Synthesis of Self-Assembled Porphyrin Nanoparticle Photosensitizers

The use of nanoparticles as a potential building block for photosensitizers has recently become a focus of interest in the field of photocatalysis and photodynamic therapy. Porphyrins and their derivatives are effective photosensitizers due to extended π-conjugated electronic structure, high molar a...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 12; no. 4; pp. 3796 - 3803
Main Authors Wang, Dong, Niu, Lijuan, Qiao, Zeng-Ying, Cheng, Dong-Bing, Wang, Jiefei, Zhong, Yong, Bai, Feng, Wang, Hao, Fan, Hongyou
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 24.04.2018
American Chemical Society (ACS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The use of nanoparticles as a potential building block for photosensitizers has recently become a focus of interest in the field of photocatalysis and photodynamic therapy. Porphyrins and their derivatives are effective photosensitizers due to extended π-conjugated electronic structure, high molar absorption from visible to near-infrared spectrum, and high singlet oxygen quantum yields as well as chemical versatility. In this paper, we report a synthesis of self-assembled porphyrin nanoparticle photosensitizers using zinc meso-tetra­(4-pyridyl)­porphyrin (ZnTPyP) through a confined noncovalent self-assembly process. Scanning electron microscopy reveals formation of monodisperse cubic nanoparticles. UV–vis characterizations reveal that optical absorption of the nanoparticles exhibits a red shift due to noncovalent self-assembly of porphyrins, which not only effectively increase intensity of light absorption but also extend light absorption broadly covering visible light for enhanced photodynamic therapy. Electron spin-resonance spectroscopy (ESR) studies show the resultant porphyrin nanoparticles release a high yield of singlet oxygen. Nitric oxide (NO) coordinates to central metal Zn ions to form stabilized ZnTPyP@NO nanoparticles. We show that under light irradiation ZnTPyP@NO nanoparticles release highly reactive peroxynitrite molecules that exhibit enhanced antibacterial photodynamic therapy (APDT) activity. The ease of the synthesis of self-assembled porphyrin nanoparticles and light-triggered release of highly reactive moieties represent a completely different photosensitizer system for APDT application.
AbstractList The use of nanoparticles as a potential building block for photosensitizers has recently become a focus of interest in the field of photocatalysis and photodynamic therapy. Porphyrins and their derivatives are effective photosensitizers due to extended π-conjugated electronic structure, high molar absorption from visible to near-infrared spectrum, and high singlet oxygen quantum yields as well as chemical versatility. In this work, we report a synthesis of self-assembled porphyrin nanoparticle photosensitizers using zinc meso-tetra(4-pyridyl)porphyrin (ZnTPyP) through a confined noncovalent self-assembly process. Scanning electron microscopy reveals formation of monodisperse cubic nanoparticles. UV–vis characterizations reveal that optical absorption of the nanoparticles exhibits a red shift due to noncovalent self-assembly of porphyrins, which not only effectively increase intensity of light absorption but also extend light absorption broadly covering visible light for enhanced photodynamic therapy. Electron spin-resonance spectroscopy (ESR) studies show the resultant porphyrin nanoparticles release a high yield of singlet oxygen. Nitric oxide (NO) coordinates to central metal Zn ions to form stabilized ZnTPyP@NO nanoparticles. We show that under light irradiation ZnTPyP@NO nanoparticles release highly reactive peroxynitrite molecules that exhibit enhanced antibacterial photodynamic therapy (APDT) activity. Finally, the ease of the synthesis of self-assembled porphyrin nanoparticles and light-triggered release of highly reactive moieties represent a completely different photosensitizer system for APDT application.
The use of nanoparticles as a potential building block for photosensitizers has recently become a focus of interest in the field of photocatalysis and photodynamic therapy. Porphyrins and their derivatives are effective photosensitizers due to extended π-conjugated electronic structure, high molar absorption from visible to near-infrared spectrum, and high singlet oxygen quantum yields as well as chemical versatility. In this paper, we report a synthesis of self-assembled porphyrin nanoparticle photosensitizers using zinc meso-tetra(4-pyridyl)porphyrin (ZnTPyP) through a confined noncovalent self-assembly process. Scanning electron microscopy reveals formation of monodisperse cubic nanoparticles. UV-vis characterizations reveal that optical absorption of the nanoparticles exhibits a red shift due to noncovalent self-assembly of porphyrins, which not only effectively increase intensity of light absorption but also extend light absorption broadly covering visible light for enhanced photodynamic therapy. Electron spin-resonance spectroscopy (ESR) studies show the resultant porphyrin nanoparticles release a high yield of singlet oxygen. Nitric oxide (NO) coordinates to central metal Zn ions to form stabilized ZnTPyP@NO nanoparticles. We show that under light irradiation ZnTPyP@NO nanoparticles release highly reactive peroxynitrite molecules that exhibit enhanced antibacterial photodynamic therapy (APDT) activity. The ease of the synthesis of self-assembled porphyrin nanoparticles and light-triggered release of highly reactive moieties represent a completely different photosensitizer system for APDT application.
