Band Propagation, Scaling Laws, and Phase Transition in a Precipitate System. 2. Computational Study
In this second paper, we introduce a chemical kinetic model that investigates the dynamics of the experimental Ni2+/NH3–OH– Liesegang system characterized by a pattern of β-nickel hydroxide bands led by a growing pulse of α-nickel hydroxide. The model is based on a system of reaction–diffusion equat...
Saved in:
Published in | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Vol. 119; no. 35; pp. 9201 - 9209 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
03.09.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this second paper, we introduce a chemical kinetic model that investigates the dynamics of the experimental Ni2+/NH3–OH– Liesegang system characterized by a pattern of β-nickel hydroxide bands led by a growing pulse of α-nickel hydroxide. The model is based on a system of reaction–diffusion equations describing the precipitation reaction and dissolution of the nickel hydroxide polymorphs by ammonia. The hydroxide ions are assumed to be static whereas ammonia serves as a diffusing “vehicle” that supplies the hydroxide ions along the precipitation zone, and these ions in turn react with the static Ni2+ ions. The precipitation–diffusion equations are coupled to nucleation, polymorphic transition, and growth rate equations, each of which is characterized by a critical constant specific to the solid phase dynamics. In the proposed model, priority is given to polymorphic transition rather than nucleation. This implies that the critical constants must be subject to a constraint different than that derived for the Lifshitz–Slyozov instability encountered in classical Liesegang patterns. Numerical simulations confirm the validity of our model and the derived constraint. The pulse position and width are found to scale in time as t α with α ≃ 0.5, in agreement with the experimental results. Finally, the mass of the bands is shown to oscillate in time, suggesting competition between growth and polymorphic transition on one side and dissolution on the other. |
---|---|
AbstractList | In this second paper, we introduce a chemical kinetic model that investigates the dynamics of the experimental Ni(2+)/NH3-OH(-) Liesegang system characterized by a pattern of β-nickel hydroxide bands led by a growing pulse of α-nickel hydroxide. The model is based on a system of reaction-diffusion equations describing the precipitation reaction and dissolution of the nickel hydroxide polymorphs by ammonia. The hydroxide ions are assumed to be static whereas ammonia serves as a diffusing "vehicle" that supplies the hydroxide ions along the precipitation zone, and these ions in turn react with the static Ni(2+) ions. The precipitation-diffusion equations are coupled to nucleation, polymorphic transition, and growth rate equations, each of which is characterized by a critical constant specific to the solid phase dynamics. In the proposed model, priority is given to polymorphic transition rather than nucleation. This implies that the critical constants must be subject to a constraint different than that derived for the Lifshitz-Slyozov instability encountered in classical Liesegang patterns. Numerical simulations confirm the validity of our model and the derived constraint. The pulse position and width are found to scale in time as t(α) with α ≃ 0.5, in agreement with the experimental results. Finally, the mass of the bands is shown to oscillate in time, suggesting competition between growth and polymorphic transition on one side and dissolution on the other. In this second paper, we introduce a chemical kinetic model that investigates the dynamics of the experimental Ni2+/NH3–OH– Liesegang system characterized by a pattern of β-nickel hydroxide bands led by a growing pulse of α-nickel hydroxide. The model is based on a system of reaction–diffusion equations describing the precipitation reaction and dissolution of the nickel hydroxide polymorphs by ammonia. The hydroxide ions are assumed to be static whereas ammonia serves as a diffusing “vehicle” that supplies the hydroxide ions along the precipitation zone, and these ions in turn react with the static Ni2+ ions. The precipitation–diffusion equations are coupled to nucleation, polymorphic transition, and growth rate equations, each of which is characterized by a critical constant specific to the solid phase dynamics. In the proposed model, priority is given to polymorphic transition rather than nucleation. This implies that the critical constants must be subject to a constraint different than that derived for the Lifshitz–Slyozov instability encountered in classical Liesegang patterns. Numerical simulations confirm the validity of our model and the derived constraint. The pulse position and width are found to scale in time as t α with α ≃ 0.5, in agreement with the experimental results. Finally, the mass of the bands is shown to oscillate in time, suggesting competition between growth and polymorphic transition on one side and dissolution on the other. In this second paper, we introduce a chemical kinetic model that investigates the dynamics of the experimental Ni super(2+)/NH sub(3)-OH super(-) Liesegang system characterized by a pattern of beta -nickel hydroxide bands led by a growing pulse of alpha -nickel hydroxide. The model is based on a system of reaction-diffusion equations describing the precipitation reaction and dissolution of the nickel hydroxide polymorphs by ammonia. The hydroxide ions are assumed to be static whereas ammonia serves as a diffusing "vehicle" that supplies the hydroxide ions along the precipitation zone, and these ions in turn react with the static Ni super(2+) ions. The precipitation-diffusion equations are coupled to nucleation, polymorphic transition, and growth rate equations, each of which is characterized by a critical constant specific to the solid phase dynamics. In the proposed model, priority is given to polymorphic transition rather than nucleation. This implies that the critical constants must be subject to a constraint different than that derived for the Lifshitz-Slyozov instability encountered in classical Liesegang patterns. Numerical simulations confirm the validity of our model and the derived constraint. The pulse position and width are found to scale in time as t super( alpha ) with alpha [sime] 0.5, in agreement with the experimental results. Finally, the mass of the bands is shown to oscillate in time, suggesting competition between growth and polymorphic transition on one side and dissolution on the other. |
Author | Mansour, Andrew Abi Al-Ghoul, Mazen |
AuthorAffiliation | Department of Chemistry and Center for Theoretical and Computational Nanoscience Indiana University Department of Chemistry and Program in Computational Science American University of Beirut |
AuthorAffiliation_xml | – name: Department of Chemistry and Center for Theoretical and Computational Nanoscience – name: Indiana University – name: Department of Chemistry and Program in Computational Science – name: American University of Beirut |
Author_xml | – sequence: 1 givenname: Andrew Abi surname: Mansour fullname: Mansour, Andrew Abi – sequence: 2 givenname: Mazen surname: Al-Ghoul fullname: Al-Ghoul, Mazen email: mazen.ghoul@aub.edu.lb |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26259898$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtLxDAURoMovveuJEsX03qTNG2y1MEXDCjM7MudJNVKXzYtMv_ezEN3opvcwD3fR8g5IftN2zhCLhjEDDi7RuPj985gLJcgIdV75JhJDpHkTO6HOygdyVToI3Li_TsAMMGTQ3LEUy610uqY2FtsLH3p2w5fcSjbZkLnBquyeaUz_PQTulm_oXd00WPjyzVDy4ZiCDlTduWAg6PzlR9cHVMe02lbd-Ow6cKKzofRrs7IQYGVd-e7eUoW93eL6WM0e354mt7MIkxSNUQcFTq5RLCaGdTWJLLYPNMl3CJmScGYsplIFFqdgJFcpIWxLlEAWWbFKbna1nZ9-zE6P-R16Y2rKmxcO_qcZRkIkYpw_o0KrpgMiX-goDOQmeIBhS1q-tb73hV515c19qucQb4Wlgdh-VpYvhMWIpe79nFZO_sT-DYUgMkW2ETbsQ-_6n_v-wLrNaIY |
CitedBy_id | crossref_primary_10_1021_acs_jpca_7b00443 crossref_primary_10_1039_C9CP01088B crossref_primary_10_1063_1_5092137 crossref_primary_10_1021_acs_jpcc_7b12688 crossref_primary_10_1021_acs_jpca_9b09448 crossref_primary_10_1063_1_5144292 crossref_primary_10_1029_2022JB026253 |
Cites_doi | 10.1016/0013-4686(86)80087-1 10.1021/jp9022647 10.1021/jp984392w 10.1016/0167-2789(91)90115-P 10.1039/a905651c 10.1039/b715775d 10.1515/zpch-1897-2233 10.1021/j100157a022 10.2136/sssaj2001.653729x 10.1002/9780470741627 10.1021/jp022433p 10.1021/jp300163f 10.1002/chem.200701627 10.1039/C4RA11223G 10.1021/jp036165m 10.1021/la3020095 10.1103/PhysRevE.89.033303 10.1021/j100357a047 10.1021/jp037513n 10.1016/j.cplett.2008.12.020 10.1103/PhysRevE.84.026107 10.1016/S0167-577X(02)01240-5 10.1021/jp047111v 10.1104/pp.3.2.101 10.1021/jp502217z 10.1021/jp011158o 10.1039/b809085h 10.1017/CBO9780511525223 10.1016/j.jcrysgro.2009.11.053 10.1063/1.166040 10.1039/C4CP02587C 10.1016/j.jcrysgro.2006.05.048 10.1021/jp509246s 10.1021/jp804569b 10.1021/jp5058034 10.1039/a700390k 10.1016/S1452-3981(23)15205-9 10.1007/s10439-004-7823-4 10.1021/j100389a023 10.1039/b404064c |
ContentType | Journal Article |
Copyright | Copyright © 2015 American Chemical Society |
Copyright_xml | – notice: Copyright © 2015 American Chemical Society |
DBID | NPM AAYXX CITATION 7X8 7TG KL. 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1021/acs.jpca.5b05069 |
DatabaseName | PubMed CrossRef MEDLINE - Academic Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic Meteorological & Geoastrophysical Abstracts - Academic Meteorological & Geoastrophysical Abstracts Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | PubMed Materials Research Database Meteorological & Geoastrophysical Abstracts - Academic MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5215 |
EndPage | 9209 |
ExternalDocumentID | 10_1021_acs_jpca_5b05069 26259898 a778855273 |
Genre | Journal Article |
GroupedDBID | - .K2 02 123 29L 53G 55A 5VS 7~N 85S 8RP AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ACGFS ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CJ0 CS3 D0L DU5 EBS ED ED~ EJD F20 F5P GNL IH9 IHE JG JG~ K2 LG6 PZZ RNS ROL TAE TN5 UI2 UKR UPT VF5 VG9 VQA W1F WH7 X YZZ ZHY --- -~X .DC 4.4 ABJNI ABQRX ACBEA ADHLV AHGAQ CUPRZ GGK NPM XSW YQT ~02 AAYXX CITATION 7X8 7TG KL. 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-a468t-2a8ae5ba0d91ca9dc45f59898e42daa74f118d7348ad940c5236fcde480077d3 |
IEDL.DBID | ACS |
ISSN | 1089-5639 |
IngestDate | Fri Aug 16 06:28:18 EDT 2024 Fri Aug 16 10:51:32 EDT 2024 Fri Aug 16 00:57:06 EDT 2024 Fri Aug 23 01:04:59 EDT 2024 Sat Sep 28 08:04:17 EDT 2024 Thu Aug 27 13:42:07 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 35 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a468t-2a8ae5ba0d91ca9dc45f59898e42daa74f118d7348ad940c5236fcde480077d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 26259898 |
PQID | 1709705782 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1770336370 proquest_miscellaneous_1732815177 proquest_miscellaneous_1709705782 crossref_primary_10_1021_acs_jpca_5b05069 pubmed_primary_26259898 acs_journals_10_1021_acs_jpca_5b05069 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 2015-09-03 |
PublicationDateYYYYMMDD | 2015-09-03 |
PublicationDate_xml | – month: 09 year: 2015 text: 2015-09-03 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory |
PublicationTitleAlternate | J. Phys. Chem. A |
PublicationYear | 2015 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref6/cit6 ref36/cit36 ref27/cit27 ref18/cit18 Lide D. (ref25/cit25) 2004 ref11/cit11 ref16/cit16 ref29/cit29 Ostwald S. (ref37/cit37) 1897; 22 Miessler G. (ref31/cit31) 2011 Nocedal J. (ref44/cit44) 2000 ref23/cit23 ref39/cit39 ref8/cit8 ref5/cit5 ref2/cit2 Liesegang R. E. (ref1/cit1) 1896; 37 ref34/cit34 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 Henisch H. (ref4/cit4) 1988 ref10/cit10 ref26/cit26 Grzybowski B. (ref3/cit3) 2009 ref35/cit35 Thomas J. W. (ref43/cit43) 1998 ref19/cit19 ref21/cit21 Fu G. (ref32/cit32) 2009; 4 ref12/cit12 ref15/cit15 ref42/cit42 ref46/cit46 Al-Ghoul M. (ref14/cit14) 2010 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref30/cit30 ref47/cit47 ref24/cit24 ref38/cit38 ref7/cit7 |
References_xml | – volume-title: Inorganic Chemistry year: 2011 ident: ref31/cit31 contributor: fullname: Miessler G. – ident: ref30/cit30 doi: 10.1016/0013-4686(86)80087-1 – volume-title: CRC Handbook of Chemistry and Physics year: 2004 ident: ref25/cit25 contributor: fullname: Lide D. – ident: ref11/cit11 doi: 10.1021/jp9022647 – volume-title: Numerical Partial Differential Equations: Finite Difference Methods year: 1998 ident: ref43/cit43 contributor: fullname: Thomas J. W. – ident: ref12/cit12 doi: 10.1021/jp984392w – ident: ref39/cit39 doi: 10.1016/0167-2789(91)90115-P – ident: ref27/cit27 doi: 10.1039/a905651c – ident: ref41/cit41 doi: 10.1039/b715775d – volume: 22 start-page: 289 year: 1897 ident: ref37/cit37 publication-title: Z. Phys. Chem. doi: 10.1515/zpch-1897-2233 contributor: fullname: Ostwald S. – ident: ref20/cit20 doi: 10.1021/j100157a022 – volume: 37 start-page: 305 year: 1896 ident: ref1/cit1 publication-title: Chemische Fernwirkung. Lieseg. Photograph. Arch. contributor: fullname: Liesegang R. E. – ident: ref29/cit29 doi: 10.2136/sssaj2001.653729x – volume-title: Chemistry in Motion: Reaction-Diffusion Systems for Micro- and Nanotechnology year: 2009 ident: ref3/cit3 doi: 10.1002/9780470741627 contributor: fullname: Grzybowski B. – ident: ref6/cit6 doi: 10.1021/jp022433p – ident: ref7/cit7 doi: 10.1021/jp300163f – ident: ref33/cit33 doi: 10.1002/chem.200701627 – ident: ref2/cit2 doi: 10.1039/C4RA11223G – ident: ref22/cit22 doi: 10.1021/jp036165m – ident: ref47/cit47 doi: 10.1021/la3020095 – ident: ref45/cit45 doi: 10.1103/PhysRevE.89.033303 – ident: ref15/cit15 doi: 10.1021/j100357a047 – ident: ref34/cit34 doi: 10.1021/jp037513n – ident: ref24/cit24 doi: 10.1016/j.cplett.2008.12.020 – ident: ref36/cit36 doi: 10.1103/PhysRevE.84.026107 – ident: ref28/cit28 doi: 10.1016/S0167-577X(02)01240-5 – volume-title: Numerical Optimization year: 2000 ident: ref44/cit44 contributor: fullname: Nocedal J. – start-page: 117 volume-title: Precipitation Patterns in Reaction-Diffusion Systems year: 2010 ident: ref14/cit14 contributor: fullname: Al-Ghoul M. – ident: ref23/cit23 doi: 10.1021/jp047111v – ident: ref13/cit13 doi: 10.1104/pp.3.2.101 – ident: ref19/cit19 doi: 10.1021/jp502217z – ident: ref5/cit5 doi: 10.1021/jp011158o – ident: ref35/cit35 doi: 10.1039/b809085h – volume-title: Crystals in Gels and Liesegang Rings year: 1988 ident: ref4/cit4 doi: 10.1017/CBO9780511525223 contributor: fullname: Henisch H. – ident: ref10/cit10 doi: 10.1016/j.jcrysgro.2009.11.053 – ident: ref40/cit40 doi: 10.1063/1.166040 – ident: ref17/cit17 doi: 10.1039/C4CP02587C – ident: ref38/cit38 doi: 10.1016/j.jcrysgro.2006.05.048 – ident: ref21/cit21 doi: 10.1021/jp509246s – ident: ref9/cit9 doi: 10.1021/jp804569b – ident: ref18/cit18 doi: 10.1021/jp5058034 – ident: ref26/cit26 doi: 10.1039/a700390k – volume: 4 start-page: 1052 year: 2009 ident: ref32/cit32 publication-title: Int. J. Electrochem. Sci. doi: 10.1016/S1452-3981(23)15205-9 contributor: fullname: Fu G. – ident: ref42/cit42 doi: 10.1007/s10439-004-7823-4 – ident: ref46/cit46 doi: 10.1021/jp011158o – ident: ref16/cit16 doi: 10.1021/j100389a023 – ident: ref8/cit8 doi: 10.1039/b404064c |
SSID | ssj0001324 |
Score | 2.2480016 |
Snippet | In this second paper, we introduce a chemical kinetic model that investigates the dynamics of the experimental Ni2+/NH3–OH– Liesegang system characterized by a... In this second paper, we introduce a chemical kinetic model that investigates the dynamics of the experimental Ni(2+)/NH3-OH(-) Liesegang system characterized... In this second paper, we introduce a chemical kinetic model that investigates the dynamics of the experimental Ni super(2+)/NH sub(3)-OH super(-) Liesegang... |
SourceID | proquest crossref pubmed acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 9201 |
SubjectTerms | Constants Dissolution Dynamical systems Dynamics Hydroxides Mathematical models Nucleation Precipitation |
Title | Band Propagation, Scaling Laws, and Phase Transition in a Precipitate System. 2. Computational Study |
URI | http://dx.doi.org/10.1021/acs.jpca.5b05069 https://www.ncbi.nlm.nih.gov/pubmed/26259898 https://search.proquest.com/docview/1709705782 https://search.proquest.com/docview/1732815177 https://search.proquest.com/docview/1770336370 |
Volume | 119 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELbYeGAvjMEGYzB5EnuY1GSJf8TJ46ioqmlDSC1S36KL7YyClFZNKgR__c5OWsRgVV8Tx7HvbH93vtN3hHywgC6OZRCYJINAKG6CLDVlEMfa0ZuLQmgX0b39nAy_iuuJnPyhyXkYwWfxJeg6_D5H914WkYySbIc8ZQr3hjOD-qP1qYu_FG0yfRZIhN0uJPm_HhwQ6fpvIHrEuvQoM9hvyxXVnpzQJZf8CJdNEerf_1I3bjGBF-R5Z2zSq3Z1HJAntnpJnvVXNd5eEfMRKkO_LNBzvvMq6tERKg3hjN7Az7pH_etviHTUg5rP76LTigJ-ZPXUlRxpLG1pz0PKQtpWiehuGKnLUvx1SMaDT-P-MOjqLgQgkrQJGKRgZQGRyWINmdFCltLVmbSCGQAlSvRKjKPFAZOJSKMvm5TaWJE6ciDDj8huNavsG0JVCaksLGfGlgI9l7RIIOEFV0Jqx1V3TM5ROnm3bercR8RZnPuHKLK8E9kxuVjpKp-3LBwb2p6tlJmjNF38Ayo7W2LvKspU5Pj7N7XhLEUrSKlNbfCY5AlXOP7X7WpZj4o5fxJF9XbLmZ2QPTTBpM9a4-_IbrNY2vdo5jTFqV_f985U9lk |
link.rule.ids | 315,783,787,2772,27088,27936,27937,57066,57116 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED5t5WF74eeAMdiMBA9IS0liO04eoVrVsW6a1k7aW3SxHRhI2dSkQuyv5-yknUCsYq-O49h3jr-73OU7gHcWycWxMQYmyTAQipsgS00ZRJF29OaiENpFdI9PktG5-HIhL9YgWvwLQ5OoaaTaB_Fv2QWij67t-zV5-bIIZZhk6_BAKsJLZw0NJsvDl54s2pz6LJCEvl1k8l8jODzS9Z94dIeR6cFm-AjOltP0OSY_-vOm6Oubvxgc77WOx_CwMz3Zp3avPIE1Wz2FjcGi4tszMJ-xMux0Rn70V6-wfTYhFRK4sTH-rPeZv_yNcI95iPPZXuyyYkg3WX3pCpA0lrUk6H0W91lbM6L73shczuKvLZgOD6aDUdBVYQhQJGkTxJiilQWGJos0ZkYLWUpXddKK2CAqUZKPYhxJDppMhJo826TUxorUUQUZ_hx61VVlXwJTJaaysDw2thTkx6RFggkvuBJSO-a6bXhP0sm7l6jOfXw8jnLfSCLLO5Ftw4eFyvLrlpNjRd-3C53mJE0XDcHKXs1pdBVmKnRs_qv68Dglm0ipVX3o0OQJVzT_F-2mWc4qdt4lierVf65sDzZG0-NxPj48OdqBTTLOpM9n46-h18zm9g0ZQE2x67f8b9jQ_r4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9wwDLcYk9hetsHGYF8ECR6Q6NE2SdM-sttOfAsJhnir3CTlSyon2tM0_nqctHcSaDuN1zRNHTuJ7dj9GWDNIrk4NsbAJBkGQnETZKkpgyjSDt5cFEK7iO7hUbLzS-ydy_MZkON_YYiImkaqfRDf7eqhKTuEgWjLtV8PydOXRSjDJHsBL6WKfHR2u38yOYDp66LNq88CSRq4i07-bQSnk3T9WCf9w9D0CmfwFs4mpPo8k5veqCl6-v4JiuOz5_IO3nQmKNtu18w8zNhqAV71x5Xf3oP5jpVhx3fkT194wW2yExIlKTl2gL_rTeYfX5L-Y17V-awvdlUxpJesvnKFSBrLWjD0Hot7rK0d0d07Mpe7-OcDnA5-nvZ3gq4aQ4AiSZsgxhStLDA0WaQxM1rIUrrqk1bEBlGJknwV48By0GQi1OThJqU2VqQOMsjwRZitbiu7BEyVmMrC8tjYUpA_kxYJJrzgSkjtEOyWYZ24k3ebqc59nDyOct9ILMs7li3Dxlhs-bDF5pjSd3Us15y46aIiWNnbEY2uwkyFDtV_Wh8ep2QbKTWtDx2ePOGK6P_YLpwJVbHzMolVn_5zZiswd_xjkB_sHu1_htdko0mf1sa_wGxzN7JfyQ5qim9-1T8ADOgBRw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Band+Propagation%2C+Scaling+Laws%2C+and+Phase+Transition+in+a+Precipitate+System.+2.+Computational+Study&rft.jtitle=The+journal+of+physical+chemistry.+A%2C+Molecules%2C+spectroscopy%2C+kinetics%2C+environment%2C+%26+general+theory&rft.au=Mansour%2C+Andrew+Abi&rft.au=Al-Ghoul%2C+Mazen&rft.date=2015-09-03&rft.pub=American+Chemical+Society&rft.issn=1089-5639&rft.eissn=1520-5215&rft.volume=119&rft.issue=35&rft.spage=9201&rft.epage=9209&rft_id=info:doi/10.1021%2Facs.jpca.5b05069&rft.externalDocID=a778855273 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-5639&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-5639&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-5639&client=summon |