Oxytetracycline hyper-production through targeted genome reduction of Streptomyces rimosus
There is a critical need to develop novel antibiotics to combat antimicrobial resistance. Streptomyces species are very rich source of antibiotics, typically encoding 20–60 biosynthetic gene clusters (BGCs). However, under laboratory conditions, most are either silent or poorly expressed so that the...
Saved in:
Published in | mSystems Vol. 9; no. 5; p. e0025024 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
16.05.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | There is a critical need to develop novel antibiotics to combat antimicrobial resistance.
Streptomyces
species are very rich source of antibiotics, typically encoding 20–60 biosynthetic gene clusters (BGCs). However, under laboratory conditions, most are either silent or poorly expressed so that their products are only detectable at nanogram quantities, which hampers drug development efforts. To address this subject, we used comparative genome analysis of industrial
Streptomyces rimosus
strains producing high titers of a broad spectrum antibiotic oxytetracycline (OTC), developed during decades of industrial strain improvement. Interestingly, large-scale chromosomal deletions were observed. Based on this information, we carried out targeted genome deletions in the native strain
S. rimosus
ATCC 10970, and we show that a targeted deletion in the vicinity of the OTC BGC significantly induced expression of the OTC BGC, as well as some other silent BGCs, thus suggesting that this approach may be a useful way to identify new natural products. |
---|---|
AbstractList | Most biosynthetic gene clusters (BGC) encoding the synthesis of important microbial secondary metabolites, such as antibiotics, are either silent or poorly expressed; therefore, to ensure a strong pipeline of novel antibiotics, there is a need to develop rapid and efficient strain development approaches. This study uses comparative genome analysis to instruct rational strain improvement, using
Streptomyces rimosus
, the producer of the important antibiotic oxytetracycline (OTC) as a model system. Sequencing of the genomes of two industrial strains M4018 and R6-500, developed independently from a common ancestor, identified large DNA rearrangements located at the chromosome end. We evaluated the effect of these genome deletions on the parental
S. rimosus
Type Strain (ATCC 10970) genome where introduction of a 145 kb deletion close to the OTC BGC in the Type Strain resulted in massive OTC overproduction, achieving titers that were equivalent to M4018 and R6-500. Transcriptome data supported the hypothesis that the reason for such an increase in OTC biosynthesis was due to enhanced transcription of the OTC BGC and not due to enhanced substrate supply. We also observed changes in the expression of other cryptic BGCs; some metabolites, undetectable in ATCC 10970, were now produced at high titers. This study demonstrated for the first time that the main force behind BGC overexpression is genome rearrangement. This new approach demonstrates great potential to activate cryptic gene clusters of yet unexplored natural products of medical and industrial value. There is a critical need to develop novel antibiotics to combat antimicrobial resistance. Streptomyces species are very rich source of antibiotics, typically encoding 20–60 biosynthetic gene clusters (BGCs). However, under laboratory conditions, most are either silent or poorly expressed so that their products are only detectable at nanogram quantities, which hampers drug development efforts. To address this subject, we used comparative genome analysis of industrial Streptomyces rimosus strains producing high titers of a broad spectrum antibiotic oxytetracycline (OTC), developed during decades of industrial strain improvement. Interestingly, large-scale chromosomal deletions were observed. Based on this information, we carried out targeted genome deletions in the native strain S. rimosus ATCC 10970, and we show that a targeted deletion in the vicinity of the OTC BGC significantly induced expression of the OTC BGC, as well as some other silent BGCs, thus suggesting that this approach may be a useful way to identify new natural products. Most biosynthetic gene clusters (BGC) encoding the synthesis of important microbial secondary metabolites, such as antibiotics, are either silent or poorly expressed; therefore, to ensure a strong pipeline of novel antibiotics, there is a need to develop rapid and efficient strain development approaches. This study uses comparative genome analysis to instruct rational strain improvement, using , the producer of the important antibiotic oxytetracycline (OTC) as a model system. Sequencing of the genomes of two industrial strains M4018 and R6-500, developed independently from a common ancestor, identified large DNA rearrangements located at the chromosome end. We evaluated the effect of these genome deletions on the parental Type Strain (ATCC 10970) genome where introduction of a 145 kb deletion close to the OTC BGC in the Type Strain resulted in massive OTC overproduction, achieving titers that were equivalent to M4018 and R6-500. Transcriptome data supported the hypothesis that the reason for such an increase in OTC biosynthesis was due to enhanced transcription of the OTC BGC and not due to enhanced substrate supply. We also observed changes in the expression of other cryptic BGCs; some metabolites, undetectable in ATCC 10970, were now produced at high titers. This study demonstrated for the first time that the main force behind BGC overexpression is genome rearrangement. This new approach demonstrates great potential to activate cryptic gene clusters of yet unexplored natural products of medical and industrial value.IMPORTANCEThere is a critical need to develop novel antibiotics to combat antimicrobial resistance. species are very rich source of antibiotics, typically encoding 20-60 biosynthetic gene clusters (BGCs). However, under laboratory conditions, most are either silent or poorly expressed so that their products are only detectable at nanogram quantities, which hampers drug development efforts. To address this subject, we used comparative genome analysis of industrial strains producing high titers of a broad spectrum antibiotic oxytetracycline (OTC), developed during decades of industrial strain improvement. Interestingly, large-scale chromosomal deletions were observed. Based on this information, we carried out targeted genome deletions in the native strain ATCC 10970, and we show that a targeted deletion in the vicinity of the OTC BGC significantly induced expression of the OTC BGC, as well as some other silent BGCs, thus suggesting that this approach may be a useful way to identify new natural products. ABSTRACTMost biosynthetic gene clusters (BGC) encoding the synthesis of important microbial secondary metabolites, such as antibiotics, are either silent or poorly expressed; therefore, to ensure a strong pipeline of novel antibiotics, there is a need to develop rapid and efficient strain development approaches. This study uses comparative genome analysis to instruct rational strain improvement, using Streptomyces rimosus, the producer of the important antibiotic oxytetracycline (OTC) as a model system. Sequencing of the genomes of two industrial strains M4018 and R6-500, developed independently from a common ancestor, identified large DNA rearrangements located at the chromosome end. We evaluated the effect of these genome deletions on the parental S. rimosus Type Strain (ATCC 10970) genome where introduction of a 145 kb deletion close to the OTC BGC in the Type Strain resulted in massive OTC overproduction, achieving titers that were equivalent to M4018 and R6-500. Transcriptome data supported the hypothesis that the reason for such an increase in OTC biosynthesis was due to enhanced transcription of the OTC BGC and not due to enhanced substrate supply. We also observed changes in the expression of other cryptic BGCs; some metabolites, undetectable in ATCC 10970, were now produced at high titers. This study demonstrated for the first time that the main force behind BGC overexpression is genome rearrangement. This new approach demonstrates great potential to activate cryptic gene clusters of yet unexplored natural products of medical and industrial value.IMPORTANCEThere is a critical need to develop novel antibiotics to combat antimicrobial resistance. Streptomyces species are very rich source of antibiotics, typically encoding 20–60 biosynthetic gene clusters (BGCs). However, under laboratory conditions, most are either silent or poorly expressed so that their products are only detectable at nanogram quantities, which hampers drug development efforts. To address this subject, we used comparative genome analysis of industrial Streptomyces rimosus strains producing high titers of a broad spectrum antibiotic oxytetracycline (OTC), developed during decades of industrial strain improvement. Interestingly, large-scale chromosomal deletions were observed. Based on this information, we carried out targeted genome deletions in the native strain S. rimosus ATCC 10970, and we show that a targeted deletion in the vicinity of the OTC BGC significantly induced expression of the OTC BGC, as well as some other silent BGCs, thus suggesting that this approach may be a useful way to identify new natural products. Most biosynthetic gene clusters (BGC) encoding the synthesis of important microbial secondary metabolites, such as antibiotics, are either silent or poorly expressed; therefore, to ensure a strong pipeline of novel antibiotics, there is a need to develop rapid and efficient strain development approaches. This study uses comparative genome analysis to instruct rational strain improvement, using Streptomyces rimosus, the producer of the important antibiotic oxytetracycline (OTC) as a model system. Sequencing of the genomes of two industrial strains M4018 and R6-500, developed independently from a common ancestor, identified large DNA rearrangements located at the chromosome end. We evaluated the effect of these genome deletions on the parental S. rimosus Type Strain (ATCC 10970) genome where introduction of a 145 kb deletion close to the OTC BGC in the Type Strain resulted in massive OTC overproduction, achieving titers that were equivalent to M4018 and R6-500. Transcriptome data supported the hypothesis that the reason for such an increase in OTC biosynthesis was due to enhanced transcription of the OTC BGC and not due to enhanced substrate supply. We also observed changes in the expression of other cryptic BGCs; some metabolites, undetectable in ATCC 10970, were now produced at high titers. This study demonstrated for the first time that the main force behind BGC overexpression is genome rearrangement. This new approach demonstrates great potential to activate cryptic gene clusters of yet unexplored natural products of medical and industrial value.IMPORTANCEThere is a critical need to develop novel antibiotics to combat antimicrobial resistance. Streptomyces species are very rich source of antibiotics, typically encoding 20–60 biosynthetic gene clusters (BGCs). However, under laboratory conditions, most are either silent or poorly expressed so that their products are only detectable at nanogram quantities, which hampers drug development efforts. To address this subject, we used comparative genome analysis of industrial Streptomyces rimosus strains producing high titers of a broad spectrum antibiotic oxytetracycline (OTC), developed during decades of industrial strain improvement. Interestingly, large-scale chromosomal deletions were observed. Based on this information, we carried out targeted genome deletions in the native strain S. rimosus ATCC 10970, and we show that a targeted deletion in the vicinity of the OTC BGC significantly induced expression of the OTC BGC, as well as some other silent BGCs, thus suggesting that this approach may be a useful way to identify new natural products. Most biosynthetic gene clusters (BGC) encoding the synthesis of important microbial secondary metabolites, such as antibiotics, are either silent or poorly expressed; therefore, to ensure a strong pipeline of novel antibiotics, there is a need to develop rapid and efficient strain development approaches. This study uses comparative genome analysis to instruct rational strain improvement, using Streptomyces rimosus, the producer of the important antibiotic oxytetracycline (OTC) as a model system. Sequencing of the genomes of two industrial strains M4018 and R6-500, developed independently from a common ancestor, identified large DNA rearrangements located at the chromosome end. We evaluated the effect of these genome deletions on the parental S. rimosus Type Strain (ATCC 10970) genome where introduction of a 145 kb deletion close to the OTC BGC in the Type Strain resulted in massive OTC overproduction, achieving titers that were equivalent to M4018 and R6-500. Transcriptome data supported the hypothesis that the reason for such an increase in OTC biosynthesis was due to enhanced transcription of the OTC BGC and not due to enhanced substrate supply. We also observed changes in the expression of other cryptic BGCs; some metabolites, undetectable in ATCC 10970, were now produced at high titers. This study demonstrated for the first time that the main force behind BGC overexpression is genome rearrangement. This new approach demonstrates great potential to activate cryptic gene clusters of yet unexplored natural products of medical and industrial value.IMPORTANCEThere is a critical need to develop novel antibiotics to combat antimicrobial resistance. Streptomyces species are very rich source of antibiotics, typically encoding 20-60 biosynthetic gene clusters (BGCs). However, under laboratory conditions, most are either silent or poorly expressed so that their products are only detectable at nanogram quantities, which hampers drug development efforts. To address this subject, we used comparative genome analysis of industrial Streptomyces rimosus strains producing high titers of a broad spectrum antibiotic oxytetracycline (OTC), developed during decades of industrial strain improvement. Interestingly, large-scale chromosomal deletions were observed. Based on this information, we carried out targeted genome deletions in the native strain S. rimosus ATCC 10970, and we show that a targeted deletion in the vicinity of the OTC BGC significantly induced expression of the OTC BGC, as well as some other silent BGCs, thus suggesting that this approach may be a useful way to identify new natural products.Most biosynthetic gene clusters (BGC) encoding the synthesis of important microbial secondary metabolites, such as antibiotics, are either silent or poorly expressed; therefore, to ensure a strong pipeline of novel antibiotics, there is a need to develop rapid and efficient strain development approaches. This study uses comparative genome analysis to instruct rational strain improvement, using Streptomyces rimosus, the producer of the important antibiotic oxytetracycline (OTC) as a model system. Sequencing of the genomes of two industrial strains M4018 and R6-500, developed independently from a common ancestor, identified large DNA rearrangements located at the chromosome end. We evaluated the effect of these genome deletions on the parental S. rimosus Type Strain (ATCC 10970) genome where introduction of a 145 kb deletion close to the OTC BGC in the Type Strain resulted in massive OTC overproduction, achieving titers that were equivalent to M4018 and R6-500. Transcriptome data supported the hypothesis that the reason for such an increase in OTC biosynthesis was due to enhanced transcription of the OTC BGC and not due to enhanced substrate supply. We also observed changes in the expression of other cryptic BGCs; some metabolites, undetectable in ATCC 10970, were now produced at high titers. This study demonstrated for the first time that the main force behind BGC overexpression is genome rearrangement. This new approach demonstrates great potential to activate cryptic gene clusters of yet unexplored natural products of medical and industrial value.IMPORTANCEThere is a critical need to develop novel antibiotics to combat antimicrobial resistance. Streptomyces species are very rich source of antibiotics, typically encoding 20-60 biosynthetic gene clusters (BGCs). However, under laboratory conditions, most are either silent or poorly expressed so that their products are only detectable at nanogram quantities, which hampers drug development efforts. To address this subject, we used comparative genome analysis of industrial Streptomyces rimosus strains producing high titers of a broad spectrum antibiotic oxytetracycline (OTC), developed during decades of industrial strain improvement. Interestingly, large-scale chromosomal deletions were observed. Based on this information, we carried out targeted genome deletions in the native strain S. rimosus ATCC 10970, and we show that a targeted deletion in the vicinity of the OTC BGC significantly induced expression of the OTC BGC, as well as some other silent BGCs, thus suggesting that this approach may be a useful way to identify new natural products. |
Author | Baebler, Špela Pšeničnik, Alen Avbelj, Martina Šala, Martin Starčević, Antonio Mrak, Peter Tome, Miha Shmatkov, Maksym Slemc, Lucija Petek, Marko Herron, Paul Hunter, Iain S. Hranueli, Daslav Petković, Hrvoje |
Author_xml | – sequence: 1 givenname: Alen orcidid: 0000-0001-5375-2220 surname: Pšeničnik fullname: Pšeničnik, Alen organization: Chair of Biotechnology, Microbiology and Food Safety, University of Ljubljana Biotechnical Faculty, Ljubljana, Slovenia – sequence: 2 givenname: Lucija surname: Slemc fullname: Slemc, Lucija organization: Chair of Biotechnology, Microbiology and Food Safety, University of Ljubljana Biotechnical Faculty, Ljubljana, Slovenia – sequence: 3 givenname: Martina surname: Avbelj fullname: Avbelj, Martina organization: Chair of Biotechnology, Microbiology and Food Safety, University of Ljubljana Biotechnical Faculty, Ljubljana, Slovenia – sequence: 4 givenname: Miha orcidid: 0000-0001-7729-7381 surname: Tome fullname: Tome, Miha organization: Chair of Biotechnology, Microbiology and Food Safety, University of Ljubljana Biotechnical Faculty, Ljubljana, Slovenia – sequence: 5 givenname: Martin surname: Šala fullname: Šala, Martin organization: National Institute of Chemistry, Ljubljana, Slovenia – sequence: 6 givenname: Paul orcidid: 0000-0003-3431-1803 surname: Herron fullname: Herron, Paul organization: Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom – sequence: 7 givenname: Maksym surname: Shmatkov fullname: Shmatkov, Maksym organization: Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia, Educational and Scientific Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine – sequence: 8 givenname: Marko orcidid: 0000-0003-3644-7827 surname: Petek fullname: Petek, Marko organization: Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia – sequence: 9 givenname: Špela orcidid: 0000-0003-4776-7164 surname: Baebler fullname: Baebler, Špela organization: Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia – sequence: 10 givenname: Peter surname: Mrak fullname: Mrak, Peter organization: Antiinfectives, Sandoz, Mengeš, Slovenia – sequence: 11 givenname: Daslav surname: Hranueli fullname: Hranueli, Daslav organization: Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia – sequence: 12 givenname: Antonio surname: Starčević fullname: Starčević, Antonio organization: Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia – sequence: 13 givenname: Iain S. surname: Hunter fullname: Hunter, Iain S. organization: Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom – sequence: 14 givenname: Hrvoje orcidid: 0000-0003-1377-9845 surname: Petković fullname: Petković, Hrvoje organization: Chair of Biotechnology, Microbiology and Food Safety, University of Ljubljana Biotechnical Faculty, Ljubljana, Slovenia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38564716$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1u1DAUhS3UipbSB2CDIrHpJoOv7djxCqGq_EiVuihs2Fge52YmVRIH20Hk7fEwnVK66MqW_J3je-55RY5GPyIhb4CuAFj9fohLTDjEFaWsoiUTL8gp40qXFVXq6NH9hJzHeEcpBckVMP2SnPC6kkKBPCU_bn4vCVOwbnF9N2KxXSYM5RR8M7vU-bFI2-DnzbZINmwwYVNscPQDFgEPhG-L2xRwSn5YHMYidIOPc3xNjlvbRzy_P8_I909X3y6_lNc3n79efrwurZAqlZWWbeUEs64CZaXmmtVrzkBzRK5aIV3LEThWawYc6to1axAIqBtBHRUVPyMf9r7TvB6wcTjmOL2Z8hg2LMbbzvz_MnZbs_G_DADVKu8kO1zcOwT_c8aYzNBFh31vR_RzNJxykJIxvfvs3RP0zs9hzPkyJVmtORU0U6s9ZePA_hFAza46c6jO_K3OMJEFbx9neBj-UFQGYA-44GMM2D4gz5mqJxrXJburLK-h659R_gGT4b5O |
CitedBy_id | crossref_primary_10_3389_fbioe_2024_1427248 crossref_primary_10_1007_s00203_024_04169_z crossref_primary_10_1007_s00203_024_04186_y |
Cites_doi | 10.1093/jimb/kuab072 10.1007/s10295-015-1682-x 10.1021/acschembio.7b01089 10.1016/j.tig.2023.07.008 10.1021/acs.jnatprod.9b01285 10.1186/1471-2180-10-198 10.1186/s12934-020-01359-4 10.1038/s41598-020-63912-w 10.1016/j.mimet.2022.106545 10.1099/13500872-140-9-2271 10.1016/j.biortech.2017.05.065 10.4014/jmb.2106.06083 10.1038/s41467-021-25462-1 10.1111/j.1365-2958.2004.04143.x 10.1046/j.1365-2958.2003.03698.x 10.1093/nar/gkab335 10.1128/JB.187.9.3227-3237.2005 10.1007/s00284-022-02867-9 10.1038/s41598-018-23622-w 10.1186/s12934-019-1055-7 10.1111/mmi.14405 10.1186/s12934-016-0437-3 10.1074/jbc.RA118.005314 10.1038/s41587-023-01690-2 10.1128/aem.59.7.2220-2228.1993 10.1073/pnas.0914833107 10.1002/cmdc.200700297 10.1016/j.ymben.2016.12.006 10.1099/mgen.0.000692 10.1016/j.drudis.2015.01.009 10.1038/ismej.2015.230 10.1038/s41598-022-14199-6 10.1038/s41429-020-00400-3 10.1186/s12934-021-01522-5 10.1186/s12934-023-02215-x 10.1016/j.chembiol.2004.02.017 10.17113/ftb.55.01.17.4617 10.1073/pnas.2222045120 10.1007/BF00339722 10.1039/c6np00017g 10.1002/biot.201400838 10.1016/j.copbio.2022.102870 10.1007/s00253-022-11821-5 10.1038/s41467-022-29924-y 10.1016/j.biotechadv.2018.10.003 10.1007/s00253-019-09970-1 10.3389/fmicb.2020.00406 10.1111/j.1574-6976.2005.00009.x 10.7164/antibiotics.23.432 10.1038/s41467-021-25461-2 10.1007/s10295-015-1723-5 10.1111/j.1574-6968.1997.tb13882.x 10.1128/genomeA.00063-13 10.1111/j.1574-6968.2000.tb09095.x 10.1038/nbt.3026 10.1038/srep42867 10.1128/spectrum.02434-21 10.1128/MMBR.00004-06 10.1186/s13059-014-0550-8 10.1016/j.synbio.2017.07.003 10.1002/anie.202208573 10.1111/j.1574-6968.2012.02609.x 10.3109/07388551.2014.989423 10.1093/nar/gkr1288 10.1007/s00253-009-2428-3 10.1038/nmeth.1923 10.1038/s41564-022-01110-2 10.3389/fbioe.2021.632230 10.1016/j.tim.2008.09.008 10.1128/genomeA.00517-14 |
ContentType | Journal Article |
Copyright | Copyright © 2024 Pšeničnik et al. Copyright © 2024 Pšeničnik et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2024 Pšeničnik et al. 2024 Pšeničnik et al. |
Copyright_xml | – notice: Copyright © 2024 Pšeničnik et al. – notice: Copyright © 2024 Pšeničnik et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2024 Pšeničnik et al. 2024 Pšeničnik et al. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1128/msystems.00250-24 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2379-5077 |
Editor | Bulman, Zackery |
Editor_xml | – sequence: 1 givenname: Zackery surname: Bulman fullname: Bulman, Zackery |
ExternalDocumentID | PMC11097637 00250-24 38564716 10_1128_msystems_00250_24 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Javna Agencija za Raziskovalno Dejavnost RS (ARRS) grantid: P1-0034 – fundername: Javna Agencija za Raziskovalno Dejavnost RS (ARRS) grantid: P4-0116 – fundername: Javna Agencija za Raziskovalno Dejavnost RS (ARRS) grantid: 53621 – fundername: Javna Agencija za Raziskovalno Dejavnost RS (ARRS) grantid: P4-0165 – fundername: ; grantid: P4-0165 – fundername: ; grantid: 53621 – fundername: ; grantid: P4-0116 – fundername: ; grantid: P1-0034 |
GroupedDBID | 0R~ 53G 5VS 7X7 8FE 8FH 8FI 8FJ AAFWJ AAGFI AAUOK AAYXX ABUWG ACPRK ADBBV AFKRA AFPKN AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU CITATION EBS FRP FYUFA GROUPED_DOAJ H13 HCIFZ HMCUK HYE KQ8 LK8 M48 M7P M~E O9- OK1 PHGZM PHGZT PIMPY PQQKQ PROAC RHI RPM RSF UKHRP CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQGLB PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-a467t-596f5c42ac517a693928b32193ee37f46cf3e13e5b213188cdb14e1e9d40c0453 |
IEDL.DBID | M48 |
ISSN | 2379-5077 |
IngestDate | Thu Aug 21 18:35:33 EDT 2025 Fri Jul 11 00:26:09 EDT 2025 Fri Jul 25 11:50:57 EDT 2025 Tue May 21 18:31:39 EDT 2024 Thu Apr 03 06:51:45 EDT 2025 Thu Apr 24 23:06:36 EDT 2025 Tue Jul 01 02:59:04 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | genome reduction oxytetracycline antibiotic biosynthesis cryptic metabolites |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. https://creativecommons.org/licenses/by/4.0 This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a467t-596f5c42ac517a693928b32193ee37f46cf3e13e5b213188cdb14e1e9d40c0453 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 University of Ljubljana Biotechnical faculty filed a patent application relating to the findings of this work (inventors: Hrvoje Petković, Alen Pšeničnik, and Lucija Slemc). Present address: National Institute of Biology, Ljubljana, Slovenia |
ORCID | 0000-0003-3644-7827 0000-0001-7729-7381 0000-0001-5375-2220 0000-0003-4776-7164 0000-0003-1377-9845 0000-0003-3431-1803 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1128/msystems.00250-24 |
PMID | 38564716 |
PQID | 3062893040 |
PQPubID | 2045591 |
PageCount | 30 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11097637 proquest_miscellaneous_3031662295 proquest_journals_3062893040 asm2_journals_10_1128_msystems_00250_24 pubmed_primary_38564716 crossref_primary_10_1128_msystems_00250_24 crossref_citationtrail_10_1128_msystems_00250_24 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-05-16 |
PublicationDateYYYYMMDD | 2024-05-16 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-16 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC – name: Washington |
PublicationTitle | mSystems |
PublicationTitleAbbrev | mSystems |
PublicationTitleAlternate | mSystems |
PublicationYear | 2024 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_4_3_2 e_1_3_4_61_2 e_1_3_4_9_2 e_1_3_4_63_2 Demšar J (e_1_3_4_73_2) 2013; 14 e_1_3_4_7_2 e_1_3_4_40_2 e_1_3_4_5_2 e_1_3_4_23_2 e_1_3_4_44_2 e_1_3_4_69_2 e_1_3_4_21_2 e_1_3_4_42_2 e_1_3_4_27_2 e_1_3_4_48_2 e_1_3_4_65_2 e_1_3_4_25_2 e_1_3_4_46_2 e_1_3_4_67_2 e_1_3_4_29_2 e_1_3_4_72_2 e_1_3_4_30_2 e_1_3_4_51_2 e_1_3_4_70_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_57_2 e_1_3_4_55_2 e_1_3_4_32_2 e_1_3_4_59_2 e_1_3_4_53_2 e_1_3_4_15_2 e_1_3_4_38_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_2_2 e_1_3_4_60_2 e_1_3_4_62_2 e_1_3_4_8_2 e_1_3_4_41_2 e_1_3_4_6_2 Davisson JW (e_1_3_4_31_2) 1951; 1 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_45_2 e_1_3_4_68_2 e_1_3_4_20_2 e_1_3_4_43_2 e_1_3_4_26_2 e_1_3_4_49_2 e_1_3_4_64_2 e_1_3_4_24_2 e_1_3_4_47_2 e_1_3_4_66_2 e_1_3_4_28_2 e_1_3_4_71_2 e_1_3_4_52_2 e_1_3_4_50_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_58_2 e_1_3_4_54_2 e_1_3_4_10_2 e_1_3_4_16_2 e_1_3_4_37_2 e_1_3_4_14_2 e_1_3_4_35_2 e_1_3_4_56_2 e_1_3_4_18_2 e_1_3_4_39_2 Zhang, MM, Wang, Y, Ang, EL, Zhao, H (B17) 2016; 33 Bu, Q-T, Yu, P, Wang, J, Li, Z-Y, Chen, X-A, Mao, X-M, Li, Y-Q (B61) 2019; 18 Pikl, Š, Carrillo Rincón, AF, Slemc, L, Goranovič, D, Avbelj, M, Gjuračić, K, Sucipto, H, Stare, K, Baebler, Š, Šala, M, Guo, M, Luzhetskyy, A, Petković, H, Magdevska, V (B29) 2021; 20 Volff, J-N, Altenbuchner, J (B53) 2000; 186 Bu, Q-T, Li, Y-P, Xie, H, Wang, J, Li, Z-Y, Chen, X-A, Mao, X-M, Li, Y-Q (B45) 2020; 19 Love, MI, Huber, W, Anders, S (B71) 2014; 15 Li, Y, Lee, SR, Han, EJ, Seyedsayamdost, MR (B39) 2022; 61 Slemc, L, Jakše, J, Filisetti, A, Baranasic, D, Rodríguez-García, A, Del Carratore, F, Marino, SM, Zucko, J, Starcevic, A, Šala, M, Pérez-Bonilla, M, Sánchez-Hidalgo, M, González, I, Reyes, F, Genilloud, O, Springthorpe, V, Goranovič, D, Kosec, G, Thomas, GH, Lucrezia, DD, Petković, H, Tome, M (B21) 2022; 10 Andam, CP, Choudoir, MJ, Vinh Nguyen, A, Sol Park, H, Buckley, DH (B34) 2016; 10 Gravius, B, Bezmalinović, T, Hranueli, D, Cullum, J (B50) 1993; 59 Jo, H-G, Adidjaja, JJ, Kim, D-K, Park, B-S, Lee, N, Cho, B-K, Kim, HU, Oh, M-K (B55) 2022; 12 Newman, DJ, Cragg, GM (B1) 2020; 83 Baranasic, D, Zucko, J, Nair, M, Pain, A, Long, PF, Hranueli, D, Cullum, J, Starcevic, A (B25) 2014; 2 Davisson, JW, Tanner, FWJ, Finlay, AC, Solomons, IA (B30) 1951; 1 Grantcharova, N, Lustig, U, Flärdh, K (B35) 2005; 187 Zhang, Y, Werling, U, Edelmann, W (B68) 2012; 40 Yang, W, Willemse, J, Sawyer, EB, Lou, F, Gong, W, Zhang, H, Gras, SL, Claessen, D, Perrett, S (B37) 2017; 7 Petković, H, Cullum, J, Hranueli, D, Hunter, IS, Perić-Concha, N, Pigac, J, Thamchaipenet, A, Vujaklija, D, Long, PF (B24) 2006; 70 Komatsu, M, Uchiyama, T, Omura, S, Cane, DE, Ikeda, H (B62) 2010; 107 Liu, Z, Zhao, Y, Huang, C, Luo, Y (B11) 2021; 9 Langmead, B, Salzberg, SL (B70) 2012; 9 Chen, Y, Smanski, MJ, Shen, B (B13) 2010; 86 Liao, Z, Zhang, J, Shi, Y, Zhang, Y, Ma, Z, Bechthold, A, Yu, X (B14) 2022; 79 Beganovic, S, Rückert-Reed, C, Sucipto, H, Shu, W, Gläser, L, Patschkowski, T, Struck, B, Kalinowski, J, Luzhetskyy, A, Wittmann, C (B56) 2023; 22 Nepal, KK, Wang, G (B10) 2019; 37 Wang, X, Yin, S, Bai, J, Liu, Y, Fan, K, Wang, H, Yuan, F, Zhao, B, Li, Z, Wang, W (B18) 2019; 103 Zhang, Z, Shitut, S, Claushuis, B, Claessen, D, Rozen, DE (B51) 2022; 13 Lee, J-H, Wendisch, VF (B7) 2017; 245 von Nussbaum, F, Anlauf, S, Freiberg, C, Benet‐Buchholz, J, Schamberger, J, Henkel, T, Schiffer, G, Häbich, D (B43) 2008; 3 Pšeničnik, A, Reberšek, R, Slemc, L, Godec, T, Kranjc, L, Petković, H (B26) 2022; 200 Baltz, RH (B63) 2016; 43 Gravius, B, Glocker, D, Pigac, J, Pandza, K, Hranueli, D, Cullum, J (B49) 1994; 140 (Pt 9) Algora-Gallardo, L, Schniete, JK, Mark, DR, Hunter, IS, Herron, PR (B22) 2021; 7 Yan, H, Lu, X, Sun, D, Zhuang, S, Chen, Q, Chen, Z, Li, J, Wen, Y (B36) 2020; 113 Ramírez-Rendon, D, Passari, AK, Ruiz-Villafán, B, Rodríguez-Sanoja, R, Sánchez, S, Demain, AL (B6) 2022; 106 Mrak, P, Krastel, P, Pivk Lukančič, P, Tao, J, Pistorius, D, Moore, CM (B32) 2018; 293 Juhas, M (B57) 2016; 36 Shoji, J, Sakazaki, R (B44) 1970; 23 Hoff, G, Bertrand, C, Piotrowski, E, Thibessard, A, Leblond, P (B46) 2018; 8 Tidjani, A-R, Bontemps, C, Leblond, P (B52) 2020; 10 Adékambi, T, Drancourt, M, Raoult, D (B33) 2009; 17 Bury-Moné, S, Thibessard, A, Lioy, VS, Leblond, P (B28) 2023; 39 Gavriilidou, A, Kautsar, SA, Zaburannyi, N, Krug, D, Müller, R, Medema, MH, Ziemert, N (B2) 2022; 7 Claessen, D, Stokroos, I, Deelstra, HJ, Penninga, NA, Bormann, C, Salas, JA, Dijkhuizen, L, Wösten, HAB (B38) 2004; 53 Petković, H, Lukežič, T, Šušković, J (B19) 2017; 55 Deng, L, Zhao, Z, Liu, L, Zhong, Z, Xie, W, Zhou, F, Xu, W, Zhang, Y, Deng, Z, Sun, Y (B66) 2023; 120 Patridge, E, Gareiss, P, Kinch, MS, Hoyer, D (B4) 2016; 21 Tan, G-Y, Liu, T (B15) 2017; 39 Choe, D, Cho, S, Kim, SC, Cho, B-K (B58) 2016; 11 Zha, J, Zhao, Z, Xiao, Z, Eng, T, Mukhopadhyay, A, Koffas, MA, Tang, YJ (B8) 2023; 79 Xia, H, Li, X, Li, Z, Zhan, X, Mao, X, Li, Y (B12) 2020; 11 Lioy, VS, Lorenzi, J-N, Najah, S, Poinsignon, T, Leh, H, Saulnier, C, Aigle, B, Lautru, S, Thibessard, A, Lespinet, O, Leblond, P, Jaszczyszyn, Y, Gorrichon, K, Varoquaux, N, Junier, I, Boccard, F, Pernodet, J-L, Bury-Moné, S (B64) 2021; 12 Liras, P, Martín, JF (B54) 2021; 48 Ma, Q, Zhang, Q, Xu, Q, Zhang, C, Li, Y, Fan, X, Xie, X, Chen, N (B9) 2017; 2 Parkinson, EI, Tryon, JH, Goering, AW, Ju, K-S, McClure, RA, Kemball, JD, Zhukovsky, S, Labeda, DP, Thomson, RJ, Kelleher, NL, Metcalf, WW (B42) 2018; 13 Zhou, M, Jing, X, Xie, P, Chen, W, Wang, T, Xia, H, Qin, Z (B59) 2012; 333 Adrio, JL, Demain, AL (B16) 2006; 30 Doench, JG, Hartenian, E, Graham, DB, Tothova, Z, Hegde, M, Smith, I, Sullender, M, Ebert, BL, Xavier, RJ, Root, DE (B67) 2014; 32 Blin, K, Shaw, S, Kloosterman, AM, Charlop-Powers, Z, van Wezel, GP, Medema, MH, Weber, T (B27) 2021; 49 Pethick, FE, Macfadyen, AC, Tang, Z, Sangal, V, Liu, T-T, Chu, J, Kosec, G, Petkovic, H, Guo, M, Kirby, R, Hoskisson, PA, Herron, PR, Hunter, IS (B20) 2013; 1 Flett, F, Mersinias, V, Smith, CP (B69) 1997; 155 Seco, EM, Pérez-Zúñiga, FJ, Rolón, MS, Malpartida, F (B31) 2004; 11 Chen, W, He, F, Zhang, X, Chen, Z, Wen, Y, Li, J (B47) 2010; 10 Wenner, T, Roth, V, Fischer, G, Fourrier, C, Aigle, B, Decaris, B, Leblond, P (B48) 2003; 50 Katz, L, Baltz, RH (B3) 2016; 43 Jiang, Y, Matsumoto, T, Kuranaga, T, Lu, S, Wang, W, Onaka, H, Kakeya, H (B40) 2021; 74 Demšar, J, Curk, T, Erjavec, A, Gorup, Č, Hočevar, T, Milutinovič, M, Možina, M, Polajnar, M, Toplak, M, Starič, A, Štajdohar, M, Umek, L, Žagar, L, Žbontar, J, Žitnik, M, Zupan, B (B72) 2013; 14 Szafran, MJ, Małecki, T, Strzałka, A, Pawlikiewicz, K, Duława, J, Zarek, A, Kois-Ostrowska, A, Findlay, KC, Le, TBK, Jakimowicz, D (B65) 2021; 12 Sanchez-Garcia, L, Martín, L, Mangues, R, Ferrer-Miralles, N, Vázquez, E, Villaverde, A (B5) 2016; 15 Butler, MJ, Friend, EJ, Hunter, IS, Kaczmarek, FS, Sugden, DA, Warren, M (B23) 1989; 215 Schmid, R, Heuckeroth, S, Korf, A, Smirnov, A, Myers, O, Dyrlund, TS, Bushuiev, R, Murray, KJ, Hoffmann, N, Lu, M (B41) 2023; 41 Dong, J, Wei, J, Li, H, Zhao, S, Guan, W (B60) 2021; 31 |
References_xml | – ident: e_1_3_4_55_2 doi: 10.1093/jimb/kuab072 – ident: e_1_3_4_64_2 doi: 10.1007/s10295-015-1682-x – ident: e_1_3_4_43_2 doi: 10.1021/acschembio.7b01089 – ident: e_1_3_4_29_2 doi: 10.1016/j.tig.2023.07.008 – ident: e_1_3_4_2_2 doi: 10.1021/acs.jnatprod.9b01285 – ident: e_1_3_4_48_2 doi: 10.1186/1471-2180-10-198 – ident: e_1_3_4_46_2 doi: 10.1186/s12934-020-01359-4 – ident: e_1_3_4_53_2 doi: 10.1038/s41598-020-63912-w – ident: e_1_3_4_27_2 doi: 10.1016/j.mimet.2022.106545 – ident: e_1_3_4_50_2 doi: 10.1099/13500872-140-9-2271 – ident: e_1_3_4_8_2 doi: 10.1016/j.biortech.2017.05.065 – ident: e_1_3_4_61_2 doi: 10.4014/jmb.2106.06083 – ident: e_1_3_4_65_2 doi: 10.1038/s41467-021-25462-1 – ident: e_1_3_4_39_2 doi: 10.1111/j.1365-2958.2004.04143.x – ident: e_1_3_4_49_2 doi: 10.1046/j.1365-2958.2003.03698.x – ident: e_1_3_4_28_2 doi: 10.1093/nar/gkab335 – ident: e_1_3_4_36_2 doi: 10.1128/JB.187.9.3227-3237.2005 – ident: e_1_3_4_15_2 doi: 10.1007/s00284-022-02867-9 – ident: e_1_3_4_47_2 doi: 10.1038/s41598-018-23622-w – ident: e_1_3_4_62_2 doi: 10.1186/s12934-019-1055-7 – ident: e_1_3_4_37_2 doi: 10.1111/mmi.14405 – ident: e_1_3_4_6_2 doi: 10.1186/s12934-016-0437-3 – ident: e_1_3_4_33_2 doi: 10.1074/jbc.RA118.005314 – ident: e_1_3_4_42_2 doi: 10.1038/s41587-023-01690-2 – ident: e_1_3_4_51_2 doi: 10.1128/aem.59.7.2220-2228.1993 – ident: e_1_3_4_63_2 doi: 10.1073/pnas.0914833107 – ident: e_1_3_4_44_2 doi: 10.1002/cmdc.200700297 – ident: e_1_3_4_16_2 doi: 10.1016/j.ymben.2016.12.006 – ident: e_1_3_4_23_2 doi: 10.1099/mgen.0.000692 – ident: e_1_3_4_5_2 doi: 10.1016/j.drudis.2015.01.009 – ident: e_1_3_4_35_2 doi: 10.1038/ismej.2015.230 – ident: e_1_3_4_56_2 doi: 10.1038/s41598-022-14199-6 – volume: 1 start-page: 289 year: 1951 ident: e_1_3_4_31_2 article-title: Rimocidin, a new antibiotic publication-title: Antibiot Chemother (Northfield) – ident: e_1_3_4_41_2 doi: 10.1038/s41429-020-00400-3 – ident: e_1_3_4_30_2 doi: 10.1186/s12934-021-01522-5 – ident: e_1_3_4_57_2 doi: 10.1186/s12934-023-02215-x – ident: e_1_3_4_32_2 doi: 10.1016/j.chembiol.2004.02.017 – ident: e_1_3_4_20_2 doi: 10.17113/ftb.55.01.17.4617 – ident: e_1_3_4_67_2 doi: 10.1073/pnas.2222045120 – ident: e_1_3_4_24_2 doi: 10.1007/BF00339722 – ident: e_1_3_4_18_2 doi: 10.1039/c6np00017g – ident: e_1_3_4_59_2 doi: 10.1002/biot.201400838 – ident: e_1_3_4_9_2 doi: 10.1016/j.copbio.2022.102870 – ident: e_1_3_4_7_2 doi: 10.1007/s00253-022-11821-5 – ident: e_1_3_4_52_2 doi: 10.1038/s41467-022-29924-y – ident: e_1_3_4_11_2 doi: 10.1016/j.biotechadv.2018.10.003 – ident: e_1_3_4_19_2 doi: 10.1007/s00253-019-09970-1 – ident: e_1_3_4_13_2 doi: 10.3389/fmicb.2020.00406 – ident: e_1_3_4_17_2 doi: 10.1111/j.1574-6976.2005.00009.x – ident: e_1_3_4_45_2 doi: 10.7164/antibiotics.23.432 – ident: e_1_3_4_66_2 doi: 10.1038/s41467-021-25461-2 – ident: e_1_3_4_4_2 doi: 10.1007/s10295-015-1723-5 – ident: e_1_3_4_70_2 doi: 10.1111/j.1574-6968.1997.tb13882.x – ident: e_1_3_4_21_2 doi: 10.1128/genomeA.00063-13 – ident: e_1_3_4_54_2 doi: 10.1111/j.1574-6968.2000.tb09095.x – ident: e_1_3_4_68_2 doi: 10.1038/nbt.3026 – ident: e_1_3_4_38_2 doi: 10.1038/srep42867 – ident: e_1_3_4_22_2 doi: 10.1128/spectrum.02434-21 – ident: e_1_3_4_25_2 doi: 10.1128/MMBR.00004-06 – ident: e_1_3_4_72_2 doi: 10.1186/s13059-014-0550-8 – ident: e_1_3_4_10_2 doi: 10.1016/j.synbio.2017.07.003 – ident: e_1_3_4_40_2 doi: 10.1002/anie.202208573 – ident: e_1_3_4_60_2 doi: 10.1111/j.1574-6968.2012.02609.x – ident: e_1_3_4_58_2 doi: 10.3109/07388551.2014.989423 – ident: e_1_3_4_69_2 doi: 10.1093/nar/gkr1288 – volume: 14 start-page: 2349 year: 2013 ident: e_1_3_4_73_2 article-title: Orange: data mining toolbox in Python publication-title: J Mach Learn Res – ident: e_1_3_4_14_2 doi: 10.1007/s00253-009-2428-3 – ident: e_1_3_4_71_2 doi: 10.1038/nmeth.1923 – ident: e_1_3_4_3_2 doi: 10.1038/s41564-022-01110-2 – ident: e_1_3_4_12_2 doi: 10.3389/fbioe.2021.632230 – ident: e_1_3_4_34_2 doi: 10.1016/j.tim.2008.09.008 – ident: e_1_3_4_26_2 doi: 10.1128/genomeA.00517-14 – volume: 3 start-page: 619 year: 2008 end-page: 626 ident: B43 article-title: Total synthesis and initial structure-activity relationships of longicatenamycin A publication-title: ChemMedChem doi: 10.1002/cmdc.200700297 – volume: 2 start-page: 87 year: 2017 end-page: 96 ident: B9 article-title: Systems metabolic engineering strategies for the production of amino acids publication-title: Synth Syst Biotechnol doi: 10.1016/j.synbio.2017.07.003 – volume: 7 year: 2021 ident: B22 article-title: Bilateral symmetry of linear streptomycete chromosomes publication-title: Microb Genom doi: 10.1099/mgen.0.000692 – volume: 83 start-page: 770 year: 2020 end-page: 803 ident: B1 article-title: Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019 publication-title: J Nat Prod doi: 10.1021/acs.jnatprod.9b01285 – volume: 2 year: 2014 ident: B25 article-title: Genome sequences of the oxytetracycline production strain Streptomyces rimosus R6-500 and two mutants with chromosomal rearrangements publication-title: Genome Announc doi: 10.1128/genomeA.00517-14 – volume: 10 year: 2020 ident: B52 article-title: Telomeric and sub-telomeric regions undergo rapid turnover within a Streptomyces population publication-title: Sci Rep doi: 10.1038/s41598-020-63912-w – volume: 48 year: 2021 ident: B54 article-title: Streptomyces clavuligerus: the omics era publication-title: J Ind Microbiol Biotechnol doi: 10.1093/jimb/kuab072 – volume: 11 start-page: 199 year: 2016 end-page: 211 ident: B58 article-title: Minimal genome: worthwhile or worthless efforts toward being smaller? publication-title: Biotechnol J doi: 10.1002/biot.201400838 – volume: 21 start-page: 204 year: 2016 end-page: 207 ident: B4 article-title: An analysis of FDA-approved drugs: natural products and their derivatives publication-title: Drug Discov Today doi: 10.1016/j.drudis.2015.01.009 – volume: 1 start-page: 289 year: 1951 end-page: 290 ident: B30 article-title: Rimocidin, a new antibiotic publication-title: Antibiot Chemother (Northfield) – volume: 40 year: 2012 ident: B68 article-title: SLiCE: a novel bacterial cell extract-based DNA cloning method publication-title: Nucleic Acids Res doi: 10.1093/nar/gkr1288 – volume: 13 start-page: 1029 year: 2018 end-page: 1037 ident: B42 article-title: Discovery of the tyrobetaine natural products and their biosynthetic gene cluster via metabologenomics publication-title: ACS Chem Biol doi: 10.1021/acschembio.7b01089 – volume: 41 start-page: 447 year: 2023 end-page: 449 ident: B41 article-title: Integrative analysis of multimodal mass spectrometry data in MZmine 3 publication-title: Nat Biotechnol doi: 10.1038/s41587-023-01690-2 – volume: 10 year: 2022 ident: B21 article-title: Reference-grade genome and large linear plasmid of Streptomyces rimosus: pushing the limits of nanopore sequencing publication-title: Microbiol Spectr doi: 10.1128/spectrum.02434-21 – volume: 74 start-page: 307 year: 2021 end-page: 316 ident: B40 article-title: Longicatenamides A-D, two diastereomeric pairs of cyclic hexapeptides produced by combined-culture of Streptomyces sp. KUSC_F05 and Tsukamurella pulmonis TP-B0596 publication-title: J Antibiot (Tokyo) doi: 10.1038/s41429-020-00400-3 – volume: 140 (Pt 9) start-page: 2271 year: 1994 end-page: 2277 ident: B49 article-title: The 387 kb linear plasmid pPZG101 of Streptomyces rimosus and its interactions with the chromosome publication-title: Microbiology (Reading) doi: 10.1099/13500872-140-9-2271 – volume: 70 start-page: 704 year: 2006 end-page: 728 ident: B24 article-title: Genetics of Streptomyces rimosus, the oxytetracycline producer publication-title: Microbiol Mol Biol Rev doi: 10.1128/MMBR.00004-06 – volume: 7 year: 2017 ident: B37 article-title: The propensity of the bacterial rodlin protein RdlB to form amyloid fibrils determines its function in Streptomyces coelicolor publication-title: Sci Rep doi: 10.1038/srep42867 – volume: 186 start-page: 143 year: 2000 end-page: 150 ident: B53 article-title: A new beginning with new ends: linearisation of circular chromosomes during bacterial evolution publication-title: FEMS Microbiol Lett doi: 10.1111/j.1574-6968.2000.tb09095.x – volume: 32 start-page: 1262 year: 2014 end-page: 1267 ident: B67 article-title: Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation publication-title: Nat Biotechnol doi: 10.1038/nbt.3026 – volume: 15 year: 2014 ident: B71 article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 publication-title: Genome Biol doi: 10.1186/s13059-014-0550-8 – volume: 23 start-page: 432 year: 1970 end-page: 436 ident: B44 article-title: A new peptide antibiotic complex S-520. II. further characterization and degradative studies publication-title: J Antibiot (Tokyo) doi: 10.7164/antibiotics.23.432 – volume: 20 year: 2021 ident: B29 article-title: Multiple copies of the oxytetracycline gene cluster in selected Streptomyces rimosus strains can provide significantly increased titers publication-title: Microb Cell Fact doi: 10.1186/s12934-021-01522-5 – volume: 30 start-page: 187 year: 2006 end-page: 214 ident: B16 article-title: Genetic improvement of processes yielding microbial products publication-title: FEMS Microbiol Rev doi: 10.1111/j.1574-6976.2005.00009.x – volume: 50 start-page: 411 year: 2003 end-page: 425 ident: B48 article-title: End-to-end fusion of linear deleted chromosomes initiates a cycle of genome instability in Streptomyces ambofaciens publication-title: Mol Microbiol doi: 10.1046/j.1365-2958.2003.03698.x – volume: 49 start-page: W29 year: 2021 end-page: W35 ident: B27 article-title: antiSMASH 6.0: improving cluster detection and comparison capabilities publication-title: Nucleic Acids Res doi: 10.1093/nar/gkab335 – volume: 12 year: 2021 ident: B64 article-title: Dynamics of the compartmentalized Streptomyces chromosome during metabolic differentiation publication-title: Nat Commun doi: 10.1038/s41467-021-25462-1 – volume: 79 year: 2023 ident: B8 article-title: Biosystem design of Corynebacterium glutamicum for bioproduction publication-title: Curr Opin Biotechnol doi: 10.1016/j.copbio.2022.102870 – volume: 293 start-page: 19982 year: 2018 end-page: 19995 ident: B32 article-title: Discovery of the actinoplanic acid pathway in Streptomyces rapamycinicus reveals a genetically conserved synergism with rapamycin publication-title: J Biol Chem doi: 10.1074/jbc.RA118.005314 – volume: 12 year: 2021 ident: B65 article-title: Spatial rearrangement of the Streptomyces venezuelae linear chromosome during sporogenic development publication-title: Nat Commun doi: 10.1038/s41467-021-25461-2 – volume: 9 start-page: 357 year: 2012 end-page: 359 ident: B70 article-title: Fast gapped-read alignment with Bowtie 2 publication-title: Nat Methods doi: 10.1038/nmeth.1923 – volume: 61 year: 2022 ident: B39 article-title: Momomycin, an antiproliferative cryptic metabolite from the oxytetracycline producer Streptomyces rimosus publication-title: Angew Chem Int Ed Engl doi: 10.1002/anie.202208573 – volume: 39 start-page: 228 year: 2017 end-page: 236 ident: B15 article-title: Rational synthetic pathway refactoring of natural products biosynthesis in actinobacteria publication-title: Metab Eng doi: 10.1016/j.ymben.2016.12.006 – volume: 103 start-page: 6645 year: 2019 end-page: 6655 ident: B18 article-title: Heterologous production of chlortetracycline in an industrial grade Streptomyces rimosus host publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-019-09970-1 – volume: 187 start-page: 3227 year: 2005 end-page: 3237 ident: B35 article-title: Dynamics of FtsZ assembly during sporulation in Streptomyces coelicolor A3(2) publication-title: J Bacteriol doi: 10.1128/JB.187.9.3227-3237.2005 – volume: 36 start-page: 416 year: 2016 end-page: 423 ident: B57 article-title: On the road to synthetic life: the minimal cell and genome-scale engineering publication-title: Crit Rev Biotechnol doi: 10.3109/07388551.2014.989423 – volume: 59 start-page: 2220 year: 1993 end-page: 2228 ident: B50 article-title: Genetic instability and strain degeneration in Streptomyces rimosus publication-title: Appl Environ Microbiol doi: 10.1128/aem.59.7.2220-2228.1993 – volume: 12 year: 2022 ident: B55 article-title: Comparative genomic analysis of Streptomyces rapamycinicus NRRL 5491 and its mutant overproducing rapamycin publication-title: Sci Rep doi: 10.1038/s41598-022-14199-6 – volume: 43 start-page: 343 year: 2016 end-page: 370 ident: B63 article-title: Genetic manipulation of secondary metabolite biosynthesis for improved production in Streptomyces and other actinomycetes publication-title: J Ind Microbiol Biotechnol doi: 10.1007/s10295-015-1682-x – volume: 333 start-page: 169 year: 2012 end-page: 179 ident: B59 article-title: Sequential deletion of all the polyketide synthase and nonribosomal peptide synthetase biosynthetic gene clusters and a 900-kb subtelomeric sequence of the linear chromosome of Streptomyces coelicolor publication-title: FEMS Microbiol Lett doi: 10.1111/j.1574-6968.2012.02609.x – volume: 79 year: 2022 ident: B14 article-title: Improvement of rimocidin biosynthesis by increasing supply of precursor malonyl-CoA via over-expression of acetyl-CoA carboxylase in Streptomyces rimosus M527 publication-title: Curr Microbiol doi: 10.1007/s00284-022-02867-9 – volume: 7 start-page: 726 year: 2022 end-page: 735 ident: B2 article-title: Compendium of specialized metabolite biosynthetic diversity encoded in bacterial genomes publication-title: Nat Microbiol doi: 10.1038/s41564-022-01110-2 – volume: 14 start-page: 2349 year: 2013 end-page: 2353 ident: B72 article-title: Orange: data mining toolbox in Python publication-title: J Mach Learn Res – volume: 10 start-page: 1731 year: 2016 end-page: 1741 ident: B34 article-title: Contributions of ancestral inter-species recombination to the genetic diversity of extant Streptomyces lineages publication-title: ISME J doi: 10.1038/ismej.2015.230 – volume: 55 start-page: 3 year: 2017 end-page: 13 ident: B19 article-title: Biosynthesis of oxytetracycline by Streptomyces rimosus: past, present and future directions in the developmentof tetracycline antibiotics publication-title: Food Technol Biotechnol doi: 10.17113/ftb.55.01.17.4617 – volume: 245 start-page: 1575 year: 2017 end-page: 1587 ident: B7 article-title: Production of amino acids - genetic and metabolic engineering approaches publication-title: Bioresour Technol doi: 10.1016/j.biortech.2017.05.065 – volume: 22 year: 2023 ident: B56 article-title: Systems biology of industrial oxytetracycline production in Streptomyces rimosus: the secrets of a mutagenized hyperproducer publication-title: Microb Cell Fact doi: 10.1186/s12934-023-02215-x – volume: 31 start-page: 1722 year: 2021 end-page: 1731 ident: B60 article-title: An efficient markerless deletion system suitable for the industrial strains of Streptomyces publication-title: J Microbiol Biotechnol doi: 10.4014/jmb.2106.06083 – volume: 200 year: 2022 ident: B26 article-title: Simple and reliable in situ CRISPR-Cas9 nuclease visualization tool is ensuring efficient editing in Streptomyces species publication-title: J Microbiol Methods doi: 10.1016/j.mimet.2022.106545 – volume: 9 year: 2021 ident: B11 article-title: Recent advances in silent gene cluster activation in Streptomyces publication-title: Front Bioeng Biotechnol doi: 10.3389/fbioe.2021.632230 – volume: 18 start-page: 16 year: 2019 ident: B61 article-title: Rational construction of genome-reduced and high-efficient industrial Streptomyces chassis based on multiple comparative genomic approaches publication-title: Microb Cell Fact doi: 10.1186/s12934-019-1055-7 – volume: 10 year: 2010 ident: B47 article-title: Chromosomal instability in Streptomyces avermitilis: major deletion in the central region and stable circularized chromosome publication-title: BMC Microbiol doi: 10.1186/1471-2180-10-198 – volume: 15 year: 2016 ident: B5 article-title: Recombinant pharmaceuticals from microbial cells: a 2015 update publication-title: Microb Cell Fact doi: 10.1186/s12934-016-0437-3 – volume: 11 year: 2020 ident: B12 article-title: The application of regulatory cascades in Streptomyces: yield enhancement and metabolite mining publication-title: Front Microbiol doi: 10.3389/fmicb.2020.00406 – volume: 106 start-page: 1855 year: 2022 end-page: 1878 ident: B6 article-title: Impact of novel microbial secondary metabolites on the pharma industry publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-022-11821-5 – volume: 11 start-page: 357 year: 2004 end-page: 366 ident: B31 article-title: Starter unit choice determines the production of two tetraene macrolides, rimocidin and CE-108, in Streptomyces diastaticus var. 108 publication-title: Chem Biol doi: 10.1016/j.chembiol.2004.02.017 – volume: 120 year: 2023 ident: B66 article-title: Dissection of 3D chromosome organization in Streptomyces coelicolor A3(2) leads to biosynthetic gene cluster overexpression publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.2222045120 – volume: 17 start-page: 37 year: 2009 end-page: 45 ident: B33 article-title: The rpoB gene as a tool for clinical microbiologists publication-title: Trends Microbiol doi: 10.1016/j.tim.2008.09.008 – volume: 19 year: 2020 ident: B45 article-title: Comprehensive dissection of dispensable genomic regions in Streptomyces based on comparative analysis approach publication-title: Microb Cell Fact doi: 10.1186/s12934-020-01359-4 – volume: 113 start-page: 123 year: 2020 end-page: 142 ident: B36 article-title: BldD, a master developmental repressor, activates antibiotic production in two Streptomyces species publication-title: Mol Microbiol doi: 10.1111/mmi.14405 – volume: 53 start-page: 433 year: 2004 end-page: 443 ident: B38 article-title: The formation of the rodlet layer of streptomycetes is the result of the interplay between rodlins and chaplins publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2004.04143.x – volume: 215 start-page: 231 year: 1989 end-page: 238 ident: B23 article-title: Molecular cloning of resistance genes and architecture of a linked gene cluster involved in biosynthesis of oxytetracycline by Streptomyces rimosus publication-title: Mol Gen Genet doi: 10.1007/BF00339722 – volume: 39 start-page: 873 year: 2023 end-page: 887 ident: B28 article-title: Dynamics of the Streptomyces chromosome: chance and necessity publication-title: Trends Genet doi: 10.1016/j.tig.2023.07.008 – volume: 43 start-page: 155 year: 2016 end-page: 176 ident: B3 article-title: Natural product discovery: past, present, and future publication-title: J Ind Microbiol Biotechnol doi: 10.1007/s10295-015-1723-5 – volume: 1 year: 2013 ident: B20 article-title: Draft genome sequence of the oxytetracycline-producing bacterium Streptomyces rimosus ATCC 10970 publication-title: Genome Announc doi: 10.1128/genomeA.00063-13 – volume: 107 start-page: 2646 year: 2010 end-page: 2651 ident: B62 article-title: Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0914833107 – volume: 37 start-page: 1 year: 2019 end-page: 20 ident: B10 article-title: Streptomycetes: surrogate hosts for the genetic manipulation of biosynthetic gene clusters and production of natural products publication-title: Biotechnol Adv doi: 10.1016/j.biotechadv.2018.10.003 – volume: 86 start-page: 19 year: 2010 end-page: 25 ident: B13 article-title: Improvement of secondary metabolite production in Streptomyces by manipulating pathway regulation publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-009-2428-3 – volume: 155 start-page: 223 year: 1997 end-page: 229 ident: B69 article-title: High efficiency intergeneric conjugal transfer of plasmid DNA from Escherichia coli to methyl DNA-restricting streptomycetes publication-title: FEMS Microbiol Lett doi: 10.1111/j.1574-6968.1997.tb13882.x – volume: 8 year: 2018 ident: B46 article-title: Genome plasticity is governed by double strand break DNA repair in Streptomyces publication-title: Sci Rep doi: 10.1038/s41598-018-23622-w – volume: 13 year: 2022 ident: B51 article-title: Mutational meltdown of putative microbial altruists in Streptomyces coelicolor colonies publication-title: Nat Commun doi: 10.1038/s41467-022-29924-y – volume: 33 start-page: 963 year: 2016 end-page: 987 ident: B17 article-title: Engineering microbial hosts for production of bacterial natural products publication-title: Nat Prod Rep doi: 10.1039/c6np00017g |
SSID | ssj0001637129 |
Score | 2.2839215 |
Snippet | There is a critical need to develop novel antibiotics to combat antimicrobial resistance.
Streptomyces
species are very rich source of antibiotics, typically... Most biosynthetic gene clusters (BGC) encoding the synthesis of important microbial secondary metabolites, such as antibiotics, are either silent or poorly... ABSTRACTMost biosynthetic gene clusters (BGC) encoding the synthesis of important microbial secondary metabolites, such as antibiotics, are either silent or... |
SourceID | pubmedcentral proquest asm2 pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e0025024 |
SubjectTerms | Amino acids Anti-Bacterial Agents - biosynthesis Antibiotics Antimicrobial resistance Applied and Industrial Microbiology Biosynthesis Chromosomes Cryptic gene Drug development Gene clusters Gene deletion Gene rearrangement Genes Genome, Bacterial Genomes Genomic analysis Industrial strains Metabolism Metabolites Microorganisms Multigene Family - genetics Mutagenesis Natural products Oxytetracycline Oxytetracycline - biosynthesis Research Article Secondary metabolites Streptomyces - drug effects Streptomyces - genetics Streptomyces - metabolism Streptomyces rimosus Streptomyces rimosus - genetics Streptomyces rimosus - metabolism Transcriptomes |
SummonAdditionalLinks | – databaseName: American Society for Microbiology Open Access dbid: AAUOK link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEB9qi-CL1M9eWyWCIAhbL5-XPB7FUhTsiwfFl2WTm1DB2ztu98D77zvZr_ZUio8hM2SZyXxkJ_kNwHsnolGuwEy6KDOlREEmpWk4jyp6z1OlKt22-GYuZ-rLtb7eA9O_hekkWJ0V1aIp5A-WLeynRYtuXJ01kTsT6hEcaOEUGeTBdDq7-nr3d8XICUWyroz5T17ywbSG2I1HfyWZf96VvBd8Lg7haZc1smmr5mewh-VzeNz2kdy-gB9Xv7c1EmPYppeOyG7odLnOVi2aK0mede14WHvxG-csYbMukK2xp1hGlirUq3q52JLvYGtSYrWpXsLs4vP388usa5qQFeTz6kw7E3UgmQfNJ4VxlP9YL8kvSUQ5icqEKJFL1F5wsmcb5p4r5Ojmahwov5OvYL9clngELMSxjbYIPnBUZPiO08gSP0evnVcj-JAkmPc6y5sDhbB5L-u8kXUuiHLcCzkPHfZ4aoHx6yGWjwPLqgXeeIj4tNfc3dfI9DzUSfJSI3g3TJP1pJJIUeJyk2gk7cbU0nwEr1tFD6tJqw2FbjMCu7MFBoKEzL07U_68aRC6E4wrOe7J8X9L6ASeCEqX0r0Ebk5hv15v8A2lO7V_2-3tWxwUAhg priority: 102 providerName: American Society for Microbiology – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9swDDdbx2Avx90-u-sODwaDQXZ17Djx0xjjSrmH7WWFspcQOzI3WJOuSeH6309KnHbdoI_GMgmSLMmW_BNj70zstTIFRNJ4GSkVF7ilEhyWXnlrBWWqqNriq54v1O0yWYYLtyaUVQ42sTPUZe3ojvxa0mM_g4fv6af174i6RlF2NbTQeMgeEXQZaXW6TA93LFqm6M9CMhMt8fWqx0duPna-P6J37qOiWcXHXum_UPPfism_XNDsnJ2F2JF_7oV9wR5A9ZQ97rtJ7p6xH9_udy3gQrej947A7_CMuYnWPaYr8p-Hpjy8L_-GkhNC6wr4BgaK2nPKU6_berVDC8I3KMpm2zxni9nN9y_zKLROiAq0fG2UGO0Th5x3iUgLbTAKyqxE6yQBZOqVdl6CkJDYWOCuzlxphQIBplRTh1GefMFGVV3BK8adn2Y-K5x1AhRufyNwlOF6ATYxVo3Ze-JgHnS_ybtjRZzlA6_zjtd5jJTTgcm5Cwjk1Ajj16klH_ZL1j38xiniySC5w98c9GbM3u6ncQ9RYqSooN4SjUSdpMbmY_ayF_T-azJLNDpwPWbZkQrsCQif-3im-nnX4XQTmCua7_T16f-6ZE9ijJSoJEHoCRu1my28wUintVedOv8BeYcB9w priority: 102 providerName: ProQuest |
Title | Oxytetracycline hyper-production through targeted genome reduction of Streptomyces rimosus |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38564716 https://journals.asm.org/doi/10.1128/msystems.00250-24 https://www.proquest.com/docview/3062893040 https://www.proquest.com/docview/3031662295 https://pubmed.ncbi.nlm.nih.gov/PMC11097637 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED_6wUZfRvfZbF3QYDAYuIss2ZYexkhHS9lYO8YCYS_GUk500Dip7UD93-_kj2zZSh_2ZITvsLnTfUgn_Q7gtQ5dLHWGgdBOBFKGGZlURMOZk84Y7itV_rTFeXw2kZ-m0XQL-vZWnQDLW5d2vp_UpLg6urmuP5DBv28vwKh38xb0uDxqAnoQym3YpcCU-IYGX7psv9lyiUVC4a2rbd7KuQf3hYpi8tgexD8r5-FmvPonCf37LOUfwel0Hx50WSUbt9PgIWxh_gjutX0m68fw4-KmrpAYbe1vQiK7pNVnESxbtFfSDOva9bD2YDjOmMdunSMrsKdYOOYr2MtqMa_Jt7CClFyuyicwOT35_vEs6JoqBBn5xCqIdOwiSzqxEU-yWFN-pIwgvyUQReJkbJ1ALjAyISd7V3ZmuESOeiZHlvI_8RR28kWOB8CsGymnMmssR0mOQXMaKeLnaCJt5ADeeAmmvVLTZsERqrQXe9qIPQ2JctQLObUdNrlvkXF1F8vbNcuyBea4i_iw19zvvxH--qgW5MUG8Gr9mqzLl0yyHBcrTyNotvqW5wN41ip6_bV-ogxAbUyBNYFH7t58k_-8bBC8PcwrOfbk-f-zvoC9kPIrf5CBx4ewUxUrfEn5UWWGsJ1MkyHsjseTi8_0PD45__pt2Ow2DBuL-AUmQBk0 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1da9RAcKgnoi_it6dVV1AEITab3Xw9iIharrbWlxYOX2KymaVCL7lecmj-lL_RmXzceQr31sdlZ5Nldj53ZmcAXsSeDXScoqNiqxytvZRYyqdhbrXNMsmRKs62OA4mp_rz1J_uwO_hLQynVQ4ysRXUeWn4jnxP8WO_mJxv9938wuGuURxdHVpodGRxiM1Pctmqtwcf6Xxfet7-p5MPE6fvKuCkJBRqx48D6xvalPFlmAYxGQhRpohxFaIKrQ6MVSgV-pknieAjk2dSo8Q4164hA0jRd6_AVVK8Ljt74TRc3-kEKiT92QdPSfLvzbp6zNWb1tZw-F39KK1m3qYW_M-0_TdD8y-Vt38Lbva2qnjfEddt2MHiDlzrulc2d-Hb119NjbTQNPy-EsUZ-bQLZ97VkKXzFn0TINGlm2MuuCLsDMUCB4jSCo6Lz-ty1pDEEgsinWpZ3YPTS0HqfRgVZYEPQRjrRjZKTWYkahI3saRRROslZn6c6TG8YgwmPa9VSevGeFEy4DppcZ14BOkOSE5MX_GcG2-cb1vyerVk3pX72Aa8O5zcejdrOh3D89U08SwHYtICyyXDKOIBbqQ-hgfdQa_-piI_IIMhGEO0QQIrAK4HvjlT_Dhr64Jz8VhSF-Gj7ft6BtcnJ1-OkqOD48PHcMMjK43TIWSwC6N6scQnZGXV2dOWtAV8v2xe-gOGHT18 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1di9NAcDh7KL6I31ZPXUERhNhudvP1IKLelTtP6iEeHL7EZDPLCTapTYrmr_nrnMlHaxX6do_LzibL7HzuzM4API1c6-soQUdFVjlauwmxlEfDzGqbppIjVZxtMfUPT_X7M-9sB373b2E4rbKXiY2gzgrDd-QjxY_9InK-xyPbpUWc7E9ez3843EGKI619O42WRI6x_knuW_nqaJ_O-pnrTg4-vzt0ug4DTkIConK8yLeeoQ0aTwaJH5GxEKaKmFghqsBq31iFUqGXupKIPzRZKjVKjDI9NmQMKfruJdgN2CsawO7bg-nJp_UNj68C0qZdKJX0wGjWVmcuXzaWh8Ov7AdJOXM3deJ_hu6_-Zp_KcDJdbjWWa7iTUtqN2AH85twue1lWd-CLx9_1RXSQlPza0sU5-ThLpx5W1GWTl90LYFEm3yOmeD6sDMUC-whCis4Sj6villN8kssiJDKZXkbTi8ErXdgkBc53gNh7Di0YWJSI1GT8IkkjUJaLzH1olQP4TljMO44r4wbp8YN4x7XcYPr2CXIcY_k2HT1z7kNx_dtS16slszb4h_bgPf6k1vvZk21Q3iymiYO5rBMkmOxZBhFHMFt1Ydwtz3o1d9U6PlkPvhDCDdIYAXA1cE3Z_Jv502VcC4lS8ojuL99X4_hCvFR_OFoevwArrpksnFuhPT3YFAtlviQTK4qfdTRtoCvF81OfwByNEMX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oxytetracycline+hyper-production+through+targeted+genome+reduction+of+Streptomyces+rimosus&rft.jtitle=mSystems&rft.au=P%C5%A1eni%C4%8Dnik%2C+Alen&rft.au=Slemc%2C+Lucija&rft.au=Avbelj%2C+Martina&rft.au=Tome%2C+Miha&rft.date=2024-05-16&rft.pub=American+Society+for+Microbiology&rft.eissn=2379-5077&rft.volume=9&rft.issue=5&rft_id=info:doi/10.1128%2Fmsystems.00250-24&rft_id=info%3Apmid%2F38564716&rft.externalDocID=PMC11097637 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-5077&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-5077&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-5077&client=summon |