Determining the time-variable part of the toroidal geomagnetic field in the core-mantle boundary zone

For the computation of the electromagnetic (EM) core-mantle coupling torque, the geomagnetic field must be known at the core-mantle boundary (CMB). It can be divided into linearly independent poloidal and toroidal parts. As shown by previous investigations, the toroidal field produces more than 90%...

Full description

Saved in:
Bibliographic Details
Published inPhysics of the earth and planetary interiors Vol. 178; no. 1; pp. 56 - 67
Main Authors Hagedoorn, J.M., Greiner-Mai, H., Ballani, L.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2010
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract For the computation of the electromagnetic (EM) core-mantle coupling torque, the geomagnetic field must be known at the core-mantle boundary (CMB). It can be divided into linearly independent poloidal and toroidal parts. As shown by previous investigations, the toroidal field produces more than 90% of the EM torque. It can be obtained by solving the associated (toroidal) induction equation for the electrically conducting part of the mantle, i.e. an initial boundary value problem (IBVP). The IBVP differs basically from that for the poloidal field by the boundary values at the interface between lower conducting and upper insulating parts of the mantle: the toroidal field vanishes, the poloidal field continues harmonically as potential field towards the Earth surface. The two major subjects are to find a suitable algorithm to solve the IBVP and to compute the toroidal geomagnetic field at the CMB. Compared to the poloidal field, the toroidal field at the CMB cannot be inferred from geomagnetic observations at the Earth’s surface. In this study, it is inferred from the velocity field of the fluid core flow and the poloidal field at the CMB using an approximation which is consistent with the frozen-field approximation of the geomagnetic secular variation. This investigation differs from earlier ones by: (i) inferring the poloidal field at the CMB from the observed geomagnetic field using a rigorous inversion of the associated (poloidal) induction equation on which the fluid-flow inversion is based to determine consistently the surface flow velocities at the CMB, (ii) applying orthonormal spherical harmonic functions for the representation of the fields and torques, (iii) solving the IBVP numerically by a modified Crank-Nicolson algorithm, which (iv) allows us to highlight the influence of this approach on the resulting EM coupling torques. In addition to an outline of the derivations of the theoretical formalism and numerical methods, the time-variable toroidal field at the CMB is presented for different conductivity models.
AbstractList For the computation of the electromagnetic (EM) core-mantle coupling torque, the geomagnetic field must be known at the coremantle boundary (CMB). It can be divided into linearly independent poloidal and toroidal parts. As shown by previous investigations, the toroidal field produces more than 90 % of the EM torque. It can be obtained by solving the associated (toroidal) induction equation for the electrically conducting part of the mantle, i.e. an initial boundary value problem (IBVP). The IBVP differs basically from that for the poloidal field by the boundary values at the interface between lower conducting and upper insulating parts of the mantle: the toroidal field vanishes, the poloidal field continues harmonically as potential field towards the Earth surface. The two major subjects are to find a suitable algorithm to solve the IBVP and to compute the toroidal geomagnetic field at the CMB. Compared to the poloidal field, the toroidal field at the CMB cannot be inferred from geomagnetic observations at the Earth's surface. In this study, it is inferred from the velocity field of the fluid core flow and the poloidal field at the CMB using an approximation which is consistent with the frozen-field approximation of the geomagnetic secular variation. This investigation differs from earlier ones by: (i) inferring the poloidal field at the CMB from the observed geomagnetic field using a rigorous inversion of the associated (poloidal) induction equation on which the fluid-flow inversion is based to determine consistently the surface flow velocities at the CMB, (ii) applying orthonormal spherical harmonic functions for the representation of the fields and torques, (iii) solving the IBVP numerically by a modified Crank-Nicolson algorithm, which (iv) allows us to highlight the influence of this approach on the resulting EM coupling torques. In addition to an outline of the derivations of the theoretical formalism and numerical methods, the time-variable toroidal field at the CMB is presented for different conductivity models.
For the computation of the electromagnetic (EM) core-mantle coupling torque, the geomagnetic field must be known at the core-mantle boundary (CMB). It can be divided into linearly independent poloidal and toroidal parts. As shown by previous investigations, the toroidal field produces more than 90% of the EM torque. It can be obtained by solving the associated (toroidal) induction equation for the electrically conducting part of the mantle, i.e. an initial boundary value problem (IBVP). The IBVP differs basically from that for the poloidal field by the boundary values at the interface between lower conducting and upper insulating parts of the mantle: the toroidal field vanishes, the poloidal field continues harmonically as potential field towards the Earth surface. The two major subjects are to find a suitable algorithm to solve the IBVP and to compute the toroidal geomagnetic field at the CMB. Compared to the poloidal field, the toroidal field at the CMB cannot be inferred from geomagnetic observations at the Earth’s surface. In this study, it is inferred from the velocity field of the fluid core flow and the poloidal field at the CMB using an approximation which is consistent with the frozen-field approximation of the geomagnetic secular variation. This investigation differs from earlier ones by: (i) inferring the poloidal field at the CMB from the observed geomagnetic field using a rigorous inversion of the associated (poloidal) induction equation on which the fluid-flow inversion is based to determine consistently the surface flow velocities at the CMB, (ii) applying orthonormal spherical harmonic functions for the representation of the fields and torques, (iii) solving the IBVP numerically by a modified Crank-Nicolson algorithm, which (iv) allows us to highlight the influence of this approach on the resulting EM coupling torques. In addition to an outline of the derivations of the theoretical formalism and numerical methods, the time-variable toroidal field at the CMB is presented for different conductivity models.
Author Greiner-Mai, H.
Ballani, L.
Hagedoorn, J.M.
Author_xml – sequence: 1
  givenname: J.M.
  surname: Hagedoorn
  fullname: Hagedoorn, J.M.
  email: jan@gfz-potsdam.de
– sequence: 2
  givenname: H.
  surname: Greiner-Mai
  fullname: Greiner-Mai, H.
– sequence: 3
  givenname: L.
  surname: Ballani
  fullname: Ballani, L.
BackLink https://hal.science/hal-00601520$$DView record in HAL
BookMark eNp9kE1v2zAMhoWhA5Zm-wM7-dqDPeojVgLsUrTrWiBAL9tZoCU6ZWBLgawGaH_9nKW77NATAfJ9SOK5FBcxRRLiq4RGgmy_7ZsDHbhRAJsGbAPSfBALubaqtnqzuhALAC3rjQL5SVxO0x4ApFZ6IeiWCuWRI8ddVZ6oKjxSfcTM2A1UHTCXKvXnScqJAw7VjtKIu0iFfdUzDaHi-DfhU6Z6xFhmskvPMWB-qV7nTz-Ljz0OE315q0vx--7Hr5v7evv48-HmelujaW2p1xtUBoOynfedJvBmbbVZmRaN9RDaVSvJaEJru84Ha2ToAIIkrXuvvOr0Ulyd9z7h4A6Zx_kBl5Dd_fXWnXoALciVgqOcs-tz1uc0TZl657lg4RRLRh6cBHdS6_bupNad1DqwblY7o-o_9N-td6HvZ4hmAUem7CbPFD0FzuSLC4nfw_8AXFyV8g
CitedBy_id crossref_primary_10_1186_s40623_014_0157_z
Cites_doi 10.1046/j.1365-246X.2002.01655.x
10.1016/j.epsl.2006.07.023
10.5636/jgg.45.1333
10.1029/90JB02317
10.1029/93GL02052
10.1016/j.epsl.2006.04.017
10.1029/2002JB001786
10.1029/2003GC000634
10.1046/j.1365-246x.1998.00424.x
10.1046/j.1365-246X.1998.00503.x
10.1038/ngeo327
10.1029/2006GL027083
10.1098/rsta.1960.0014
10.1111/j.1365-246X.2004.02343.x
10.1007/BF01628999
10.1038/nature01422
10.1029/2000JB000056
10.1016/0031-9201(95)03035-4
10.5636/jgg.24.231
10.1126/science.280.5368.1415
10.1111/j.1365-246X.1983.tb01914.x
10.1029/RG024i001p00075
10.1029/2000JB900299
10.1111/j.1365-246X.1994.tb03315.x
10.1126/science.1155148
10.1111/j.1365-246X.2006.03013.x
10.1029/GD028p0139
10.1029/JZ067i012p04833
10.1016/j.epsl.2007.12.008
10.1016/0031-9201(84)90098-0
10.1016/0031-9201(94)03011-7
10.1126/science.282.5390.922
10.1038/ngeo310
10.1007/s11200-007-0029-0
10.1002/asna.2113080313
10.1029/2006JB004401
10.1098/rsta.1968.0014
10.1029/92JB00977
10.5636/jgg.43.111
10.1016/j.epsl.2007.10.049
10.1002/asna.2113070313
ContentType Journal Article
Copyright 2009 Elsevier B.V.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2009 Elsevier B.V.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1016/j.pepi.2009.07.014
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1872-7395
0031-9201
EndPage 67
ExternalDocumentID oai_HAL_hal_00601520v1
10_1016_j_pepi_2009_07_014
S0031920109001575
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
5VS
7-5
71M
85H
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AETEA
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HME
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LY3
LZ4
M41
MO0
MZR
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEP
SES
SEW
SHN
SPC
SPCBC
SPD
SSE
SSZ
T5K
T9H
TN5
UNMZH
WUQ
XJT
ZMT
ZZE
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
1XC
VOOES
ID FETCH-LOGICAL-a467t-89a24ad27bccb3e0c48734546a47c0d6561e43ea77bbcd741db00d1e33fc2c2b3
IEDL.DBID AIKHN
ISSN 0031-9201
IngestDate Fri May 09 12:21:04 EDT 2025
Tue Jul 01 04:05:21 EDT 2025
Thu Apr 24 23:02:55 EDT 2025
Fri Feb 23 02:31:23 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Toroidal geomagnetic field
Induction process
Core-mantle transition zone
core-mantle transition zone
toroidal geomagnetic field
induction process
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a467t-89a24ad27bccb3e0c48734546a47c0d6561e43ea77bbcd741db00d1e33fc2c2b3
OpenAccessLink https://hal.science/hal-00601520
PageCount 12
ParticipantIDs hal_primary_oai_HAL_hal_00601520v1
crossref_citationtrail_10_1016_j_pepi_2009_07_014
crossref_primary_10_1016_j_pepi_2009_07_014
elsevier_sciencedirect_doi_10_1016_j_pepi_2009_07_014
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-01-01
PublicationDateYYYYMMDD 2010-01-01
PublicationDate_xml – month: 01
  year: 2010
  text: 2010-01-01
  day: 01
PublicationDecade 2010
PublicationTitle Physics of the earth and planetary interiors
PublicationYear 2010
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Krause, Rädler (bib24) 1980
Celaya, Benton (bib10) 1991; 60
Greiner-Mai, Ballani, Stromeyer (bib17) 2004; 158
Greiner-Mai (bib14) 1986; 307
Press, Teukolsky, Vetterling, Flannery (bib33) 1992
Constable, Constable (bib12) 2004; 5
(bib22) 1987; Vol. 2
Bhattacharyya (bib6) 1995; 90
Buffett (bib8) 1992; 97
Backus (bib2) 1986; 24
Bengtson, Persson, Morgan (bib4) 2008; 265
Varshalovich, Moskalev, Khersonskii (bib41) 1989
Greiner-Mai (bib16) 1993; 45
Otha, Onoda, Hirose, Sinmyo, Shimizu, Sta, Ohishi, Yasuhara (bib32) 2008; 320
Jault, LeMouël (bib23) 1991; 43
Greiner-Mai, Hagedoorn, Ballani, Wardinski, Stromeyer, Hengst (bib18) 2007; 51
Olsen (bib30) 1998; 133
Love, Bloxham (bib28) 1994; 117
Bronstein, I., Semendjajew, K., Musiol, G., Mühlig, H., 1997. Taschenbuch der Mathematik, 3. überarbeitete und erweiterte Auflage. Verlag Harri Deutsch, Thun, Franfurt am Main.
Stewart, Busse, Whaler, Gubbins (bib39) 1995; 92
.
Pěč, Martinec (bib34) 1988; 32
Ciarlet, P., Lions, J. (Eds.), 1990. Handbook of Numerical Analysis. Vol. I. Elsevier Science Publisher (North-Holland), Amsterdam, Ch. Finite Difference Methods for Linear Parabolic Equations.
Zhang, Fearn (bib50) 1993; 20
Xu, Shankland, Poe (bib48) 2000; 105
Kuvshinov, Olsen (bib25) 2006; 33
Ono, Oganov, Koyoma, Shimizu (bib31) 2006; 246
Holme, R., 1998b. Electromagnetic core-mantle coupling II: Probing deep mantle conductivity, In: Gurins, M., Wysession, M., Knittle, E., Buffet, B., (Eds.), The Core-Mantle Boundary Region. Vol. 28 of Geodynamics. AGU, pp. 139–151.
Ballani, Greiner-Mai, Stromeyer (bib3) 2002; 149
Xu, Poe, Shankland, Rubie (bib47) 1998; 280
Holme (bib20) 1998; 132
Dubrovinsky, Dubrovinskaia, Langhorst, Dobson, Ruble, Geßmann, Abrikosov, Johansson, Baykov, Vitos, Le Bihan, Crichton, Dmitriev, Weber (bib13) 2003; 422
Wardinski, I., 2005. Core surface flow models from decadal and subdecadal secular variation of the main geomagnetic field. Sci. Techn. Rep. GFZ Potsdam, STR 05/07
Backus (bib1) 1969; 263
Velímský, Martinec, Everett (bib42) 2006; 166
Rochester (bib37) 1962; 67
Hagedoorn, J., Geiner-Mai, H., 2008. Core-Mantle Coupling - Part I: Electromagnetic coupling torques. Sci. Techn. Rep. GFZ Potsdam, STR 08/06
Nagao, Iyemori, Higuchi, Araki (bib29) 2003; 108
Roberts (bib35) 1972; 24
Xu, McCammon, Poe (bib46) 1998; 282
Greiner-Mai (bib15) 1987; 308
Levy, Pearce (bib26) 1991; 96
Stackhouse (bib38) 2008; 1
Wardinski, Holme (bib44) 2006; 111
Rochester (bib36) 1960; 252
Benton, Whaler (bib5) 1983; 75
Buffett, Mathews, Herring (bib9) 2002; 107
Zhang, Oganov (bib49) 2006; 249
Lin, Watson, Vankó, Alp, Prakapenka, Dera, Struzhkin, Kubo, Zhao, McCammon, Evans (bib27) 2008; 1
Wardinski, Holme, Asari, Mandea (bib45) 2008; 267
Stix, Roberts (bib40) 1984; 36
Buffett (10.1016/j.pepi.2009.07.014_bib9) 2002; 107
10.1016/j.pepi.2009.07.014_bib21
Roberts (10.1016/j.pepi.2009.07.014_bib35) 1972; 24
Greiner-Mai (10.1016/j.pepi.2009.07.014_bib15) 1987; 308
Krause (10.1016/j.pepi.2009.07.014_bib24) 1980
Holme (10.1016/j.pepi.2009.07.014_bib20) 1998; 132
Velímský (10.1016/j.pepi.2009.07.014_bib42) 2006; 166
10.1016/j.pepi.2009.07.014_bib7
Celaya (10.1016/j.pepi.2009.07.014_bib10) 1991; 60
Backus (10.1016/j.pepi.2009.07.014_bib2) 1986; 24
Olsen (10.1016/j.pepi.2009.07.014_bib30) 1998; 133
Kuvshinov (10.1016/j.pepi.2009.07.014_bib25) 2006; 33
Love (10.1016/j.pepi.2009.07.014_bib28) 1994; 117
Levy (10.1016/j.pepi.2009.07.014_bib26) 1991; 96
Otha (10.1016/j.pepi.2009.07.014_bib32) 2008; 320
Zhang (10.1016/j.pepi.2009.07.014_bib50) 1993; 20
Zhang (10.1016/j.pepi.2009.07.014_bib49) 2006; 249
(10.1016/j.pepi.2009.07.014_bib22) 1987; Vol. 2
Jault (10.1016/j.pepi.2009.07.014_bib23) 1991; 43
Greiner-Mai (10.1016/j.pepi.2009.07.014_bib16) 1993; 45
Lin (10.1016/j.pepi.2009.07.014_bib27) 2008; 1
Xu (10.1016/j.pepi.2009.07.014_bib47) 1998; 280
Xu (10.1016/j.pepi.2009.07.014_bib48) 2000; 105
Greiner-Mai (10.1016/j.pepi.2009.07.014_bib14) 1986; 307
Greiner-Mai (10.1016/j.pepi.2009.07.014_bib18) 2007; 51
Ono (10.1016/j.pepi.2009.07.014_bib31) 2006; 246
Pěč (10.1016/j.pepi.2009.07.014_bib34) 1988; 32
Xu (10.1016/j.pepi.2009.07.014_bib46) 1998; 282
Buffett (10.1016/j.pepi.2009.07.014_bib8) 1992; 97
Bhattacharyya (10.1016/j.pepi.2009.07.014_bib6) 1995; 90
10.1016/j.pepi.2009.07.014_bib43
Stackhouse (10.1016/j.pepi.2009.07.014_bib38) 2008; 1
Wardinski (10.1016/j.pepi.2009.07.014_bib44) 2006; 111
Rochester (10.1016/j.pepi.2009.07.014_bib36) 1960; 252
Dubrovinsky (10.1016/j.pepi.2009.07.014_bib13) 2003; 422
Nagao (10.1016/j.pepi.2009.07.014_bib29) 2003; 108
Stewart (10.1016/j.pepi.2009.07.014_bib39) 1995; 92
Greiner-Mai (10.1016/j.pepi.2009.07.014_bib17) 2004; 158
10.1016/j.pepi.2009.07.014_bib11
Press (10.1016/j.pepi.2009.07.014_bib33) 1992
Wardinski (10.1016/j.pepi.2009.07.014_bib45) 2008; 267
Ballani (10.1016/j.pepi.2009.07.014_bib3) 2002; 149
Benton (10.1016/j.pepi.2009.07.014_bib5) 1983; 75
Backus (10.1016/j.pepi.2009.07.014_bib1) 1969; 263
Bengtson (10.1016/j.pepi.2009.07.014_bib4) 2008; 265
Varshalovich (10.1016/j.pepi.2009.07.014_bib41) 1989
10.1016/j.pepi.2009.07.014_bib19
Constable (10.1016/j.pepi.2009.07.014_bib12) 2004; 5
Stix (10.1016/j.pepi.2009.07.014_bib40) 1984; 36
Rochester (10.1016/j.pepi.2009.07.014_bib37) 1962; 67
References_xml – volume: 24
  start-page: 75
  year: 1986
  end-page: 109
  ident: bib2
  article-title: Poloidal and toroidal fields in geomagnetic field modeling
  publication-title: Rev. Geophys.
– volume: 107
  year: 2002
  ident: bib9
  article-title: Modeling of nutation and precession: Effect of electromagnetic coupling
  publication-title: J. Geophys. Res.
– volume: 92
  start-page: 199
  year: 1995
  end-page: 214
  ident: bib39
  article-title: Geomagnetism, earth rotation and the electrical conductivity of the lower mantle
  publication-title: Phys. Earth Planet. Inter.
– volume: 36
  start-page: 49
  year: 1984
  end-page: 60
  ident: bib40
  article-title: Time-dependent electromagnetic core-mantle coupling
  publication-title: Phys. Earth Planet. Inter.
– volume: 265
  start-page: 535
  year: 2008
  end-page: 545
  ident: bib4
  article-title: Ab inition study of the composition dependence of the pressure-induced spin crossover in persovskite (Mg
  publication-title: Earth Planet. Sci. Lett.
– volume: 96
  start-page: 3935
  year: 1991
  end-page: 3942
  ident: bib26
  article-title: Steady state toroidal magnetic field at earth’s core-mantle boundary
  publication-title: J. Geophys. Res.
– volume: 166
  start-page: 529
  year: 2006
  end-page: 542
  ident: bib42
  article-title: Electrical conductivity in the earth’s mantle inferred from CHAMP satellite measurements – I. Data processing and 1-D inversion
  publication-title: Geophys. J. Int.
– volume: 280
  start-page: 1415
  year: 1998
  end-page: 1417
  ident: bib47
  article-title: Electrical conductivity of Olevin, Wadsleyite, and Ringwoodite upper mantle conditions
  publication-title: Science
– volume: 308
  start-page: 217
  year: 1987
  end-page: 226
  ident: bib15
  article-title: The influence of the electromagnetic core-mantle coupling torques on earth’s rotation
  publication-title: Astron. Nachr.
– volume: 246
  start-page: 326
  year: 2006
  end-page: 335
  ident: bib31
  article-title: Stability and compressibility of the high-pressure phases of Al
  publication-title: Earth Planet. Sci. Lett.
– volume: 32
  start-page: 32
  year: 1988
  end-page: 46
  ident: bib34
  article-title: Gravitational potential inside 3-D inhomogeneous Earth: a boundary-value problem for the Poisson equation
  publication-title: Studia Geoph. et Geod.
– volume: 43
  start-page: 111
  year: 1991
  end-page: 129
  ident: bib23
  article-title: Exchange of angular momentum between core and mantle
  publication-title: J. Geomag. Geoelectr.
– volume: 97
  start-page: 19581
  year: 1992
  end-page: 19597
  ident: bib8
  article-title: Constraints on magnetic energy and mantle conductivity from the forced nutations of the earth
  publication-title: J. Geophys. Res.
– volume: 158
  start-page: 864
  year: 2004
  end-page: 873
  ident: bib17
  article-title: The poloidal geomagnetic field in a differentially rotating upper core layer
  publication-title: Geophys. J. Int.
– volume: 67
  start-page: 4833
  year: 1962
  end-page: 4836
  ident: bib37
  article-title: Geomagnetic core-mantle coupling
  publication-title: J. Geophys. Res.
– volume: 1
  start-page: 648
  year: 2008
  end-page: 650
  ident: bib38
  article-title: The spin deep within
  publication-title: Nature Geoscience
– volume: 33
  year: 2006
  ident: bib25
  article-title: A global model of mantle conductivity derived from 5 years of CHAMP, Ørsted, and SAC-C magnetic data
  publication-title: Geophys. Res. Lett.
– volume: 108
  year: 2003
  ident: bib29
  article-title: Lower mantle conductivity anomalies estimated from geomagnetic jerks
  publication-title: J. Geophys. Res.
– volume: 60
  start-page: 376
  year: 1991
  end-page: 378
  ident: bib10
  article-title: Electromagnetic core-mantle coupling as a constraint on the toroidal field and conductivity in the mantle
  publication-title: Geophys. Astrophys. Fluid Dynamics
– volume: 5
  year: 2004
  ident: bib12
  article-title: Observing geomagnetic induction in magnetic satellite measurements and associated implications for mantle conductivity
  publication-title: Geochem. Geophys. Geosys.
– volume: 320
  start-page: 89
  year: 2008
  end-page: 91
  ident: bib32
  article-title: The electrical conductivity of post-perovskite in Earth’s D
  publication-title: Science
– volume: 45
  start-page: 1333
  year: 1993
  end-page: 1345
  ident: bib16
  article-title: Decade variations of the earth’s rotation and geomagnetic core-mantle coupling
  publication-title: J. Geomag. Geoelectr.
– reference: Wardinski, I., 2005. Core surface flow models from decadal and subdecadal secular variation of the main geomagnetic field. Sci. Techn. Rep. GFZ Potsdam, STR 05/07
– reference: Hagedoorn, J., Geiner-Mai, H., 2008. Core-Mantle Coupling - Part I: Electromagnetic coupling torques. Sci. Techn. Rep. GFZ Potsdam, STR 08/06
– reference: Ciarlet, P., Lions, J. (Eds.), 1990. Handbook of Numerical Analysis. Vol. I. Elsevier Science Publisher (North-Holland), Amsterdam, Ch. Finite Difference Methods for Linear Parabolic Equations.
– volume: 105
  start-page: 27865
  year: 2000
  end-page: 27875
  ident: bib48
  article-title: Laboratory-based electrical conductivity in the earth’s mantel
  publication-title: J. Geophys. Res.
– volume: 132
  start-page: 167
  year: 1998
  end-page: 180
  ident: bib20
  article-title: Electromagnetic core-mantle coupling – I. Explaining decadal changes in the length of day
  publication-title: Geophys. J. Int.
– reference: .
– volume: 252
  start-page: 531
  year: 1960
  end-page: 555
  ident: bib36
  article-title: Geomagnetic westward drift and irregularities in the Earth’s rotation
  publication-title: Phil. Trans. R. Soc. Lond. A A
– year: 1989
  ident: bib41
  article-title: Quantum Theory of Angular Momentum
– volume: 282
  start-page: 922
  year: 1998
  end-page: 924
  ident: bib46
  article-title: The effect of alumina on the electrical conductivity of silicate peroviskite
  publication-title: Scinece
– volume: 149
  start-page: 374
  year: 2002
  end-page: 389
  ident: bib3
  article-title: Determining the magnetic field in the core-mantle boundary zone by non-harmonic downward continuation
  publication-title: Geophys. J. Int.
– volume: 249
  start-page: 436
  year: 2006
  end-page: 443
  ident: bib49
  article-title: Valence state and spin transition of iron in Earth’s mantle silicates
  publication-title: Earth Planet. Sci. Lett.
– volume: 1
  start-page: 688
  year: 2008
  end-page: 691
  ident: bib27
  article-title: Intermediate-spin ferreous iron in lowermost mantle post-perovskite and perovskite
  publication-title: Nature Geoscience
– volume: 90
  start-page: 81
  year: 1995
  end-page: 90
  ident: bib6
  article-title: An estimate of the radial gradient of the toroidal magnetic field at the top of the earth’s core
  publication-title: Phys. Earth Planet. Inter.
– reference: Bronstein, I., Semendjajew, K., Musiol, G., Mühlig, H., 1997. Taschenbuch der Mathematik, 3. überarbeitete und erweiterte Auflage. Verlag Harri Deutsch, Thun, Franfurt am Main.
– year: 1992
  ident: bib33
  article-title: Numerical Recipes in Fortran
  publication-title: The Art of Scientific Computing
– volume: 51
  start-page: 491
  year: 2007
  end-page: 513
  ident: bib18
  article-title: Axial poloidal electromagnetic core-mantle coupling torque: A re-examination for different conductivity and satellite supported geomagnetic field models
  publication-title: Stud. Geophys. Geod.
– volume: 117
  start-page: 235
  year: 1994
  end-page: 256
  ident: bib28
  article-title: Electromagnetic coupling and the toroidal magnetic field at the core-mantle boundary
  publication-title: Geophys. J. Int.
– volume: 111
  year: 2006
  ident: bib44
  article-title: A time-dependent model of the earth’s magnetic field and its secular variation for the period 1980–2000
  publication-title: J. Geophys. Res.
– volume: 20
  start-page: 2083
  year: 1993
  end-page: 2086
  ident: bib50
  article-title: How strong is the invisible component of the magnetic field in the earth’s core
  publication-title: Geophys. Res. Lett.
– volume: 422
  start-page: 58
  year: 2003
  end-page: 61
  ident: bib13
  article-title: Iron-silica interaction at extreme conditions and the electrically conducting layer at the base of earth’s mantle
  publication-title: Nature
– volume: 307
  start-page: 201
  year: 1986
  end-page: 208
  ident: bib14
  article-title: Theoretische Betrachtungen zum Verhalten des Magnetfeldes in einem sphärischen Erdmodell
  publication-title: Astron. Nachr.
– volume: 267
  start-page: 468
  year: 2008
  end-page: 481
  ident: bib45
  article-title: The 2003 geomagnetic jerk and its relation to the core surface flows
  publication-title: Earth Planet. Sci. Lett.
– volume: 75
  start-page: 77
  year: 1983
  end-page: 100
  ident: bib5
  article-title: Rapid diffusion of the poloidal geomagnetic field through the weakly conducting mantle: a perturbation solution
  publication-title: Geophys. J. R. astr. Soc.
– volume: 133
  start-page: 298
  year: 1998
  end-page: 308
  ident: bib30
  article-title: The electrical conductivity of the mantle beneath Europe derived from c-response from 3 to 720
  publication-title: Geophys. J. Int.
– volume: 24
  start-page: 231
  year: 1972
  end-page: 259
  ident: bib35
  article-title: Electromagnetic core-mantle coupling
  publication-title: J. Geomag. Geoelectr.
– reference: Holme, R., 1998b. Electromagnetic core-mantle coupling II: Probing deep mantle conductivity, In: Gurins, M., Wysession, M., Knittle, E., Buffet, B., (Eds.), The Core-Mantle Boundary Region. Vol. 28 of Geodynamics. AGU, pp. 139–151.
– volume: Vol. 2
  year: 1987
  ident: bib22
  publication-title: Geomagnetism
– year: 1980
  ident: bib24
  article-title: Mean-Field Magnetohydrodynamics and Dynamo Theory
– volume: 263
  start-page: 239
  year: 1969
  end-page: 266
  ident: bib1
  article-title: Kinematics of the geomagnetic secular variation in a perfectly conducting core
  publication-title: Phil. Trnas. R. Soc. London A
– volume: 149
  start-page: 374
  year: 2002
  ident: 10.1016/j.pepi.2009.07.014_bib3
  article-title: Determining the magnetic field in the core-mantle boundary zone by non-harmonic downward continuation
  publication-title: Geophys. J. Int.
  doi: 10.1046/j.1365-246X.2002.01655.x
– volume: 249
  start-page: 436
  year: 2006
  ident: 10.1016/j.pepi.2009.07.014_bib49
  article-title: Valence state and spin transition of iron in Earth’s mantle silicates
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2006.07.023
– volume: 45
  start-page: 1333
  year: 1993
  ident: 10.1016/j.pepi.2009.07.014_bib16
  article-title: Decade variations of the earth’s rotation and geomagnetic core-mantle coupling
  publication-title: J. Geomag. Geoelectr.
  doi: 10.5636/jgg.45.1333
– volume: 96
  start-page: 3935
  year: 1991
  ident: 10.1016/j.pepi.2009.07.014_bib26
  article-title: Steady state toroidal magnetic field at earth’s core-mantle boundary
  publication-title: J. Geophys. Res.
  doi: 10.1029/90JB02317
– volume: 20
  start-page: 2083
  year: 1993
  ident: 10.1016/j.pepi.2009.07.014_bib50
  article-title: How strong is the invisible component of the magnetic field in the earth’s core
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/93GL02052
– volume: 246
  start-page: 326
  year: 2006
  ident: 10.1016/j.pepi.2009.07.014_bib31
  article-title: Stability and compressibility of the high-pressure phases of Al2O3 up to 200GPa: Implications for the electrical conductivity of the base of the lower mantle
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2006.04.017
– volume: 108
  year: 2003
  ident: 10.1016/j.pepi.2009.07.014_bib29
  article-title: Lower mantle conductivity anomalies estimated from geomagnetic jerks
  publication-title: J. Geophys. Res.
  doi: 10.1029/2002JB001786
– ident: 10.1016/j.pepi.2009.07.014_bib7
– volume: 5
  year: 2004
  ident: 10.1016/j.pepi.2009.07.014_bib12
  article-title: Observing geomagnetic induction in magnetic satellite measurements and associated implications for mantle conductivity
  publication-title: Geochem. Geophys. Geosys.
  doi: 10.1029/2003GC000634
– volume: 60
  start-page: 376
  year: 1991
  ident: 10.1016/j.pepi.2009.07.014_bib10
  article-title: Electromagnetic core-mantle coupling as a constraint on the toroidal field and conductivity in the mantle
  publication-title: Geophys. Astrophys. Fluid Dynamics
– volume: 132
  start-page: 167
  year: 1998
  ident: 10.1016/j.pepi.2009.07.014_bib20
  article-title: Electromagnetic core-mantle coupling – I. Explaining decadal changes in the length of day
  publication-title: Geophys. J. Int.
  doi: 10.1046/j.1365-246x.1998.00424.x
– volume: 133
  start-page: 298
  year: 1998
  ident: 10.1016/j.pepi.2009.07.014_bib30
  article-title: The electrical conductivity of the mantle beneath Europe derived from c-response from 3 to 720h
  publication-title: Geophys. J. Int.
  doi: 10.1046/j.1365-246X.1998.00503.x
– volume: 1
  start-page: 648
  year: 2008
  ident: 10.1016/j.pepi.2009.07.014_bib38
  article-title: The spin deep within
  publication-title: Nature Geoscience
  doi: 10.1038/ngeo327
– volume: 33
  year: 2006
  ident: 10.1016/j.pepi.2009.07.014_bib25
  article-title: A global model of mantle conductivity derived from 5 years of CHAMP, Ørsted, and SAC-C magnetic data
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2006GL027083
– volume: 252
  start-page: 531
  year: 1960
  ident: 10.1016/j.pepi.2009.07.014_bib36
  article-title: Geomagnetic westward drift and irregularities in the Earth’s rotation
  publication-title: Phil. Trans. R. Soc. Lond. A A
  doi: 10.1098/rsta.1960.0014
– year: 1992
  ident: 10.1016/j.pepi.2009.07.014_bib33
  article-title: Numerical Recipes in Fortran
– volume: 158
  start-page: 864
  year: 2004
  ident: 10.1016/j.pepi.2009.07.014_bib17
  article-title: The poloidal geomagnetic field in a differentially rotating upper core layer
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.2004.02343.x
– volume: 32
  start-page: 32
  year: 1988
  ident: 10.1016/j.pepi.2009.07.014_bib34
  article-title: Gravitational potential inside 3-D inhomogeneous Earth: a boundary-value problem for the Poisson equation
  publication-title: Studia Geoph. et Geod.
  doi: 10.1007/BF01628999
– volume: 422
  start-page: 58
  year: 2003
  ident: 10.1016/j.pepi.2009.07.014_bib13
  article-title: Iron-silica interaction at extreme conditions and the electrically conducting layer at the base of earth’s mantle
  publication-title: Nature
  doi: 10.1038/nature01422
– volume: 107
  year: 2002
  ident: 10.1016/j.pepi.2009.07.014_bib9
  article-title: Modeling of nutation and precession: Effect of electromagnetic coupling
  publication-title: J. Geophys. Res.
  doi: 10.1029/2000JB000056
– volume: 92
  start-page: 199
  year: 1995
  ident: 10.1016/j.pepi.2009.07.014_bib39
  article-title: Geomagnetism, earth rotation and the electrical conductivity of the lower mantle
  publication-title: Phys. Earth Planet. Inter.
  doi: 10.1016/0031-9201(95)03035-4
– volume: 24
  start-page: 231
  year: 1972
  ident: 10.1016/j.pepi.2009.07.014_bib35
  article-title: Electromagnetic core-mantle coupling
  publication-title: J. Geomag. Geoelectr.
  doi: 10.5636/jgg.24.231
– volume: 280
  start-page: 1415
  year: 1998
  ident: 10.1016/j.pepi.2009.07.014_bib47
  article-title: Electrical conductivity of Olevin, Wadsleyite, and Ringwoodite upper mantle conditions
  publication-title: Science
  doi: 10.1126/science.280.5368.1415
– volume: 75
  start-page: 77
  year: 1983
  ident: 10.1016/j.pepi.2009.07.014_bib5
  article-title: Rapid diffusion of the poloidal geomagnetic field through the weakly conducting mantle: a perturbation solution
  publication-title: Geophys. J. R. astr. Soc.
  doi: 10.1111/j.1365-246X.1983.tb01914.x
– volume: 24
  start-page: 75
  year: 1986
  ident: 10.1016/j.pepi.2009.07.014_bib2
  article-title: Poloidal and toroidal fields in geomagnetic field modeling
  publication-title: Rev. Geophys.
  doi: 10.1029/RG024i001p00075
– ident: 10.1016/j.pepi.2009.07.014_bib11
– volume: 105
  start-page: 27865
  year: 2000
  ident: 10.1016/j.pepi.2009.07.014_bib48
  article-title: Laboratory-based electrical conductivity in the earth’s mantel
  publication-title: J. Geophys. Res.
  doi: 10.1029/2000JB900299
– ident: 10.1016/j.pepi.2009.07.014_bib19
– volume: 117
  start-page: 235
  year: 1994
  ident: 10.1016/j.pepi.2009.07.014_bib28
  article-title: Electromagnetic coupling and the toroidal magnetic field at the core-mantle boundary
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.1994.tb03315.x
– year: 1989
  ident: 10.1016/j.pepi.2009.07.014_bib41
– volume: 320
  start-page: 89
  year: 2008
  ident: 10.1016/j.pepi.2009.07.014_bib32
  article-title: The electrical conductivity of post-perovskite in Earth’s D″ layer
  publication-title: Science
  doi: 10.1126/science.1155148
– volume: 166
  start-page: 529
  year: 2006
  ident: 10.1016/j.pepi.2009.07.014_bib42
  article-title: Electrical conductivity in the earth’s mantle inferred from CHAMP satellite measurements – I. Data processing and 1-D inversion
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.2006.03013.x
– ident: 10.1016/j.pepi.2009.07.014_bib21
  doi: 10.1029/GD028p0139
– volume: 67
  start-page: 4833
  year: 1962
  ident: 10.1016/j.pepi.2009.07.014_bib37
  article-title: Geomagnetic core-mantle coupling
  publication-title: J. Geophys. Res.
  doi: 10.1029/JZ067i012p04833
– year: 1980
  ident: 10.1016/j.pepi.2009.07.014_bib24
– volume: 267
  start-page: 468
  year: 2008
  ident: 10.1016/j.pepi.2009.07.014_bib45
  article-title: The 2003 geomagnetic jerk and its relation to the core surface flows
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2007.12.008
– volume: 36
  start-page: 49
  year: 1984
  ident: 10.1016/j.pepi.2009.07.014_bib40
  article-title: Time-dependent electromagnetic core-mantle coupling
  publication-title: Phys. Earth Planet. Inter.
  doi: 10.1016/0031-9201(84)90098-0
– ident: 10.1016/j.pepi.2009.07.014_bib43
– volume: 90
  start-page: 81
  year: 1995
  ident: 10.1016/j.pepi.2009.07.014_bib6
  article-title: An estimate of the radial gradient of the toroidal magnetic field at the top of the earth’s core
  publication-title: Phys. Earth Planet. Inter.
  doi: 10.1016/0031-9201(94)03011-7
– volume: Vol. 2
  year: 1987
  ident: 10.1016/j.pepi.2009.07.014_bib22
– volume: 282
  start-page: 922
  year: 1998
  ident: 10.1016/j.pepi.2009.07.014_bib46
  article-title: The effect of alumina on the electrical conductivity of silicate peroviskite
  publication-title: Scinece
  doi: 10.1126/science.282.5390.922
– volume: 1
  start-page: 688
  year: 2008
  ident: 10.1016/j.pepi.2009.07.014_bib27
  article-title: Intermediate-spin ferreous iron in lowermost mantle post-perovskite and perovskite
  publication-title: Nature Geoscience
  doi: 10.1038/ngeo310
– volume: 51
  start-page: 491
  year: 2007
  ident: 10.1016/j.pepi.2009.07.014_bib18
  article-title: Axial poloidal electromagnetic core-mantle coupling torque: A re-examination for different conductivity and satellite supported geomagnetic field models
  publication-title: Stud. Geophys. Geod.
  doi: 10.1007/s11200-007-0029-0
– volume: 308
  start-page: 217
  year: 1987
  ident: 10.1016/j.pepi.2009.07.014_bib15
  article-title: The influence of the electromagnetic core-mantle coupling torques on earth’s rotation
  publication-title: Astron. Nachr.
  doi: 10.1002/asna.2113080313
– volume: 111
  year: 2006
  ident: 10.1016/j.pepi.2009.07.014_bib44
  article-title: A time-dependent model of the earth’s magnetic field and its secular variation for the period 1980–2000
  publication-title: J. Geophys. Res.
  doi: 10.1029/2006JB004401
– volume: 263
  start-page: 239
  year: 1969
  ident: 10.1016/j.pepi.2009.07.014_bib1
  article-title: Kinematics of the geomagnetic secular variation in a perfectly conducting core
  publication-title: Phil. Trnas. R. Soc. London A
  doi: 10.1098/rsta.1968.0014
– volume: 97
  start-page: 19581
  year: 1992
  ident: 10.1016/j.pepi.2009.07.014_bib8
  article-title: Constraints on magnetic energy and mantle conductivity from the forced nutations of the earth
  publication-title: J. Geophys. Res.
  doi: 10.1029/92JB00977
– volume: 43
  start-page: 111
  year: 1991
  ident: 10.1016/j.pepi.2009.07.014_bib23
  article-title: Exchange of angular momentum between core and mantle
  publication-title: J. Geomag. Geoelectr.
  doi: 10.5636/jgg.43.111
– volume: 265
  start-page: 535
  year: 2008
  ident: 10.1016/j.pepi.2009.07.014_bib4
  article-title: Ab inition study of the composition dependence of the pressure-induced spin crossover in persovskite (Mg1−x,Fex)SiO3
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2007.10.049
– volume: 307
  start-page: 201
  year: 1986
  ident: 10.1016/j.pepi.2009.07.014_bib14
  article-title: Theoretische Betrachtungen zum Verhalten des Magnetfeldes in einem sphärischen Erdmodell
  publication-title: Astron. Nachr.
  doi: 10.1002/asna.2113070313
SSID ssj0001323
Score 1.8922755
Snippet For the computation of the electromagnetic (EM) core-mantle coupling torque, the geomagnetic field must be known at the core-mantle boundary (CMB). It can be...
For the computation of the electromagnetic (EM) core-mantle coupling torque, the geomagnetic field must be known at the coremantle boundary (CMB). It can be...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 56
SubjectTerms Core-mantle transition zone
Induction process
Toroidal geomagnetic field
Title Determining the time-variable part of the toroidal geomagnetic field in the core-mantle boundary zone
URI https://dx.doi.org/10.1016/j.pepi.2009.07.014
https://hal.science/hal-00601520
Volume 178
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6uIngRn_gmiDeJ2zzabI-Luq6vPSl4K2mSrhW3Lcsq6MHf7qRNFzzowWvaSdvJ9JtJmPkGoZNIG-eWKdE8ionjZydpqBWJAC0V44rZwBUK34-i4aO4eQqfFtB5Wwvj0io99jeYXqO1H-l6bXarPHc1vmA-rM4sBJ8mww5aYjyOwLSX-te3w9EckGHD5bl3KXECvnamSfOqbJV72kp5FlDxm3_qPLcnrbXnGayhVR8y4n7zVutowRYbaPmqbsn7sYnshc9oASeEIZzDrl08eYc9sKuKwhV8DS6z5ko5LXMDc41tOVHjwhUw4jqHDedFfYcjtSQT0DZIpnXHpekH_iwLu4UeB5cP50PimycQBdg3I71YMaEMk6nWKbeBhp0JF6GIlJA6MBDGUSu4VVKmqTYQVxj4AQ21nGeaaZbybbRYwPQ7CFPNqZaxgUgxEwHPerIHS89Mj9ksEmG2i2irskR7ZnHX4OI1aVPIXhKnZtfyMk4CmYCad9HpXKZqeDX-vDtsVyL5YR0JAP-fcsewbPMHOCrtYf8ucWM1EU3Igne698_J99FKk0rgzmMO0OJs-mYPIUKZpUeoc_ZFj7wdfgOmj-Rq
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELaAqmovqE9Boa1V9VZ5N34k3j0iYLttF04gcbMc26GpIIlWWyR64Lcz4zhb9QCHXh3bScb2PKxvviHkc-E8mmXOnCymDPnZWZk7ywrQllZIK0KGicInp8X8XH2_yC82yOGQC4OwyqT7e50etXVqGSdpjru6xhxf2D4iIgvBpul8kzxRcHzxdI7u_uI8INxKzLucYfeUOdODvLrQ1Ym0Uo8yrh6yTps_h3vWaHdmL8h2chjpQf9NL8lGaF6Rp19jQd7b1yQcJTwLmCAKzhzFYvHsBiJgzImiHfwLbav-Sbtsaw9zXYb22l42mL5II4KN1k3sgZSW7BpkDSPLWG9peUv_tE14Q85nx2eHc5ZKJzALmm_FJlMrlPVCl86VMmQO4hKpclVYpV3mwYnjQclgtS5L58Gr8HD8PA9SVk44Ucq3ZKuB6XcI5U5yp6ce_MRKZbKa6AksvPATEapC5dUu4YPIjEu84lje4soMALJfBsWMBS-nJtMGxLxLvqzHdD2rxqO982ElzD97w4Daf3TcJ1i29QuQSHt-sDDYFmlocpHd8Hf_OflH8mx-drIwi2-nP_bI8x5UgDcz-2Rrtfwd3oOvsio_xL14D4DK5S4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Determining+the+time-variable+part+of+the+toroidal+geomagnetic+field+in+the+core-mantle+boundary+zone&rft.jtitle=Physics+of+the+earth+and+planetary+interiors&rft.au=Hagedoorn%2C+J.M.&rft.au=Greiner-Mai%2C+H.&rft.au=Ballani%2C+L.&rft.date=2010-01-01&rft.pub=Elsevier&rft.issn=0031-9201&rft.eissn=0031-9201&rft.volume=178&rft.issue=1-2&rft_id=info:doi/10.1016%2Fj.pepi.2009.07.014&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_00601520v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9201&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9201&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9201&client=summon