Removal of Aqueous Hg(II) by Polyaniline: Sorption Characteristics and Mechanisms

A polyaniline (PAN) prepared by chemical oxidation method was studied for Hg(II) removal from aqueous solutions. Batch adsorption results showed solution pH values had a major impact on mercury adsorption by this sorbent with optimal removal observed around pH 4−6. At both acidic and alkaline soluti...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 43; no. 14; pp. 5223 - 5228
Main Authors Wang, Jing, Deng, Baolin, Chen, Huan, Wang, Xiaorong, Zheng, Jianzhong
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 15.07.2009
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A polyaniline (PAN) prepared by chemical oxidation method was studied for Hg(II) removal from aqueous solutions. Batch adsorption results showed solution pH values had a major impact on mercury adsorption by this sorbent with optimal removal observed around pH 4−6. At both acidic and alkaline solutions beyond this optimal pH window, sorption capacity of PAN was substantially lowered, with the impact less pronounced at pH above 6. Among the water constituents tested, only chloride and humic acid had significant inhibition on mercury removal due to competitive complexation. In the range of 0.02−0.2 M, ionic strength had less impact on Hg(II) removal by PAN while further increase in background electrolyte concentration to 1.0 M substantially decreased mercury removal. An adsorption mechanism was proposed by analyzing the XPS spectra of the key elements (N1s, Cl2p and Hg4f) on polyaniline surfaces and the change of its electrokinetic properties, both before and after Hg(II) adsorption. Specifically, at pH 5.5, it is likely that all the nitrogen-containing functional groups on the polymer matrix including imine, protonated imine and amine could be responsible for mercury adsorption, with imine having the highest affinity while the remaining two having similar strength to complex mercury.
AbstractList A polyaniline (PAN) prepared by chemical oxidation method was studied for Hg(II) removal from aqueous solutions. Batch adsorption results showed solution pH values had a major impact on mercury adsorption by this sorbent with optimal removal observed around pH 4−6. At both acidic and alkaline solutions beyond this optimal pH window, sorption capacity of PAN was substantially lowered, with the impact less pronounced at pH above 6. Among the water constituents tested, only chloride and humic acid had significant inhibition on mercury removal due to competitive complexation. In the range of 0.02−0.2 M, ionic strength had less impact on Hg(II) removal by PAN while further increase in background electrolyte concentration to 1.0 M substantially decreased mercury removal. An adsorption mechanism was proposed by analyzing the XPS spectra of the key elements (N1s, Cl2p and Hg4f) on polyaniline surfaces and the change of its electrokinetic properties, both before and after Hg(II) adsorption. Specifically, at pH 5.5, it is likely that all the nitrogen-containing functional groups on the polymer matrix including imine, protonated imine and amine could be responsible for mercury adsorption, with imine having the highest affinity while the remaining two having similar strength to complex mercury.
A polyaniline (PAN) prepared by chemical oxidation method was studied for Hg(II) removal from aqueous solutions. Batch adsorption results showed solution pH values had a major impact on mercury adsorption by this sorbent with optimal removal observed around pH 4-6. At both acidic and alkaline solutions beyond this optimal pH window, sorption capacity of PAN was substantially lowered, with the impact less pronounced at pH above 6. Among the water constituents tested, only chloride and humic acid had significant inhibition on mercury removal due to competitive complexation. In the range of 0.02-0.2 M, ionic strength had less impact on Hg(II) removal by PAN while further increase in background electrolyte concentration to 1.0 M substantially decreased mercury removal. An adsorption mechanism was proposed by analyzing the XPS spectra of the key elements (N(1s), Cl(2p) and Hg(4f)) on polyaniline surfaces and the change of its electrokinetic properties, both before and after Hg(II) adsorption. Specifically, at pH 5.5, it is likely that all the nitrogen-containing functional groups on the polymer matrix including imine, protonated imine and amine could be responsible for mercury adsorption, with imine having the highest affinity while the remaining two having similar strength to complex mercury.
A polyaniline (PAN) prepared by chemical oxidation method was studied for Hg(II) removal from aqueous solutions. Batch adsorption results showed solution pH values had a major impact on mercury adsorption by this sorbent with optimal removal observed around pH 4 - 6. At both acidic and alkaline solutions beyond this optimal pH window, sorption capacity of PAN was substantially lowered, with the impact less pronounced at pH above 6. Among the water constituents tested, only chloride and humic acid had significant inhibition on mercury removal due to competitive complexation. In the range of 0.02 - 0.2 M, ionic strength had less impact on Hg(II) removal by PAN while further increase in background electrolyte concentration to 1.0 M substantially decreased mercury removal. An adsorption mechanism was proposed by analyzing the XPS spectra of the key elements (..., ... and ...) on polyaniline surfaces and the change of its electrokinetic properties, both before and after Hg(II) adsorption. Specifically, at pH 5.5, it is likely that all the nitrogen-containing functional groups on the polymer matrix including imine, protonated imine and amine could be responsible for mercury adsorption, with imine having the highest affinity while the remaining two having similar strength to complex mercury. (ProQuest: ... denotes formulae/symbols omitted.)
A polyaniline (PAN) prepared by chemical oxidation method was studied for Hg(II) removal from aqueous solutions. Batch adsorption results showed solution pH values had a major impact on mercury adsorption by this sorbent with optimal removal observed around pH 4-6. At both acidic and alkaline solutions beyond this optimal pH window, sorption capacity of PAN was substantially lowered, with the impact less pronounced at pH above 6. Among the water constituents tested, only chloride and humic acid had significant inhibition on mercury removal due to competitive complexation. In the range of 0.02-0.2 M, ionic strength had less impact on Hg(II) removal by PAN while further increase in background electrolyte concentration to 1.0 M substantially decreased mercury removal. An adsorption mechanism was proposed by analyzing the XPS spectra of the key elements (N1s, Cl2p and Hg4f) on polyaniline surfaces and the change of its electrokinetic properties, both before and after Hg(II) adsorption. Specifically, at pH 5.5, it is likely that all the nitrogen-containing functional groups on the polymer matrix including imine, protonated imine and amine could be responsible for mercury adsorption, with imine having the highest affinity while the remaining two having similar strength to complex mercury.
A polyaniline (PAN) prepared by chemical oxidation method was studied for Hg(II) removal from aqueous solutions. Batch adsorption results showed solution pH values had a major impact on mercury adsorption by this sorbent with optimal removal observed around pH 4-6. At both acidic and alkaline solutions beyond this optimal pH window, sorption capacity of PAN was substantially lowered, with the impact less pronounced at pH above 6. Among the water constituents tested, only chloride and humic acid had significant inhibition on mercury removal due to competitive complexation. In the range of 0.02-0.2 M, ionic strength had less impact on Hg(II) removal by PAN while further increase in background electrolyte concentration to 1.0 M substantially decreased mercury removal. An adsorption mechanism was proposed by analyzing the XPS spectra of the key elements (N(1s), Cl(2p) and Hg(4f)) on polyaniline surfaces and the change of its electrokinetic properties, both before and after Hg(II) adsorption. Specifically, at pH 5.5, it is likely that all the nitrogen-containing functional groups on the polymer matrix including imine, protonated imine and amine could be responsible for mercury adsorption, with imine having the highest affinity while the remaining two having similar strength to complex mercury.A polyaniline (PAN) prepared by chemical oxidation method was studied for Hg(II) removal from aqueous solutions. Batch adsorption results showed solution pH values had a major impact on mercury adsorption by this sorbent with optimal removal observed around pH 4-6. At both acidic and alkaline solutions beyond this optimal pH window, sorption capacity of PAN was substantially lowered, with the impact less pronounced at pH above 6. Among the water constituents tested, only chloride and humic acid had significant inhibition on mercury removal due to competitive complexation. In the range of 0.02-0.2 M, ionic strength had less impact on Hg(II) removal by PAN while further increase in background electrolyte concentration to 1.0 M substantially decreased mercury removal. An adsorption mechanism was proposed by analyzing the XPS spectra of the key elements (N(1s), Cl(2p) and Hg(4f)) on polyaniline surfaces and the change of its electrokinetic properties, both before and after Hg(II) adsorption. Specifically, at pH 5.5, it is likely that all the nitrogen-containing functional groups on the polymer matrix including imine, protonated imine and amine could be responsible for mercury adsorption, with imine having the highest affinity while the remaining two having similar strength to complex mercury.
Author Deng, Baolin
Chen, Huan
Wang, Xiaorong
Wang, Jing
Zheng, Jianzhong
Author_xml – sequence: 1
  givenname: Jing
  surname: Wang
  fullname: Wang, Jing
– sequence: 2
  givenname: Baolin
  surname: Deng
  fullname: Deng, Baolin
– sequence: 3
  givenname: Huan
  surname: Chen
  fullname: Chen, Huan
– sequence: 4
  givenname: Xiaorong
  surname: Wang
  fullname: Wang, Xiaorong
– sequence: 5
  givenname: Jianzhong
  surname: Zheng
  fullname: Zheng, Jianzhong
  email: szheng@nju.edu.cn
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22104219$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19708345$$D View this record in MEDLINE/PubMed
BookMark eNp90UtvEzEQB3ALFdG0cOALIAsJaA9LPX7sg1sVlTZSEW-JmzXr9VKXXTvYm0r59nXUkEoFcfLlN-P_zByQPR-8JeQ5sLfAOJzYVDNRAfv1iMxAcVaoWsEemTEGomhE-WOfHKR0zRjjgtVPyD40FauFVDPy-Ysdww0ONPT09PfKhlWiFz-PFotj2q7ppzCs0bvBefuOfg1xObng6fwKI5rJRpcmZxJF39EP1lxlmcb0lDzucUj22fY9JN_fn32bXxSXH88X89PLAmVZTwXaVqHNCTvT2YZBpQy2NQgOgMhLgQzLCiHnbForoRK2Ri47LCVaW8teHJI3d32XMeTgadKjS8YOA_rNFLpSUklRKpXl6__KsiqBg4QMXz6A12EVfZ5C58WBgqYpM3qxRat2tJ1eRjdiXOs_O83g1RZgMjj0Eb1xaec4ByY5NNmd3DkTQ0rR9tq4CTcbniK6QQPTm-vq3XVzxfGDit3n_7DbFGjS_Rh_u1svV64N
CODEN ESTHAG
CitedBy_id crossref_primary_10_1016_j_electacta_2017_11_074
crossref_primary_10_1016_j_jcis_2019_05_027
crossref_primary_10_1016_j_carbpol_2016_06_064
crossref_primary_10_2166_wst_2023_327
crossref_primary_10_5004_dwt_2012_2734
crossref_primary_10_1016_j_jhazmat_2009_10_019
crossref_primary_10_1089_ees_2015_0163
crossref_primary_10_1039_C5RA26932F
crossref_primary_10_1016_j_cej_2022_137246
crossref_primary_10_1016_j_ijhydene_2020_05_028
crossref_primary_10_3390_ma15041580
crossref_primary_10_1080_01496395_2023_2225733
crossref_primary_10_2166_wst_2019_108
crossref_primary_10_1016_j_seppur_2019_05_019
crossref_primary_10_1155_2022_3181963
crossref_primary_10_1016_j_msec_2016_05_066
crossref_primary_10_1016_j_seppur_2020_117120
crossref_primary_10_1039_C0CC04860G
crossref_primary_10_1002_app_44879
crossref_primary_10_1021_acs_est_7b03364
crossref_primary_10_1039_C4RA05800C
crossref_primary_10_1039_D3TA02076B
crossref_primary_10_1155_2016_7245829
crossref_primary_10_1080_01496395_2014_983246
crossref_primary_10_1016_j_jcis_2017_09_054
crossref_primary_10_1016_j_ijbiomac_2019_03_007
crossref_primary_10_1016_j_jhazmat_2018_10_051
crossref_primary_10_1016_j_cej_2017_01_066
crossref_primary_10_1016_j_jhazmat_2012_10_050
crossref_primary_10_1016_j_cej_2013_05_089
crossref_primary_10_1021_ie300246m
crossref_primary_10_1080_19443994_2014_927798
crossref_primary_10_3390_molecules30071406
crossref_primary_10_3390_membranes11020139
crossref_primary_10_1016_j_cej_2014_06_063
crossref_primary_10_1021_am201447s
crossref_primary_10_1002_kin_21693
crossref_primary_10_1016_j_cej_2013_11_006
crossref_primary_10_1002_marc_201000780
crossref_primary_10_1039_C4RA11496E
crossref_primary_10_1016_j_jiec_2023_10_003
crossref_primary_10_1002_pat_1750
crossref_primary_10_1016_j_cej_2024_149443
crossref_primary_10_1016_j_molstruc_2019_06_060
crossref_primary_10_1016_j_seppur_2023_124400
crossref_primary_10_1016_j_jcis_2014_03_031
crossref_primary_10_1016_j_synthmet_2015_12_006
crossref_primary_10_1039_C6SC02855A
crossref_primary_10_1039_c1cc00005e
crossref_primary_10_1021_acssuschemeng_8b02965
crossref_primary_10_1515_ract_2017_2865
crossref_primary_10_1007_s00706_016_1745_3
crossref_primary_10_1016_j_seppur_2024_128482
crossref_primary_10_1021_nn405192s
crossref_primary_10_1039_D0ME00090F
crossref_primary_10_1016_j_jcis_2012_07_066
crossref_primary_10_1016_j_jelechem_2013_06_014
crossref_primary_10_1002_masy_202000337
crossref_primary_10_1016_j_polymer_2024_127181
crossref_primary_10_1002_cphc_201300832
crossref_primary_10_1007_s11434_016_1168_x
crossref_primary_10_1021_acssuschemeng_7b01880
crossref_primary_10_1080_00032719_2014_956215
crossref_primary_10_1016_j_seppur_2023_125866
crossref_primary_10_1039_C6RA00193A
crossref_primary_10_1016_j_reactfunctpolym_2021_105129
crossref_primary_10_1039_C6RA10162C
crossref_primary_10_1080_01496395_2010_504201
crossref_primary_10_1016_j_jcis_2016_03_058
crossref_primary_10_1021_la401329d
crossref_primary_10_1016_j_chemosphere_2021_130206
crossref_primary_10_1002_ep_11690
crossref_primary_10_1038_s41467_024_55511_4
crossref_primary_10_1016_j_jcis_2015_10_003
crossref_primary_10_1016_j_carbpol_2016_07_110
crossref_primary_10_1016_j_jhazmat_2014_07_052
crossref_primary_10_3390_min9020074
crossref_primary_10_1016_j_watres_2016_10_031
crossref_primary_10_1007_s11356_020_10348_4
crossref_primary_10_1016_j_molliq_2019_111789
crossref_primary_10_1021_acs_iecr_1c01530
crossref_primary_10_1016_j_clay_2017_01_015
crossref_primary_10_1016_S1004_9541_13_60516_9
crossref_primary_10_1016_j_reactfunctpolym_2019_01_005
crossref_primary_10_1039_C6TA01219A
crossref_primary_10_1016_j_cej_2012_09_057
crossref_primary_10_1016_j_matchemphys_2020_124090
crossref_primary_10_1016_j_jallcom_2019_152993
crossref_primary_10_1002_chem_201202203
crossref_primary_10_1021_es401174n
crossref_primary_10_1016_j_jhazmat_2012_11_050
crossref_primary_10_1016_j_molliq_2017_01_013
crossref_primary_10_1016_j_cej_2020_124635
crossref_primary_10_1021_jp107492g
crossref_primary_10_1039_c0jm04489j
crossref_primary_10_1039_C8RA06171H
crossref_primary_10_1016_j_cej_2015_04_120
crossref_primary_10_1016_j_seppur_2020_116515
crossref_primary_10_1016_j_jcis_2022_10_153
crossref_primary_10_1016_j_jhazmat_2015_01_054
crossref_primary_10_1007_s13369_022_06833_2
crossref_primary_10_1016_j_molliq_2019_04_115
crossref_primary_10_1039_D1AY01402A
crossref_primary_10_1007_s10967_012_1735_9
crossref_primary_10_1016_j_envres_2022_113123
crossref_primary_10_1016_j_cej_2019_04_063
crossref_primary_10_1021_acs_chemrev_7b00482
crossref_primary_10_1021_acs_est_3c08527
crossref_primary_10_1016_j_ijbiomac_2016_02_027
crossref_primary_10_3390_polym15030482
crossref_primary_10_1016_j_cej_2011_08_035
crossref_primary_10_1016_j_cej_2012_02_088
crossref_primary_10_1039_C5NJ02703A
crossref_primary_10_1016_j_jpcs_2024_111926
crossref_primary_10_1021_acs_langmuir_3c03317
crossref_primary_10_1016_j_eurpolymj_2020_109514
crossref_primary_10_1016_j_jhazmat_2022_128271
crossref_primary_10_14233_ajchem_2021_23013
crossref_primary_10_1016_j_cjche_2017_07_002
crossref_primary_10_3390_membranes11040269
crossref_primary_10_1016_j_cej_2024_157833
crossref_primary_10_1021_la200947c
crossref_primary_10_1016_j_envpol_2011_11_012
crossref_primary_10_3390_ma12111764
crossref_primary_10_1007_s10450_014_9615_y
crossref_primary_10_1021_jp400221k
crossref_primary_10_1016_j_jhazmat_2016_01_001
crossref_primary_10_1016_j_cej_2016_06_110
crossref_primary_10_1007_s12221_017_7046_6
crossref_primary_10_1016_j_polymer_2010_10_052
crossref_primary_10_1061__ASCE_EE_1943_7870_0000453
crossref_primary_10_1007_s13738_020_01864_8
crossref_primary_10_1016_j_snb_2020_129267
crossref_primary_10_1039_C3TA13867D
crossref_primary_10_5004_dwt_2019_24835
crossref_primary_10_1016_j_synthmet_2021_116760
crossref_primary_10_1039_D2EM00409G
crossref_primary_10_1021_acs_est_2c01591
crossref_primary_10_1016_j_cej_2014_07_114
crossref_primary_10_1016_j_jcis_2016_03_044
crossref_primary_10_1016_j_cej_2012_01_063
crossref_primary_10_1021_acs_est_6b00058
crossref_primary_10_1021_es404418a
crossref_primary_10_1021_ie3013874
crossref_primary_10_1016_j_molliq_2016_01_100
crossref_primary_10_1021_acs_iecr_6b01359
crossref_primary_10_1016_j_watres_2014_11_030
crossref_primary_10_1021_la300619d
crossref_primary_10_1016_j_polymer_2014_05_024
crossref_primary_10_1016_j_chemosphere_2019_03_154
crossref_primary_10_1016_j_foodchem_2018_08_107
crossref_primary_10_1016_j_synthmet_2010_01_017
crossref_primary_10_1089_ees_2008_0418
crossref_primary_10_1016_j_jece_2015_12_023
crossref_primary_10_1016_j_jtice_2017_07_024
crossref_primary_10_1021_acssuschemeng_6b00738
crossref_primary_10_1016_j_envpol_2020_115389
crossref_primary_10_1016_j_jhazmat_2015_09_028
crossref_primary_10_1007_s12209_019_00205_y
crossref_primary_10_1515_chem_2020_0137
crossref_primary_10_1016_j_molliq_2024_125828
crossref_primary_10_1016_j_seppur_2019_115901
crossref_primary_10_1007_s10967_024_09390_0
crossref_primary_10_1002_app_38111
crossref_primary_10_1177_09673911221141747
crossref_primary_10_1007_s10163_023_01720_w
crossref_primary_10_1039_c1jm10111k
crossref_primary_10_1016_j_ijbiomac_2018_02_101
crossref_primary_10_1016_j_bios_2010_11_044
crossref_primary_10_1021_acs_iecr_5b04630
crossref_primary_10_1002_marc_201400248
crossref_primary_10_3389_fchem_2022_882876
crossref_primary_10_1021_es4017816
crossref_primary_10_1351_pac_con_12_11_17
crossref_primary_10_1039_D1QI01164B
crossref_primary_10_1016_j_chemosphere_2022_136292
crossref_primary_10_1021_jacs_9b12196
crossref_primary_10_1016_j_jece_2018_03_047
crossref_primary_10_1016_j_cej_2014_02_091
crossref_primary_10_61186_MCH_2025_1070
crossref_primary_10_1016_j_cej_2012_04_050
crossref_primary_10_1021_acsami_2c15232
crossref_primary_10_1021_la203162y
crossref_primary_10_1016_j_optmat_2013_06_006
crossref_primary_10_1002_adv_21807
crossref_primary_10_1039_C7RA06404G
crossref_primary_10_1016_j_cej_2011_07_065
crossref_primary_10_1016_j_envres_2022_113327
crossref_primary_10_1016_j_jcis_2014_05_046
crossref_primary_10_1007_s11468_022_01626_7
crossref_primary_10_1039_D0RA02759F
crossref_primary_10_1016_j_cej_2013_04_104
crossref_primary_10_1002_star_201900148
crossref_primary_10_1039_C8RA03924K
crossref_primary_10_1007_s11270_015_2618_9
crossref_primary_10_1016_j_jclepro_2020_122163
crossref_primary_10_3390_w15163009
crossref_primary_10_1016_j_watres_2011_08_049
crossref_primary_10_1080_03067319_2024_2358191
crossref_primary_10_1016_j_apsusc_2013_06_111
crossref_primary_10_1016_j_cej_2013_05_026
crossref_primary_10_1016_j_jcis_2016_10_035
crossref_primary_10_1039_C3DT52881B
crossref_primary_10_1007_s10967_017_5696_x
crossref_primary_10_1016_j_ijbiomac_2021_03_043
crossref_primary_10_1039_C7EW00154A
crossref_primary_10_1080_15569543_2020_1824191
crossref_primary_10_1016_j_matlet_2011_01_058
crossref_primary_10_1007_s11356_023_28385_0
crossref_primary_10_1016_j_jhazmat_2020_124012
crossref_primary_10_1080_01496395_2019_1576733
crossref_primary_10_1002_tcr_202000073
crossref_primary_10_1021_ie401359d
crossref_primary_10_1016_j_cej_2023_144659
crossref_primary_10_1002_chem_201204113
crossref_primary_10_1038_s41598_017_11831_8
crossref_primary_10_1021_jp101988h
crossref_primary_10_3390_ma13030632
crossref_primary_10_1002_cssc_202300426
crossref_primary_10_1021_je1001686
crossref_primary_10_2166_wst_2015_361
crossref_primary_10_1007_s12274_022_5365_4
crossref_primary_10_1016_j_desal_2010_08_025
crossref_primary_10_1016_j_ijbiomac_2023_123723
crossref_primary_10_1016_j_synthmet_2014_02_013
crossref_primary_10_3724_SP_J_1105_2013_12200
crossref_primary_10_1080_19443994_2014_935805
crossref_primary_10_1016_j_apsusc_2013_11_020
crossref_primary_10_1021_acs_jced_7b00897
crossref_primary_10_1002_adv_21428
crossref_primary_10_1016_j_colsurfa_2015_05_020
crossref_primary_10_1016_j_ijbiomac_2018_05_069
crossref_primary_10_1039_D0NJ06259F
crossref_primary_10_1016_j_apsusc_2014_04_083
crossref_primary_10_1016_j_cej_2021_129425
crossref_primary_10_1016_j_cej_2016_01_038
crossref_primary_10_1007_s10924_017_0947_z
crossref_primary_10_1016_j_jlumin_2011_06_033
crossref_primary_10_1016_j_chemosphere_2020_129201
crossref_primary_10_1007_s10661_016_5226_2
crossref_primary_10_1016_j_matchemphys_2018_04_076
crossref_primary_10_1016_j_envres_2017_12_025
crossref_primary_10_1021_acsami_2c09232
crossref_primary_10_1021_acs_est_2c03033
crossref_primary_10_2139_ssrn_4142164
crossref_primary_10_1039_C4RA16910G
crossref_primary_10_4028_www_scientific_net_MSF_1008_222
crossref_primary_10_3390_w12082105
crossref_primary_10_1007_s10967_017_5274_2
crossref_primary_10_1016_j_cej_2013_03_011
crossref_primary_10_1016_j_synthmet_2013_10_028
crossref_primary_10_1016_j_electacta_2018_02_101
crossref_primary_10_1016_j_molliq_2015_10_008
crossref_primary_10_1016_j_cej_2019_123515
crossref_primary_10_1016_j_jece_2025_116233
crossref_primary_10_1039_C8RA06998K
crossref_primary_10_1080_09593330_2011_572924
crossref_primary_10_1061__ASCE_EE_1943_7870_0000743
crossref_primary_10_1016_j_seppur_2024_128053
crossref_primary_10_1021_acsanm_9b01438
crossref_primary_10_1016_j_eti_2025_104129
crossref_primary_10_1039_C6TA10499A
crossref_primary_10_1002_elan_201600438
crossref_primary_10_1016_j_cej_2018_01_093
crossref_primary_10_1021_acsami_1c19011
crossref_primary_10_1016_j_molliq_2020_113447
crossref_primary_10_1016_j_clay_2021_106151
crossref_primary_10_1016_j_matlet_2015_02_113
crossref_primary_10_1089_ees_2010_0435
crossref_primary_10_1021_sc500030v
crossref_primary_10_1002_xrs_2682
crossref_primary_10_1016_j_synthmet_2015_03_007
crossref_primary_10_1016_j_jnucmat_2015_07_027
crossref_primary_10_1039_C8CY01677A
crossref_primary_10_1016_j_hydromet_2017_12_013
crossref_primary_10_1016_j_molliq_2015_05_051
crossref_primary_10_1016_j_gca_2014_06_001
crossref_primary_10_1016_j_jcis_2011_01_038
crossref_primary_10_1021_acssuschemeng_7b00477
crossref_primary_10_1016_j_watres_2021_117663
crossref_primary_10_1007_s11356_022_23255_7
crossref_primary_10_1021_acssuschemeng_7b00917
crossref_primary_10_3390_jcs5090233
crossref_primary_10_3390_s16111871
crossref_primary_10_1016_j_mtcomm_2023_107976
crossref_primary_10_1039_C5NJ02547H
crossref_primary_10_1080_19443994_2013_794711
crossref_primary_10_1016_j_cej_2021_132960
crossref_primary_10_4028_www_scientific_net_KEM_594_595_793
crossref_primary_10_1002_pc_24114
crossref_primary_10_1016_j_carpta_2021_100151
crossref_primary_10_5004_dwt_2017_21073
crossref_primary_10_1016_j_jcis_2017_10_092
Cites_doi 10.1016/j.talanta.2005.08.066
10.1016/j.aca.2004.11.047
10.1016/S0379-6779(01)00293-4
10.1016/j.chemosphere.2003.11.011
10.1021/jp0651844
10.1016/j.carbon.2007.11.002
10.1126/science.276.5314.923
10.1260/0263617042879483
10.1016/j.inoche.2007.09.029
10.1021/es062121q
10.1002/etc.5620190909
10.1016/j.envpol.2004.01.010
10.1021/es070814g
10.1016/S0008-6223(98)00189-4
10.1002/1096-9918(200008)30:1<269::AID-SIA758>3.0.CO;2-N
10.1021/ie048736i
10.2134/jeq1996.00472425002500040027x
10.1023/A:1015502430561
10.1021/ie020834l
10.1016/S1387-1811(97)00019-X
10.1007/s10967-006-0254-y
10.1021/la034893v
10.1021/la051551b
10.1002/chem.200700233
10.1016/j.reactfunctpolym.2008.11.002
10.1021/es001960o
10.1021/ie0487585
10.1039/an9931801085
10.1006/jcis.1995.1228
10.1016/0379-6779(88)90571-1
10.1007/s002160051075
10.1021/es010713x
10.1016/j.colsurfa.2006.01.026
10.1016/j.seppur.2003.11.009
10.1006/jcis.1999.6263
10.1016/S0079-6700(97)00030-0
10.1021/ie020707p
10.1021/la0014510
10.1016/j.electacta.2006.03.073
10.1007/BF00195489
ContentType Journal Article
Copyright Copyright © 2009 American Chemical Society
2009 INIST-CNRS
Copyright American Chemical Society Jul 15, 2009
Copyright_xml – notice: Copyright © 2009 American Chemical Society
– notice: 2009 INIST-CNRS
– notice: Copyright American Chemical Society Jul 15, 2009
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7U6
DOI 10.1021/es803710k
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
Sustainability Science Abstracts
DatabaseTitleList
MEDLINE
Biotechnology Research Abstracts
Environment Abstracts
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
Applied Sciences
EISSN 1520-5851
EndPage 5228
ExternalDocumentID 1788051971
19708345
22104219
10_1021_es803710k
b426156016
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID -
.K2
1AW
3R3
4.4
4R4
53G
55A
5GY
5VS
63O
7~N
85S
AABXI
ABFLS
ABMVS
ABOGM
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACPRK
ACS
AEESW
AENEX
AFEFF
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
K2
LG6
MS
PQEST
PQQKQ
ROL
RXW
TN5
TWZ
U5U
UHB
UI2
UKR
UPT
UQL
VF5
VG9
VQA
W1F
WH7
X
XFK
XZL
YZZ
---
-DZ
-~X
..I
.DC
6TJ
AAHBH
AAYOK
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
ADMHC
ADUKH
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
MS~
MW2
XSW
ZCA
.HR
186
1WB
42X
8WZ
A6W
ABHMW
ACKIV
ACRPL
ADNMO
AETEA
AEYZD
AGQPQ
ANPPW
ANTXH
IHE
IQODW
MVM
NHB
OHT
RNS
TAE
UBC
UBX
UBY
VJK
VOH
YV5
ZCG
ZY4
~A~
CGR
CUY
CVF
ECM
EIF
NPM
YIN
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7U6
ID FETCH-LOGICAL-a468t-aeb5ae001dcde90175cab813211aa263a0a67a17089be4173e8a24da64aee84f3
IEDL.DBID ACS
ISSN 0013-936X
IngestDate Mon Jul 21 11:26:25 EDT 2025
Fri Jul 11 11:39:30 EDT 2025
Fri Jul 25 04:24:16 EDT 2025
Wed Feb 19 02:34:52 EST 2025
Mon Jul 21 09:14:41 EDT 2025
Tue Jul 01 02:10:17 EDT 2025
Thu Apr 24 22:59:34 EDT 2025
Thu Aug 27 13:42:35 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords Background concentration
Complexation
Organic matter
Electrochemical treatment
Electrokinetics
Adsorption capacity
Nitrogen
Soil pollution
Heavy metal
Sorption
Trace element
Adsorption
Batchwise
Ionic strength
Chlorides
Poison
Oxidation
Sorbent
Mercury
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a468t-aeb5ae001dcde90175cab813211aa263a0a67a17089be4173e8a24da64aee84f3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 19708345
PQID 230151996
PQPubID 45412
PageCount 6
ParticipantIDs proquest_miscellaneous_754543655
proquest_miscellaneous_67612141
proquest_journals_230151996
pubmed_primary_19708345
pascalfrancis_primary_22104219
crossref_citationtrail_10_1021_es803710k
crossref_primary_10_1021_es803710k
acs_journals_10_1021_es803710k
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-07-15
PublicationDateYYYYMMDD 2009-07-15
PublicationDate_xml – month: 07
  year: 2009
  text: 2009-07-15
  day: 15
PublicationDecade 2000
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
– name: Easton
PublicationTitle Environmental science & technology
PublicationTitleAlternate Environ. Sci. Technol
PublicationYear 2009
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Remya Devi P. S. (ref33/cit33) 2006; 269
Li N. (ref16/cit16) 2005; 21
Das S. K. (ref15/cit15) 2007; 41
Tiffreau C. (ref19/cit19) 1995; 172
Aguado J. (ref4/cit4) 2005; 44
Ravichandran M. (ref25/cit25) 2004; 55
Menardo C. (ref40/cit40) 1988; 25
Zhang L. (ref5/cit5) 1994; 52
Guerra D. L. (ref13/cit13) 2008; 11
Shimano J. Y. (ref26/cit26) 2001; 123
Gupta R. K. (ref31/cit31) 2004; 38
Wang Q. (ref3/cit3) 2004; 131
Vieira R. S. (ref17/cit17) 2006; 279
Walcarius A. (ref38/cit38) 2005; 547
Gupta R. K. (ref30/cit30) 2004; 22
(ref8/cit8) 2001
Yan X. (ref36/cit36) 2007; 111
Nam K. H. (ref2/cit2) 2003; 42
Cameron R. E. (ref7/cit7) 1992
Balarama Krishna M. V. (ref32/cit32) 2005; 68
Hintelmann H. (ref6/cit6) 2000; 19
Budinova T. (ref10/cit10) 2003; 42
Lu Q. F. (ref34/cit34) 2007; 13
ref21/cit21
Hutson N. D. (ref43/cit43) 2007; 41
Wang P. C. (ref35/cit35) 2009; 69
Bonnissel-Gissinger P. (ref20/cit20) 1999; 215
Zhang G. (ref37/cit37) 2008; 46
Zhu X. (ref14/cit14) 2005; 44
Zhang X. (ref41/cit41) 2003; 19
Yin Y. J. (ref18/cit18) 1996; 25
Namasivayam C. (ref9/cit9) 1999; 37
Kang E. T. (ref39/cit39) 1998; 23
Ehrhardt J. J. (ref22/cit22) 2000; 30
Pacyna E. G. (ref1/cit1) 2002; 137
Mercier L. (ref12/cit12) 1998; 20
Kumar S. (ref27/cit27) 1993; 118
Sofiane B. (ref29/cit29) 2006; 52
Daughney C. J. (ref42/cit42) 2002; 36
Sahayam A. C. (ref28/cit28) 1998; 362
Feng X. (ref11/cit11) 1997; 276
Behra P. (ref23/cit23) 2001; 17
Hesterberg D. (ref24/cit24) 2001; 35
References_xml – volume: 68
  start-page: 329
  year: 2005
  ident: ref32/cit32
  publication-title: Talanta
  doi: 10.1016/j.talanta.2005.08.066
– volume: 547
  start-page: 3
  year: 2005
  ident: ref38/cit38
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2004.11.047
– volume: 123
  start-page: 251
  year: 2001
  ident: ref26/cit26
  publication-title: Synth. Metal.
  doi: 10.1016/S0379-6779(01)00293-4
– volume: 55
  start-page: 319
  year: 2004
  ident: ref25/cit25
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2003.11.011
– volume: 111
  start-page: 4125
  year: 2007
  ident: ref36/cit36
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/jp0651844
– volume: 46
  start-page: 196
  year: 2008
  ident: ref37/cit37
  publication-title: Carbon
  doi: 10.1016/j.carbon.2007.11.002
– volume: 276
  start-page: 923
  year: 1997
  ident: ref11/cit11
  publication-title: Science
  doi: 10.1126/science.276.5314.923
– ident: ref21/cit21
– volume: 22
  start-page: 485
  year: 2004
  ident: ref30/cit30
  publication-title: Adsorp. Sci. Technol.
  doi: 10.1260/0263617042879483
– volume: 11
  start-page: 20
  year: 2008
  ident: ref13/cit13
  publication-title: Inorg. Chem. Commun.
  doi: 10.1016/j.inoche.2007.09.029
– volume: 41
  start-page: 1747
  year: 2007
  ident: ref43/cit43
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es062121q
– volume: 19
  start-page: 2204
  issue: 9
  year: 2000
  ident: ref6/cit6
  publication-title: Environ. Toxicol. Chem.
  doi: 10.1002/etc.5620190909
– volume: 131
  start-page: 323
  year: 2004
  ident: ref3/cit3
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2004.01.010
– volume: 41
  start-page: 8281
  year: 2007
  ident: ref15/cit15
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es070814g
– volume: 37
  start-page: 79
  year: 1999
  ident: ref9/cit9
  publication-title: Carbon
  doi: 10.1016/S0008-6223(98)00189-4
– volume: 30
  start-page: 269
  year: 2000
  ident: ref22/cit22
  publication-title: Surf. Interface Anal.
  doi: 10.1002/1096-9918(200008)30:1<269::AID-SIA758>3.0.CO;2-N
– volume: 44
  start-page: 8605
  year: 2005
  ident: ref14/cit14
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie048736i
– volume: 25
  start-page: 837
  year: 1996
  ident: ref18/cit18
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq1996.00472425002500040027x
– volume: 137
  start-page: 149
  year: 2002
  ident: ref1/cit1
  publication-title: Water Air Soil Pollut.
  doi: 10.1023/A:1015502430561
– volume: 42
  start-page: 1955
  year: 2003
  ident: ref2/cit2
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie020834l
– volume: 20
  start-page: 101
  year: 1998
  ident: ref12/cit12
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/S1387-1811(97)00019-X
– volume: 269
  start-page: 217
  year: 2006
  ident: ref33/cit33
  publication-title: J. Radioanal. Nucl. Chem.
  doi: 10.1007/s10967-006-0254-y
– volume: 19
  start-page: 10703
  year: 2003
  ident: ref41/cit41
  publication-title: Langmuir
  doi: 10.1021/la034893v
– volume: 21
  start-page: 11780
  year: 2005
  ident: ref16/cit16
  publication-title: Langmuir
  doi: 10.1021/la051551b
– volume: 13
  start-page: 6009
  year: 2007
  ident: ref34/cit34
  publication-title: Chem.—Eur. J.
  doi: 10.1002/chem.200700233
– volume: 69
  start-page: 217
  issue: 4
  year: 2009
  ident: ref35/cit35
  publication-title: Reac. Funct. Polym.
  doi: 10.1016/j.reactfunctpolym.2008.11.002
– volume: 35
  start-page: 2741
  year: 2001
  ident: ref24/cit24
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es001960o
– volume: 44
  start-page: 3665
  year: 2005
  ident: ref4/cit4
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie0487585
– volume-title: National Primary Drinking Water Standards
  year: 2001
  ident: ref8/cit8
– volume: 118
  start-page: 1085
  year: 1993
  ident: ref27/cit27
  publication-title: Analyst
  doi: 10.1039/an9931801085
– volume: 172
  start-page: 82
  year: 1995
  ident: ref19/cit19
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.1995.1228
– volume: 25
  start-page: 311
  year: 1988
  ident: ref40/cit40
  publication-title: Synth. Met.
  doi: 10.1016/0379-6779(88)90571-1
– volume: 362
  start-page: 285
  year: 1998
  ident: ref28/cit28
  publication-title: Fresenius’ J. Anal. Chem.
  doi: 10.1007/s002160051075
– volume: 36
  start-page: 1546
  year: 2002
  ident: ref42/cit42
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es010713x
– volume: 279
  start-page: 196
  year: 2006
  ident: ref17/cit17
  publication-title: Colloids Surf., A.
  doi: 10.1016/j.colsurfa.2006.01.026
– volume: 38
  start-page: 225
  year: 2004
  ident: ref31/cit31
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2003.11.009
– volume: 215
  start-page: 313
  year: 1999
  ident: ref20/cit20
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.1999.6263
– volume: 23
  start-page: 277
  year: 1998
  ident: ref39/cit39
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/S0079-6700(97)00030-0
– volume: 42
  start-page: 2223
  year: 2003
  ident: ref10/cit10
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie020707p
– volume: 17
  start-page: 3970
  year: 2001
  ident: ref23/cit23
  publication-title: Langmuir
  doi: 10.1021/la0014510
– volume-title: Guide to Site and Soil Description for Hazardous Waste Site Characterization. Volume 1: Metals.
  year: 1992
  ident: ref7/cit7
– volume: 52
  start-page: 62
  year: 2006
  ident: ref29/cit29
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2006.03.073
– volume: 52
  start-page: 691
  year: 1994
  ident: ref5/cit5
  publication-title: Bull. Environ. Contam. Toxicol.
  doi: 10.1007/BF00195489
SSID ssj0002308
Score 2.4648242
Snippet A polyaniline (PAN) prepared by chemical oxidation method was studied for Hg(II) removal from aqueous solutions. Batch adsorption results showed solution pH...
SourceID proquest
pubmed
pascalfrancis
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5223
SubjectTerms Adsorption
Aniline Compounds - chemistry
Applied sciences
Aqueous solutions
Electrochemistry - methods
Environmental Processes
Exact sciences and technology
Humans
Hydrogen-Ion Concentration
Ions
Mercury
Mercury - chemistry
Molecular Structure
Nutrient removal
Oxidation
Oxidation-Reduction
Pollution
Sorption
Spectrum Analysis - methods
Water - chemistry
Water Pollutants, Chemical - chemistry
Title Removal of Aqueous Hg(II) by Polyaniline: Sorption Characteristics and Mechanisms
URI http://dx.doi.org/10.1021/es803710k
https://www.ncbi.nlm.nih.gov/pubmed/19708345
https://www.proquest.com/docview/230151996
https://www.proquest.com/docview/67612141
https://www.proquest.com/docview/754543655
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3dT9RAEJ8gvmiMHyha0HOjPuBDsfvR3a1v5IQcJhgVSe6t2bZTQ4CW0LsH-Oudfh4XOX1sOm2m87Hz20z3NwAfIsEdFZLAR5EpX2kpfZubwDfIdR5GKrNN9_zom56cqK_TcLoG71d08AX_hJWtaeWCs3twX2hK3hr_jI-H5ZYwtO3HFERST3v6oNuP1qUnrZZKz6NLV5EV8nZ8xWp82dSZgyfwpT-t0_5ecrY7nyW76c3f5I3_-oSn8LjDmWyvDYxnsIbFBjy8xT64AZv7i0NuJNplefUcfvzEi5IikJU52yNty3nFJr93Dg8_suSafS_Pr11xWsPTz-y4vGrWHDZeJn5mrsjYEdbHik-ri-oFnBzs_xpP_G70gu-UtjPfYRI6JJtmaYYEGUyYusTSzpVz54SWLnDaOG4CGyWouJFonVCZ08ohWpXLTVgvygJfASOER9dBkkmUSnAdCasjRAxSep00qQcj8k3cpU4VN11xwePBaB7s9G6L0464vJ6fcX6X6LtB9LJl67hLaLTk-0FS0PaXNIw82O6DYaEWhRnFNO0OPXg73KVUrPsrrqg9EWtT07Ep7gFbIWEIryqpw9CDl22QLdSMyJhShVv_M8c2PGg7Wsbn4WtYn13N8Q0Bo1kyahLjDx3dBSQ
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1RT9swED5t7GFDE9vYgIytWNMe2ENYHDu2w1tVgdqNom2A1LfISRyEgATh9oH9-p2TNKUTaHuMcrEu5-_iz7r4O4DPcUg1LiSBb8Kc-1ww5qtCBr40VBRRzHNVV8_Hx2J4xr9Nokkrk-POwqATFkeydRF_oS5AvxqrnLpccPkUniEJCR2a-4OT7quLVFrNuxXETEzmKkL3H3UrUGaXVqCXN9piMIqmi8XjNLNebg5fNX2Lakfrv0wu92bTdC_7_ZeG4_-9yWtYa1kn6TcweQNPTLkOq_e0CNdh42Bx5A1N25y3b-HnL3NdIR5JVZA-Ol3NLBme745GX0h6R35UV3e6vHBkdZ-cVLf1F4gMlmWgiS5zMjbukPGFvbbv4Ozw4HQw9NtGDL7mQk19bdJIGwxtnuUGCYSMMp0q3MdSqnUomA60kJrKQMWp4VQyo3TIcy24Nkbxgm3ASlmVZgsI8j28DtKcGcZDKuJQidgYE2Q4HJOZBz2MWdImkk3qGnlIky5oHuzOZy_JWhlz103j6iHTT53pTaPd8ZBRbwkCnWWIm2H0MPZge46JhVuINkQ47hU92OnuYmK6aosu3UwkQjpxNk49II9YSGSvnIko8mCzwdrCzRiDyXj0_l_h2IHnw9PxUXI0Ov6-DS-aWpf0afQBVqa3M_MRKdM07dW58gfR0g2F
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED7BkBBo4sfYWBh0FuJhPGTEsWM7vFVlVQtsDMakvkVO4qBpW1LN7cP46zknabqiTfAY5WJdzt_l7nTxdwDv4pBqDCSBb8Kc-1ww5qtCBr40VBRRzHNVd88Pj8TolH-eRJO2UHRnYVAJiyvZuonvvHqaFy3DAP1grHIMc8H5fXjg2nUO0f3BSfflxXRaLSYWxExMFkxCNx91USizK1FofaotGqRoJlncnWrWIWf4FL51ytZ_mpzvz2fpfvb7Lx7H_3-bZ_CkzT5Jv4HLc7hnyg14fIOTcAO2DpZH31C09X37Ar7_MJcV4pJUBemj4tXcktGvvfH4PUmvyXF1ca3LM5e0fiQn1VX9JSKDVTpoosucHBp32PjMXtpNOB0e_ByM_HYgg6-5UDNfmzTSBs2bZ7nBREJGmU4V1rOUah0KpgMtpKYyUHFqOJXMKB3yXAuujVG8YFuwVlal2QaCeR9eB2nODOMhFXGoRGyMCTJcjsnMgx7aLWkdyiZ1rzykSWc0D_YWO5hkLZ25m6pxcZvo20502nB43CbUW4FBJxliUYwaxh7sLHCxVAsRh0jHmtGD3e4uOqjruujS7UQipCNp49QDcoeExCyWMxFFHrxs8LZUM0ZjMh69-pc5duHh8adh8nV89GUHHjUtL-nT6DWsza7m5g1mTrO0V7vLH5r6EAg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Removal+of+Aqueous+Hg%28II%29+by+Polyaniline%3A+Sorption+Characteristics+and+Mechanisms&rft.jtitle=Environmental+science+%26+technology&rft.au=Wang%2C+Jing&rft.au=Deng%2C+Baolin&rft.au=Chen%2C+Huan&rft.au=Wang%2C+Xiaorong&rft.date=2009-07-15&rft.issn=0013-936X&rft.eissn=1520-5851&rft.volume=43&rft.issue=14&rft.spage=5223&rft.epage=5228&rft_id=info:doi/10.1021%2Fes803710k&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_es803710k
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon