Band Propagation, Scaling Laws, and Phase Transition in a Precipitate System. 2. Computational Study

In this second paper, we introduce a chemical kinetic model that investigates the dynamics of the experimental Ni2+/NH3–OH– Liesegang system characterized by a pattern of β-nickel hydroxide bands led by a growing pulse of α-nickel hydroxide. The model is based on a system of reaction–diffusion equat...

Full description

Saved in:
Bibliographic Details
Published inThe journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Vol. 119; no. 35; pp. 9201 - 9209
Main Authors Mansour, Andrew Abi, Al-Ghoul, Mazen
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 03.09.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this second paper, we introduce a chemical kinetic model that investigates the dynamics of the experimental Ni2+/NH3–OH– Liesegang system characterized by a pattern of β-nickel hydroxide bands led by a growing pulse of α-nickel hydroxide. The model is based on a system of reaction–diffusion equations describing the precipitation reaction and dissolution of the nickel hydroxide polymorphs by ammonia. The hydroxide ions are assumed to be static whereas ammonia serves as a diffusing “vehicle” that supplies the hydroxide ions along the precipitation zone, and these ions in turn react with the static Ni2+ ions. The precipitation–diffusion equations are coupled to nucleation, polymorphic transition, and growth rate equations, each of which is characterized by a critical constant specific to the solid phase dynamics. In the proposed model, priority is given to polymorphic transition rather than nucleation. This implies that the critical constants must be subject to a constraint different than that derived for the Lifshitz–Slyozov instability encountered in classical Liesegang patterns. Numerical simulations confirm the validity of our model and the derived constraint. The pulse position and width are found to scale in time as t α with α ≃ 0.5, in agreement with the experimental results. Finally, the mass of the bands is shown to oscillate in time, suggesting competition between growth and polymorphic transition on one side and dissolution on the other.
AbstractList In this second paper, we introduce a chemical kinetic model that investigates the dynamics of the experimental Ni(2+)/NH3-OH(-) Liesegang system characterized by a pattern of β-nickel hydroxide bands led by a growing pulse of α-nickel hydroxide. The model is based on a system of reaction-diffusion equations describing the precipitation reaction and dissolution of the nickel hydroxide polymorphs by ammonia. The hydroxide ions are assumed to be static whereas ammonia serves as a diffusing "vehicle" that supplies the hydroxide ions along the precipitation zone, and these ions in turn react with the static Ni(2+) ions. The precipitation-diffusion equations are coupled to nucleation, polymorphic transition, and growth rate equations, each of which is characterized by a critical constant specific to the solid phase dynamics. In the proposed model, priority is given to polymorphic transition rather than nucleation. This implies that the critical constants must be subject to a constraint different than that derived for the Lifshitz-Slyozov instability encountered in classical Liesegang patterns. Numerical simulations confirm the validity of our model and the derived constraint. The pulse position and width are found to scale in time as t(α) with α ≃ 0.5, in agreement with the experimental results. Finally, the mass of the bands is shown to oscillate in time, suggesting competition between growth and polymorphic transition on one side and dissolution on the other.
In this second paper, we introduce a chemical kinetic model that investigates the dynamics of the experimental Ni2+/NH3–OH– Liesegang system characterized by a pattern of β-nickel hydroxide bands led by a growing pulse of α-nickel hydroxide. The model is based on a system of reaction–diffusion equations describing the precipitation reaction and dissolution of the nickel hydroxide polymorphs by ammonia. The hydroxide ions are assumed to be static whereas ammonia serves as a diffusing “vehicle” that supplies the hydroxide ions along the precipitation zone, and these ions in turn react with the static Ni2+ ions. The precipitation–diffusion equations are coupled to nucleation, polymorphic transition, and growth rate equations, each of which is characterized by a critical constant specific to the solid phase dynamics. In the proposed model, priority is given to polymorphic transition rather than nucleation. This implies that the critical constants must be subject to a constraint different than that derived for the Lifshitz–Slyozov instability encountered in classical Liesegang patterns. Numerical simulations confirm the validity of our model and the derived constraint. The pulse position and width are found to scale in time as t α with α ≃ 0.5, in agreement with the experimental results. Finally, the mass of the bands is shown to oscillate in time, suggesting competition between growth and polymorphic transition on one side and dissolution on the other.
In this second paper, we introduce a chemical kinetic model that investigates the dynamics of the experimental Ni super(2+)/NH sub(3)-OH super(-) Liesegang system characterized by a pattern of beta -nickel hydroxide bands led by a growing pulse of alpha -nickel hydroxide. The model is based on a system of reaction-diffusion equations describing the precipitation reaction and dissolution of the nickel hydroxide polymorphs by ammonia. The hydroxide ions are assumed to be static whereas ammonia serves as a diffusing "vehicle" that supplies the hydroxide ions along the precipitation zone, and these ions in turn react with the static Ni super(2+) ions. The precipitation-diffusion equations are coupled to nucleation, polymorphic transition, and growth rate equations, each of which is characterized by a critical constant specific to the solid phase dynamics. In the proposed model, priority is given to polymorphic transition rather than nucleation. This implies that the critical constants must be subject to a constraint different than that derived for the Lifshitz-Slyozov instability encountered in classical Liesegang patterns. Numerical simulations confirm the validity of our model and the derived constraint. The pulse position and width are found to scale in time as t super( alpha ) with alpha [sime] 0.5, in agreement with the experimental results. Finally, the mass of the bands is shown to oscillate in time, suggesting competition between growth and polymorphic transition on one side and dissolution on the other.
Author Mansour, Andrew Abi
Al-Ghoul, Mazen
AuthorAffiliation Department of Chemistry and Center for Theoretical and Computational Nanoscience
Indiana University
Department of Chemistry and Program in Computational Science
American University of Beirut
AuthorAffiliation_xml – name: Department of Chemistry and Center for Theoretical and Computational Nanoscience
– name: Indiana University
– name: Department of Chemistry and Program in Computational Science
– name: American University of Beirut
Author_xml – sequence: 1
  givenname: Andrew Abi
  surname: Mansour
  fullname: Mansour, Andrew Abi
– sequence: 2
  givenname: Mazen
  surname: Al-Ghoul
  fullname: Al-Ghoul, Mazen
  email: mazen.ghoul@aub.edu.lb
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26259898$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtLxDAURoMovveuJEsX03qTNG2y1MEXDCjM7MudJNVKXzYtMv_ezEN3opvcwD3fR8g5IftN2zhCLhjEDDi7RuPj985gLJcgIdV75JhJDpHkTO6HOygdyVToI3Li_TsAMMGTQ3LEUy610uqY2FtsLH3p2w5fcSjbZkLnBquyeaUz_PQTulm_oXd00WPjyzVDy4ZiCDlTduWAg6PzlR9cHVMe02lbd-Ow6cKKzofRrs7IQYGVd-e7eUoW93eL6WM0e354mt7MIkxSNUQcFTq5RLCaGdTWJLLYPNMl3CJmScGYsplIFFqdgJFcpIWxLlEAWWbFKbna1nZ9-zE6P-R16Y2rKmxcO_qcZRkIkYpw_o0KrpgMiX-goDOQmeIBhS1q-tb73hV515c19qucQb4Wlgdh-VpYvhMWIpe79nFZO_sT-DYUgMkW2ETbsQ-_6n_v-wLrNaIY
CitedBy_id crossref_primary_10_1021_acs_jpca_7b00443
crossref_primary_10_1039_C9CP01088B
crossref_primary_10_1063_1_5092137
crossref_primary_10_1021_acs_jpcc_7b12688
crossref_primary_10_1021_acs_jpca_9b09448
crossref_primary_10_1063_1_5144292
crossref_primary_10_1029_2022JB026253
Cites_doi 10.1016/0013-4686(86)80087-1
10.1021/jp9022647
10.1021/jp984392w
10.1016/0167-2789(91)90115-P
10.1039/a905651c
10.1039/b715775d
10.1515/zpch-1897-2233
10.1021/j100157a022
10.2136/sssaj2001.653729x
10.1002/9780470741627
10.1021/jp022433p
10.1021/jp300163f
10.1002/chem.200701627
10.1039/C4RA11223G
10.1021/jp036165m
10.1021/la3020095
10.1103/PhysRevE.89.033303
10.1021/j100357a047
10.1021/jp037513n
10.1016/j.cplett.2008.12.020
10.1103/PhysRevE.84.026107
10.1016/S0167-577X(02)01240-5
10.1021/jp047111v
10.1104/pp.3.2.101
10.1021/jp502217z
10.1021/jp011158o
10.1039/b809085h
10.1017/CBO9780511525223
10.1016/j.jcrysgro.2009.11.053
10.1063/1.166040
10.1039/C4CP02587C
10.1016/j.jcrysgro.2006.05.048
10.1021/jp509246s
10.1021/jp804569b
10.1021/jp5058034
10.1039/a700390k
10.1016/S1452-3981(23)15205-9
10.1007/s10439-004-7823-4
10.1021/j100389a023
10.1039/b404064c
ContentType Journal Article
Copyright Copyright © 2015 American Chemical Society
Copyright_xml – notice: Copyright © 2015 American Chemical Society
DBID NPM
AAYXX
CITATION
7X8
7TG
KL.
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1021/acs.jpca.5b05069
DatabaseName PubMed
CrossRef
MEDLINE - Academic
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
Meteorological & Geoastrophysical Abstracts - Academic
Meteorological & Geoastrophysical Abstracts
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList PubMed

Materials Research Database
Meteorological & Geoastrophysical Abstracts - Academic
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5215
EndPage 9209
ExternalDocumentID 10_1021_acs_jpca_5b05069
26259898
a778855273
Genre Journal Article
GroupedDBID -
.K2
02
123
29L
53G
55A
5VS
7~N
85S
8RP
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ACGFS
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CJ0
CS3
D0L
DU5
EBS
ED
ED~
EJD
F20
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
PZZ
RNS
ROL
TAE
TN5
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
YZZ
ZHY
---
-~X
.DC
4.4
ABJNI
ABQRX
ACBEA
ADHLV
AHGAQ
CUPRZ
GGK
NPM
XSW
YQT
~02
AAYXX
CITATION
7X8
7TG
KL.
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-a468t-2a8ae5ba0d91ca9dc45f59898e42daa74f118d7348ad940c5236fcde480077d3
IEDL.DBID ACS
ISSN 1089-5639
IngestDate Fri Aug 16 06:28:18 EDT 2024
Fri Aug 16 10:51:32 EDT 2024
Fri Aug 16 00:57:06 EDT 2024
Fri Aug 23 01:04:59 EDT 2024
Sat Sep 28 08:04:17 EDT 2024
Thu Aug 27 13:42:07 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 35
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a468t-2a8ae5ba0d91ca9dc45f59898e42daa74f118d7348ad940c5236fcde480077d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 26259898
PQID 1709705782
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_1770336370
proquest_miscellaneous_1732815177
proquest_miscellaneous_1709705782
crossref_primary_10_1021_acs_jpca_5b05069
pubmed_primary_26259898
acs_journals_10_1021_acs_jpca_5b05069
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2015-09-03
PublicationDateYYYYMMDD 2015-09-03
PublicationDate_xml – month: 09
  year: 2015
  text: 2015-09-03
  day: 03
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
PublicationTitleAlternate J. Phys. Chem. A
PublicationYear 2015
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref6/cit6
ref36/cit36
ref27/cit27
ref18/cit18
Lide D. (ref25/cit25) 2004
ref11/cit11
ref16/cit16
ref29/cit29
Ostwald S. (ref37/cit37) 1897; 22
Miessler G. (ref31/cit31) 2011
Nocedal J. (ref44/cit44) 2000
ref23/cit23
ref39/cit39
ref8/cit8
ref5/cit5
ref2/cit2
Liesegang R. E. (ref1/cit1) 1896; 37
ref34/cit34
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
Henisch H. (ref4/cit4) 1988
ref10/cit10
ref26/cit26
Grzybowski B. (ref3/cit3) 2009
ref35/cit35
Thomas J. W. (ref43/cit43) 1998
ref19/cit19
ref21/cit21
Fu G. (ref32/cit32) 2009; 4
ref12/cit12
ref15/cit15
ref42/cit42
ref46/cit46
Al-Ghoul M. (ref14/cit14) 2010
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref30/cit30
ref47/cit47
ref24/cit24
ref38/cit38
ref7/cit7
References_xml – volume-title: Inorganic Chemistry
  year: 2011
  ident: ref31/cit31
  contributor:
    fullname: Miessler G.
– ident: ref30/cit30
  doi: 10.1016/0013-4686(86)80087-1
– volume-title: CRC Handbook of Chemistry and Physics
  year: 2004
  ident: ref25/cit25
  contributor:
    fullname: Lide D.
– ident: ref11/cit11
  doi: 10.1021/jp9022647
– volume-title: Numerical Partial Differential Equations: Finite Difference Methods
  year: 1998
  ident: ref43/cit43
  contributor:
    fullname: Thomas J. W.
– ident: ref12/cit12
  doi: 10.1021/jp984392w
– ident: ref39/cit39
  doi: 10.1016/0167-2789(91)90115-P
– ident: ref27/cit27
  doi: 10.1039/a905651c
– ident: ref41/cit41
  doi: 10.1039/b715775d
– volume: 22
  start-page: 289
  year: 1897
  ident: ref37/cit37
  publication-title: Z. Phys. Chem.
  doi: 10.1515/zpch-1897-2233
  contributor:
    fullname: Ostwald S.
– ident: ref20/cit20
  doi: 10.1021/j100157a022
– volume: 37
  start-page: 305
  year: 1896
  ident: ref1/cit1
  publication-title: Chemische Fernwirkung. Lieseg. Photograph. Arch.
  contributor:
    fullname: Liesegang R. E.
– ident: ref29/cit29
  doi: 10.2136/sssaj2001.653729x
– volume-title: Chemistry in Motion: Reaction-Diffusion Systems for Micro- and Nanotechnology
  year: 2009
  ident: ref3/cit3
  doi: 10.1002/9780470741627
  contributor:
    fullname: Grzybowski B.
– ident: ref6/cit6
  doi: 10.1021/jp022433p
– ident: ref7/cit7
  doi: 10.1021/jp300163f
– ident: ref33/cit33
  doi: 10.1002/chem.200701627
– ident: ref2/cit2
  doi: 10.1039/C4RA11223G
– ident: ref22/cit22
  doi: 10.1021/jp036165m
– ident: ref47/cit47
  doi: 10.1021/la3020095
– ident: ref45/cit45
  doi: 10.1103/PhysRevE.89.033303
– ident: ref15/cit15
  doi: 10.1021/j100357a047
– ident: ref34/cit34
  doi: 10.1021/jp037513n
– ident: ref24/cit24
  doi: 10.1016/j.cplett.2008.12.020
– ident: ref36/cit36
  doi: 10.1103/PhysRevE.84.026107
– ident: ref28/cit28
  doi: 10.1016/S0167-577X(02)01240-5
– volume-title: Numerical Optimization
  year: 2000
  ident: ref44/cit44
  contributor:
    fullname: Nocedal J.
– start-page: 117
  volume-title: Precipitation Patterns in Reaction-Diffusion Systems
  year: 2010
  ident: ref14/cit14
  contributor:
    fullname: Al-Ghoul M.
– ident: ref23/cit23
  doi: 10.1021/jp047111v
– ident: ref13/cit13
  doi: 10.1104/pp.3.2.101
– ident: ref19/cit19
  doi: 10.1021/jp502217z
– ident: ref5/cit5
  doi: 10.1021/jp011158o
– ident: ref35/cit35
  doi: 10.1039/b809085h
– volume-title: Crystals in Gels and Liesegang Rings
  year: 1988
  ident: ref4/cit4
  doi: 10.1017/CBO9780511525223
  contributor:
    fullname: Henisch H.
– ident: ref10/cit10
  doi: 10.1016/j.jcrysgro.2009.11.053
– ident: ref40/cit40
  doi: 10.1063/1.166040
– ident: ref17/cit17
  doi: 10.1039/C4CP02587C
– ident: ref38/cit38
  doi: 10.1016/j.jcrysgro.2006.05.048
– ident: ref21/cit21
  doi: 10.1021/jp509246s
– ident: ref9/cit9
  doi: 10.1021/jp804569b
– ident: ref18/cit18
  doi: 10.1021/jp5058034
– ident: ref26/cit26
  doi: 10.1039/a700390k
– volume: 4
  start-page: 1052
  year: 2009
  ident: ref32/cit32
  publication-title: Int. J. Electrochem. Sci.
  doi: 10.1016/S1452-3981(23)15205-9
  contributor:
    fullname: Fu G.
– ident: ref42/cit42
  doi: 10.1007/s10439-004-7823-4
– ident: ref46/cit46
  doi: 10.1021/jp011158o
– ident: ref16/cit16
  doi: 10.1021/j100389a023
– ident: ref8/cit8
  doi: 10.1039/b404064c
SSID ssj0001324
Score 2.2480016
Snippet In this second paper, we introduce a chemical kinetic model that investigates the dynamics of the experimental Ni2+/NH3–OH– Liesegang system characterized by a...
In this second paper, we introduce a chemical kinetic model that investigates the dynamics of the experimental Ni(2+)/NH3-OH(-) Liesegang system characterized...
In this second paper, we introduce a chemical kinetic model that investigates the dynamics of the experimental Ni super(2+)/NH sub(3)-OH super(-) Liesegang...
SourceID proquest
crossref
pubmed
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 9201
SubjectTerms Constants
Dissolution
Dynamical systems
Dynamics
Hydroxides
Mathematical models
Nucleation
Precipitation
Title Band Propagation, Scaling Laws, and Phase Transition in a Precipitate System. 2. Computational Study
URI http://dx.doi.org/10.1021/acs.jpca.5b05069
https://www.ncbi.nlm.nih.gov/pubmed/26259898
https://search.proquest.com/docview/1709705782
https://search.proquest.com/docview/1732815177
https://search.proquest.com/docview/1770336370
Volume 119
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELbYeGAvjMEGYzB5EnuY1GSJf8TJ46ioqmlDSC1S36KL7YyClFZNKgR__c5OWsRgVV8Tx7HvbH93vtN3hHywgC6OZRCYJINAKG6CLDVlEMfa0ZuLQmgX0b39nAy_iuuJnPyhyXkYwWfxJeg6_D5H914WkYySbIc8ZQr3hjOD-qP1qYu_FG0yfRZIhN0uJPm_HhwQ6fpvIHrEuvQoM9hvyxXVnpzQJZf8CJdNEerf_1I3bjGBF-R5Z2zSq3Z1HJAntnpJnvVXNd5eEfMRKkO_LNBzvvMq6tERKg3hjN7Az7pH_etviHTUg5rP76LTigJ-ZPXUlRxpLG1pz0PKQtpWiehuGKnLUvx1SMaDT-P-MOjqLgQgkrQJGKRgZQGRyWINmdFCltLVmbSCGQAlSvRKjKPFAZOJSKMvm5TaWJE6ciDDj8huNavsG0JVCaksLGfGlgI9l7RIIOEFV0Jqx1V3TM5ROnm3bercR8RZnPuHKLK8E9kxuVjpKp-3LBwb2p6tlJmjNF38Ayo7W2LvKspU5Pj7N7XhLEUrSKlNbfCY5AlXOP7X7WpZj4o5fxJF9XbLmZ2QPTTBpM9a4-_IbrNY2vdo5jTFqV_f985U9lk
link.rule.ids 315,783,787,2772,27088,27936,27937,57066,57116
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED5t5WF74eeAMdiMBA9IS0liO04eoVrVsW6a1k7aW3SxHRhI2dSkQuyv5-yknUCsYq-O49h3jr-73OU7gHcWycWxMQYmyTAQipsgS00ZRJF29OaiENpFdI9PktG5-HIhL9YgWvwLQ5OoaaTaB_Fv2QWij67t-zV5-bIIZZhk6_BAKsJLZw0NJsvDl54s2pz6LJCEvl1k8l8jODzS9Z94dIeR6cFm-AjOltP0OSY_-vOm6Oubvxgc77WOx_CwMz3Zp3avPIE1Wz2FjcGi4tszMJ-xMux0Rn70V6-wfTYhFRK4sTH-rPeZv_yNcI95iPPZXuyyYkg3WX3pCpA0lrUk6H0W91lbM6L73shczuKvLZgOD6aDUdBVYQhQJGkTxJiilQWGJos0ZkYLWUpXddKK2CAqUZKPYhxJDppMhJo826TUxorUUQUZ_hx61VVlXwJTJaaysDw2thTkx6RFggkvuBJSO-a6bXhP0sm7l6jOfXw8jnLfSCLLO5Ftw4eFyvLrlpNjRd-3C53mJE0XDcHKXs1pdBVmKnRs_qv68Dglm0ipVX3o0OQJVzT_F-2mWc4qdt4lierVf65sDzZG0-NxPj48OdqBTTLOpM9n46-h18zm9g0ZQE2x67f8b9jQ_r4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9wwDLcYk9hetsHGYF8ECR6Q6NE2SdM-sttOfAsJhnir3CTlSyon2tM0_nqctHcSaDuN1zRNHTuJ7dj9GWDNIrk4NsbAJBkGQnETZKkpgyjSDt5cFEK7iO7hUbLzS-ydy_MZkON_YYiImkaqfRDf7eqhKTuEgWjLtV8PydOXRSjDJHsBL6WKfHR2u38yOYDp66LNq88CSRq4i07-bQSnk3T9WCf9w9D0CmfwFs4mpPo8k5veqCl6-v4JiuOz5_IO3nQmKNtu18w8zNhqAV71x5Xf3oP5jpVhx3fkT194wW2yExIlKTl2gL_rTeYfX5L-Y17V-awvdlUxpJesvnKFSBrLWjD0Hot7rK0d0d07Mpe7-OcDnA5-nvZ3gq4aQ4AiSZsgxhStLDA0WaQxM1rIUrrqk1bEBlGJknwV48By0GQi1OThJqU2VqQOMsjwRZitbiu7BEyVmMrC8tjYUpA_kxYJJrzgSkjtEOyWYZ24k3ebqc59nDyOct9ILMs7li3Dxlhs-bDF5pjSd3Us15y46aIiWNnbEY2uwkyFDtV_Wh8ep2QbKTWtDx2ePOGK6P_YLpwJVbHzMolVn_5zZiswd_xjkB_sHu1_htdko0mf1sa_wGxzN7JfyQ5qim9-1T8ADOgBRw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Band+Propagation%2C+Scaling+Laws%2C+and+Phase+Transition+in+a+Precipitate+System.+2.+Computational+Study&rft.jtitle=The+journal+of+physical+chemistry.+A%2C+Molecules%2C+spectroscopy%2C+kinetics%2C+environment%2C+%26+general+theory&rft.au=Mansour%2C+Andrew+Abi&rft.au=Al-Ghoul%2C+Mazen&rft.date=2015-09-03&rft.pub=American+Chemical+Society&rft.issn=1089-5639&rft.eissn=1520-5215&rft.volume=119&rft.issue=35&rft.spage=9201&rft.epage=9209&rft_id=info:doi/10.1021%2Facs.jpca.5b05069&rft.externalDocID=a778855273
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-5639&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-5639&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-5639&client=summon