002_pat_1750 crossref_primary_10_1016_j_cej_2024_149443 crossref_primary_10_1016_j_molstruc_2019_06_060 crossref_primary_10_1016_j_seppur_2023_124400 crossref_primary_10_1016_j_jcis_2014_03_031 crossref_primary_10_1016_j_synthmet_2015_12_006 crossref_primary_10_1039_C6SC02855A crossref_primary_10_1039_c1cc00005e crossref_primary_10_1021_acssuschemeng_8b02965 crossref_primary_10_1515_ract_2017_2865 crossref_primary_10_1007_s00706_016_1745_3 crossref_primary_10_1016_j_seppur_2024_128482 crossref_primary_10_1021_nn405192s crossref_primary_10_1039_D0ME00090F crossref_primary_10_1016_j_jcis_2012_07_066 crossref_primary_10_1016_j_jelechem_2013_06_014 crossref_primary_10_1002_masy_202000337 crossref_primary_10_1016_j_polymer_2024_127181 crossref_primary_10_1002_cphc_201300832 crossref_primary_10_1007_s11434_016_1168_x crossref_primary_10_1021_acssuschemeng_7b01880 crossref_primary_10_1080_00032719_2014_956215 crossref_primary_10_1016_j_seppur_2023_125866 crossref_primary_10_1039_C6RA00193A crossref_primary_10_1016_j_reactfunctpolym_2021_105129 crossref_primary_10_1039_C6RA10162C crossref_primary_10_1080_01496395_2010_504201 crossref_primary_10_1016_j_jcis_2016_03_058 crossref_primary_10_1021_la401329d crossref_primary_10_1016_j_chemosphere_2021_130206 crossref_primary_10_1002_ep_11690 crossref_primary_10_1038_s41467_024_55511_4 crossref_primary_10_1016_j_jcis_2015_10_003 crossref_primary_10_1016_j_carbpol_2016_07_110 crossref_primary_10_1016_j_jhazmat_2014_07_052 crossref_primary_10_3390_min9020074 crossref_primary_10_1016_j_watres_2016_10_031 crossref_primary_10_1007_s11356_020_10348_4 crossref_primary_10_1016_j_molliq_2019_111789 crossref_primary_10_1021_acs_iecr_1c01530 crossref_primary_10_1016_j_clay_2017_01_015 crossref_primary_10_1016_S1004_9541_13_60516_9 crossref_primary_10_1016_j_reactfunctpolym_2019_01_005 crossref_primary_10_1039_C6TA01219A crossref_primary_10_1016_j_cej_2012_09_057 crossref_primary_10_1016_j_matchemphys_2020_124090 crossref_primary_10_1016_j_jallcom_2019_152993 crossref_primary_10_1002_chem_201202203 crossref_primary_10_1021_es401174n crossref_primary_10_1016_j_jhazmat_2012_11_050 crossref_primary_10_1016_j_molliq_2017_01_013 crossref_primary_10_1016_j_cej_2020_124635 crossref_primary_10_1021_jp107492g crossref_primary_10_1039_c0jm04489j crossref_primary_10_1039_C8RA06171H crossref_primary_10_1016_j_cej_2015_04_120 crossref_primary_10_1016_j_seppur_2020_116515 crossref_primary_10_1016_j_jcis_2022_10_153 crossref_primary_10_1016_j_jhazmat_2015_01_054 crossref_primary_10_1007_s13369_022_06833_2 crossref_primary_10_1016_j_molliq_2019_04_115 crossref_primary_10_1039_D1AY01402A crossref_primary_10_1007_s10967_012_1735_9 crossref_primary_10_1016_j_envres_2022_113123 crossref_primary_10_1016_j_cej_2019_04_063 crossref_primary_10_1021_acs_chemrev_7b00482 crossref_primary_10_1021_acs_est_3c08527 crossref_primary_10_1016_j_ijbiomac_2016_02_027 crossref_primary_10_3390_polym15030482 crossref_primary_10_1016_j_cej_2011_08_035 crossref_primary_10_1016_j_cej_2012_02_088 crossref_primary_10_1039_C5NJ02703A crossref_primary_10_1016_j_jpcs_2024_111926 crossref_primary_10_1021_acs_langmuir_3c03317 crossref_primary_10_1016_j_eurpolymj_2020_109514 crossref_primary_10_1016_j_jhazmat_2022_128271 crossref_primary_10_14233_ajchem_2021_23013 crossref_primary_10_1016_j_cjche_2017_07_002 crossref_primary_10_3390_membranes11040269 crossref_primary_10_1016_j_cej_2024_157833 crossref_primary_10_1021_la200947c crossref_primary_10_1016_j_envpol_2011_11_012 crossref_primary_10_3390_ma12111764 crossref_primary_10_1007_s10450_014_9615_y crossref_primary_10_1021_jp400221k crossref_primary_10_1016_j_jhazmat_2016_01_001 crossref_primary_10_1016_j_cej_2016_06_110 crossref_primary_10_1007_s12221_017_7046_6 crossref_primary_10_1016_j_polymer_2010_10_052 crossref_primary_10_1061__ASCE_EE_1943_7870_0000453 crossref_primary_10_1007_s13738_020_01864_8 crossref_primary_10_1016_j_snb_2020_129267 crossref_primary_10_1039_C3TA13867D crossref_primary_10_5004_dwt_2019_24835 crossref_primary_10_1016_j_synthmet_2021_116760 crossref_primary_10_1039_D2EM00409G crossref_primary_10_1021_acs_est_2c01591 crossref_primary_10_1016_j_cej_2014_07_114 crossref_primary_10_1016_j_jcis_2016_03_044 crossref_primary_10_1016_j_cej_2012_01_063 crossref_primary_10_1021_acs_est_6b00058 crossref_primary_10_1021_es404418a crossref_primary_10_1021_ie3013874 crossref_primary_10_1016_j_molliq_2016_01_100 crossref_primary_10_1021_acs_iecr_6b01359 crossref_primary_10_1016_j_watres_2014_11_030 crossref_primary_10_1021_la300619d crossref_primary_10_1016_j_polymer_2014_05_024 crossref_primary_10_1016_j_chemosphere_2019_03_154 crossref_primary_10_1016_j_foodchem_2018_08_107 crossref_primary_10_1016_j_synthmet_2010_01_017 crossref_primary_10_1089_ees_2008_0418 crossref_primary_10_1016_j_jece_2015_12_023 crossref_primary_10_1016_j_jtice_2017_07_024 crossref_primary_10_1021_acssuschemeng_6b00738 crossref_primary_10_1016_j_envpol_2020_115389 crossref_primary_10_1016_j_jhazmat_2015_09_028 crossref_primary_10_1007_s12209_019_00205_y crossref_primary_10_1515_chem_2020_0137 crossref_primary_10_1016_j_molliq_2024_125828 crossref_primary_10_1016_j_seppur_2019_115901 crossref_primary_10_1007_s10967_024_09390_0 crossref_primary_10_1002_app_38111 crossref_primary_10_1177_09673911221141747 crossref_primary_10_1007_s10163_023_01720_w crossref_primary_10_1039_c1jm10111k crossref_primary_10_1016_j_ijbiomac_2018_02_101 crossref_primary_10_1016_j_bios_2010_11_044 crossref_primary_10_1021_acs_iecr_5b04630 crossref_primary_10_1002_marc_201400248 crossref_primary_10_3389_fchem_2022_882876 crossref_primary_10_1021_es4017816 crossref_primary_10_1351_pac_con_12_11_17 crossref_primary_10_1039_D1QI01164B crossref_primary_10_1016_j_chemosphere_2022_136292 crossref_primary_10_1021_jacs_9b12196 crossref_primary_10_1016_j_jece_2018_03_047 crossref_primary_10_1016_j_cej_2014_02_091 crossref_primary_10_61186_MCH_2025_1070 crossref_primary_10_1016_j_cej_2012_04_050 crossref_primary_10_1021_acsami_2c15232 crossref_primary_10_1021_la203162y crossref_primary_10_1016_j_optmat_2013_06_006 crossref_primary_10_1002_adv_21807 crossref_primary_10_1039_C7RA06404G crossref_primary_10_1016_j_cej_2011_07_065 crossref_primary_10_1016_j_envres_2022_113327 crossref_primary_10_1016_j_jcis_2014_05_046 crossref_primary_10_1007_s11468_022_01626_7 crossref_primary_10_1039_D0RA02759F crossref_primary_10_1016_j_cej_2013_04_104 crossref_primary_10_1002_star_201900148 crossref_primary_10_1039_C8RA03924K crossref_primary_10_1007_s11270_015_2618_9 crossref_primary_10_1016_j_jclepro_2020_122163 crossref_primary_10_3390_w15163009 crossref_primary_10_1016_j_watres_2011_08_049 crossref_primary_10_1080_03067319_2024_2358191 crossref_primary_10_1016_j_apsusc_2013_06_111 crossref_primary_10_1016_j_cej_2013_05_026 crossref_primary_10_1016_j_jcis_2016_10_035 crossref_primary_10_1039_C3DT52881B crossref_primary_10_1007_s10967_017_5696_x crossref_primary_10_1016_j_ijbiomac_2021_03_043 crossref_primary_10_1039_C7EW00154A crossref_primary_10_1080_15569543_2020_1824191 crossref_primary_10_1016_j_matlet_2011_01_058 crossref_primary_10_1007_s11356_023_28385_0 crossref_primary_10_1016_j_jhazmat_2020_124012 crossref_primary_10_1080_01496395_2019_1576733 crossref_primary_10_1002_tcr_202000073 crossref_primary_10_1021_ie401359d crossref_primary_10_1016_j_cej_2023_144659 crossref_primary_10_1002_chem_201204113 crossref_primary_10_1038_s41598_017_11831_8 crossref_primary_10_1021_jp101988h crossref_primary_10_3390_ma13030632 crossref_primary_10_1002_cssc_202300426 crossref_primary_10_1021_je1001686 crossref_primary_10_2166_wst_2015_361 crossref_primary_10_1007_s12274_022_5365_4 crossref_primary_10_1016_j_desal_2010_08_025 crossref_primary_10_1016_j_ijbiomac_2023_123723 crossref_primary_10_1016_j_synthmet_2014_02_013 crossref_primary_10_3724_SP_J_1105_2013_12200 crossref_primary_10_1080_19443994_2014_935805 crossref_primary_10_1016_j_apsusc_2013_11_020 crossref_primary_10_1021_acs_jced_7b00897 crossref_primary_10_1002_adv_21428 crossref_primary_10_1016_j_colsurfa_2015_05_020 crossref_primary_10_1016_j_ijbiomac_2018_05_069 crossref_primary_10_1039_D0NJ06259F crossref_primary_10_1016_j_apsusc_2014_04_083 crossref_primary_10_1016_j_cej_2021_129425 crossref_primary_10_1016_j_cej_2016_01_038 crossref_primary_10_1007_s10924_017_0947_z crossref_primary_10_1016_j_jlumin_2011_06_033 crossref_primary_10_1016_j_chemosphere_2020_129201 crossref_primary_10_1007_s10661_016_5226_2 crossref_primary_10_1016_j_matchemphys_2018_04_076 crossref_primary_10_1016_j_envres_2017_12_025 crossref_primary_10_1021_acsami_2c09232 crossref_primary_10_1021_acs_est_2c03033 crossref_primary_10_2139_ssrn_4142164 crossref_primary_10_1039_C4RA16910G crossref_primary_10_4028_www_scientific_net_MSF_1008_222 crossref_primary_10_3390_w12082105 crossref_primary_10_1007_s10967_017_5274_2 crossref_primary_10_1016_j_cej_2013_03_011 crossref_primary_10_1016_j_synthmet_2013_10_028 crossref_primary_10_1016_j_electacta_2018_02_101 crossref_primary_10_1016_j_molliq_2015_10_008 crossref_primary_10_1016_j_cej_2019_123515 crossref_primary_10_1016_j_jece_2025_116233 crossref_primary_10_1039_C8RA06998K crossref_primary_10_1080_09593330_2011_572924 crossref_primary_10_1061__ASCE_EE_1943_7870_0000743 crossref_primary_10_1016_j_seppur_2024_128053 crossref_primary_10_1021_acsanm_9b01438 crossref_primary_10_1016_j_eti_2025_104129 crossref_primary_10_1039_C6TA10499A crossref_primary_10_1002_elan_201600438 crossref_primary_10_1016_j_cej_2018_01_093 crossref_primary_10_1021_acsami_1c19011 crossref_primary_10_1016_j_molliq_2020_113447 crossref_primary_10_1016_j_clay_2021_106151 crossref_primary_10_1016_j_matlet_2015_02_113 crossref_primary_10_1089_ees_2010_0435 crossref_primary_10_1021_sc500030v crossref_primary_10_1002_xrs_2682 crossref_primary_10_1016_j_synthmet_2015_03_007 crossref_primary_10_1016_j_jnucmat_2015_07_027 crossref_primary_10_1039_C8CY01677A crossref_primary_10_1016_j_hydromet_2017_12_013 crossref_primary_10_1016_j_molliq_2015_05_051 crossref_primary_10_1016_j_gca_2014_06_001 crossref_primary_10_1016_j_jcis_2011_01_038 crossref_primary_10_1021_acssuschemeng_7b00477 crossref_primary_10_1016_j_watres_2021_117663 crossref_primary_10_1007_s11356_022_23255_7 crossref_primary_10_1021_acssuschemeng_7b00917 crossref_primary_10_3390_jcs5090233 crossref_primary_10_3390_s16111871 crossref_primary_10_1016_j_mtcomm_2023_107976 crossref_primary_10_1039_C5NJ02547H crossref_primary_10_1080_19443994_2013_794711 crossref_primary_10_1016_j_cej_2021_132960 crossref_primary_10_4028_www_scientific_net_KEM_594_595_793 crossref_primary_10_1002_pc_24114 crossref_primary_10_1016_j_carpta_2021_100151 crossref_primary_10_5004_dwt_2017_21073 crossref_primary_10_1016_j_jcis_2017_10_092 |
Cites_doi | 10.1016/j.talanta.2005.08.066 10.1016/j.aca.2004.11.047 10.1016/S0379-6779(01)00293-4 10.1016/j.chemosphere.2003.11.011 10.1021/jp0651844 10.1016/j.carbon.2007.11.002 10.1126/science.276.5314.923 10.1260/0263617042879483 10.1016/j.inoche.2007.09.029 10.1021/es062121q 10.1002/etc.5620190909 10.1016/j.envpol.2004.01.010 10.1021/es070814g 10.1016/S0008-6223(98)00189-4 10.1002/1096-9918(200008)30:1<269::AID-SIA758>3.0.CO;2-N 10.1021/ie048736i 10.2134/jeq1996.00472425002500040027x 10.1023/A:1015502430561 10.1021/ie020834l 10.1016/S1387-1811(97)00019-X 10.1007/s10967-006-0254-y 10.1021/la034893v 10.1021/la051551b 10.1002/chem.200700233 10.1016/j.reactfunctpolym.2008.11.002 10.1021/es001960o 10.1021/ie0487585 10.1039/an9931801085 10.1006/jcis.1995.1228 10.1016/0379-6779(88)90571-1 10.1007/s002160051075 10.1021/es010713x 10.1016/j.colsurfa.2006.01.026 10.1016/j.seppur.2003.11.009 10.1006/jcis.1999.6263 10.1016/S0079-6700(97)00030-0 10.1021/ie020707p 10.1021/la0014510 10.1016/j.electacta.2006.03.073 10.1007/BF00195489 |
ContentType | Journal Article |
Copyright | Copyright © 2009 American Chemical Society 2009 INIST-CNRS Copyright American Chemical Society Jul 15, 2009 |
Copyright_xml | – notice: Copyright © 2009 American Chemical Society – notice: 2009 INIST-CNRS – notice: Copyright American Chemical Society Jul 15, 2009 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7U6 |
DOI | 10.1021/es803710k |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic Sustainability Science Abstracts |
DatabaseTitleList | MEDLINE Biotechnology Research Abstracts Environment Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences Applied Sciences |
EISSN | 1520-5851 |
EndPage | 5228 |
ExternalDocumentID | 1788051971 19708345 22104219 10_1021_es803710k b426156016 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | - .K2 1AW 3R3 4.4 4R4 53G 55A 5GY 5VS 63O 7~N 85S AABXI ABFLS ABMVS ABOGM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACPRK ACS AEESW AENEX AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ K2 LG6 MS PQEST PQQKQ ROL RXW TN5 TWZ U5U UHB UI2 UKR UPT UQL VF5 VG9 VQA W1F WH7 X XFK XZL YZZ --- -DZ -~X ..I .DC 6TJ AAHBH AAYOK AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV ADMHC ADUKH AGXLV AHGAQ CITATION CUPRZ GGK MS~ MW2 XSW ZCA .HR 186 1WB 42X 8WZ A6W ABHMW ACKIV ACRPL ADNMO AETEA AEYZD AGQPQ ANPPW ANTXH IHE IQODW MVM NHB OHT RNS TAE UBC UBX UBY VJK VOH YV5 ZCG ZY4 ~A~ CGR CUY CVF ECM EIF NPM YIN 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7U6 |
ID | FETCH-LOGICAL-a468t-aeb5ae001dcde90175cab813211aa263a0a67a17089be4173e8a24da64aee84f3 |
IEDL.DBID | ACS |
ISSN | 0013-936X |
IngestDate | Mon Jul 21 11:26:25 EDT 2025 Fri Jul 11 11:39:30 EDT 2025 Fri Jul 25 04:24:16 EDT 2025 Wed Feb 19 02:34:52 EST 2025 Mon Jul 21 09:14:41 EDT 2025 Tue Jul 01 02:10:17 EDT 2025 Thu Apr 24 22:59:34 EDT 2025 Thu Aug 27 13:42:35 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | Background concentration Complexation Organic matter Electrochemical treatment Electrokinetics Adsorption capacity Nitrogen Soil pollution Heavy metal Sorption Trace element Adsorption Batchwise Ionic strength Chlorides Poison Oxidation Sorbent Mercury |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a468t-aeb5ae001dcde90175cab813211aa263a0a67a17089be4173e8a24da64aee84f3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 19708345 |
PQID | 230151996 |
PQPubID | 45412 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_754543655 proquest_miscellaneous_67612141 proquest_journals_230151996 pubmed_primary_19708345 pascalfrancis_primary_22104219 crossref_citationtrail_10_1021_es803710k crossref_primary_10_1021_es803710k acs_journals_10_1021_es803710k |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-07-15 |
PublicationDateYYYYMMDD | 2009-07-15 |
PublicationDate_xml | – month: 07 year: 2009 text: 2009-07-15 day: 15 |
PublicationDecade | 2000 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States – name: Easton |
PublicationTitle | Environmental science & technology |
PublicationTitleAlternate | Environ. Sci. Technol |
PublicationYear | 2009 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Remya Devi P. S. (ref33/cit33) 2006; 269 Li N. (ref16/cit16) 2005; 21 Das S. K. (ref15/cit15) 2007; 41 Tiffreau C. (ref19/cit19) 1995; 172 Aguado J. (ref4/cit4) 2005; 44 Ravichandran M. (ref25/cit25) 2004; 55 Menardo C. (ref40/cit40) 1988; 25 Zhang L. (ref5/cit5) 1994; 52 Guerra D. L. (ref13/cit13) 2008; 11 Shimano J. Y. (ref26/cit26) 2001; 123 Gupta R. K. (ref31/cit31) 2004; 38 Wang Q. (ref3/cit3) 2004; 131 Vieira R. S. (ref17/cit17) 2006; 279 Walcarius A. (ref38/cit38) 2005; 547 Gupta R. K. (ref30/cit30) 2004; 22 (ref8/cit8) 2001 Yan X. (ref36/cit36) 2007; 111 Nam K. H. (ref2/cit2) 2003; 42 Cameron R. E. (ref7/cit7) 1992 Balarama Krishna M. V. (ref32/cit32) 2005; 68 Hintelmann H. (ref6/cit6) 2000; 19 Budinova T. (ref10/cit10) 2003; 42 Lu Q. F. (ref34/cit34) 2007; 13 ref21/cit21 Hutson N. D. (ref43/cit43) 2007; 41 Wang P. C. (ref35/cit35) 2009; 69 Bonnissel-Gissinger P. (ref20/cit20) 1999; 215 Zhang G. (ref37/cit37) 2008; 46 Zhu X. (ref14/cit14) 2005; 44 Zhang X. (ref41/cit41) 2003; 19 Yin Y. J. (ref18/cit18) 1996; 25 Namasivayam C. (ref9/cit9) 1999; 37 Kang E. T. (ref39/cit39) 1998; 23 Ehrhardt J. J. (ref22/cit22) 2000; 30 Pacyna E. G. (ref1/cit1) 2002; 137 Mercier L. (ref12/cit12) 1998; 20 Kumar S. (ref27/cit27) 1993; 118 Sofiane B. (ref29/cit29) 2006; 52 Daughney C. J. (ref42/cit42) 2002; 36 Sahayam A. C. (ref28/cit28) 1998; 362 Feng X. (ref11/cit11) 1997; 276 Behra P. (ref23/cit23) 2001; 17 Hesterberg D. (ref24/cit24) 2001; 35 |
References_xml | – volume: 68 start-page: 329 year: 2005 ident: ref32/cit32 publication-title: Talanta doi: 10.1016/j.talanta.2005.08.066 – volume: 547 start-page: 3 year: 2005 ident: ref38/cit38 publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2004.11.047 – volume: 123 start-page: 251 year: 2001 ident: ref26/cit26 publication-title: Synth. Metal. doi: 10.1016/S0379-6779(01)00293-4 – volume: 55 start-page: 319 year: 2004 ident: ref25/cit25 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2003.11.011 – volume: 111 start-page: 4125 year: 2007 ident: ref36/cit36 publication-title: J. Phys. Chem. C. doi: 10.1021/jp0651844 – volume: 46 start-page: 196 year: 2008 ident: ref37/cit37 publication-title: Carbon doi: 10.1016/j.carbon.2007.11.002 – volume: 276 start-page: 923 year: 1997 ident: ref11/cit11 publication-title: Science doi: 10.1126/science.276.5314.923 – ident: ref21/cit21 – volume: 22 start-page: 485 year: 2004 ident: ref30/cit30 publication-title: Adsorp. Sci. Technol. doi: 10.1260/0263617042879483 – volume: 11 start-page: 20 year: 2008 ident: ref13/cit13 publication-title: Inorg. Chem. Commun. doi: 10.1016/j.inoche.2007.09.029 – volume: 41 start-page: 1747 year: 2007 ident: ref43/cit43 publication-title: Environ. Sci. Technol. doi: 10.1021/es062121q – volume: 19 start-page: 2204 issue: 9 year: 2000 ident: ref6/cit6 publication-title: Environ. Toxicol. Chem. doi: 10.1002/etc.5620190909 – volume: 131 start-page: 323 year: 2004 ident: ref3/cit3 publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2004.01.010 – volume: 41 start-page: 8281 year: 2007 ident: ref15/cit15 publication-title: Environ. Sci. Technol. doi: 10.1021/es070814g – volume: 37 start-page: 79 year: 1999 ident: ref9/cit9 publication-title: Carbon doi: 10.1016/S0008-6223(98)00189-4 – volume: 30 start-page: 269 year: 2000 ident: ref22/cit22 publication-title: Surf. Interface Anal. doi: 10.1002/1096-9918(200008)30:1<269::AID-SIA758>3.0.CO;2-N – volume: 44 start-page: 8605 year: 2005 ident: ref14/cit14 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie048736i – volume: 25 start-page: 837 year: 1996 ident: ref18/cit18 publication-title: J. Environ. Qual. doi: 10.2134/jeq1996.00472425002500040027x – volume: 137 start-page: 149 year: 2002 ident: ref1/cit1 publication-title: Water Air Soil Pollut. doi: 10.1023/A:1015502430561 – volume: 42 start-page: 1955 year: 2003 ident: ref2/cit2 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie020834l – volume: 20 start-page: 101 year: 1998 ident: ref12/cit12 publication-title: Microporous Mesoporous Mater. doi: 10.1016/S1387-1811(97)00019-X – volume: 269 start-page: 217 year: 2006 ident: ref33/cit33 publication-title: J. Radioanal. Nucl. Chem. doi: 10.1007/s10967-006-0254-y – volume: 19 start-page: 10703 year: 2003 ident: ref41/cit41 publication-title: Langmuir doi: 10.1021/la034893v – volume: 21 start-page: 11780 year: 2005 ident: ref16/cit16 publication-title: Langmuir doi: 10.1021/la051551b – volume: 13 start-page: 6009 year: 2007 ident: ref34/cit34 publication-title: Chem.—Eur. J. doi: 10.1002/chem.200700233 – volume: 69 start-page: 217 issue: 4 year: 2009 ident: ref35/cit35 publication-title: Reac. Funct. Polym. doi: 10.1016/j.reactfunctpolym.2008.11.002 – volume: 35 start-page: 2741 year: 2001 ident: ref24/cit24 publication-title: Environ. Sci. Technol. doi: 10.1021/es001960o – volume: 44 start-page: 3665 year: 2005 ident: ref4/cit4 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie0487585 – volume-title: National Primary Drinking Water Standards year: 2001 ident: ref8/cit8 – volume: 118 start-page: 1085 year: 1993 ident: ref27/cit27 publication-title: Analyst doi: 10.1039/an9931801085 – volume: 172 start-page: 82 year: 1995 ident: ref19/cit19 publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.1995.1228 – volume: 25 start-page: 311 year: 1988 ident: ref40/cit40 publication-title: Synth. Met. doi: 10.1016/0379-6779(88)90571-1 – volume: 362 start-page: 285 year: 1998 ident: ref28/cit28 publication-title: Fresenius’ J. Anal. Chem. doi: 10.1007/s002160051075 – volume: 36 start-page: 1546 year: 2002 ident: ref42/cit42 publication-title: Environ. Sci. Technol. doi: 10.1021/es010713x – volume: 279 start-page: 196 year: 2006 ident: ref17/cit17 publication-title: Colloids Surf., A. doi: 10.1016/j.colsurfa.2006.01.026 – volume: 38 start-page: 225 year: 2004 ident: ref31/cit31 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2003.11.009 – volume: 215 start-page: 313 year: 1999 ident: ref20/cit20 publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.1999.6263 – volume: 23 start-page: 277 year: 1998 ident: ref39/cit39 publication-title: Prog. Polym. Sci. doi: 10.1016/S0079-6700(97)00030-0 – volume: 42 start-page: 2223 year: 2003 ident: ref10/cit10 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie020707p – volume: 17 start-page: 3970 year: 2001 ident: ref23/cit23 publication-title: Langmuir doi: 10.1021/la0014510 – volume-title: Guide to Site and Soil Description for Hazardous Waste Site Characterization. Volume 1: Metals. year: 1992 ident: ref7/cit7 – volume: 52 start-page: 62 year: 2006 ident: ref29/cit29 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2006.03.073 – volume: 52 start-page: 691 year: 1994 ident: ref5/cit5 publication-title: Bull. Environ. Contam. Toxicol. doi: 10.1007/BF00195489 |
SSID | ssj0002308 |
Score | 2.4648242 |
Snippet | A polyaniline (PAN) prepared by chemical oxidation method was studied for Hg(II) removal from aqueous solutions. Batch adsorption results showed solution pH... |
SourceID | proquest pubmed pascalfrancis crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5223 |
SubjectTerms | Adsorption Aniline Compounds - chemistry Applied sciences Aqueous solutions Electrochemistry - methods Environmental Processes Exact sciences and technology Humans Hydrogen-Ion Concentration Ions Mercury Mercury - chemistry Molecular Structure Nutrient removal Oxidation Oxidation-Reduction Pollution Sorption Spectrum Analysis - methods Water - chemistry Water Pollutants, Chemical - chemistry |
Title | Removal of Aqueous Hg(II) by Polyaniline: Sorption Characteristics and Mechanisms |
URI | http://dx.doi.org/10.1021/es803710k https://www.ncbi.nlm.nih.gov/pubmed/19708345 https://www.proquest.com/docview/230151996 https://www.proquest.com/docview/67612141 https://www.proquest.com/docview/754543655 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3dT9RAEJ8gvmiMHyha0HOjPuBDsfvR3a1v5IQcJhgVSe6t2bZTQ4CW0LsH-Oudfh4XOX1sOm2m87Hz20z3NwAfIsEdFZLAR5EpX2kpfZubwDfIdR5GKrNN9_zom56cqK_TcLoG71d08AX_hJWtaeWCs3twX2hK3hr_jI-H5ZYwtO3HFERST3v6oNuP1qUnrZZKz6NLV5EV8nZ8xWp82dSZgyfwpT-t0_5ecrY7nyW76c3f5I3_-oSn8LjDmWyvDYxnsIbFBjy8xT64AZv7i0NuJNplefUcfvzEi5IikJU52yNty3nFJr93Dg8_suSafS_Pr11xWsPTz-y4vGrWHDZeJn5mrsjYEdbHik-ri-oFnBzs_xpP_G70gu-UtjPfYRI6JJtmaYYEGUyYusTSzpVz54SWLnDaOG4CGyWouJFonVCZ08ohWpXLTVgvygJfASOER9dBkkmUSnAdCasjRAxSep00qQcj8k3cpU4VN11xwePBaB7s9G6L0464vJ6fcX6X6LtB9LJl67hLaLTk-0FS0PaXNIw82O6DYaEWhRnFNO0OPXg73KVUrPsrrqg9EWtT07Ep7gFbIWEIryqpw9CDl22QLdSMyJhShVv_M8c2PGg7Wsbn4WtYn13N8Q0Bo1kyahLjDx3dBSQ |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1RT9swED5t7GFDE9vYgIytWNMe2ENYHDu2w1tVgdqNom2A1LfISRyEgATh9oH9-p2TNKUTaHuMcrEu5-_iz7r4O4DPcUg1LiSBb8Kc-1ww5qtCBr40VBRRzHNVV8_Hx2J4xr9Nokkrk-POwqATFkeydRF_oS5AvxqrnLpccPkUniEJCR2a-4OT7quLVFrNuxXETEzmKkL3H3UrUGaXVqCXN9piMIqmi8XjNLNebg5fNX2Lakfrv0wu92bTdC_7_ZeG4_-9yWtYa1kn6TcweQNPTLkOq_e0CNdh42Bx5A1N25y3b-HnL3NdIR5JVZA-Ol3NLBme745GX0h6R35UV3e6vHBkdZ-cVLf1F4gMlmWgiS5zMjbukPGFvbbv4Ozw4HQw9NtGDL7mQk19bdJIGwxtnuUGCYSMMp0q3MdSqnUomA60kJrKQMWp4VQyo3TIcy24Nkbxgm3ASlmVZgsI8j28DtKcGcZDKuJQidgYE2Q4HJOZBz2MWdImkk3qGnlIky5oHuzOZy_JWhlz103j6iHTT53pTaPd8ZBRbwkCnWWIm2H0MPZge46JhVuINkQ47hU92OnuYmK6aosu3UwkQjpxNk49II9YSGSvnIko8mCzwdrCzRiDyXj0_l_h2IHnw9PxUXI0Ov6-DS-aWpf0afQBVqa3M_MRKdM07dW58gfR0g2F |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED7BkBBo4sfYWBh0FuJhPGTEsWM7vFVlVQtsDMakvkVO4qBpW1LN7cP46zknabqiTfAY5WJdzt_l7nTxdwDv4pBqDCSBb8Kc-1ww5qtCBr40VBRRzHNVd88Pj8TolH-eRJO2UHRnYVAJiyvZuonvvHqaFy3DAP1grHIMc8H5fXjg2nUO0f3BSfflxXRaLSYWxExMFkxCNx91USizK1FofaotGqRoJlncnWrWIWf4FL51ytZ_mpzvz2fpfvb7Lx7H_3-bZ_CkzT5Jv4HLc7hnyg14fIOTcAO2DpZH31C09X37Ar7_MJcV4pJUBemj4tXcktGvvfH4PUmvyXF1ca3LM5e0fiQn1VX9JSKDVTpoosucHBp32PjMXtpNOB0e_ByM_HYgg6-5UDNfmzTSBs2bZ7nBREJGmU4V1rOUah0KpgMtpKYyUHFqOJXMKB3yXAuujVG8YFuwVlal2QaCeR9eB2nODOMhFXGoRGyMCTJcjsnMgx7aLWkdyiZ1rzykSWc0D_YWO5hkLZ25m6pxcZvo20502nB43CbUW4FBJxliUYwaxh7sLHCxVAsRh0jHmtGD3e4uOqjruujS7UQipCNp49QDcoeExCyWMxFFHrxs8LZUM0ZjMh69-pc5duHh8adh8nV89GUHHjUtL-nT6DWsza7m5g1mTrO0V7vLH5r6EAg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Removal+of+Aqueous+Hg%28II%29+by+Polyaniline%3A+Sorption+Characteristics+and+Mechanisms&rft.jtitle=Environmental+science+%26+technology&rft.au=Wang%2C+Jing&rft.au=Deng%2C+Baolin&rft.au=Chen%2C+Huan&rft.au=Wang%2C+Xiaorong&rft.date=2009-07-15&rft.issn=0013-936X&rft.eissn=1520-5851&rft.volume=43&rft.issue=14&rft.spage=5223&rft.epage=5228&rft_id=info:doi/10.1021%2Fes803710k&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_es803710k |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon |