Synthesis of Self-Assembled Porphyrin Nanoparticle Photosensitizers
The use of nanoparticles as a potential building block for photosensitizers has recently become a focus of interest in the field of photocatalysis and photodynamic therapy. Porphyrins and their derivatives are effective photosensitizers due to extended π-conjugated electronic structure, high molar a...
Saved in:
Published in | ACS nano Vol. 12; no. 4; pp. 3796 - 3803 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
24.04.2018
American Chemical Society (ACS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The use of nanoparticles as a potential building block for photosensitizers has recently become a focus of interest in the field of photocatalysis and photodynamic therapy. Porphyrins and their derivatives are effective photosensitizers due to extended π-conjugated electronic structure, high molar absorption from visible to near-infrared spectrum, and high singlet oxygen quantum yields as well as chemical versatility. In this paper, we report a synthesis of self-assembled porphyrin nanoparticle photosensitizers using zinc meso-tetra(4-pyridyl)porphyrin (ZnTPyP) through a confined noncovalent self-assembly process. Scanning electron microscopy reveals formation of monodisperse cubic nanoparticles. UV–vis characterizations reveal that optical absorption of the nanoparticles exhibits a red shift due to noncovalent self-assembly of porphyrins, which not only effectively increase intensity of light absorption but also extend light absorption broadly covering visible light for enhanced photodynamic therapy. Electron spin-resonance spectroscopy (ESR) studies show the resultant porphyrin nanoparticles release a high yield of singlet oxygen. Nitric oxide (NO) coordinates to central metal Zn ions to form stabilized ZnTPyP@NO nanoparticles. We show that under light irradiation ZnTPyP@NO nanoparticles release highly reactive peroxynitrite molecules that exhibit enhanced antibacterial photodynamic therapy (APDT) activity. The ease of the synthesis of self-assembled porphyrin nanoparticles and light-triggered release of highly reactive moieties represent a completely different photosensitizer system for APDT application. |
---|---|
AbstractList | The use of nanoparticles as a potential building block for photosensitizers has recently become a focus of interest in the field of photocatalysis and photodynamic therapy. Porphyrins and their derivatives are effective photosensitizers due to extended π-conjugated electronic structure, high molar absorption from visible to near-infrared spectrum, and high singlet oxygen quantum yields as well as chemical versatility. In this work, we report a synthesis of self-assembled porphyrin nanoparticle photosensitizers using zinc meso-tetra(4-pyridyl)porphyrin (ZnTPyP) through a confined noncovalent self-assembly process. Scanning electron microscopy reveals formation of monodisperse cubic nanoparticles. UV–vis characterizations reveal that optical absorption of the nanoparticles exhibits a red shift due to noncovalent self-assembly of porphyrins, which not only effectively increase intensity of light absorption but also extend light absorption broadly covering visible light for enhanced photodynamic therapy. Electron spin-resonance spectroscopy (ESR) studies show the resultant porphyrin nanoparticles release a high yield of singlet oxygen. Nitric oxide (NO) coordinates to central metal Zn ions to form stabilized ZnTPyP@NO nanoparticles. We show that under light irradiation ZnTPyP@NO nanoparticles release highly reactive peroxynitrite molecules that exhibit enhanced antibacterial photodynamic therapy (APDT) activity. Finally, the ease of the synthesis of self-assembled porphyrin nanoparticles and light-triggered release of highly reactive moieties represent a completely different photosensitizer system for APDT application. The use of nanoparticles as a potential building block for photosensitizers has recently become a focus of interest in the field of photocatalysis and photodynamic therapy. Porphyrins and their derivatives are effective photosensitizers due to extended π-conjugated electronic structure, high molar absorption from visible to near-infrared spectrum, and high singlet oxygen quantum yields as well as chemical versatility. In this paper, we report a synthesis of self-assembled porphyrin nanoparticle photosensitizers using zinc meso-tetra(4-pyridyl)porphyrin (ZnTPyP) through a confined noncovalent self-assembly process. Scanning electron microscopy reveals formation of monodisperse cubic nanoparticles. UV-vis characterizations reveal that optical absorption of the nanoparticles exhibits a red shift due to noncovalent self-assembly of porphyrins, which not only effectively increase intensity of light absorption but also extend light absorption broadly covering visible light for enhanced photodynamic therapy. Electron spin-resonance spectroscopy (ESR) studies show the resultant porphyrin nanoparticles release a high yield of singlet oxygen. Nitric oxide (NO) coordinates to central metal Zn ions to form stabilized ZnTPyP@NO nanoparticles. We show that under light irradiation ZnTPyP@NO nanoparticles release highly reactive peroxynitrite molecules that exhibit enhanced antibacterial photodynamic therapy (APDT) activity. The ease of the synthesis of self-assembled porphyrin nanoparticles and light-triggered release of highly reactive moieties represent a completely different photosensitizer system for APDT application. The use of nanoparticles as a potential building block for photosensitizers has recently become a focus of interest in the field of photocatalysis and photodynamic therapy. Porphyrins and their derivatives are effective photosensitizers due to extended π-conjugated electronic structure, high molar absorption from visible to near-infrared spectrum, and high singlet oxygen quantum yields as well as chemical versatility. In this paper, we report a synthesis of self-assembled porphyrin nanoparticle photosensitizers using zinc meso-tetra(4-pyridyl)porphyrin (ZnTPyP) through a confined noncovalent self-assembly process. Scanning electron microscopy reveals formation of monodisperse cubic nanoparticles. UV–vis characterizations reveal that optical absorption of the nanoparticles exhibits a red shift due to noncovalent self-assembly of porphyrins, which not only effectively increase intensity of light absorption but also extend light absorption broadly covering visible light for enhanced photodynamic therapy. Electron spin-resonance spectroscopy (ESR) studies show the resultant porphyrin nanoparticles release a high yield of singlet oxygen. Nitric oxide (NO) coordinates to central metal Zn ions to form stabilized ZnTPyP@NO nanoparticles. We show that under light irradiation ZnTPyP@NO nanoparticles release highly reactive peroxynitrite molecules that exhibit enhanced antibacterial photodynamic therapy (APDT) activity. The ease of the synthesis of self-assembled porphyrin nanoparticles and light-triggered release of highly reactive moieties represent a completely different photosensitizer system for APDT application. The use of nanoparticles as a potential building block for photosensitizers has recently become a focus of interest in the field of photocatalysis and photodynamic therapy. Porphyrins and their derivatives are effective photosensitizers due to extended π-conjugated electronic structure, high molar absorption from visible to near-infrared spectrum, and high singlet oxygen quantum yields as well as chemical versatility. In this paper, we report a synthesis of self-assembled porphyrin nanoparticle photosensitizers using zinc meso-tetra(4-pyridyl)porphyrin (ZnTPyP) through a confined noncovalent self-assembly process. Scanning electron microscopy reveals formation of monodisperse cubic nanoparticles. UV-vis characterizations reveal that optical absorption of the nanoparticles exhibits a red shift due to noncovalent self-assembly of porphyrins, which not only effectively increase intensity of light absorption but also extend light absorption broadly covering visible light for enhanced photodynamic therapy. Electron spin-resonance spectroscopy (ESR) studies show the resultant porphyrin nanoparticles release a high yield of singlet oxygen. Nitric oxide (NO) coordinates to central metal Zn ions to form stabilized ZnTPyP@NO nanoparticles. We show that under light irradiation ZnTPyP@NO nanoparticles release highly reactive peroxynitrite molecules that exhibit enhanced antibacterial photodynamic therapy (APDT) activity. The ease of the synthesis of self-assembled porphyrin nanoparticles and light-triggered release of highly reactive moieties represent a completely different photosensitizer system for APDT application.The use of nanoparticles as a potential building block for photosensitizers has recently become a focus of interest in the field of photocatalysis and photodynamic therapy. Porphyrins and their derivatives are effective photosensitizers due to extended π-conjugated electronic structure, high molar absorption from visible to near-infrared spectrum, and high singlet oxygen quantum yields as well as chemical versatility. In this paper, we report a synthesis of self-assembled porphyrin nanoparticle photosensitizers using zinc meso-tetra(4-pyridyl)porphyrin (ZnTPyP) through a confined noncovalent self-assembly process. Scanning electron microscopy reveals formation of monodisperse cubic nanoparticles. UV-vis characterizations reveal that optical absorption of the nanoparticles exhibits a red shift due to noncovalent self-assembly of porphyrins, which not only effectively increase intensity of light absorption but also extend light absorption broadly covering visible light for enhanced photodynamic therapy. Electron spin-resonance spectroscopy (ESR) studies show the resultant porphyrin nanoparticles release a high yield of singlet oxygen. Nitric oxide (NO) coordinates to central metal Zn ions to form stabilized ZnTPyP@NO nanoparticles. We show that under light irradiation ZnTPyP@NO nanoparticles release highly reactive peroxynitrite molecules that exhibit enhanced antibacterial photodynamic therapy (APDT) activity. The ease of the synthesis of self-assembled porphyrin nanoparticles and light-triggered release of highly reactive moieties represent a completely different photosensitizer system for APDT application. |
Author | Cheng, Dong-Bing Zhong, Yong Fan, Hongyou Wang, Dong Bai, Feng Niu, Lijuan Wang, Jiefei Qiao, Zeng-Ying Wang, Hao |
AuthorAffiliation | Department of Chemical and Biological Engineering Collaborative Innovation Center of Nano Functional Materials and Applications The University of New Mexico CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety Sandia National Laboratories Key Laboratory for Special Functional Materials of the Ministry of Education Henan University |
AuthorAffiliation_xml | – name: CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety – name: Key Laboratory for Special Functional Materials of the Ministry of Education – name: Sandia National Laboratories – name: Collaborative Innovation Center of Nano Functional Materials and Applications – name: Department of Chemical and Biological Engineering – name: The University of New Mexico – name: Henan University |
Author_xml | – sequence: 1 givenname: Dong surname: Wang fullname: Wang, Dong organization: Henan University – sequence: 2 givenname: Lijuan surname: Niu fullname: Niu, Lijuan organization: Henan University – sequence: 3 givenname: Zeng-Ying surname: Qiao fullname: Qiao, Zeng-Ying organization: CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety – sequence: 4 givenname: Dong-Bing surname: Cheng fullname: Cheng, Dong-Bing organization: CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety – sequence: 5 givenname: Jiefei surname: Wang fullname: Wang, Jiefei organization: Henan University – sequence: 6 givenname: Yong orcidid: 0000-0003-1446-3148 surname: Zhong fullname: Zhong, Yong organization: Henan University – sequence: 7 givenname: Feng surname: Bai fullname: Bai, Feng email: baifengsun@126.com organization: Henan University – sequence: 8 givenname: Hao orcidid: 0000-0002-1961-0787 surname: Wang fullname: Wang, Hao email: wanghao@nanoctr.cn organization: CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety – sequence: 9 givenname: Hongyou orcidid: 0000-0001-6174-4263 surname: Fan fullname: Fan, Hongyou email: hfan@sandia.gov organization: Sandia National Laboratories |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29611423$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1469627$$D View this record in Osti.gov |
BookMark | eNp1kUFrGzEQhUVJSOI0597KklMgbCJptZL2GEyaFEwTcAO5CVk7ixXWkqORD86vr4rtHgphDjMw35uB9ybkKMQAhHxj9IZRzm6tw2BDvNELykp9IWesa2RNtXw9-je37JRMEN8obZVW8oSc8k4yJnhzRqbzbchLQI9VHKo5jEN9hwirxQh99RzTerlNPlS_ypO1Tdm7EarnZcwRIaDP_gMSfiXHgx0RLvb9nLz8uP89faxnTw8_p3ez2gqpci2FU0Iz3jWt06LTQjg2sEFx0I1zlEKvOqtoL0TXCzs0jtmWWglaOK24Ys05udzdjZi9QeczuKWLIYDLhgnZSa4KdLWD1im-bwCzWXl0MI42QNyg4cW2hjOlZEG_79HNYgW9WSe_smlrDu4UoN0BLkXEBIMpP232MeRk_WgYNX9TMPsUzD6Forv9T3c4_bnieqcoC_MWNykUIz-l_wD025kV |
CitedBy_id | crossref_primary_10_1039_D0NR01073A crossref_primary_10_1021_acsami_9b00704 crossref_primary_10_1007_s12598_023_02450_6 crossref_primary_10_1002_cplu_202300009 crossref_primary_10_1021_acsami_9b12375 crossref_primary_10_3390_cimb45120612 crossref_primary_10_1002_smll_202101495 crossref_primary_10_5802_crchim_309 crossref_primary_10_1002_adma_202100637 crossref_primary_10_1021_acsami_1c04868 crossref_primary_10_1021_acsami_9b02695 crossref_primary_10_1557_adv_2019_210 crossref_primary_10_1016_j_dyepig_2019_04_038 crossref_primary_10_1002_med_21669 crossref_primary_10_1557_adv_2019_217 crossref_primary_10_3390_pharmaceutics16101268 crossref_primary_10_1016_j_apsb_2022_08_013 crossref_primary_10_1016_j_mtadv_2022_100334 crossref_primary_10_1016_j_pnsc_2020_08_016 crossref_primary_10_1021_acsami_0c07471 crossref_primary_10_1002_anie_202200799 crossref_primary_10_6023_A21100475 crossref_primary_10_1002_anie_201908833 crossref_primary_10_1002_cbic_202400790 crossref_primary_10_1016_j_biomaterials_2020_119792 crossref_primary_10_1039_D0NR07484E crossref_primary_10_1016_j_dyepig_2019_107922 crossref_primary_10_1016_j_biopha_2023_114928 crossref_primary_10_1021_acs_macromol_9b01252 crossref_primary_10_1021_acs_biomac_1c01073 crossref_primary_10_1021_acsnano_9b06840 crossref_primary_10_1021_acs_chemrev_1c00381 crossref_primary_10_3390_molecules26144264 crossref_primary_10_1002_ange_202306100 crossref_primary_10_1142_S1088424622500481 crossref_primary_10_1039_D3TB01592K crossref_primary_10_1002_ange_202400049 crossref_primary_10_1016_j_pdpdt_2019_08_031 crossref_primary_10_1021_acscentsci_9b00639 crossref_primary_10_1021_acs_langmuir_2c00108 crossref_primary_10_3390_photochem3020014 crossref_primary_10_1039_C8OB02391C crossref_primary_10_1002_advs_202105252 crossref_primary_10_3389_fchem_2021_629062 crossref_primary_10_1021_acs_analchem_2c01164 crossref_primary_10_1002_ange_202410649 crossref_primary_10_1039_D0NJ05297C crossref_primary_10_1002_adsu_202100103 crossref_primary_10_1021_acsomega_9b01380 crossref_primary_10_1039_D2SC00381C crossref_primary_10_1016_j_cej_2022_136613 crossref_primary_10_1021_acsnano_3c09399 crossref_primary_10_1039_D2BM00016D crossref_primary_10_2147_IJN_S254774 crossref_primary_10_1002_anie_202219153 crossref_primary_10_1039_C9TA00878K crossref_primary_10_1002_anie_202306100 crossref_primary_10_1016_j_jphotochem_2018_07_034 crossref_primary_10_1016_j_eurpolymj_2024_112970 crossref_primary_10_1016_j_ccr_2020_213410 crossref_primary_10_1021_acsomega_1c01239 crossref_primary_10_1016_j_ijbiomac_2024_135047 crossref_primary_10_1080_00958972_2024_2367764 crossref_primary_10_1021_acs_nanolett_1c03550 crossref_primary_10_1039_C9NH00021F crossref_primary_10_1016_j_cej_2022_138129 crossref_primary_10_1021_acsbiomaterials_2c01219 crossref_primary_10_1016_j_xcrp_2020_100173 crossref_primary_10_1021_acsami_9b21443 crossref_primary_10_3390_pharmaceutics13121995 crossref_primary_10_1016_j_ajps_2022_02_004 crossref_primary_10_1016_j_jmst_2020_10_066 crossref_primary_10_2217_nnm_2020_0125 crossref_primary_10_1016_j_chemphys_2022_111655 crossref_primary_10_1016_j_cej_2022_136512 crossref_primary_10_1002_cptc_202400105 crossref_primary_10_1016_j_mtchem_2022_101336 crossref_primary_10_1360_SSC_2022_0124 crossref_primary_10_1016_j_snb_2019_127212 crossref_primary_10_1002_adtp_202300120 crossref_primary_10_1002_advs_202103721 crossref_primary_10_1080_00150193_2022_2092003 crossref_primary_10_3390_ijms241310875 crossref_primary_10_1021_acsami_9b20102 crossref_primary_10_1002_asia_202400268 crossref_primary_10_3390_ijms23063209 crossref_primary_10_1039_D4NR04593A crossref_primary_10_1142_S1088424622500419 crossref_primary_10_1557_mrs_2019_294 crossref_primary_10_1039_D1TB00868D crossref_primary_10_1039_D1TB02141A crossref_primary_10_1016_j_actbio_2023_05_006 crossref_primary_10_1016_j_apmt_2020_100830 crossref_primary_10_1002_elsa_202100149 crossref_primary_10_1016_j_dyepig_2022_110095 crossref_primary_10_3390_biomimetics8020171 crossref_primary_10_1016_j_ijbiomac_2023_124087 crossref_primary_10_1039_D2TB00348A crossref_primary_10_1016_j_jiec_2022_11_057 crossref_primary_10_1039_D0TB00817F crossref_primary_10_1021_acsami_3c03614 crossref_primary_10_3389_fchem_2019_00530 crossref_primary_10_1016_j_biomaterials_2022_121577 crossref_primary_10_1021_acscatal_0c01567 crossref_primary_10_1142_S1088424619501979 crossref_primary_10_2147_IJN_S382796 crossref_primary_10_1039_D2RA02251F crossref_primary_10_1016_j_cej_2020_127008 crossref_primary_10_1021_acsnano_3c02303 crossref_primary_10_1016_j_cej_2020_124778 crossref_primary_10_1039_C8CS00921J crossref_primary_10_1016_j_jcis_2023_02_083 crossref_primary_10_1080_09593330_2025_2473658 crossref_primary_10_1002_adsu_202400142 crossref_primary_10_1021_acsami_1c05705 crossref_primary_10_1016_j_cej_2024_152377 crossref_primary_10_1016_j_jconrel_2022_10_012 crossref_primary_10_1021_jacs_1c08679 crossref_primary_10_1039_D2NJ03142F crossref_primary_10_1039_D3TB00058C crossref_primary_10_1016_j_cej_2022_139938 crossref_primary_10_1021_acsami_1c11798 crossref_primary_10_1002_ange_202422814 crossref_primary_10_1002_anie_202103809 crossref_primary_10_1016_j_isci_2023_106279 crossref_primary_10_1002_anie_202410649 crossref_primary_10_1016_j_ijbiomac_2021_10_225 crossref_primary_10_1016_j_jlumin_2019_116972 crossref_primary_10_1002_chem_201900718 crossref_primary_10_1016_j_biomaterials_2020_120386 crossref_primary_10_1021_acsami_9b04351 crossref_primary_10_1016_j_molliq_2020_113946 crossref_primary_10_1007_s40843_022_2024_6 crossref_primary_10_1002_adma_202403921 crossref_primary_10_1186_s12951_024_02657_4 crossref_primary_10_1016_j_foodchem_2023_137541 crossref_primary_10_1016_j_isci_2018_12_025 crossref_primary_10_1039_C8TB02945H crossref_primary_10_1039_D0SC04983B crossref_primary_10_1039_D1TB01084K crossref_primary_10_1063_5_0213923 crossref_primary_10_3390_molecules29246063 crossref_primary_10_3390_nano10091644 crossref_primary_10_1021_acs_langmuir_2c02964 crossref_primary_10_1016_j_molstruc_2022_133591 crossref_primary_10_1021_acsmacrolett_3c00728 crossref_primary_10_1002_adma_201906711 crossref_primary_10_1007_s11426_021_1045_9 crossref_primary_10_1186_s12951_020_00660_z crossref_primary_10_1002_ange_201908833 crossref_primary_10_1002_ange_202200799 crossref_primary_10_1002_anie_202013301 crossref_primary_10_1016_j_cej_2021_131155 crossref_primary_10_1016_j_mtcomm_2021_102616 crossref_primary_10_1016_j_nantod_2023_101803 crossref_primary_10_1016_j_dyepig_2024_112208 crossref_primary_10_1557_mrs_2020_21 crossref_primary_10_1021_acsnano_3c12714 crossref_primary_10_1557_mrs_2019_39 crossref_primary_10_1080_14756366_2020_1755669 crossref_primary_10_1002_adma_201804046 crossref_primary_10_1002_advs_202101965 crossref_primary_10_3390_ph15070769 crossref_primary_10_1002_ange_202013301 crossref_primary_10_1016_j_actbio_2023_01_032 crossref_primary_10_1016_j_apmt_2024_102198 crossref_primary_10_1016_j_talanta_2022_124058 crossref_primary_10_15541_jim20240152 crossref_primary_10_1002_advs_202201134 crossref_primary_10_1021_acsami_8b19522 crossref_primary_10_1016_j_ccr_2022_214785 crossref_primary_10_1021_acsapm_4c01833 crossref_primary_10_1126_sciadv_adg9116 crossref_primary_10_1007_s12274_022_4286_6 crossref_primary_10_3389_fchem_2021_635344 crossref_primary_10_1002_anie_202400049 crossref_primary_10_1021_acsami_0c14063 crossref_primary_10_1002_adma_202304991 crossref_primary_10_1039_D1QI00105A crossref_primary_10_1016_j_jcis_2023_05_190 crossref_primary_10_1021_acsami_9b17569 crossref_primary_10_1002_adfm_201908783 crossref_primary_10_1039_D2RA01821G crossref_primary_10_1021_acsnano_9b09871 crossref_primary_10_1016_j_cej_2020_128049 crossref_primary_10_1007_s40242_023_3127_9 crossref_primary_10_1021_acsnano_1c00772 crossref_primary_10_1557_adv_2020_269 crossref_primary_10_1002_ange_202219153 crossref_primary_10_1016_j_biomaterials_2018_09_004 crossref_primary_10_1002_slct_202103418 crossref_primary_10_1002_advs_202303078 crossref_primary_10_1039_C9CP01278H crossref_primary_10_1021_acsami_2c12823 crossref_primary_10_1142_S1088424619500469 crossref_primary_10_1016_j_pestbp_2020_104584 crossref_primary_10_1021_acs_nanolett_9b00423 crossref_primary_10_1002_agt2_423 crossref_primary_10_1016_j_mattod_2020_11_001 crossref_primary_10_1142_S1088424622500493 crossref_primary_10_1039_C9TB00015A crossref_primary_10_1186_s12951_022_01436_3 crossref_primary_10_1039_D2BM01723G crossref_primary_10_1186_s12951_024_02483_8 crossref_primary_10_1002_adma_202106082 crossref_primary_10_1016_j_actbio_2023_03_008 crossref_primary_10_1007_s12274_020_2908_4 crossref_primary_10_1021_acs_jpcc_9b00697 crossref_primary_10_1021_acsnano_1c11422 crossref_primary_10_1021_acsnano_3c03267 crossref_primary_10_1039_C9NR10646D crossref_primary_10_1016_j_colsurfa_2024_134954 crossref_primary_10_1002_smll_202205252 crossref_primary_10_1039_D2CC02163C crossref_primary_10_1021_acsanm_4c01209 crossref_primary_10_1021_acsami_2c15428 crossref_primary_10_1021_acsami_9b19546 crossref_primary_10_1039_C9TB02883H crossref_primary_10_1021_acsami_0c10475 crossref_primary_10_1021_acsami_0c15244 crossref_primary_10_1142_S1088424619501451 crossref_primary_10_1007_s10118_021_2540_0 crossref_primary_10_1016_j_cclet_2023_108140 crossref_primary_10_1016_j_cej_2023_146937 crossref_primary_10_1002_cnma_201900466 crossref_primary_10_1002_adhm_202001897 crossref_primary_10_1007_s12274_021_3854_5 crossref_primary_10_1002_adhm_201900608 crossref_primary_10_1002_anie_202422814 crossref_primary_10_1021_acsanm_9b01787 crossref_primary_10_1002_adma_202101095 crossref_primary_10_1002_cctc_201900144 crossref_primary_10_1002_ange_202103809 crossref_primary_10_1039_C8MH01670D crossref_primary_10_1039_C9NJ04763H crossref_primary_10_3390_pharmaceutics15102370 crossref_primary_10_1016_j_dyepig_2022_110158 crossref_primary_10_1016_j_nanoen_2020_104645 crossref_primary_10_1039_C9BM00192A crossref_primary_10_1021_acsanm_0c03215 crossref_primary_10_1039_D4NR00383G crossref_primary_10_1002_adfm_202415629 |
Cites_doi | 10.1038/nri.2016.136 10.1039/c0cc05662f 10.1016/S0891-5849(99)00107-0 10.1021/bi960331h 10.1021/ja0291538 10.1039/B915149B 10.3322/caac.20114 10.2174/0929867323666160729104647 10.1021/am402044s 10.1021/jacs.5b12073 10.1039/C5CC07957H 10.1161/CIRCULATIONAHA.116.021884 10.1021/jacs.6b10508 10.1039/c002936j 10.1007/s11356-015-4775-1 10.1016/j.msec.2017.08.047 10.1016/S0040-4020(98)00015-5 10.1016/j.carbpol.2016.09.033 10.2741/2322 10.1002/anie.201612647 10.1002/ange.201103557 10.4161/viru.20328 10.1007/s10853-015-9324-2 10.1002/anie.201403036 10.4103/0972-124X.92563 10.1016/j.niox.2008.04.026 10.1006/niox.1997.0130 10.1126/science.1948068 10.1021/nl203598n 10.1039/C6EE02265K 10.1111/j.1751-1097.2009.00585.x 10.2174/138161208784246225 10.1039/b816636f 10.1002/adma.201604764 10.1111/j.1574-695X.2007.00329.x 10.1016/j.jinorgbio.2015.09.002 10.1002/anie.201002307 10.1161/CIRCRESAHA.116.306531 10.1016/j.dyepig.2017.07.048 10.1007/s10853-011-5518-4 10.1002/chem.201204013 10.1038/nrc1071 |
ContentType | Journal Article |
CorporateAuthor | Henan Univ., Kaifeng (China) Sandia National Lab. (SNL-NM), Albuquerque, NM (United States) National Center for Nanoscience and Technology (NCNST), Beijing (China) |
CorporateAuthor_xml | – name: Sandia National Lab. (SNL-NM), Albuquerque, NM (United States) – name: Henan Univ., Kaifeng (China) – name: National Center for Nanoscience and Technology (NCNST), Beijing (China) |
DBID | AAYXX CITATION NPM 7X8 OIOZB OTOTI |
DOI | 10.1021/acsnano.8b01010 |
DatabaseName | CrossRef PubMed MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 3803 |
ExternalDocumentID | 1469627 29611423 10_1021_acsnano_8b01010 f79390043 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GroupedDBID | - 23M 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 4.4 5VS 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV AHGAQ BAANH CITATION CUPRZ GGK NPM 7X8 ABFRP OIOZB OTOTI |
ID | FETCH-LOGICAL-a467t-64c74812935c849844c1f1f72e83cc00ed79a70d449d4af3c1a50a6e84c872713 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Wed Nov 29 06:10:36 EST 2023 Fri Jul 11 10:08:34 EDT 2025 Thu Jan 02 23:00:46 EST 2025 Tue Jul 01 01:34:16 EDT 2025 Thu Apr 24 22:59:43 EDT 2025 Thu Aug 27 13:42:08 EDT 2020 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | porphyrin nanoparticles self-assembly APDT photosensitizers antibacterial photodynamic therapy |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a467t-64c74812935c849844c1f1f72e83cc00ed79a70d449d4af3c1a50a6e84c872713 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE Office of Science (SC), Basic Energy Sciences (BES) SAND-2018-9735J NA0003525; 21422102; 21771055; U1604139; 21171049; 174200510019; PCS IRT_15R18 Program for Changjiang Scholars and Innovative Research Team in University (China) National Natural Science Foundation of China (NSFC) Plan for Scientific Innovation Talent of Henan Province (China) USDOE National Nuclear Security Administration (NNSA) |
ORCID | 0000-0002-1961-0787 0000-0001-6174-4263 0000-0003-1446-3148 0000000314463148 0000000161744263 0000000219610787 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1469627 |
PMID | 29611423 |
PQID | 2021321776 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | osti_scitechconnect_1469627 proquest_miscellaneous_2021321776 pubmed_primary_29611423 crossref_citationtrail_10_1021_acsnano_8b01010 crossref_primary_10_1021_acsnano_8b01010 acs_journals_10_1021_acsnano_8b01010 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-04-24 |
PublicationDateYYYYMMDD | 2018-04-24 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-24 day: 24 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2018 |
Publisher | American Chemical Society American Chemical Society (ACS) |
Publisher_xml | – name: American Chemical Society – name: American Chemical Society (ACS) |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref7/cit7 |
References_xml | – ident: ref21/cit21 doi: 10.1038/nri.2016.136 – ident: ref14/cit14 doi: 10.1039/c0cc05662f – ident: ref38/cit38 doi: 10.1016/S0891-5849(99)00107-0 – ident: ref39/cit39 doi: 10.1021/bi960331h – ident: ref34/cit34 doi: 10.1021/ja0291538 – ident: ref1/cit1 doi: 10.1039/B915149B – ident: ref5/cit5 doi: 10.3322/caac.20114 – ident: ref30/cit30 doi: 10.2174/0929867323666160729104647 – ident: ref32/cit32 doi: 10.1021/am402044s – ident: ref35/cit35 doi: 10.1021/jacs.5b12073 – ident: ref10/cit10 doi: 10.1039/C5CC07957H – ident: ref20/cit20 doi: 10.1161/CIRCULATIONAHA.116.021884 – ident: ref36/cit36 doi: 10.1021/jacs.6b10508 – ident: ref29/cit29 doi: 10.1039/c002936j – ident: ref41/cit41 doi: 10.1007/s11356-015-4775-1 – ident: ref2/cit2 doi: 10.1016/j.msec.2017.08.047 – ident: ref16/cit16 doi: 10.1016/S0040-4020(98)00015-5 – ident: ref18/cit18 doi: 10.1016/j.carbpol.2016.09.033 – ident: ref25/cit25 doi: 10.2741/2322 – ident: ref8/cit8 doi: 10.1002/anie.201612647 – ident: ref13/cit13 doi: 10.1002/ange.201103557 – ident: ref24/cit24 doi: 10.4161/viru.20328 – ident: ref11/cit11 doi: 10.1007/s10853-015-9324-2 – ident: ref7/cit7 doi: 10.1002/anie.201403036 – ident: ref12/cit12 doi: 10.4103/0972-124X.92563 – ident: ref27/cit27 doi: 10.1016/j.niox.2008.04.026 – ident: ref40/cit40 doi: 10.1006/niox.1997.0130 – ident: ref23/cit23 doi: 10.1126/science.1948068 – ident: ref28/cit28 doi: 10.1021/nl203598n – ident: ref6/cit6 doi: 10.1039/C6EE02265K – ident: ref15/cit15 doi: 10.1111/j.1751-1097.2009.00585.x – ident: ref26/cit26 doi: 10.2174/138161208784246225 – ident: ref33/cit33 doi: 10.1039/b816636f – ident: ref37/cit37 doi: 10.1002/adma.201604764 – ident: ref22/cit22 doi: 10.1111/j.1574-695X.2007.00329.x – ident: ref31/cit31 doi: 10.1016/j.jinorgbio.2015.09.002 – ident: ref17/cit17 doi: 10.1002/anie.201002307 – ident: ref19/cit19 doi: 10.1161/CIRCRESAHA.116.306531 – ident: ref3/cit3 doi: 10.1016/j.dyepig.2017.07.048 – ident: ref9/cit9 doi: 10.1007/s10853-011-5518-4 – ident: ref42/cit42 doi: 10.1002/chem.201204013 – ident: ref4/cit4 doi: 10.1038/nrc1071 |
SSID | ssj0057876 |
Score | 2.640308 |
Snippet | The use of nanoparticles as a potential building block for photosensitizers has recently become a focus of interest in the field of photocatalysis and... |
SourceID | osti proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3796 |
SubjectTerms | antibacterial photodynamic therapy APDT NANOSCIENCE AND NANOTECHNOLOGY photosensitizers porphyrin nanoparticles self-assembly |
Title | Synthesis of Self-Assembled Porphyrin Nanoparticle Photosensitizers |
URI | http://dx.doi.org/10.1021/acsnano.8b01010 https://www.ncbi.nlm.nih.gov/pubmed/29611423 https://www.proquest.com/docview/2021321776 https://www.osti.gov/servlets/purl/1469627 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVQucCBfSmbgtQDl5Q4cRznWFVUCAlUqSBxi9yxIypKgkh6gK9npknLUlVwju3InrHnPc34mbGWQbYGMcQuV8ZzBTfc1VppBHLKhGkUmzCky8m3d_L6Qdw8ho9fYtG_M_g-v9RQZDrL22pIcmjIzld9qSLiWZ3uYHbokt_JKoGMBBlRxFzFZ2EACkNQ_AhDjRy303KIOQ01vc2qSKuYKhRShclze1IO2_CxqN_49yy22EYNOJ1O5SHbbMVmO2z9mwzhLusO3jPEgcWocPLUGdhx6lIu-GU4tsbp52QJbOjgQYwMuxrH6T_lZV5Q9Xs5-kAIucceelf33Wu3flzB1Xg2lq4UEAlF0T4EJWIlBPCUp5FvVQDgedZEsY48I0RshE4D4Dr0tLRKgELMw4N91sjyzB4yBz97OrISiNshfFTCGK1CGUjjBQL8Jmvh9JN6cxTJNO_t86Rek6RekyZrz0ySQC1QTu9kjJd3uJh3eK20OZY3PSYbJwgrSBsXqIgISuI99PhQk53PTJ_g7qKUic5sPikSH8cKkLVFsskOKp-Y_8qPJV1EDo7-N71jtoZgS1EmyhcnrFG-TewpAppyeDZ15U__B-8r |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB2h5QA98N12-QwSBy7ZxonjOEe0KlooINCCxM3y2o5A3SaoyR7Kr2cmyW6haKVyTexJbI8972nsZ4Aji2zNpCb1mbSBz5llvtZSI5CTNs6S1MYxHU6-vBKDO35-H98vQDA9C4M_UaKlsk7i_1UXYN_wWa7zoidHpIqGJH0RoUhIdOukP5yuveR-oskjI09GMDET83lngKKRKd9Eo06Bs2o-0qwjzukq3Mz-td5o8rM3qUY98_yPjONHGrMGKy389E4af1mHBZdvwKdXooSb0B_-yREVlo-lV2Te0I0znzLDv0ZjZ73rgsYFC3q4LCPfbux41w9FVZS0F756fEZAuQV3p99v-wO_vWrB17hSVr7gJuGSYn9sJE8l54ZlLEtCJyNjgsDZJNVJYDlPLddZZJiOAy2c5EYiAmLRZ-jkRe6-goevA504YYjpIZiU3FotYxEJG0TchF04wuardqqUqs6Ch0y1faLaPulCbzoyyrRy5XRrxnh-heNZhadGqWN-0R0aaoUgg5RyDW0pMhWxILqKqAuHUw9QONcogaJzV0xKFaKtCDlcIrrwpXGN2afCVNCx5Gj7_5p3AEuD28sLdXF29WMHlhGGScpRhXwXOtXvidtDqFON9mvvfgEx0feM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB6hIiH2wGMfbJdXkDhwSTdOHMc5okLFYxdVKpW4Wa7tCEQ3QSQ9LL-emSStlkWVdq-J7cT2jP19Gs9ngGOLbM2kJvWZtIHPmWW-1lIjkJM2zpLUxjElJ_-8ERdjfnUX37VJYZQLgz9RYktlHcQnr36yWaswwL7j81znRU9OSBkNifoqBe2Icp32R_P1l0xQNLFk5MoIKBaCPu8aoB3JlG92pE6BnrUcbda7zmATxov_rQ-bPPZm1aRnXv6ScvzfDm3BRgtDvdPGbrZhxeUf4cMf4oSfoD_6nSM6LB9Kr8i8kZtmPkWIf02mznrDguYHC3q4PCPvbtrxhvdFVZR0Jr56eEFg-RnGg_Pb_oXfXrnga1wxK19wk3BJGCA2kqeSc8MyliWhk5ExQeBskuoksJynlussMkzHgRZOciMRCbHoC3TyIndfwcPXgU6cMMT4EFRKbq2WsYiEDSJuwi4cY_dV6zKlqqPhIVPtmKh2TLrQm8-OMq1sOd2eMV1e4WRR4alR7FhedJemWyHYIMVcQ0eLTEVsiK4k6sLR3AoU-hwFUnTuilmpQmwrQi6XiC7sNOax-FSYCkpPjr79W_cOYW14NlA_Lm-ud2Ed0ZikUFXI96BTPc_cPiKeanJQG_grSwT6Dw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+of+Self-Assembled+Porphyrin+Nanoparticle+Photosensitizers&rft.jtitle=ACS+nano&rft.au=Wang%2C+Dong&rft.au=Niu%2C+Lijuan&rft.au=Qiao%2C+Zeng-Ying&rft.au=Cheng%2C+Dong-Bing&rft.date=2018-04-24&rft.issn=1936-086X&rft.eissn=1936-086X&rft.volume=12&rft.issue=4&rft.spage=3796&rft_id=info:doi/10.1021%2Facsnano.8b01010&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |