Determining the time-variable part of the toroidal geomagnetic field in the core-mantle boundary zone
For the computation of the electromagnetic (EM) core-mantle coupling torque, the geomagnetic field must be known at the core-mantle boundary (CMB). It can be divided into linearly independent poloidal and toroidal parts. As shown by previous investigations, the toroidal field produces more than 90%...
Saved in:
Published in | Physics of the earth and planetary interiors Vol. 178; no. 1; pp. 56 - 67 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.01.2010
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | For the computation of the electromagnetic (EM) core-mantle coupling torque, the geomagnetic field must be known at the core-mantle boundary (CMB). It can be divided into linearly independent poloidal and toroidal parts. As shown by previous investigations, the toroidal field produces more than 90% of the EM torque. It can be obtained by solving the associated (toroidal) induction equation for the electrically conducting part of the mantle, i.e. an initial boundary value problem (IBVP). The IBVP differs basically from that for the poloidal field by the boundary values at the interface between lower conducting and upper insulating parts of the mantle: the toroidal field vanishes, the poloidal field continues harmonically as potential field towards the Earth surface. The two major subjects are to find a suitable algorithm to solve the IBVP and to compute the toroidal geomagnetic field at the CMB. Compared to the poloidal field, the toroidal field at the CMB cannot be inferred from geomagnetic observations at the Earth’s surface. In this study, it is inferred from the velocity field of the fluid core flow and the poloidal field at the CMB using an approximation which is consistent with the frozen-field approximation of the geomagnetic secular variation. This investigation differs from earlier ones by: (i) inferring the poloidal field at the CMB from the observed geomagnetic field using a rigorous inversion of the associated (poloidal) induction equation on which the fluid-flow inversion is based to determine consistently the surface flow velocities at the CMB, (ii) applying orthonormal spherical harmonic functions for the representation of the fields and torques, (iii) solving the IBVP numerically by a modified Crank-Nicolson algorithm, which (iv) allows us to highlight the influence of this approach on the resulting EM coupling torques. In addition to an outline of the derivations of the theoretical formalism and numerical methods, the time-variable toroidal field at the CMB is presented for different conductivity models. |
---|---|
AbstractList | For the computation of the electromagnetic (EM) core-mantle coupling torque, the geomagnetic field must be known at the coremantle boundary (CMB). It can be divided into linearly independent poloidal and toroidal parts. As shown by previous investigations, the toroidal field produces more than 90 % of the EM torque. It can be obtained by solving the associated (toroidal) induction equation for the electrically conducting part of the mantle, i.e. an initial boundary value problem (IBVP). The IBVP differs basically from that for the poloidal field by the boundary values at the interface between lower conducting and upper insulating parts of the mantle: the toroidal field vanishes, the poloidal field continues harmonically as potential field towards the Earth surface. The two major subjects are to find a suitable algorithm to solve the IBVP and to compute the toroidal geomagnetic field at the CMB. Compared to the poloidal field, the toroidal field at the CMB cannot be inferred from geomagnetic observations at the Earth's surface. In this study, it is inferred from the velocity field of the fluid core flow and the poloidal field at the CMB using an approximation which is consistent with the frozen-field approximation of the geomagnetic secular variation. This investigation differs from earlier ones by: (i) inferring the poloidal field at the CMB from the observed geomagnetic field using a rigorous inversion of the associated (poloidal) induction equation on which the fluid-flow inversion is based to determine consistently the surface flow velocities at the CMB, (ii) applying orthonormal spherical harmonic functions for the representation of the fields and torques, (iii) solving the IBVP numerically by a modified Crank-Nicolson algorithm, which (iv) allows us to highlight the influence of this approach on the resulting EM coupling torques. In addition to an outline of the derivations of the theoretical formalism and numerical methods, the time-variable toroidal field at the CMB is presented for different conductivity models. For the computation of the electromagnetic (EM) core-mantle coupling torque, the geomagnetic field must be known at the core-mantle boundary (CMB). It can be divided into linearly independent poloidal and toroidal parts. As shown by previous investigations, the toroidal field produces more than 90% of the EM torque. It can be obtained by solving the associated (toroidal) induction equation for the electrically conducting part of the mantle, i.e. an initial boundary value problem (IBVP). The IBVP differs basically from that for the poloidal field by the boundary values at the interface between lower conducting and upper insulating parts of the mantle: the toroidal field vanishes, the poloidal field continues harmonically as potential field towards the Earth surface. The two major subjects are to find a suitable algorithm to solve the IBVP and to compute the toroidal geomagnetic field at the CMB. Compared to the poloidal field, the toroidal field at the CMB cannot be inferred from geomagnetic observations at the Earth’s surface. In this study, it is inferred from the velocity field of the fluid core flow and the poloidal field at the CMB using an approximation which is consistent with the frozen-field approximation of the geomagnetic secular variation. This investigation differs from earlier ones by: (i) inferring the poloidal field at the CMB from the observed geomagnetic field using a rigorous inversion of the associated (poloidal) induction equation on which the fluid-flow inversion is based to determine consistently the surface flow velocities at the CMB, (ii) applying orthonormal spherical harmonic functions for the representation of the fields and torques, (iii) solving the IBVP numerically by a modified Crank-Nicolson algorithm, which (iv) allows us to highlight the influence of this approach on the resulting EM coupling torques. In addition to an outline of the derivations of the theoretical formalism and numerical methods, the time-variable toroidal field at the CMB is presented for different conductivity models. |
Author | Greiner-Mai, H. Ballani, L. Hagedoorn, J.M. |
Author_xml | – sequence: 1 givenname: J.M. surname: Hagedoorn fullname: Hagedoorn, J.M. email: jan@gfz-potsdam.de – sequence: 2 givenname: H. surname: Greiner-Mai fullname: Greiner-Mai, H. – sequence: 3 givenname: L. surname: Ballani fullname: Ballani, L. |
BackLink | https://hal.science/hal-00601520$$DView record in HAL |
BookMark | eNp9kE1v2zAMhoWhA5Zm-wM7-dqDPeojVgLsUrTrWiBAL9tZoCU6ZWBLgawGaH_9nKW77NATAfJ9SOK5FBcxRRLiq4RGgmy_7ZsDHbhRAJsGbAPSfBALubaqtnqzuhALAC3rjQL5SVxO0x4ApFZ6IeiWCuWRI8ddVZ6oKjxSfcTM2A1UHTCXKvXnScqJAw7VjtKIu0iFfdUzDaHi-DfhU6Z6xFhmskvPMWB-qV7nTz-Ljz0OE315q0vx--7Hr5v7evv48-HmelujaW2p1xtUBoOynfedJvBmbbVZmRaN9RDaVSvJaEJru84Ha2ToAIIkrXuvvOr0Ulyd9z7h4A6Zx_kBl5Dd_fXWnXoALciVgqOcs-tz1uc0TZl657lg4RRLRh6cBHdS6_bupNad1DqwblY7o-o_9N-td6HvZ4hmAUem7CbPFD0FzuSLC4nfw_8AXFyV8g |
CitedBy_id | crossref_primary_10_1186_s40623_014_0157_z |
Cites_doi | 10.1046/j.1365-246X.2002.01655.x 10.1016/j.epsl.2006.07.023 10.5636/jgg.45.1333 10.1029/90JB02317 10.1029/93GL02052 10.1016/j.epsl.2006.04.017 10.1029/2002JB001786 10.1029/2003GC000634 10.1046/j.1365-246x.1998.00424.x 10.1046/j.1365-246X.1998.00503.x 10.1038/ngeo327 10.1029/2006GL027083 10.1098/rsta.1960.0014 10.1111/j.1365-246X.2004.02343.x 10.1007/BF01628999 10.1038/nature01422 10.1029/2000JB000056 10.1016/0031-9201(95)03035-4 10.5636/jgg.24.231 10.1126/science.280.5368.1415 10.1111/j.1365-246X.1983.tb01914.x 10.1029/RG024i001p00075 10.1029/2000JB900299 10.1111/j.1365-246X.1994.tb03315.x 10.1126/science.1155148 10.1111/j.1365-246X.2006.03013.x 10.1029/GD028p0139 10.1029/JZ067i012p04833 10.1016/j.epsl.2007.12.008 10.1016/0031-9201(84)90098-0 10.1016/0031-9201(94)03011-7 10.1126/science.282.5390.922 10.1038/ngeo310 10.1007/s11200-007-0029-0 10.1002/asna.2113080313 10.1029/2006JB004401 10.1098/rsta.1968.0014 10.1029/92JB00977 10.5636/jgg.43.111 10.1016/j.epsl.2007.10.049 10.1002/asna.2113070313 |
ContentType | Journal Article |
Copyright | 2009 Elsevier B.V. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2009 Elsevier B.V. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 1XC VOOES |
DOI | 10.1016/j.pepi.2009.07.014 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 1872-7395 0031-9201 |
EndPage | 67 |
ExternalDocumentID | oai_HAL_hal_00601520v1 10_1016_j_pepi_2009_07_014 S0031920109001575 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 5VS 7-5 71M 85H 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFO ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AETEA AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HME HVGLF HZ~ IHE IMUCA J1W KOM LY3 LZ4 M41 MO0 MZR N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEP SES SEW SHN SPC SPCBC SPD SSE SSZ T5K T9H TN5 UNMZH WUQ XJT ZMT ZZE ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 1XC VOOES |
ID | FETCH-LOGICAL-a467t-89a24ad27bccb3e0c48734546a47c0d6561e43ea77bbcd741db00d1e33fc2c2b3 |
IEDL.DBID | AIKHN |
ISSN | 0031-9201 |
IngestDate | Fri May 09 12:21:04 EDT 2025 Tue Jul 01 04:05:21 EDT 2025 Thu Apr 24 23:02:55 EDT 2025 Fri Feb 23 02:31:23 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Toroidal geomagnetic field Induction process Core-mantle transition zone core-mantle transition zone toroidal geomagnetic field induction process |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a467t-89a24ad27bccb3e0c48734546a47c0d6561e43ea77bbcd741db00d1e33fc2c2b3 |
OpenAccessLink | https://hal.science/hal-00601520 |
PageCount | 12 |
ParticipantIDs | hal_primary_oai_HAL_hal_00601520v1 crossref_citationtrail_10_1016_j_pepi_2009_07_014 crossref_primary_10_1016_j_pepi_2009_07_014 elsevier_sciencedirect_doi_10_1016_j_pepi_2009_07_014 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-01-01 |
PublicationDateYYYYMMDD | 2010-01-01 |
PublicationDate_xml | – month: 01 year: 2010 text: 2010-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Physics of the earth and planetary interiors |
PublicationYear | 2010 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Krause, Rädler (bib24) 1980 Celaya, Benton (bib10) 1991; 60 Greiner-Mai, Ballani, Stromeyer (bib17) 2004; 158 Greiner-Mai (bib14) 1986; 307 Press, Teukolsky, Vetterling, Flannery (bib33) 1992 Constable, Constable (bib12) 2004; 5 (bib22) 1987; Vol. 2 Bhattacharyya (bib6) 1995; 90 Buffett (bib8) 1992; 97 Backus (bib2) 1986; 24 Bengtson, Persson, Morgan (bib4) 2008; 265 Varshalovich, Moskalev, Khersonskii (bib41) 1989 Greiner-Mai (bib16) 1993; 45 Otha, Onoda, Hirose, Sinmyo, Shimizu, Sta, Ohishi, Yasuhara (bib32) 2008; 320 Jault, LeMouël (bib23) 1991; 43 Greiner-Mai, Hagedoorn, Ballani, Wardinski, Stromeyer, Hengst (bib18) 2007; 51 Olsen (bib30) 1998; 133 Love, Bloxham (bib28) 1994; 117 Bronstein, I., Semendjajew, K., Musiol, G., Mühlig, H., 1997. Taschenbuch der Mathematik, 3. überarbeitete und erweiterte Auflage. Verlag Harri Deutsch, Thun, Franfurt am Main. Stewart, Busse, Whaler, Gubbins (bib39) 1995; 92 . Pěč, Martinec (bib34) 1988; 32 Ciarlet, P., Lions, J. (Eds.), 1990. Handbook of Numerical Analysis. Vol. I. Elsevier Science Publisher (North-Holland), Amsterdam, Ch. Finite Difference Methods for Linear Parabolic Equations. Zhang, Fearn (bib50) 1993; 20 Xu, Shankland, Poe (bib48) 2000; 105 Kuvshinov, Olsen (bib25) 2006; 33 Ono, Oganov, Koyoma, Shimizu (bib31) 2006; 246 Holme, R., 1998b. Electromagnetic core-mantle coupling II: Probing deep mantle conductivity, In: Gurins, M., Wysession, M., Knittle, E., Buffet, B., (Eds.), The Core-Mantle Boundary Region. Vol. 28 of Geodynamics. AGU, pp. 139–151. Ballani, Greiner-Mai, Stromeyer (bib3) 2002; 149 Xu, Poe, Shankland, Rubie (bib47) 1998; 280 Holme (bib20) 1998; 132 Dubrovinsky, Dubrovinskaia, Langhorst, Dobson, Ruble, Geßmann, Abrikosov, Johansson, Baykov, Vitos, Le Bihan, Crichton, Dmitriev, Weber (bib13) 2003; 422 Wardinski, I., 2005. Core surface flow models from decadal and subdecadal secular variation of the main geomagnetic field. Sci. Techn. Rep. GFZ Potsdam, STR 05/07 Backus (bib1) 1969; 263 Velímský, Martinec, Everett (bib42) 2006; 166 Rochester (bib37) 1962; 67 Hagedoorn, J., Geiner-Mai, H., 2008. Core-Mantle Coupling - Part I: Electromagnetic coupling torques. Sci. Techn. Rep. GFZ Potsdam, STR 08/06 Nagao, Iyemori, Higuchi, Araki (bib29) 2003; 108 Roberts (bib35) 1972; 24 Xu, McCammon, Poe (bib46) 1998; 282 Greiner-Mai (bib15) 1987; 308 Levy, Pearce (bib26) 1991; 96 Stackhouse (bib38) 2008; 1 Wardinski, Holme (bib44) 2006; 111 Rochester (bib36) 1960; 252 Benton, Whaler (bib5) 1983; 75 Buffett, Mathews, Herring (bib9) 2002; 107 Zhang, Oganov (bib49) 2006; 249 Lin, Watson, Vankó, Alp, Prakapenka, Dera, Struzhkin, Kubo, Zhao, McCammon, Evans (bib27) 2008; 1 Wardinski, Holme, Asari, Mandea (bib45) 2008; 267 Stix, Roberts (bib40) 1984; 36 Buffett (10.1016/j.pepi.2009.07.014_bib9) 2002; 107 10.1016/j.pepi.2009.07.014_bib21 Roberts (10.1016/j.pepi.2009.07.014_bib35) 1972; 24 Greiner-Mai (10.1016/j.pepi.2009.07.014_bib15) 1987; 308 Krause (10.1016/j.pepi.2009.07.014_bib24) 1980 Holme (10.1016/j.pepi.2009.07.014_bib20) 1998; 132 Velímský (10.1016/j.pepi.2009.07.014_bib42) 2006; 166 10.1016/j.pepi.2009.07.014_bib7 Celaya (10.1016/j.pepi.2009.07.014_bib10) 1991; 60 Backus (10.1016/j.pepi.2009.07.014_bib2) 1986; 24 Olsen (10.1016/j.pepi.2009.07.014_bib30) 1998; 133 Kuvshinov (10.1016/j.pepi.2009.07.014_bib25) 2006; 33 Love (10.1016/j.pepi.2009.07.014_bib28) 1994; 117 Levy (10.1016/j.pepi.2009.07.014_bib26) 1991; 96 Otha (10.1016/j.pepi.2009.07.014_bib32) 2008; 320 Zhang (10.1016/j.pepi.2009.07.014_bib50) 1993; 20 Zhang (10.1016/j.pepi.2009.07.014_bib49) 2006; 249 (10.1016/j.pepi.2009.07.014_bib22) 1987; Vol. 2 Jault (10.1016/j.pepi.2009.07.014_bib23) 1991; 43 Greiner-Mai (10.1016/j.pepi.2009.07.014_bib16) 1993; 45 Lin (10.1016/j.pepi.2009.07.014_bib27) 2008; 1 Xu (10.1016/j.pepi.2009.07.014_bib47) 1998; 280 Xu (10.1016/j.pepi.2009.07.014_bib48) 2000; 105 Greiner-Mai (10.1016/j.pepi.2009.07.014_bib14) 1986; 307 Greiner-Mai (10.1016/j.pepi.2009.07.014_bib18) 2007; 51 Ono (10.1016/j.pepi.2009.07.014_bib31) 2006; 246 Pěč (10.1016/j.pepi.2009.07.014_bib34) 1988; 32 Xu (10.1016/j.pepi.2009.07.014_bib46) 1998; 282 Buffett (10.1016/j.pepi.2009.07.014_bib8) 1992; 97 Bhattacharyya (10.1016/j.pepi.2009.07.014_bib6) 1995; 90 10.1016/j.pepi.2009.07.014_bib43 Stackhouse (10.1016/j.pepi.2009.07.014_bib38) 2008; 1 Wardinski (10.1016/j.pepi.2009.07.014_bib44) 2006; 111 Rochester (10.1016/j.pepi.2009.07.014_bib36) 1960; 252 Dubrovinsky (10.1016/j.pepi.2009.07.014_bib13) 2003; 422 Nagao (10.1016/j.pepi.2009.07.014_bib29) 2003; 108 Stewart (10.1016/j.pepi.2009.07.014_bib39) 1995; 92 Greiner-Mai (10.1016/j.pepi.2009.07.014_bib17) 2004; 158 10.1016/j.pepi.2009.07.014_bib11 Press (10.1016/j.pepi.2009.07.014_bib33) 1992 Wardinski (10.1016/j.pepi.2009.07.014_bib45) 2008; 267 Ballani (10.1016/j.pepi.2009.07.014_bib3) 2002; 149 Benton (10.1016/j.pepi.2009.07.014_bib5) 1983; 75 Backus (10.1016/j.pepi.2009.07.014_bib1) 1969; 263 Bengtson (10.1016/j.pepi.2009.07.014_bib4) 2008; 265 Varshalovich (10.1016/j.pepi.2009.07.014_bib41) 1989 10.1016/j.pepi.2009.07.014_bib19 Constable (10.1016/j.pepi.2009.07.014_bib12) 2004; 5 Stix (10.1016/j.pepi.2009.07.014_bib40) 1984; 36 Rochester (10.1016/j.pepi.2009.07.014_bib37) 1962; 67 |
References_xml | – volume: 24 start-page: 75 year: 1986 end-page: 109 ident: bib2 article-title: Poloidal and toroidal fields in geomagnetic field modeling publication-title: Rev. Geophys. – volume: 107 year: 2002 ident: bib9 article-title: Modeling of nutation and precession: Effect of electromagnetic coupling publication-title: J. Geophys. Res. – volume: 92 start-page: 199 year: 1995 end-page: 214 ident: bib39 article-title: Geomagnetism, earth rotation and the electrical conductivity of the lower mantle publication-title: Phys. Earth Planet. Inter. – volume: 36 start-page: 49 year: 1984 end-page: 60 ident: bib40 article-title: Time-dependent electromagnetic core-mantle coupling publication-title: Phys. Earth Planet. Inter. – volume: 265 start-page: 535 year: 2008 end-page: 545 ident: bib4 article-title: Ab inition study of the composition dependence of the pressure-induced spin crossover in persovskite (Mg publication-title: Earth Planet. Sci. Lett. – volume: 96 start-page: 3935 year: 1991 end-page: 3942 ident: bib26 article-title: Steady state toroidal magnetic field at earth’s core-mantle boundary publication-title: J. Geophys. Res. – volume: 166 start-page: 529 year: 2006 end-page: 542 ident: bib42 article-title: Electrical conductivity in the earth’s mantle inferred from CHAMP satellite measurements – I. Data processing and 1-D inversion publication-title: Geophys. J. Int. – volume: 280 start-page: 1415 year: 1998 end-page: 1417 ident: bib47 article-title: Electrical conductivity of Olevin, Wadsleyite, and Ringwoodite upper mantle conditions publication-title: Science – volume: 308 start-page: 217 year: 1987 end-page: 226 ident: bib15 article-title: The influence of the electromagnetic core-mantle coupling torques on earth’s rotation publication-title: Astron. Nachr. – volume: 246 start-page: 326 year: 2006 end-page: 335 ident: bib31 article-title: Stability and compressibility of the high-pressure phases of Al publication-title: Earth Planet. Sci. Lett. – volume: 32 start-page: 32 year: 1988 end-page: 46 ident: bib34 article-title: Gravitational potential inside 3-D inhomogeneous Earth: a boundary-value problem for the Poisson equation publication-title: Studia Geoph. et Geod. – volume: 43 start-page: 111 year: 1991 end-page: 129 ident: bib23 article-title: Exchange of angular momentum between core and mantle publication-title: J. Geomag. Geoelectr. – volume: 97 start-page: 19581 year: 1992 end-page: 19597 ident: bib8 article-title: Constraints on magnetic energy and mantle conductivity from the forced nutations of the earth publication-title: J. Geophys. Res. – volume: 158 start-page: 864 year: 2004 end-page: 873 ident: bib17 article-title: The poloidal geomagnetic field in a differentially rotating upper core layer publication-title: Geophys. J. Int. – volume: 67 start-page: 4833 year: 1962 end-page: 4836 ident: bib37 article-title: Geomagnetic core-mantle coupling publication-title: J. Geophys. Res. – volume: 1 start-page: 648 year: 2008 end-page: 650 ident: bib38 article-title: The spin deep within publication-title: Nature Geoscience – volume: 33 year: 2006 ident: bib25 article-title: A global model of mantle conductivity derived from 5 years of CHAMP, Ørsted, and SAC-C magnetic data publication-title: Geophys. Res. Lett. – volume: 108 year: 2003 ident: bib29 article-title: Lower mantle conductivity anomalies estimated from geomagnetic jerks publication-title: J. Geophys. Res. – volume: 60 start-page: 376 year: 1991 end-page: 378 ident: bib10 article-title: Electromagnetic core-mantle coupling as a constraint on the toroidal field and conductivity in the mantle publication-title: Geophys. Astrophys. Fluid Dynamics – volume: 5 year: 2004 ident: bib12 article-title: Observing geomagnetic induction in magnetic satellite measurements and associated implications for mantle conductivity publication-title: Geochem. Geophys. Geosys. – volume: 320 start-page: 89 year: 2008 end-page: 91 ident: bib32 article-title: The electrical conductivity of post-perovskite in Earth’s D publication-title: Science – volume: 45 start-page: 1333 year: 1993 end-page: 1345 ident: bib16 article-title: Decade variations of the earth’s rotation and geomagnetic core-mantle coupling publication-title: J. Geomag. Geoelectr. – reference: Wardinski, I., 2005. Core surface flow models from decadal and subdecadal secular variation of the main geomagnetic field. Sci. Techn. Rep. GFZ Potsdam, STR 05/07 – reference: Hagedoorn, J., Geiner-Mai, H., 2008. Core-Mantle Coupling - Part I: Electromagnetic coupling torques. Sci. Techn. Rep. GFZ Potsdam, STR 08/06 – reference: Ciarlet, P., Lions, J. (Eds.), 1990. Handbook of Numerical Analysis. Vol. I. Elsevier Science Publisher (North-Holland), Amsterdam, Ch. Finite Difference Methods for Linear Parabolic Equations. – volume: 105 start-page: 27865 year: 2000 end-page: 27875 ident: bib48 article-title: Laboratory-based electrical conductivity in the earth’s mantel publication-title: J. Geophys. Res. – volume: 132 start-page: 167 year: 1998 end-page: 180 ident: bib20 article-title: Electromagnetic core-mantle coupling – I. Explaining decadal changes in the length of day publication-title: Geophys. J. Int. – reference: . – volume: 252 start-page: 531 year: 1960 end-page: 555 ident: bib36 article-title: Geomagnetic westward drift and irregularities in the Earth’s rotation publication-title: Phil. Trans. R. Soc. Lond. A A – year: 1989 ident: bib41 article-title: Quantum Theory of Angular Momentum – volume: 282 start-page: 922 year: 1998 end-page: 924 ident: bib46 article-title: The effect of alumina on the electrical conductivity of silicate peroviskite publication-title: Scinece – volume: 149 start-page: 374 year: 2002 end-page: 389 ident: bib3 article-title: Determining the magnetic field in the core-mantle boundary zone by non-harmonic downward continuation publication-title: Geophys. J. Int. – volume: 249 start-page: 436 year: 2006 end-page: 443 ident: bib49 article-title: Valence state and spin transition of iron in Earth’s mantle silicates publication-title: Earth Planet. Sci. Lett. – volume: 1 start-page: 688 year: 2008 end-page: 691 ident: bib27 article-title: Intermediate-spin ferreous iron in lowermost mantle post-perovskite and perovskite publication-title: Nature Geoscience – volume: 90 start-page: 81 year: 1995 end-page: 90 ident: bib6 article-title: An estimate of the radial gradient of the toroidal magnetic field at the top of the earth’s core publication-title: Phys. Earth Planet. Inter. – reference: Bronstein, I., Semendjajew, K., Musiol, G., Mühlig, H., 1997. Taschenbuch der Mathematik, 3. überarbeitete und erweiterte Auflage. Verlag Harri Deutsch, Thun, Franfurt am Main. – year: 1992 ident: bib33 article-title: Numerical Recipes in Fortran publication-title: The Art of Scientific Computing – volume: 51 start-page: 491 year: 2007 end-page: 513 ident: bib18 article-title: Axial poloidal electromagnetic core-mantle coupling torque: A re-examination for different conductivity and satellite supported geomagnetic field models publication-title: Stud. Geophys. Geod. – volume: 117 start-page: 235 year: 1994 end-page: 256 ident: bib28 article-title: Electromagnetic coupling and the toroidal magnetic field at the core-mantle boundary publication-title: Geophys. J. Int. – volume: 111 year: 2006 ident: bib44 article-title: A time-dependent model of the earth’s magnetic field and its secular variation for the period 1980–2000 publication-title: J. Geophys. Res. – volume: 20 start-page: 2083 year: 1993 end-page: 2086 ident: bib50 article-title: How strong is the invisible component of the magnetic field in the earth’s core publication-title: Geophys. Res. Lett. – volume: 422 start-page: 58 year: 2003 end-page: 61 ident: bib13 article-title: Iron-silica interaction at extreme conditions and the electrically conducting layer at the base of earth’s mantle publication-title: Nature – volume: 307 start-page: 201 year: 1986 end-page: 208 ident: bib14 article-title: Theoretische Betrachtungen zum Verhalten des Magnetfeldes in einem sphärischen Erdmodell publication-title: Astron. Nachr. – volume: 267 start-page: 468 year: 2008 end-page: 481 ident: bib45 article-title: The 2003 geomagnetic jerk and its relation to the core surface flows publication-title: Earth Planet. Sci. Lett. – volume: 75 start-page: 77 year: 1983 end-page: 100 ident: bib5 article-title: Rapid diffusion of the poloidal geomagnetic field through the weakly conducting mantle: a perturbation solution publication-title: Geophys. J. R. astr. Soc. – volume: 133 start-page: 298 year: 1998 end-page: 308 ident: bib30 article-title: The electrical conductivity of the mantle beneath Europe derived from c-response from 3 to 720 publication-title: Geophys. J. Int. – volume: 24 start-page: 231 year: 1972 end-page: 259 ident: bib35 article-title: Electromagnetic core-mantle coupling publication-title: J. Geomag. Geoelectr. – reference: Holme, R., 1998b. Electromagnetic core-mantle coupling II: Probing deep mantle conductivity, In: Gurins, M., Wysession, M., Knittle, E., Buffet, B., (Eds.), The Core-Mantle Boundary Region. Vol. 28 of Geodynamics. AGU, pp. 139–151. – volume: Vol. 2 year: 1987 ident: bib22 publication-title: Geomagnetism – year: 1980 ident: bib24 article-title: Mean-Field Magnetohydrodynamics and Dynamo Theory – volume: 263 start-page: 239 year: 1969 end-page: 266 ident: bib1 article-title: Kinematics of the geomagnetic secular variation in a perfectly conducting core publication-title: Phil. Trnas. R. Soc. London A – volume: 149 start-page: 374 year: 2002 ident: 10.1016/j.pepi.2009.07.014_bib3 article-title: Determining the magnetic field in the core-mantle boundary zone by non-harmonic downward continuation publication-title: Geophys. J. Int. doi: 10.1046/j.1365-246X.2002.01655.x – volume: 249 start-page: 436 year: 2006 ident: 10.1016/j.pepi.2009.07.014_bib49 article-title: Valence state and spin transition of iron in Earth’s mantle silicates publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2006.07.023 – volume: 45 start-page: 1333 year: 1993 ident: 10.1016/j.pepi.2009.07.014_bib16 article-title: Decade variations of the earth’s rotation and geomagnetic core-mantle coupling publication-title: J. Geomag. Geoelectr. doi: 10.5636/jgg.45.1333 – volume: 96 start-page: 3935 year: 1991 ident: 10.1016/j.pepi.2009.07.014_bib26 article-title: Steady state toroidal magnetic field at earth’s core-mantle boundary publication-title: J. Geophys. Res. doi: 10.1029/90JB02317 – volume: 20 start-page: 2083 year: 1993 ident: 10.1016/j.pepi.2009.07.014_bib50 article-title: How strong is the invisible component of the magnetic field in the earth’s core publication-title: Geophys. Res. Lett. doi: 10.1029/93GL02052 – volume: 246 start-page: 326 year: 2006 ident: 10.1016/j.pepi.2009.07.014_bib31 article-title: Stability and compressibility of the high-pressure phases of Al2O3 up to 200GPa: Implications for the electrical conductivity of the base of the lower mantle publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2006.04.017 – volume: 108 year: 2003 ident: 10.1016/j.pepi.2009.07.014_bib29 article-title: Lower mantle conductivity anomalies estimated from geomagnetic jerks publication-title: J. Geophys. Res. doi: 10.1029/2002JB001786 – ident: 10.1016/j.pepi.2009.07.014_bib7 – volume: 5 year: 2004 ident: 10.1016/j.pepi.2009.07.014_bib12 article-title: Observing geomagnetic induction in magnetic satellite measurements and associated implications for mantle conductivity publication-title: Geochem. Geophys. Geosys. doi: 10.1029/2003GC000634 – volume: 60 start-page: 376 year: 1991 ident: 10.1016/j.pepi.2009.07.014_bib10 article-title: Electromagnetic core-mantle coupling as a constraint on the toroidal field and conductivity in the mantle publication-title: Geophys. Astrophys. Fluid Dynamics – volume: 132 start-page: 167 year: 1998 ident: 10.1016/j.pepi.2009.07.014_bib20 article-title: Electromagnetic core-mantle coupling – I. Explaining decadal changes in the length of day publication-title: Geophys. J. Int. doi: 10.1046/j.1365-246x.1998.00424.x – volume: 133 start-page: 298 year: 1998 ident: 10.1016/j.pepi.2009.07.014_bib30 article-title: The electrical conductivity of the mantle beneath Europe derived from c-response from 3 to 720h publication-title: Geophys. J. Int. doi: 10.1046/j.1365-246X.1998.00503.x – volume: 1 start-page: 648 year: 2008 ident: 10.1016/j.pepi.2009.07.014_bib38 article-title: The spin deep within publication-title: Nature Geoscience doi: 10.1038/ngeo327 – volume: 33 year: 2006 ident: 10.1016/j.pepi.2009.07.014_bib25 article-title: A global model of mantle conductivity derived from 5 years of CHAMP, Ørsted, and SAC-C magnetic data publication-title: Geophys. Res. Lett. doi: 10.1029/2006GL027083 – volume: 252 start-page: 531 year: 1960 ident: 10.1016/j.pepi.2009.07.014_bib36 article-title: Geomagnetic westward drift and irregularities in the Earth’s rotation publication-title: Phil. Trans. R. Soc. Lond. A A doi: 10.1098/rsta.1960.0014 – year: 1992 ident: 10.1016/j.pepi.2009.07.014_bib33 article-title: Numerical Recipes in Fortran – volume: 158 start-page: 864 year: 2004 ident: 10.1016/j.pepi.2009.07.014_bib17 article-title: The poloidal geomagnetic field in a differentially rotating upper core layer publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.2004.02343.x – volume: 32 start-page: 32 year: 1988 ident: 10.1016/j.pepi.2009.07.014_bib34 article-title: Gravitational potential inside 3-D inhomogeneous Earth: a boundary-value problem for the Poisson equation publication-title: Studia Geoph. et Geod. doi: 10.1007/BF01628999 – volume: 422 start-page: 58 year: 2003 ident: 10.1016/j.pepi.2009.07.014_bib13 article-title: Iron-silica interaction at extreme conditions and the electrically conducting layer at the base of earth’s mantle publication-title: Nature doi: 10.1038/nature01422 – volume: 107 year: 2002 ident: 10.1016/j.pepi.2009.07.014_bib9 article-title: Modeling of nutation and precession: Effect of electromagnetic coupling publication-title: J. Geophys. Res. doi: 10.1029/2000JB000056 – volume: 92 start-page: 199 year: 1995 ident: 10.1016/j.pepi.2009.07.014_bib39 article-title: Geomagnetism, earth rotation and the electrical conductivity of the lower mantle publication-title: Phys. Earth Planet. Inter. doi: 10.1016/0031-9201(95)03035-4 – volume: 24 start-page: 231 year: 1972 ident: 10.1016/j.pepi.2009.07.014_bib35 article-title: Electromagnetic core-mantle coupling publication-title: J. Geomag. Geoelectr. doi: 10.5636/jgg.24.231 – volume: 280 start-page: 1415 year: 1998 ident: 10.1016/j.pepi.2009.07.014_bib47 article-title: Electrical conductivity of Olevin, Wadsleyite, and Ringwoodite upper mantle conditions publication-title: Science doi: 10.1126/science.280.5368.1415 – volume: 75 start-page: 77 year: 1983 ident: 10.1016/j.pepi.2009.07.014_bib5 article-title: Rapid diffusion of the poloidal geomagnetic field through the weakly conducting mantle: a perturbation solution publication-title: Geophys. J. R. astr. Soc. doi: 10.1111/j.1365-246X.1983.tb01914.x – volume: 24 start-page: 75 year: 1986 ident: 10.1016/j.pepi.2009.07.014_bib2 article-title: Poloidal and toroidal fields in geomagnetic field modeling publication-title: Rev. Geophys. doi: 10.1029/RG024i001p00075 – ident: 10.1016/j.pepi.2009.07.014_bib11 – volume: 105 start-page: 27865 year: 2000 ident: 10.1016/j.pepi.2009.07.014_bib48 article-title: Laboratory-based electrical conductivity in the earth’s mantel publication-title: J. Geophys. Res. doi: 10.1029/2000JB900299 – ident: 10.1016/j.pepi.2009.07.014_bib19 – volume: 117 start-page: 235 year: 1994 ident: 10.1016/j.pepi.2009.07.014_bib28 article-title: Electromagnetic coupling and the toroidal magnetic field at the core-mantle boundary publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.1994.tb03315.x – year: 1989 ident: 10.1016/j.pepi.2009.07.014_bib41 – volume: 320 start-page: 89 year: 2008 ident: 10.1016/j.pepi.2009.07.014_bib32 article-title: The electrical conductivity of post-perovskite in Earth’s D″ layer publication-title: Science doi: 10.1126/science.1155148 – volume: 166 start-page: 529 year: 2006 ident: 10.1016/j.pepi.2009.07.014_bib42 article-title: Electrical conductivity in the earth’s mantle inferred from CHAMP satellite measurements – I. Data processing and 1-D inversion publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.2006.03013.x – ident: 10.1016/j.pepi.2009.07.014_bib21 doi: 10.1029/GD028p0139 – volume: 67 start-page: 4833 year: 1962 ident: 10.1016/j.pepi.2009.07.014_bib37 article-title: Geomagnetic core-mantle coupling publication-title: J. Geophys. Res. doi: 10.1029/JZ067i012p04833 – year: 1980 ident: 10.1016/j.pepi.2009.07.014_bib24 – volume: 267 start-page: 468 year: 2008 ident: 10.1016/j.pepi.2009.07.014_bib45 article-title: The 2003 geomagnetic jerk and its relation to the core surface flows publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2007.12.008 – volume: 36 start-page: 49 year: 1984 ident: 10.1016/j.pepi.2009.07.014_bib40 article-title: Time-dependent electromagnetic core-mantle coupling publication-title: Phys. Earth Planet. Inter. doi: 10.1016/0031-9201(84)90098-0 – ident: 10.1016/j.pepi.2009.07.014_bib43 – volume: 90 start-page: 81 year: 1995 ident: 10.1016/j.pepi.2009.07.014_bib6 article-title: An estimate of the radial gradient of the toroidal magnetic field at the top of the earth’s core publication-title: Phys. Earth Planet. Inter. doi: 10.1016/0031-9201(94)03011-7 – volume: Vol. 2 year: 1987 ident: 10.1016/j.pepi.2009.07.014_bib22 – volume: 282 start-page: 922 year: 1998 ident: 10.1016/j.pepi.2009.07.014_bib46 article-title: The effect of alumina on the electrical conductivity of silicate peroviskite publication-title: Scinece doi: 10.1126/science.282.5390.922 – volume: 1 start-page: 688 year: 2008 ident: 10.1016/j.pepi.2009.07.014_bib27 article-title: Intermediate-spin ferreous iron in lowermost mantle post-perovskite and perovskite publication-title: Nature Geoscience doi: 10.1038/ngeo310 – volume: 51 start-page: 491 year: 2007 ident: 10.1016/j.pepi.2009.07.014_bib18 article-title: Axial poloidal electromagnetic core-mantle coupling torque: A re-examination for different conductivity and satellite supported geomagnetic field models publication-title: Stud. Geophys. Geod. doi: 10.1007/s11200-007-0029-0 – volume: 308 start-page: 217 year: 1987 ident: 10.1016/j.pepi.2009.07.014_bib15 article-title: The influence of the electromagnetic core-mantle coupling torques on earth’s rotation publication-title: Astron. Nachr. doi: 10.1002/asna.2113080313 – volume: 111 year: 2006 ident: 10.1016/j.pepi.2009.07.014_bib44 article-title: A time-dependent model of the earth’s magnetic field and its secular variation for the period 1980–2000 publication-title: J. Geophys. Res. doi: 10.1029/2006JB004401 – volume: 263 start-page: 239 year: 1969 ident: 10.1016/j.pepi.2009.07.014_bib1 article-title: Kinematics of the geomagnetic secular variation in a perfectly conducting core publication-title: Phil. Trnas. R. Soc. London A doi: 10.1098/rsta.1968.0014 – volume: 97 start-page: 19581 year: 1992 ident: 10.1016/j.pepi.2009.07.014_bib8 article-title: Constraints on magnetic energy and mantle conductivity from the forced nutations of the earth publication-title: J. Geophys. Res. doi: 10.1029/92JB00977 – volume: 43 start-page: 111 year: 1991 ident: 10.1016/j.pepi.2009.07.014_bib23 article-title: Exchange of angular momentum between core and mantle publication-title: J. Geomag. Geoelectr. doi: 10.5636/jgg.43.111 – volume: 265 start-page: 535 year: 2008 ident: 10.1016/j.pepi.2009.07.014_bib4 article-title: Ab inition study of the composition dependence of the pressure-induced spin crossover in persovskite (Mg1−x,Fex)SiO3 publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2007.10.049 – volume: 307 start-page: 201 year: 1986 ident: 10.1016/j.pepi.2009.07.014_bib14 article-title: Theoretische Betrachtungen zum Verhalten des Magnetfeldes in einem sphärischen Erdmodell publication-title: Astron. Nachr. doi: 10.1002/asna.2113070313 |
SSID | ssj0001323 |
Score | 1.8922755 |
Snippet | For the computation of the electromagnetic (EM) core-mantle coupling torque, the geomagnetic field must be known at the core-mantle boundary (CMB). It can be... For the computation of the electromagnetic (EM) core-mantle coupling torque, the geomagnetic field must be known at the coremantle boundary (CMB). It can be... |
SourceID | hal crossref elsevier |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 56 |
SubjectTerms | Core-mantle transition zone Induction process Toroidal geomagnetic field |
Title | Determining the time-variable part of the toroidal geomagnetic field in the core-mantle boundary zone |
URI | https://dx.doi.org/10.1016/j.pepi.2009.07.014 https://hal.science/hal-00601520 |
Volume | 178 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6uIngRn_gmiDeJ2zzabI-Luq6vPSl4K2mSrhW3Lcsq6MHf7qRNFzzowWvaSdvJ9JtJmPkGoZNIG-eWKdE8ionjZydpqBWJAC0V44rZwBUK34-i4aO4eQqfFtB5Wwvj0io99jeYXqO1H-l6bXarPHc1vmA-rM4sBJ8mww5aYjyOwLSX-te3w9EckGHD5bl3KXECvnamSfOqbJV72kp5FlDxm3_qPLcnrbXnGayhVR8y4n7zVutowRYbaPmqbsn7sYnshc9oASeEIZzDrl08eYc9sKuKwhV8DS6z5ko5LXMDc41tOVHjwhUw4jqHDedFfYcjtSQT0DZIpnXHpekH_iwLu4UeB5cP50PimycQBdg3I71YMaEMk6nWKbeBhp0JF6GIlJA6MBDGUSu4VVKmqTYQVxj4AQ21nGeaaZbybbRYwPQ7CFPNqZaxgUgxEwHPerIHS89Mj9ksEmG2i2irskR7ZnHX4OI1aVPIXhKnZtfyMk4CmYCad9HpXKZqeDX-vDtsVyL5YR0JAP-fcsewbPMHOCrtYf8ucWM1EU3Igne698_J99FKk0rgzmMO0OJs-mYPIUKZpUeoc_ZFj7wdfgOmj-Rq |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELaAqmovqE9Boa1V9VZ5N34k3j0iYLttF04gcbMc26GpIIlWWyR64Lcz4zhb9QCHXh3bScb2PKxvviHkc-E8mmXOnCymDPnZWZk7ywrQllZIK0KGicInp8X8XH2_yC82yOGQC4OwyqT7e50etXVqGSdpjru6xhxf2D4iIgvBpul8kzxRcHzxdI7u_uI8INxKzLucYfeUOdODvLrQ1Ym0Uo8yrh6yTps_h3vWaHdmL8h2chjpQf9NL8lGaF6Rp19jQd7b1yQcJTwLmCAKzhzFYvHsBiJgzImiHfwLbav-Sbtsaw9zXYb22l42mL5II4KN1k3sgZSW7BpkDSPLWG9peUv_tE14Q85nx2eHc5ZKJzALmm_FJlMrlPVCl86VMmQO4hKpclVYpV3mwYnjQclgtS5L58Gr8HD8PA9SVk44Ucq3ZKuB6XcI5U5yp6ce_MRKZbKa6AksvPATEapC5dUu4YPIjEu84lje4soMALJfBsWMBS-nJtMGxLxLvqzHdD2rxqO982ElzD97w4Daf3TcJ1i29QuQSHt-sDDYFmlocpHd8Hf_OflH8mx-drIwi2-nP_bI8x5UgDcz-2Rrtfwd3oOvsio_xL14D4DK5S4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Determining+the+time-variable+part+of+the+toroidal+geomagnetic+field+in+the+core-mantle+boundary+zone&rft.jtitle=Physics+of+the+earth+and+planetary+interiors&rft.au=Hagedoorn%2C+J.M.&rft.au=Greiner-Mai%2C+H.&rft.au=Ballani%2C+L.&rft.date=2010-01-01&rft.pub=Elsevier&rft.issn=0031-9201&rft.eissn=0031-9201&rft.volume=178&rft.issue=1-2&rft_id=info:doi/10.1016%2Fj.pepi.2009.07.014&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_00601520v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9201&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9201&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9201&client=summon |