The use of nanoparticles as a potential building block for photosensitizers has recently become a focus of interest in the field of photocatalysis and photodynamic therapy. Porphyrins and their derivatives are effective photosensitizers due to extended π-conjugated electronic structure, high molar absorption from visible to near-infrared spectrum, and high singlet oxygen quantum yields as well as chemical versatility. In this paper, we report a synthesis of self-assembled porphyrin nanoparticle photosensitizers using zinc meso-tetra­(4-pyridyl)­porphyrin (ZnTPyP) through a confined noncovalent self-assembly process. Scanning electron microscopy reveals formation of monodisperse cubic nanoparticles. UV–vis characterizations reveal that optical absorption of the nanoparticles exhibits a red shift due to noncovalent self-assembly of porphyrins, which not only effectively increase intensity of light absorption but also extend light absorption broadly covering visible light for enhanced photodynamic therapy. Electron spin-resonance spectroscopy (ESR) studies show the resultant porphyrin nanoparticles release a high yield of singlet oxygen. Nitric oxide (NO) coordinates to central metal Zn ions to form stabilized ZnTPyP@NO nanoparticles. We show that under light irradiation ZnTPyP@NO nanoparticles release highly reactive peroxynitrite molecules that exhibit enhanced antibacterial photodynamic therapy (APDT) activity. The ease of the synthesis of self-assembled porphyrin nanoparticles and light-triggered release of highly reactive moieties represent a completely different photosensitizer system for APDT application.
The use of nanoparticles as a potential building block for photosensitizers has recently become a focus of interest in the field of photocatalysis and photodynamic therapy. Porphyrins and their derivatives are effective photosensitizers due to extended π-conjugated electronic structure, high molar absorption from visible to near-infrared spectrum, and high singlet oxygen quantum yields as well as chemical versatility. In this paper, we report a synthesis of self-assembled porphyrin nanoparticle photosensitizers using zinc meso-tetra(4-pyridyl)porphyrin (ZnTPyP) through a confined noncovalent self-assembly process. Scanning electron microscopy reveals formation of monodisperse cubic nanoparticles. UV-vis characterizations reveal that optical absorption of the nanoparticles exhibits a red shift due to noncovalent self-assembly of porphyrins, which not only effectively increase intensity of light absorption but also extend light absorption broadly covering visible light for enhanced photodynamic therapy. Electron spin-resonance spectroscopy (ESR) studies show the resultant porphyrin nanoparticles release a high yield of singlet oxygen. Nitric oxide (NO) coordinates to central metal Zn ions to form stabilized ZnTPyP@NO nanoparticles. We show that under light irradiation ZnTPyP@NO nanoparticles release highly reactive peroxynitrite molecules that exhibit enhanced antibacterial photodynamic therapy (APDT) activity. The ease of the synthesis of self-assembled porphyrin nanoparticles and light-triggered release of highly reactive moieties represent a completely different photosensitizer system for APDT application.The use of nanoparticles as a potential building block for photosensitizers has recently become a focus of interest in the field of photocatalysis and photodynamic therapy. Porphyrins and their derivatives are effective photosensitizers due to extended π-conjugated electronic structure, high molar absorption from visible to near-infrared spectrum, and high singlet oxygen quantum yields as well as chemical versatility. In this paper, we report a synthesis of self-assembled porphyrin nanoparticle photosensitizers using zinc meso-tetra(4-pyridyl)porphyrin (ZnTPyP) through a confined noncovalent self-assembly process. Scanning electron microscopy reveals formation of monodisperse cubic nanoparticles. UV-vis characterizations reveal that optical absorption of the nanoparticles exhibits a red shift due to noncovalent self-assembly of porphyrins, which not only effectively increase intensity of light absorption but also extend light absorption broadly covering visible light for enhanced photodynamic therapy. Electron spin-resonance spectroscopy (ESR) studies show the resultant porphyrin nanoparticles release a high yield of singlet oxygen. Nitric oxide (NO) coordinates to central metal Zn ions to form stabilized ZnTPyP@NO nanoparticles. We show that under light irradiation ZnTPyP@NO nanoparticles release highly reactive peroxynitrite molecules that exhibit enhanced antibacterial photodynamic therapy (APDT) activity. The ease of the synthesis of self-assembled porphyrin nanoparticles and light-triggered release of highly reactive moieties represent a completely different photosensitizer system for APDT application.
Author Cheng, Dong-Bing
Zhong, Yong
Fan, Hongyou
Wang, Dong
Bai, Feng
Niu, Lijuan
Wang, Jiefei
Qiao, Zeng-Ying
Wang, Hao
AuthorAffiliation Department of Chemical and Biological Engineering
Collaborative Innovation Center of Nano Functional Materials and Applications
The University of New Mexico
CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety
Sandia National Laboratories
Key Laboratory for Special Functional Materials of the Ministry of Education
Henan University
AuthorAffiliation_xml – name: CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety
– name: Key Laboratory for Special Functional Materials of the Ministry of Education
– name: Sandia National Laboratories
– name: Collaborative Innovation Center of Nano Functional Materials and Applications
– name: Department of Chemical and Biological Engineering
– name: The University of New Mexico
– name: Henan University
Author_xml – sequence: 1
  givenname: Dong
  surname: Wang
  fullname: Wang, Dong
  organization: Henan University
– sequence: 2
  givenname: Lijuan
  surname: Niu
  fullname: Niu, Lijuan
  organization: Henan University
– sequence: 3
  givenname: Zeng-Ying
  surname: Qiao
  fullname: Qiao, Zeng-Ying
  organization: CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety
– sequence: 4
  givenname: Dong-Bing
  surname: Cheng
  fullname: Cheng, Dong-Bing
  organization: CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety
– sequence: 5
  givenname: Jiefei
  surname: Wang
  fullname: Wang, Jiefei
  organization: Henan University
– sequence: 6
  givenname: Yong
  orcidid: 0000-0003-1446-3148
  surname: Zhong
  fullname: Zhong, Yong
  organization: Henan University
– sequence: 7
  givenname: Feng
  surname: Bai
  fullname: Bai, Feng
  email: baifengsun@126.com
  organization: Henan University
– sequence: 8
  givenname: Hao
  orcidid: 0000-0002-1961-0787
  surname: Wang
  fullname: Wang, Hao
  email: wanghao@nanoctr.cn
  organization: CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety
– sequence: 9
  givenname: Hongyou
  orcidid: 0000-0001-6174-4263
  surname: Fan
  fullname: Fan, Hongyou
  email: hfan@sandia.gov
  organization: Sandia National Laboratories
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29611423$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1469627$$D View this record in Osti.gov
BookMark eNp1kUFrGzEQhUVJSOI0597KklMgbCJptZL2GEyaFEwTcAO5CVk7ixXWkqORD86vr4rtHgphDjMw35uB9ybkKMQAhHxj9IZRzm6tw2BDvNELykp9IWesa2RNtXw9-je37JRMEN8obZVW8oSc8k4yJnhzRqbzbchLQI9VHKo5jEN9hwirxQh99RzTerlNPlS_ypO1Tdm7EarnZcwRIaDP_gMSfiXHgx0RLvb9nLz8uP89faxnTw8_p3ez2gqpci2FU0Iz3jWt06LTQjg2sEFx0I1zlEKvOqtoL0TXCzs0jtmWWglaOK24Ys05udzdjZi9QeczuKWLIYDLhgnZSa4KdLWD1im-bwCzWXl0MI42QNyg4cW2hjOlZEG_79HNYgW9WSe_smlrDu4UoN0BLkXEBIMpP232MeRk_WgYNX9TMPsUzD6Forv9T3c4_bnieqcoC_MWNykUIz-l_wD025kV
CitedBy_id crossref_primary_10_1039_D0NR01073A
crossref_primary_10_1021_acsami_9b00704
crossref_primary_10_1007_s12598_023_02450_6
crossref_primary_10_1002_cplu_202300009
crossref_primary_10_1021_acsami_9b12375
crossref_primary_10_3390_cimb45120612
crossref_primary_10_1002_smll_202101495
crossref_primary_10_5802_crchim_309
crossref_primary_10_1002_adma_202100637
crossref_primary_10_1021_acsami_1c04868
crossref_primary_10_1021_acsami_9b02695
crossref_primary_10_1557_adv_2019_210
crossref_primary_10_1016_j_dyepig_2019_04_038
crossref_primary_10_1002_med_21669
crossref_primary_10_1557_adv_2019_217
crossref_primary_10_3390_pharmaceutics16101268
crossref_primary_10_1016_j_apsb_2022_08_013
crossref_primary_10_1016_j_mtadv_2022_100334
crossref_primary_10_1016_j_pnsc_2020_08_016
crossref_primary_10_1021_acsami_0c07471
crossref_primary_10_1002_anie_202200799
crossref_primary_10_6023_A21100475
crossref_primary_10_1002_anie_201908833
crossref_primary_10_1002_cbic_202400790
crossref_primary_10_1016_j_biomaterials_2020_119792
crossref_primary_10_1039_D0NR07484E
crossref_primary_10_1016_j_dyepig_2019_107922
crossref_primary_10_1016_j_biopha_2023_114928
crossref_primary_10_1021_acs_macromol_9b01252
crossref_primary_10_1021_acs_biomac_1c01073
crossref_primary_10_1021_acsnano_9b06840
crossref_primary_10_1021_acs_chemrev_1c00381
crossref_primary_10_3390_molecules26144264
crossref_primary_10_1002_ange_202306100
crossref_primary_10_1142_S1088424622500481
crossref_primary_10_1039_D3TB01592K
crossref_primary_10_1002_ange_202400049
crossref_primary_10_1016_j_pdpdt_2019_08_031
crossref_primary_10_1021_acscentsci_9b00639
crossref_primary_10_1021_acs_langmuir_2c00108
crossref_primary_10_3390_photochem3020014
crossref_primary_10_1039_C8OB02391C
crossref_primary_10_1002_advs_202105252
crossref_primary_10_3389_fchem_2021_629062
crossref_primary_10_1021_acs_analchem_2c01164
crossref_primary_10_1002_ange_202410649
crossref_primary_10_1039_D0NJ05297C
crossref_primary_10_1002_adsu_202100103
crossref_primary_10_1021_acsomega_9b01380
crossref_primary_10_1039_D2SC00381C
crossref_primary_10_1016_j_cej_2022_136613
crossref_primary_10_1021_acsnano_3c09399
crossref_primary_10_1039_D2BM00016D
crossref_primary_10_2147_IJN_S254774
crossref_primary_10_1002_anie_202219153
crossref_primary_10_1039_C9TA00878K
crossref_primary_10_1002_anie_202306100
crossref_primary_10_1016_j_jphotochem_2018_07_034
crossref_primary_10_1016_j_eurpolymj_2024_112970
crossref_primary_10_1016_j_ccr_2020_213410
crossref_primary_10_1021_acsomega_1c01239
crossref_primary_10_1016_j_ijbiomac_2024_135047
crossref_primary_10_1080_00958972_2024_2367764
crossref_primary_10_1021_acs_nanolett_1c03550
crossref_primary_10_1039_C9NH00021F
crossref_primary_10_1016_j_cej_2022_138129
crossref_primary_10_1021_acsbiomaterials_2c01219
crossref_primary_10_1016_j_xcrp_2020_100173
crossref_primary_10_1021_acsami_9b21443
crossref_primary_10_3390_pharmaceutics13121995
crossref_primary_10_1016_j_ajps_2022_02_004
crossref_primary_10_1016_j_jmst_2020_10_066
crossref_primary_10_2217_nnm_2020_0125
crossref_primary_10_1016_j_chemphys_2022_111655
crossref_primary_10_1016_j_cej_2022_136512
crossref_primary_10_1002_cptc_202400105
crossref_primary_10_1016_j_mtchem_2022_101336
crossref_primary_10_1360_SSC_2022_0124
crossref_primary_10_1016_j_snb_2019_127212
crossref_primary_10_1002_adtp_202300120
crossref_primary_10_1002_advs_202103721
crossref_primary_10_1080_00150193_2022_2092003
crossref_primary_10_3390_ijms241310875
crossref_primary_10_1021_acsami_9b20102
crossref_primary_10_1002_asia_202400268
crossref_primary_10_3390_ijms23063209
crossref_primary_10_1039_D4NR04593A
crossref_primary_10_1142_S1088424622500419
crossref_primary_10_1557_mrs_2019_294
crossref_primary_10_1039_D1TB00868D
crossref_primary_10_1039_D1TB02141A
crossref_primary_10_1016_j_actbio_2023_05_006
crossref_primary_10_1016_j_apmt_2020_100830
crossref_primary_10_1002_elsa_202100149
crossref_primary_10_1016_j_dyepig_2022_110095
crossref_primary_10_3390_biomimetics8020171
crossref_primary_10_1016_j_ijbiomac_2023_124087
crossref_primary_10_1039_D2TB00348A
crossref_primary_10_1016_j_jiec_2022_11_057
crossref_primary_10_1039_D0TB00817F
crossref_primary_10_1021_acsami_3c03614
crossref_primary_10_3389_fchem_2019_00530
crossref_primary_10_1016_j_biomaterials_2022_121577
crossref_primary_10_1021_acscatal_0c01567
crossref_primary_10_1142_S1088424619501979
crossref_primary_10_2147_IJN_S382796
crossref_primary_10_1039_D2RA02251F
crossref_primary_10_1016_j_cej_2020_127008
crossref_primary_10_1021_acsnano_3c02303
crossref_primary_10_1016_j_cej_2020_124778
crossref_primary_10_1039_C8CS00921J
crossref_primary_10_1016_j_jcis_2023_02_083
crossref_primary_10_1080_09593330_2025_2473658
crossref_primary_10_1002_adsu_202400142
crossref_primary_10_1021_acsami_1c05705
crossref_primary_10_1016_j_cej_2024_152377
crossref_primary_10_1016_j_jconrel_2022_10_012
crossref_primary_10_1021_jacs_1c08679
crossref_primary_10_1039_D2NJ03142F
crossref_primary_10_1039_D3TB00058C
crossref_primary_10_1016_j_cej_2022_139938
crossref_primary_10_1021_acsami_1c11798
crossref_primary_10_1002_ange_202422814
crossref_primary_10_1002_anie_202103809
crossref_primary_10_1016_j_isci_2023_106279
crossref_primary_10_1002_anie_202410649
crossref_primary_10_1016_j_ijbiomac_2021_10_225
crossref_primary_10_1016_j_jlumin_2019_116972
crossref_primary_10_1002_chem_201900718
crossref_primary_10_1016_j_biomaterials_2020_120386
crossref_primary_10_1021_acsami_9b04351
crossref_primary_10_1016_j_molliq_2020_113946
crossref_primary_10_1007_s40843_022_2024_6
crossref_primary_10_1002_adma_202403921
crossref_primary_10_1186_s12951_024_02657_4
crossref_primary_10_1016_j_foodchem_2023_137541
crossref_primary_10_1016_j_isci_2018_12_025
crossref_primary_10_1039_C8TB02945H
crossref_primary_10_1039_D0SC04983B
crossref_primary_10_1039_D1TB01084K
crossref_primary_10_1063_5_0213923
crossref_primary_10_3390_molecules29246063
crossref_primary_10_3390_nano10091644
crossref_primary_10_1021_acs_langmuir_2c02964
crossref_primary_10_1016_j_molstruc_2022_133591
crossref_primary_10_1021_acsmacrolett_3c00728
crossref_primary_10_1002_adma_201906711
crossref_primary_10_1007_s11426_021_1045_9
crossref_primary_10_1186_s12951_020_00660_z
crossref_primary_10_1002_ange_201908833
crossref_primary_10_1002_ange_202200799
crossref_primary_10_1002_anie_202013301
crossref_primary_10_1016_j_cej_2021_131155
crossref_primary_10_1016_j_mtcomm_2021_102616
crossref_primary_10_1016_j_nantod_2023_101803
crossref_primary_10_1016_j_dyepig_2024_112208
crossref_primary_10_1557_mrs_2020_21
crossref_primary_10_1021_acsnano_3c12714
crossref_primary_10_1557_mrs_2019_39
crossref_primary_10_1080_14756366_2020_1755669
crossref_primary_10_1002_adma_201804046
crossref_primary_10_1002_advs_202101965
crossref_primary_10_3390_ph15070769
crossref_primary_10_1002_ange_202013301
crossref_primary_10_1016_j_actbio_2023_01_032
crossref_primary_10_1016_j_apmt_2024_102198
crossref_primary_10_1016_j_talanta_2022_124058
crossref_primary_10_15541_jim20240152
crossref_primary_10_1002_advs_202201134
crossref_primary_10_1021_acsami_8b19522
crossref_primary_10_1016_j_ccr_2022_214785
crossref_primary_10_1021_acsapm_4c01833
crossref_primary_10_1126_sciadv_adg9116
crossref_primary_10_1007_s12274_022_4286_6
crossref_primary_10_3389_fchem_2021_635344
crossref_primary_10_1002_anie_202400049
crossref_primary_10_1021_acsami_0c14063
crossref_primary_10_1002_adma_202304991
crossref_primary_10_1039_D1QI00105A
crossref_primary_10_1016_j_jcis_2023_05_190
crossref_primary_10_1021_acsami_9b17569
crossref_primary_10_1002_adfm_201908783
crossref_primary_10_1039_D2RA01821G
crossref_primary_10_1021_acsnano_9b09871
crossref_primary_10_1016_j_cej_2020_128049
crossref_primary_10_1007_s40242_023_3127_9
crossref_primary_10_1021_acsnano_1c00772
crossref_primary_10_1557_adv_2020_269
crossref_primary_10_1002_ange_202219153
crossref_primary_10_1016_j_biomaterials_2018_09_004
crossref_primary_10_1002_slct_202103418
crossref_primary_10_1002_advs_202303078
crossref_primary_10_1039_C9CP01278H
crossref_primary_10_1021_acsami_2c12823
crossref_primary_10_1142_S1088424619500469
crossref_primary_10_1016_j_pestbp_2020_104584
crossref_primary_10_1021_acs_nanolett_9b00423
crossref_primary_10_1002_agt2_423
crossref_primary_10_1016_j_mattod_2020_11_001
crossref_primary_10_1142_S1088424622500493
crossref_primary_10_1039_C9TB00015A
crossref_primary_10_1186_s12951_022_01436_3
crossref_primary_10_1039_D2BM01723G
crossref_primary_10_1186_s12951_024_02483_8
crossref_primary_10_1002_adma_202106082
crossref_primary_10_1016_j_actbio_2023_03_008
crossref_primary_10_1007_s12274_020_2908_4
crossref_primary_10_1021_acs_jpcc_9b00697
crossref_primary_10_1021_acsnano_1c11422
crossref_primary_10_1021_acsnano_3c03267
crossref_primary_10_1039_C9NR10646D
crossref_primary_10_1016_j_colsurfa_2024_134954
crossref_primary_10_1002_smll_202205252
crossref_primary_10_1039_D2CC02163C
crossref_primary_10_1021_acsanm_4c01209
crossref_primary_10_1021_acsami_2c15428
crossref_primary_10_1021_acsami_9b19546
crossref_primary_10_1039_C9TB02883H
crossref_primary_10_1021_acsami_0c10475
crossref_primary_10_1021_acsami_0c15244
crossref_primary_10_1142_S1088424619501451
crossref_primary_10_1007_s10118_021_2540_0
crossref_primary_10_1016_j_cclet_2023_108140
crossref_primary_10_1016_j_cej_2023_146937
crossref_primary_10_1002_cnma_201900466
crossref_primary_10_1002_adhm_202001897
crossref_primary_10_1007_s12274_021_3854_5
crossref_primary_10_1002_adhm_201900608
crossref_primary_10_1002_anie_202422814
crossref_primary_10_1021_acsanm_9b01787
crossref_primary_10_1002_adma_202101095
crossref_primary_10_1002_cctc_201900144
crossref_primary_10_1002_ange_202103809
crossref_primary_10_1039_C8MH01670D
crossref_primary_10_1039_C9NJ04763H
crossref_primary_10_3390_pharmaceutics15102370
crossref_primary_10_1016_j_dyepig_2022_110158
crossref_primary_10_1016_j_nanoen_2020_104645
crossref_primary_10_1039_C9BM00192A
crossref_primary_10_1021_acsanm_0c03215
crossref_primary_10_1039_D4NR00383G
crossref_primary_10_1002_adfm_202415629
Cites_doi 10.1038/nri.2016.136
10.1039/c0cc05662f
10.1016/S0891-5849(99)00107-0
10.1021/bi960331h
10.1021/ja0291538
10.1039/B915149B
10.3322/caac.20114
10.2174/0929867323666160729104647
10.1021/am402044s
10.1021/jacs.5b12073
10.1039/C5CC07957H
10.1161/CIRCULATIONAHA.116.021884
10.1021/jacs.6b10508
10.1039/c002936j
10.1007/s11356-015-4775-1
10.1016/j.msec.2017.08.047
10.1016/S0040-4020(98)00015-5
10.1016/j.carbpol.2016.09.033
10.2741/2322
10.1002/anie.201612647
10.1002/ange.201103557
10.4161/viru.20328
10.1007/s10853-015-9324-2
10.1002/anie.201403036
10.4103/0972-124X.92563
10.1016/j.niox.2008.04.026
10.1006/niox.1997.0130
10.1126/science.1948068
10.1021/nl203598n
10.1039/C6EE02265K
10.1111/j.1751-1097.2009.00585.x
10.2174/138161208784246225
10.1039/b816636f
10.1002/adma.201604764
10.1111/j.1574-695X.2007.00329.x
10.1016/j.jinorgbio.2015.09.002
10.1002/anie.201002307
10.1161/CIRCRESAHA.116.306531
10.1016/j.dyepig.2017.07.048
10.1007/s10853-011-5518-4
10.1002/chem.201204013
10.1038/nrc1071
ContentType Journal Article
CorporateAuthor Henan Univ., Kaifeng (China)
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
National Center for Nanoscience and Technology (NCNST), Beijing (China)
CorporateAuthor_xml – name: Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
– name: Henan Univ., Kaifeng (China)
– name: National Center for Nanoscience and Technology (NCNST), Beijing (China)
DBID AAYXX
CITATION
NPM
7X8
OIOZB
OTOTI
DOI 10.1021/acsnano.8b01010
DatabaseName CrossRef
PubMed
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 3803
ExternalDocumentID 1469627
29611423
10_1021_acsnano_8b01010
f79390043
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
4.4
5VS
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
NPM
7X8
ABFRP
OIOZB
OTOTI
ID FETCH-LOGICAL-a467t-64c74812935c849844c1f1f72e83cc00ed79a70d449d4af3c1a50a6e84c872713
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Wed Nov 29 06:10:36 EST 2023
Fri Jul 11 10:08:34 EDT 2025
Thu Jan 02 23:00:46 EST 2025
Tue Jul 01 01:34:16 EDT 2025
Thu Apr 24 22:59:43 EDT 2025
Thu Aug 27 13:42:08 EDT 2020
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords porphyrin nanoparticles
self-assembly
APDT
photosensitizers
antibacterial photodynamic therapy
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a467t-64c74812935c849844c1f1f72e83cc00ed79a70d449d4af3c1a50a6e84c872713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE Office of Science (SC), Basic Energy Sciences (BES)
SAND-2018-9735J
NA0003525; 21422102; 21771055; U1604139; 21171049; 174200510019; PCS IRT_15R18
Program for Changjiang Scholars and Innovative Research Team in University (China)
National Natural Science Foundation of China (NSFC)
Plan for Scientific Innovation Talent of Henan Province (China)
USDOE National Nuclear Security Administration (NNSA)
ORCID 0000-0002-1961-0787
0000-0001-6174-4263
0000-0003-1446-3148
0000000314463148
0000000161744263
0000000219610787
OpenAccessLink https://www.osti.gov/servlets/purl/1469627
PMID 29611423
PQID 2021321776
PQPubID 23479
PageCount 8
ParticipantIDs osti_scitechconnect_1469627
proquest_miscellaneous_2021321776
pubmed_primary_29611423
crossref_citationtrail_10_1021_acsnano_8b01010
crossref_primary_10_1021_acsnano_8b01010
acs_journals_10_1021_acsnano_8b01010
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-04-24
PublicationDateYYYYMMDD 2018-04-24
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-24
  day: 24
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2018
Publisher American Chemical Society
American Chemical Society (ACS)
Publisher_xml – name: American Chemical Society
– name: American Chemical Society (ACS)
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref7/cit7
References_xml – ident: ref21/cit21
  doi: 10.1038/nri.2016.136
– ident: ref14/cit14
  doi: 10.1039/c0cc05662f
– ident: ref38/cit38
  doi: 10.1016/S0891-5849(99)00107-0
– ident: ref39/cit39
  doi: 10.1021/bi960331h
– ident: ref34/cit34
  doi: 10.1021/ja0291538
– ident: ref1/cit1
  doi: 10.1039/B915149B
– ident: ref5/cit5
  doi: 10.3322/caac.20114
– ident: ref30/cit30
  doi: 10.2174/0929867323666160729104647
– ident: ref32/cit32
  doi: 10.1021/am402044s
– ident: ref35/cit35
  doi: 10.1021/jacs.5b12073
– ident: ref10/cit10
  doi: 10.1039/C5CC07957H
– ident: ref20/cit20
  doi: 10.1161/CIRCULATIONAHA.116.021884
– ident: ref36/cit36
  doi: 10.1021/jacs.6b10508
– ident: ref29/cit29
  doi: 10.1039/c002936j
– ident: ref41/cit41
  doi: 10.1007/s11356-015-4775-1
– ident: ref2/cit2
  doi: 10.1016/j.msec.2017.08.047
– ident: ref16/cit16
  doi: 10.1016/S0040-4020(98)00015-5
– ident: ref18/cit18
  doi: 10.1016/j.carbpol.2016.09.033
– ident: ref25/cit25
  doi: 10.2741/2322
– ident: ref8/cit8
  doi: 10.1002/anie.201612647
– ident: ref13/cit13
  doi: 10.1002/ange.201103557
– ident: ref24/cit24
  doi: 10.4161/viru.20328
– ident: ref11/cit11
  doi: 10.1007/s10853-015-9324-2
– ident: ref7/cit7
  doi: 10.1002/anie.201403036
– ident: ref12/cit12
  doi: 10.4103/0972-124X.92563
– ident: ref27/cit27
  doi: 10.1016/j.niox.2008.04.026
– ident: ref40/cit40
  doi: 10.1006/niox.1997.0130
– ident: ref23/cit23
  doi: 10.1126/science.1948068
– ident: ref28/cit28
  doi: 10.1021/nl203598n
– ident: ref6/cit6
  doi: 10.1039/C6EE02265K
– ident: ref15/cit15
  doi: 10.1111/j.1751-1097.2009.00585.x
– ident: ref26/cit26
  doi: 10.2174/138161208784246225
– ident: ref33/cit33
  doi: 10.1039/b816636f
– ident: ref37/cit37
  doi: 10.1002/adma.201604764
– ident: ref22/cit22
  doi: 10.1111/j.1574-695X.2007.00329.x
– ident: ref31/cit31
  doi: 10.1016/j.jinorgbio.2015.09.002
– ident: ref17/cit17
  doi: 10.1002/anie.201002307
– ident: ref19/cit19
  doi: 10.1161/CIRCRESAHA.116.306531
– ident: ref3/cit3
  doi: 10.1016/j.dyepig.2017.07.048
– ident: ref9/cit9
  doi: 10.1007/s10853-011-5518-4
– ident: ref42/cit42
  doi: 10.1002/chem.201204013
– ident: ref4/cit4
  doi: 10.1038/nrc1071
SSID ssj0057876
Score 2.640308
Snippet The use of nanoparticles as a potential building block for photosensitizers has recently become a focus of interest in the field of photocatalysis and...
SourceID osti
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3796
SubjectTerms antibacterial photodynamic therapy
APDT
NANOSCIENCE AND NANOTECHNOLOGY
photosensitizers
porphyrin nanoparticles
self-assembly
Title Synthesis of Self-Assembled Porphyrin Nanoparticle Photosensitizers
URI http://dx.doi.org/10.1021/acsnano.8b01010
https://www.ncbi.nlm.nih.gov/pubmed/29611423
https://www.proquest.com/docview/2021321776
https://www.osti.gov/servlets/purl/1469627
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVQucCBfSmbgtQDl5Q4cRznWFVUCAlUqSBxi9yxIypKgkh6gK9npknLUlVwju3InrHnPc34mbGWQbYGMcQuV8ZzBTfc1VppBHLKhGkUmzCky8m3d_L6Qdw8ho9fYtG_M_g-v9RQZDrL22pIcmjIzld9qSLiWZ3uYHbokt_JKoGMBBlRxFzFZ2EACkNQ_AhDjRy303KIOQ01vc2qSKuYKhRShclze1IO2_CxqN_49yy22EYNOJ1O5SHbbMVmO2z9mwzhLusO3jPEgcWocPLUGdhx6lIu-GU4tsbp52QJbOjgQYwMuxrH6T_lZV5Q9Xs5-kAIucceelf33Wu3flzB1Xg2lq4UEAlF0T4EJWIlBPCUp5FvVQDgedZEsY48I0RshE4D4Dr0tLRKgELMw4N91sjyzB4yBz97OrISiNshfFTCGK1CGUjjBQL8Jmvh9JN6cxTJNO_t86Rek6RekyZrz0ySQC1QTu9kjJd3uJh3eK20OZY3PSYbJwgrSBsXqIgISuI99PhQk53PTJ_g7qKUic5sPikSH8cKkLVFsskOKp-Y_8qPJV1EDo7-N71jtoZgS1EmyhcnrFG-TewpAppyeDZ15U__B-8r
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB2h5QA98N12-QwSBy7ZxonjOEe0KlooINCCxM3y2o5A3SaoyR7Kr2cmyW6haKVyTexJbI8972nsZ4Aji2zNpCb1mbSBz5llvtZSI5CTNs6S1MYxHU6-vBKDO35-H98vQDA9C4M_UaKlsk7i_1UXYN_wWa7zoidHpIqGJH0RoUhIdOukP5yuveR-oskjI09GMDET83lngKKRKd9Eo06Bs2o-0qwjzukq3Mz-td5o8rM3qUY98_yPjONHGrMGKy389E4af1mHBZdvwKdXooSb0B_-yREVlo-lV2Te0I0znzLDv0ZjZ73rgsYFC3q4LCPfbux41w9FVZS0F756fEZAuQV3p99v-wO_vWrB17hSVr7gJuGSYn9sJE8l54ZlLEtCJyNjgsDZJNVJYDlPLddZZJiOAy2c5EYiAmLRZ-jkRe6-goevA504YYjpIZiU3FotYxEJG0TchF04wuardqqUqs6Ch0y1faLaPulCbzoyyrRy5XRrxnh-heNZhadGqWN-0R0aaoUgg5RyDW0pMhWxILqKqAuHUw9QONcogaJzV0xKFaKtCDlcIrrwpXGN2afCVNCx5Gj7_5p3AEuD28sLdXF29WMHlhGGScpRhXwXOtXvidtDqFON9mvvfgEx0feM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB6hIiH2wGMfbJdXkDhwSTdOHMc5okLFYxdVKpW4Wa7tCEQ3QSQ9LL-emSStlkWVdq-J7cT2jP19Gs9ngGOLbM2kJvWZtIHPmWW-1lIjkJM2zpLUxjElJ_-8ERdjfnUX37VJYZQLgz9RYktlHcQnr36yWaswwL7j81znRU9OSBkNifoqBe2Icp32R_P1l0xQNLFk5MoIKBaCPu8aoB3JlG92pE6BnrUcbda7zmATxov_rQ-bPPZm1aRnXv6ScvzfDm3BRgtDvdPGbrZhxeUf4cMf4oSfoD_6nSM6LB9Kr8i8kZtmPkWIf02mznrDguYHC3q4PCPvbtrxhvdFVZR0Jr56eEFg-RnGg_Pb_oXfXrnga1wxK19wk3BJGCA2kqeSc8MyliWhk5ExQeBskuoksJynlussMkzHgRZOciMRCbHoC3TyIndfwcPXgU6cMMT4EFRKbq2WsYiEDSJuwi4cY_dV6zKlqqPhIVPtmKh2TLrQm8-OMq1sOd2eMV1e4WRR4alR7FhedJemWyHYIMVcQ0eLTEVsiK4k6sLR3AoU-hwFUnTuilmpQmwrQi6XiC7sNOax-FSYCkpPjr79W_cOYW14NlA_Lm-ud2Ed0ZikUFXI96BTPc_cPiKeanJQG_grSwT6Dw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+of+Self-Assembled+Porphyrin+Nanoparticle+Photosensitizers&rft.jtitle=ACS+nano&rft.au=Wang%2C+Dong&rft.au=Niu%2C+Lijuan&rft.au=Qiao%2C+Zeng-Ying&rft.au=Cheng%2C+Dong-Bing&rft.date=2018-04-24&rft.issn=1936-086X&rft.eissn=1936-086X&rft.volume=12&rft.issue=4&rft.spage=3796&rft_id=info:doi/10.1021%2Facsnano.8b01010&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon