Oxytetracycline hyper-production through targeted genome reduction of Streptomyces rimosus

There is a critical need to develop novel antibiotics to combat antimicrobial resistance. Streptomyces species are very rich source of antibiotics, typically encoding 20–60 biosynthetic gene clusters (BGCs). However, under laboratory conditions, most are either silent or poorly expressed so that the...

Full description

Saved in:
Bibliographic Details
Published inmSystems Vol. 9; no. 5; p. e0025024
Main Authors Pšeničnik, Alen, Slemc, Lucija, Avbelj, Martina, Tome, Miha, Šala, Martin, Herron, Paul, Shmatkov, Maksym, Petek, Marko, Baebler, Špela, Mrak, Peter, Hranueli, Daslav, Starčević, Antonio, Hunter, Iain S., Petković, Hrvoje
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 16.05.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract There is a critical need to develop novel antibiotics to combat antimicrobial resistance. Streptomyces species are very rich source of antibiotics, typically encoding 20–60 biosynthetic gene clusters (BGCs). However, under laboratory conditions, most are either silent or poorly expressed so that their products are only detectable at nanogram quantities, which hampers drug development efforts. To address this subject, we used comparative genome analysis of industrial Streptomyces rimosus strains producing high titers of a broad spectrum antibiotic oxytetracycline (OTC), developed during decades of industrial strain improvement. Interestingly, large-scale chromosomal deletions were observed. Based on this information, we carried out targeted genome deletions in the native strain S. rimosus ATCC 10970, and we show that a targeted deletion in the vicinity of the OTC BGC significantly induced expression of the OTC BGC, as well as some other silent BGCs, thus suggesting that this approach may be a useful way to identify new natural products.
AbstractList Most biosynthetic gene clusters (BGC) encoding the synthesis of important microbial secondary metabolites, such as antibiotics, are either silent or poorly expressed; therefore, to ensure a strong pipeline of novel antibiotics, there is a need to develop rapid and efficient strain development approaches. This study uses comparative genome analysis to instruct rational strain improvement, using Streptomyces rimosus , the producer of the important antibiotic oxytetracycline (OTC) as a model system. Sequencing of the genomes of two industrial strains M4018 and R6-500, developed independently from a common ancestor, identified large DNA rearrangements located at the chromosome end. We evaluated the effect of these genome deletions on the parental S. rimosus Type Strain (ATCC 10970) genome where introduction of a 145 kb deletion close to the OTC BGC in the Type Strain resulted in massive OTC overproduction, achieving titers that were equivalent to M4018 and R6-500. Transcriptome data supported the hypothesis that the reason for such an increase in OTC biosynthesis was due to enhanced transcription of the OTC BGC and not due to enhanced substrate supply. We also observed changes in the expression of other cryptic BGCs; some metabolites, undetectable in ATCC 10970, were now produced at high titers. This study demonstrated for the first time that the main force behind BGC overexpression is genome rearrangement. This new approach demonstrates great potential to activate cryptic gene clusters of yet unexplored natural products of medical and industrial value.
There is a critical need to develop novel antibiotics to combat antimicrobial resistance. Streptomyces species are very rich source of antibiotics, typically encoding 20–60 biosynthetic gene clusters (BGCs). However, under laboratory conditions, most are either silent or poorly expressed so that their products are only detectable at nanogram quantities, which hampers drug development efforts. To address this subject, we used comparative genome analysis of industrial Streptomyces rimosus strains producing high titers of a broad spectrum antibiotic oxytetracycline (OTC), developed during decades of industrial strain improvement. Interestingly, large-scale chromosomal deletions were observed. Based on this information, we carried out targeted genome deletions in the native strain S. rimosus ATCC 10970, and we show that a targeted deletion in the vicinity of the OTC BGC significantly induced expression of the OTC BGC, as well as some other silent BGCs, thus suggesting that this approach may be a useful way to identify new natural products.
Most biosynthetic gene clusters (BGC) encoding the synthesis of important microbial secondary metabolites, such as antibiotics, are either silent or poorly expressed; therefore, to ensure a strong pipeline of novel antibiotics, there is a need to develop rapid and efficient strain development approaches. This study uses comparative genome analysis to instruct rational strain improvement, using , the producer of the important antibiotic oxytetracycline (OTC) as a model system. Sequencing of the genomes of two industrial strains M4018 and R6-500, developed independently from a common ancestor, identified large DNA rearrangements located at the chromosome end. We evaluated the effect of these genome deletions on the parental Type Strain (ATCC 10970) genome where introduction of a 145 kb deletion close to the OTC BGC in the Type Strain resulted in massive OTC overproduction, achieving titers that were equivalent to M4018 and R6-500. Transcriptome data supported the hypothesis that the reason for such an increase in OTC biosynthesis was due to enhanced transcription of the OTC BGC and not due to enhanced substrate supply. We also observed changes in the expression of other cryptic BGCs; some metabolites, undetectable in ATCC 10970, were now produced at high titers. This study demonstrated for the first time that the main force behind BGC overexpression is genome rearrangement. This new approach demonstrates great potential to activate cryptic gene clusters of yet unexplored natural products of medical and industrial value.IMPORTANCEThere is a critical need to develop novel antibiotics to combat antimicrobial resistance. species are very rich source of antibiotics, typically encoding 20-60 biosynthetic gene clusters (BGCs). However, under laboratory conditions, most are either silent or poorly expressed so that their products are only detectable at nanogram quantities, which hampers drug development efforts. To address this subject, we used comparative genome analysis of industrial strains producing high titers of a broad spectrum antibiotic oxytetracycline (OTC), developed during decades of industrial strain improvement. Interestingly, large-scale chromosomal deletions were observed. Based on this information, we carried out targeted genome deletions in the native strain ATCC 10970, and we show that a targeted deletion in the vicinity of the OTC BGC significantly induced expression of the OTC BGC, as well as some other silent BGCs, thus suggesting that this approach may be a useful way to identify new natural products.
ABSTRACTMost biosynthetic gene clusters (BGC) encoding the synthesis of important microbial secondary metabolites, such as antibiotics, are either silent or poorly expressed; therefore, to ensure a strong pipeline of novel antibiotics, there is a need to develop rapid and efficient strain development approaches. This study uses comparative genome analysis to instruct rational strain improvement, using Streptomyces rimosus, the producer of the important antibiotic oxytetracycline (OTC) as a model system. Sequencing of the genomes of two industrial strains M4018 and R6-500, developed independently from a common ancestor, identified large DNA rearrangements located at the chromosome end. We evaluated the effect of these genome deletions on the parental S. rimosus Type Strain (ATCC 10970) genome where introduction of a 145 kb deletion close to the OTC BGC in the Type Strain resulted in massive OTC overproduction, achieving titers that were equivalent to M4018 and R6-500. Transcriptome data supported the hypothesis that the reason for such an increase in OTC biosynthesis was due to enhanced transcription of the OTC BGC and not due to enhanced substrate supply. We also observed changes in the expression of other cryptic BGCs; some metabolites, undetectable in ATCC 10970, were now produced at high titers. This study demonstrated for the first time that the main force behind BGC overexpression is genome rearrangement. This new approach demonstrates great potential to activate cryptic gene clusters of yet unexplored natural products of medical and industrial value.IMPORTANCEThere is a critical need to develop novel antibiotics to combat antimicrobial resistance. Streptomyces species are very rich source of antibiotics, typically encoding 20–60 biosynthetic gene clusters (BGCs). However, under laboratory conditions, most are either silent or poorly expressed so that their products are only detectable at nanogram quantities, which hampers drug development efforts. To address this subject, we used comparative genome analysis of industrial Streptomyces rimosus strains producing high titers of a broad spectrum antibiotic oxytetracycline (OTC), developed during decades of industrial strain improvement. Interestingly, large-scale chromosomal deletions were observed. Based on this information, we carried out targeted genome deletions in the native strain S. rimosus ATCC 10970, and we show that a targeted deletion in the vicinity of the OTC BGC significantly induced expression of the OTC BGC, as well as some other silent BGCs, thus suggesting that this approach may be a useful way to identify new natural products.
Most biosynthetic gene clusters (BGC) encoding the synthesis of important microbial secondary metabolites, such as antibiotics, are either silent or poorly expressed; therefore, to ensure a strong pipeline of novel antibiotics, there is a need to develop rapid and efficient strain development approaches. This study uses comparative genome analysis to instruct rational strain improvement, using Streptomyces rimosus, the producer of the important antibiotic oxytetracycline (OTC) as a model system. Sequencing of the genomes of two industrial strains M4018 and R6-500, developed independently from a common ancestor, identified large DNA rearrangements located at the chromosome end. We evaluated the effect of these genome deletions on the parental S. rimosus Type Strain (ATCC 10970) genome where introduction of a 145 kb deletion close to the OTC BGC in the Type Strain resulted in massive OTC overproduction, achieving titers that were equivalent to M4018 and R6-500. Transcriptome data supported the hypothesis that the reason for such an increase in OTC biosynthesis was due to enhanced transcription of the OTC BGC and not due to enhanced substrate supply. We also observed changes in the expression of other cryptic BGCs; some metabolites, undetectable in ATCC 10970, were now produced at high titers. This study demonstrated for the first time that the main force behind BGC overexpression is genome rearrangement. This new approach demonstrates great potential to activate cryptic gene clusters of yet unexplored natural products of medical and industrial value.IMPORTANCEThere is a critical need to develop novel antibiotics to combat antimicrobial resistance. Streptomyces species are very rich source of antibiotics, typically encoding 20–60 biosynthetic gene clusters (BGCs). However, under laboratory conditions, most are either silent or poorly expressed so that their products are only detectable at nanogram quantities, which hampers drug development efforts. To address this subject, we used comparative genome analysis of industrial Streptomyces rimosus strains producing high titers of a broad spectrum antibiotic oxytetracycline (OTC), developed during decades of industrial strain improvement. Interestingly, large-scale chromosomal deletions were observed. Based on this information, we carried out targeted genome deletions in the native strain S. rimosus ATCC 10970, and we show that a targeted deletion in the vicinity of the OTC BGC significantly induced expression of the OTC BGC, as well as some other silent BGCs, thus suggesting that this approach may be a useful way to identify new natural products.
Most biosynthetic gene clusters (BGC) encoding the synthesis of important microbial secondary metabolites, such as antibiotics, are either silent or poorly expressed; therefore, to ensure a strong pipeline of novel antibiotics, there is a need to develop rapid and efficient strain development approaches. This study uses comparative genome analysis to instruct rational strain improvement, using Streptomyces rimosus, the producer of the important antibiotic oxytetracycline (OTC) as a model system. Sequencing of the genomes of two industrial strains M4018 and R6-500, developed independently from a common ancestor, identified large DNA rearrangements located at the chromosome end. We evaluated the effect of these genome deletions on the parental S. rimosus Type Strain (ATCC 10970) genome where introduction of a 145 kb deletion close to the OTC BGC in the Type Strain resulted in massive OTC overproduction, achieving titers that were equivalent to M4018 and R6-500. Transcriptome data supported the hypothesis that the reason for such an increase in OTC biosynthesis was due to enhanced transcription of the OTC BGC and not due to enhanced substrate supply. We also observed changes in the expression of other cryptic BGCs; some metabolites, undetectable in ATCC 10970, were now produced at high titers. This study demonstrated for the first time that the main force behind BGC overexpression is genome rearrangement. This new approach demonstrates great potential to activate cryptic gene clusters of yet unexplored natural products of medical and industrial value.IMPORTANCEThere is a critical need to develop novel antibiotics to combat antimicrobial resistance. Streptomyces species are very rich source of antibiotics, typically encoding 20-60 biosynthetic gene clusters (BGCs). However, under laboratory conditions, most are either silent or poorly expressed so that their products are only detectable at nanogram quantities, which hampers drug development efforts. To address this subject, we used comparative genome analysis of industrial Streptomyces rimosus strains producing high titers of a broad spectrum antibiotic oxytetracycline (OTC), developed during decades of industrial strain improvement. Interestingly, large-scale chromosomal deletions were observed. Based on this information, we carried out targeted genome deletions in the native strain S. rimosus ATCC 10970, and we show that a targeted deletion in the vicinity of the OTC BGC significantly induced expression of the OTC BGC, as well as some other silent BGCs, thus suggesting that this approach may be a useful way to identify new natural products.Most biosynthetic gene clusters (BGC) encoding the synthesis of important microbial secondary metabolites, such as antibiotics, are either silent or poorly expressed; therefore, to ensure a strong pipeline of novel antibiotics, there is a need to develop rapid and efficient strain development approaches. This study uses comparative genome analysis to instruct rational strain improvement, using Streptomyces rimosus, the producer of the important antibiotic oxytetracycline (OTC) as a model system. Sequencing of the genomes of two industrial strains M4018 and R6-500, developed independently from a common ancestor, identified large DNA rearrangements located at the chromosome end. We evaluated the effect of these genome deletions on the parental S. rimosus Type Strain (ATCC 10970) genome where introduction of a 145 kb deletion close to the OTC BGC in the Type Strain resulted in massive OTC overproduction, achieving titers that were equivalent to M4018 and R6-500. Transcriptome data supported the hypothesis that the reason for such an increase in OTC biosynthesis was due to enhanced transcription of the OTC BGC and not due to enhanced substrate supply. We also observed changes in the expression of other cryptic BGCs; some metabolites, undetectable in ATCC 10970, were now produced at high titers. This study demonstrated for the first time that the main force behind BGC overexpression is genome rearrangement. This new approach demonstrates great potential to activate cryptic gene clusters of yet unexplored natural products of medical and industrial value.IMPORTANCEThere is a critical need to develop novel antibiotics to combat antimicrobial resistance. Streptomyces species are very rich source of antibiotics, typically encoding 20-60 biosynthetic gene clusters (BGCs). However, under laboratory conditions, most are either silent or poorly expressed so that their products are only detectable at nanogram quantities, which hampers drug development efforts. To address this subject, we used comparative genome analysis of industrial Streptomyces rimosus strains producing high titers of a broad spectrum antibiotic oxytetracycline (OTC), developed during decades of industrial strain improvement. Interestingly, large-scale chromosomal deletions were observed. Based on this information, we carried out targeted genome deletions in the native strain S. rimosus ATCC 10970, and we show that a targeted deletion in the vicinity of the OTC BGC significantly induced expression of the OTC BGC, as well as some other silent BGCs, thus suggesting that this approach may be a useful way to identify new natural products.
Author Baebler, Špela
Pšeničnik, Alen
Avbelj, Martina
Šala, Martin
Starčević, Antonio
Mrak, Peter
Tome, Miha
Shmatkov, Maksym
Slemc, Lucija
Petek, Marko
Herron, Paul
Hunter, Iain S.
Hranueli, Daslav
Petković, Hrvoje
Author_xml – sequence: 1
  givenname: Alen
  orcidid: 0000-0001-5375-2220
  surname: Pšeničnik
  fullname: Pšeničnik, Alen
  organization: Chair of Biotechnology, Microbiology and Food Safety, University of Ljubljana Biotechnical Faculty, Ljubljana, Slovenia
– sequence: 2
  givenname: Lucija
  surname: Slemc
  fullname: Slemc, Lucija
  organization: Chair of Biotechnology, Microbiology and Food Safety, University of Ljubljana Biotechnical Faculty, Ljubljana, Slovenia
– sequence: 3
  givenname: Martina
  surname: Avbelj
  fullname: Avbelj, Martina
  organization: Chair of Biotechnology, Microbiology and Food Safety, University of Ljubljana Biotechnical Faculty, Ljubljana, Slovenia
– sequence: 4
  givenname: Miha
  orcidid: 0000-0001-7729-7381
  surname: Tome
  fullname: Tome, Miha
  organization: Chair of Biotechnology, Microbiology and Food Safety, University of Ljubljana Biotechnical Faculty, Ljubljana, Slovenia
– sequence: 5
  givenname: Martin
  surname: Šala
  fullname: Šala, Martin
  organization: National Institute of Chemistry, Ljubljana, Slovenia
– sequence: 6
  givenname: Paul
  orcidid: 0000-0003-3431-1803
  surname: Herron
  fullname: Herron, Paul
  organization: Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
– sequence: 7
  givenname: Maksym
  surname: Shmatkov
  fullname: Shmatkov, Maksym
  organization: Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia, Educational and Scientific Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
– sequence: 8
  givenname: Marko
  orcidid: 0000-0003-3644-7827
  surname: Petek
  fullname: Petek, Marko
  organization: Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
– sequence: 9
  givenname: Špela
  orcidid: 0000-0003-4776-7164
  surname: Baebler
  fullname: Baebler, Špela
  organization: Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
– sequence: 10
  givenname: Peter
  surname: Mrak
  fullname: Mrak, Peter
  organization: Antiinfectives, Sandoz, Mengeš, Slovenia
– sequence: 11
  givenname: Daslav
  surname: Hranueli
  fullname: Hranueli, Daslav
  organization: Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
– sequence: 12
  givenname: Antonio
  surname: Starčević
  fullname: Starčević, Antonio
  organization: Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
– sequence: 13
  givenname: Iain S.
  surname: Hunter
  fullname: Hunter, Iain S.
  organization: Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
– sequence: 14
  givenname: Hrvoje
  orcidid: 0000-0003-1377-9845
  surname: Petković
  fullname: Petković, Hrvoje
  organization: Chair of Biotechnology, Microbiology and Food Safety, University of Ljubljana Biotechnical Faculty, Ljubljana, Slovenia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38564716$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1DAUhS3UipbSB2CDIrHpJoOv7djxCqGq_EiVuihs2Fge52YmVRIH20Hk7fEwnVK66MqW_J3je-55RY5GPyIhb4CuAFj9fohLTDjEFaWsoiUTL8gp40qXFVXq6NH9hJzHeEcpBckVMP2SnPC6kkKBPCU_bn4vCVOwbnF9N2KxXSYM5RR8M7vU-bFI2-DnzbZINmwwYVNscPQDFgEPhG-L2xRwSn5YHMYidIOPc3xNjlvbRzy_P8_I909X3y6_lNc3n79efrwurZAqlZWWbeUEs64CZaXmmtVrzkBzRK5aIV3LEThWawYc6to1axAIqBtBHRUVPyMf9r7TvB6wcTjmOL2Z8hg2LMbbzvz_MnZbs_G_DADVKu8kO1zcOwT_c8aYzNBFh31vR_RzNJxykJIxvfvs3RP0zs9hzPkyJVmtORU0U6s9ZePA_hFAza46c6jO_K3OMJEFbx9neBj-UFQGYA-44GMM2D4gz5mqJxrXJburLK-h659R_gGT4b5O
CitedBy_id crossref_primary_10_3389_fbioe_2024_1427248
crossref_primary_10_1007_s00203_024_04169_z
crossref_primary_10_1007_s00203_024_04186_y
Cites_doi 10.1093/jimb/kuab072
10.1007/s10295-015-1682-x
10.1021/acschembio.7b01089
10.1016/j.tig.2023.07.008
10.1021/acs.jnatprod.9b01285
10.1186/1471-2180-10-198
10.1186/s12934-020-01359-4
10.1038/s41598-020-63912-w
10.1016/j.mimet.2022.106545
10.1099/13500872-140-9-2271
10.1016/j.biortech.2017.05.065
10.4014/jmb.2106.06083
10.1038/s41467-021-25462-1
10.1111/j.1365-2958.2004.04143.x
10.1046/j.1365-2958.2003.03698.x
10.1093/nar/gkab335
10.1128/JB.187.9.3227-3237.2005
10.1007/s00284-022-02867-9
10.1038/s41598-018-23622-w
10.1186/s12934-019-1055-7
10.1111/mmi.14405
10.1186/s12934-016-0437-3
10.1074/jbc.RA118.005314
10.1038/s41587-023-01690-2
10.1128/aem.59.7.2220-2228.1993
10.1073/pnas.0914833107
10.1002/cmdc.200700297
10.1016/j.ymben.2016.12.006
10.1099/mgen.0.000692
10.1016/j.drudis.2015.01.009
10.1038/ismej.2015.230
10.1038/s41598-022-14199-6
10.1038/s41429-020-00400-3
10.1186/s12934-021-01522-5
10.1186/s12934-023-02215-x
10.1016/j.chembiol.2004.02.017
10.17113/ftb.55.01.17.4617
10.1073/pnas.2222045120
10.1007/BF00339722
10.1039/c6np00017g
10.1002/biot.201400838
10.1016/j.copbio.2022.102870
10.1007/s00253-022-11821-5
10.1038/s41467-022-29924-y
10.1016/j.biotechadv.2018.10.003
10.1007/s00253-019-09970-1
10.3389/fmicb.2020.00406
10.1111/j.1574-6976.2005.00009.x
10.7164/antibiotics.23.432
10.1038/s41467-021-25461-2
10.1007/s10295-015-1723-5
10.1111/j.1574-6968.1997.tb13882.x
10.1128/genomeA.00063-13
10.1111/j.1574-6968.2000.tb09095.x
10.1038/nbt.3026
10.1038/srep42867
10.1128/spectrum.02434-21
10.1128/MMBR.00004-06
10.1186/s13059-014-0550-8
10.1016/j.synbio.2017.07.003
10.1002/anie.202208573
10.1111/j.1574-6968.2012.02609.x
10.3109/07388551.2014.989423
10.1093/nar/gkr1288
10.1007/s00253-009-2428-3
10.1038/nmeth.1923
10.1038/s41564-022-01110-2
10.3389/fbioe.2021.632230
10.1016/j.tim.2008.09.008
10.1128/genomeA.00517-14
ContentType Journal Article
Copyright Copyright © 2024 Pšeničnik et al.
Copyright © 2024 Pšeničnik et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2024 Pšeničnik et al. 2024 Pšeničnik et al.
Copyright_xml – notice: Copyright © 2024 Pšeničnik et al.
– notice: Copyright © 2024 Pšeničnik et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2024 Pšeničnik et al. 2024 Pšeničnik et al.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1128/msystems.00250-24
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE
Publicly Available Content Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2379-5077
Editor Bulman, Zackery
Editor_xml – sequence: 1
  givenname: Zackery
  surname: Bulman
  fullname: Bulman, Zackery
ExternalDocumentID PMC11097637
00250-24
38564716
10_1128_msystems_00250_24
Genre Journal Article
GrantInformation_xml – fundername: Javna Agencija za Raziskovalno Dejavnost RS (ARRS)
  grantid: P1-0034
– fundername: Javna Agencija za Raziskovalno Dejavnost RS (ARRS)
  grantid: P4-0116
– fundername: Javna Agencija za Raziskovalno Dejavnost RS (ARRS)
  grantid: 53621
– fundername: Javna Agencija za Raziskovalno Dejavnost RS (ARRS)
  grantid: P4-0165
– fundername: ;
  grantid: P4-0165
– fundername: ;
  grantid: 53621
– fundername: ;
  grantid: P4-0116
– fundername: ;
  grantid: P1-0034
GroupedDBID 0R~
53G
5VS
7X7
8FE
8FH
8FI
8FJ
AAFWJ
AAGFI
AAUOK
AAYXX
ABUWG
ACPRK
ADBBV
AFKRA
AFPKN
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
EBS
FRP
FYUFA
GROUPED_DOAJ
H13
HCIFZ
HMCUK
HYE
KQ8
LK8
M48
M7P
M~E
O9-
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RHI
RPM
RSF
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQGLB
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-a467t-596f5c42ac517a693928b32193ee37f46cf3e13e5b213188cdb14e1e9d40c0453
IEDL.DBID M48
ISSN 2379-5077
IngestDate Thu Aug 21 18:35:33 EDT 2025
Fri Jul 11 00:26:09 EDT 2025
Fri Jul 25 11:50:57 EDT 2025
Tue May 21 18:31:39 EDT 2024
Thu Apr 03 06:51:45 EDT 2025
Thu Apr 24 23:06:36 EDT 2025
Tue Jul 01 02:59:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords genome reduction
oxytetracycline
antibiotic biosynthesis
cryptic metabolites
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. https://creativecommons.org/licenses/by/4.0
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a467t-596f5c42ac517a693928b32193ee37f46cf3e13e5b213188cdb14e1e9d40c0453
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
University of Ljubljana Biotechnical faculty filed a patent application relating to the findings of this work (inventors: Hrvoje Petković, Alen Pšeničnik, and Lucija Slemc).
Present address: National Institute of Biology, Ljubljana, Slovenia
ORCID 0000-0003-3644-7827
0000-0001-7729-7381
0000-0001-5375-2220
0000-0003-4776-7164
0000-0003-1377-9845
0000-0003-3431-1803
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1128/msystems.00250-24
PMID 38564716
PQID 3062893040
PQPubID 2045591
PageCount 30
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11097637
proquest_miscellaneous_3031662295
proquest_journals_3062893040
asm2_journals_10_1128_msystems_00250_24
pubmed_primary_38564716
crossref_primary_10_1128_msystems_00250_24
crossref_citationtrail_10_1128_msystems_00250_24
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-05-16
PublicationDateYYYYMMDD 2024-05-16
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-16
  day: 16
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
– name: Washington
PublicationTitle mSystems
PublicationTitleAbbrev mSystems
PublicationTitleAlternate mSystems
PublicationYear 2024
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_4_3_2
e_1_3_4_61_2
e_1_3_4_9_2
e_1_3_4_63_2
Demšar J (e_1_3_4_73_2) 2013; 14
e_1_3_4_7_2
e_1_3_4_40_2
e_1_3_4_5_2
e_1_3_4_23_2
e_1_3_4_44_2
e_1_3_4_69_2
e_1_3_4_21_2
e_1_3_4_42_2
e_1_3_4_27_2
e_1_3_4_48_2
e_1_3_4_65_2
e_1_3_4_25_2
e_1_3_4_46_2
e_1_3_4_67_2
e_1_3_4_29_2
e_1_3_4_72_2
e_1_3_4_30_2
e_1_3_4_51_2
e_1_3_4_70_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_57_2
e_1_3_4_55_2
e_1_3_4_32_2
e_1_3_4_59_2
e_1_3_4_53_2
e_1_3_4_15_2
e_1_3_4_38_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_2_2
e_1_3_4_60_2
e_1_3_4_62_2
e_1_3_4_8_2
e_1_3_4_41_2
e_1_3_4_6_2
Davisson JW (e_1_3_4_31_2) 1951; 1
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_45_2
e_1_3_4_68_2
e_1_3_4_20_2
e_1_3_4_43_2
e_1_3_4_26_2
e_1_3_4_49_2
e_1_3_4_64_2
e_1_3_4_24_2
e_1_3_4_47_2
e_1_3_4_66_2
e_1_3_4_28_2
e_1_3_4_71_2
e_1_3_4_52_2
e_1_3_4_50_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_58_2
e_1_3_4_54_2
e_1_3_4_10_2
e_1_3_4_16_2
e_1_3_4_37_2
e_1_3_4_14_2
e_1_3_4_35_2
e_1_3_4_56_2
e_1_3_4_18_2
e_1_3_4_39_2
Zhang, MM, Wang, Y, Ang, EL, Zhao, H (B17) 2016; 33
Bu, Q-T, Yu, P, Wang, J, Li, Z-Y, Chen, X-A, Mao, X-M, Li, Y-Q (B61) 2019; 18
Pikl, Š, Carrillo Rincón, AF, Slemc, L, Goranovič, D, Avbelj, M, Gjuračić, K, Sucipto, H, Stare, K, Baebler, Š, Šala, M, Guo, M, Luzhetskyy, A, Petković, H, Magdevska, V (B29) 2021; 20
Volff, J-N, Altenbuchner, J (B53) 2000; 186
Bu, Q-T, Li, Y-P, Xie, H, Wang, J, Li, Z-Y, Chen, X-A, Mao, X-M, Li, Y-Q (B45) 2020; 19
Love, MI, Huber, W, Anders, S (B71) 2014; 15
Li, Y, Lee, SR, Han, EJ, Seyedsayamdost, MR (B39) 2022; 61
Slemc, L, Jakše, J, Filisetti, A, Baranasic, D, Rodríguez-García, A, Del Carratore, F, Marino, SM, Zucko, J, Starcevic, A, Šala, M, Pérez-Bonilla, M, Sánchez-Hidalgo, M, González, I, Reyes, F, Genilloud, O, Springthorpe, V, Goranovič, D, Kosec, G, Thomas, GH, Lucrezia, DD, Petković, H, Tome, M (B21) 2022; 10
Andam, CP, Choudoir, MJ, Vinh Nguyen, A, Sol Park, H, Buckley, DH (B34) 2016; 10
Gravius, B, Bezmalinović, T, Hranueli, D, Cullum, J (B50) 1993; 59
Jo, H-G, Adidjaja, JJ, Kim, D-K, Park, B-S, Lee, N, Cho, B-K, Kim, HU, Oh, M-K (B55) 2022; 12
Newman, DJ, Cragg, GM (B1) 2020; 83
Baranasic, D, Zucko, J, Nair, M, Pain, A, Long, PF, Hranueli, D, Cullum, J, Starcevic, A (B25) 2014; 2
Davisson, JW, Tanner, FWJ, Finlay, AC, Solomons, IA (B30) 1951; 1
Grantcharova, N, Lustig, U, Flärdh, K (B35) 2005; 187
Zhang, Y, Werling, U, Edelmann, W (B68) 2012; 40
Yang, W, Willemse, J, Sawyer, EB, Lou, F, Gong, W, Zhang, H, Gras, SL, Claessen, D, Perrett, S (B37) 2017; 7
Petković, H, Cullum, J, Hranueli, D, Hunter, IS, Perić-Concha, N, Pigac, J, Thamchaipenet, A, Vujaklija, D, Long, PF (B24) 2006; 70
Komatsu, M, Uchiyama, T, Omura, S, Cane, DE, Ikeda, H (B62) 2010; 107
Liu, Z, Zhao, Y, Huang, C, Luo, Y (B11) 2021; 9
Langmead, B, Salzberg, SL (B70) 2012; 9
Chen, Y, Smanski, MJ, Shen, B (B13) 2010; 86
Liao, Z, Zhang, J, Shi, Y, Zhang, Y, Ma, Z, Bechthold, A, Yu, X (B14) 2022; 79
Beganovic, S, Rückert-Reed, C, Sucipto, H, Shu, W, Gläser, L, Patschkowski, T, Struck, B, Kalinowski, J, Luzhetskyy, A, Wittmann, C (B56) 2023; 22
Nepal, KK, Wang, G (B10) 2019; 37
Wang, X, Yin, S, Bai, J, Liu, Y, Fan, K, Wang, H, Yuan, F, Zhao, B, Li, Z, Wang, W (B18) 2019; 103
Zhang, Z, Shitut, S, Claushuis, B, Claessen, D, Rozen, DE (B51) 2022; 13
Lee, J-H, Wendisch, VF (B7) 2017; 245
von Nussbaum, F, Anlauf, S, Freiberg, C, Benet‐Buchholz, J, Schamberger, J, Henkel, T, Schiffer, G, Häbich, D (B43) 2008; 3
Pšeničnik, A, Reberšek, R, Slemc, L, Godec, T, Kranjc, L, Petković, H (B26) 2022; 200
Baltz, RH (B63) 2016; 43
Gravius, B, Glocker, D, Pigac, J, Pandza, K, Hranueli, D, Cullum, J (B49) 1994; 140 (Pt 9)
Algora-Gallardo, L, Schniete, JK, Mark, DR, Hunter, IS, Herron, PR (B22) 2021; 7
Yan, H, Lu, X, Sun, D, Zhuang, S, Chen, Q, Chen, Z, Li, J, Wen, Y (B36) 2020; 113
Ramírez-Rendon, D, Passari, AK, Ruiz-Villafán, B, Rodríguez-Sanoja, R, Sánchez, S, Demain, AL (B6) 2022; 106
Mrak, P, Krastel, P, Pivk Lukančič, P, Tao, J, Pistorius, D, Moore, CM (B32) 2018; 293
Juhas, M (B57) 2016; 36
Shoji, J, Sakazaki, R (B44) 1970; 23
Hoff, G, Bertrand, C, Piotrowski, E, Thibessard, A, Leblond, P (B46) 2018; 8
Tidjani, A-R, Bontemps, C, Leblond, P (B52) 2020; 10
Adékambi, T, Drancourt, M, Raoult, D (B33) 2009; 17
Bury-Moné, S, Thibessard, A, Lioy, VS, Leblond, P (B28) 2023; 39
Gavriilidou, A, Kautsar, SA, Zaburannyi, N, Krug, D, Müller, R, Medema, MH, Ziemert, N (B2) 2022; 7
Claessen, D, Stokroos, I, Deelstra, HJ, Penninga, NA, Bormann, C, Salas, JA, Dijkhuizen, L, Wösten, HAB (B38) 2004; 53
Petković, H, Lukežič, T, Šušković, J (B19) 2017; 55
Deng, L, Zhao, Z, Liu, L, Zhong, Z, Xie, W, Zhou, F, Xu, W, Zhang, Y, Deng, Z, Sun, Y (B66) 2023; 120
Patridge, E, Gareiss, P, Kinch, MS, Hoyer, D (B4) 2016; 21
Tan, G-Y, Liu, T (B15) 2017; 39
Choe, D, Cho, S, Kim, SC, Cho, B-K (B58) 2016; 11
Zha, J, Zhao, Z, Xiao, Z, Eng, T, Mukhopadhyay, A, Koffas, MA, Tang, YJ (B8) 2023; 79
Xia, H, Li, X, Li, Z, Zhan, X, Mao, X, Li, Y (B12) 2020; 11
Lioy, VS, Lorenzi, J-N, Najah, S, Poinsignon, T, Leh, H, Saulnier, C, Aigle, B, Lautru, S, Thibessard, A, Lespinet, O, Leblond, P, Jaszczyszyn, Y, Gorrichon, K, Varoquaux, N, Junier, I, Boccard, F, Pernodet, J-L, Bury-Moné, S (B64) 2021; 12
Liras, P, Martín, JF (B54) 2021; 48
Ma, Q, Zhang, Q, Xu, Q, Zhang, C, Li, Y, Fan, X, Xie, X, Chen, N (B9) 2017; 2
Parkinson, EI, Tryon, JH, Goering, AW, Ju, K-S, McClure, RA, Kemball, JD, Zhukovsky, S, Labeda, DP, Thomson, RJ, Kelleher, NL, Metcalf, WW (B42) 2018; 13
Zhou, M, Jing, X, Xie, P, Chen, W, Wang, T, Xia, H, Qin, Z (B59) 2012; 333
Adrio, JL, Demain, AL (B16) 2006; 30
Doench, JG, Hartenian, E, Graham, DB, Tothova, Z, Hegde, M, Smith, I, Sullender, M, Ebert, BL, Xavier, RJ, Root, DE (B67) 2014; 32
Blin, K, Shaw, S, Kloosterman, AM, Charlop-Powers, Z, van Wezel, GP, Medema, MH, Weber, T (B27) 2021; 49
Pethick, FE, Macfadyen, AC, Tang, Z, Sangal, V, Liu, T-T, Chu, J, Kosec, G, Petkovic, H, Guo, M, Kirby, R, Hoskisson, PA, Herron, PR, Hunter, IS (B20) 2013; 1
Flett, F, Mersinias, V, Smith, CP (B69) 1997; 155
Seco, EM, Pérez-Zúñiga, FJ, Rolón, MS, Malpartida, F (B31) 2004; 11
Chen, W, He, F, Zhang, X, Chen, Z, Wen, Y, Li, J (B47) 2010; 10
Wenner, T, Roth, V, Fischer, G, Fourrier, C, Aigle, B, Decaris, B, Leblond, P (B48) 2003; 50
Katz, L, Baltz, RH (B3) 2016; 43
Jiang, Y, Matsumoto, T, Kuranaga, T, Lu, S, Wang, W, Onaka, H, Kakeya, H (B40) 2021; 74
Demšar, J, Curk, T, Erjavec, A, Gorup, Č, Hočevar, T, Milutinovič, M, Možina, M, Polajnar, M, Toplak, M, Starič, A, Štajdohar, M, Umek, L, Žagar, L, Žbontar, J, Žitnik, M, Zupan, B (B72) 2013; 14
Szafran, MJ, Małecki, T, Strzałka, A, Pawlikiewicz, K, Duława, J, Zarek, A, Kois-Ostrowska, A, Findlay, KC, Le, TBK, Jakimowicz, D (B65) 2021; 12
Sanchez-Garcia, L, Martín, L, Mangues, R, Ferrer-Miralles, N, Vázquez, E, Villaverde, A (B5) 2016; 15
Butler, MJ, Friend, EJ, Hunter, IS, Kaczmarek, FS, Sugden, DA, Warren, M (B23) 1989; 215
Schmid, R, Heuckeroth, S, Korf, A, Smirnov, A, Myers, O, Dyrlund, TS, Bushuiev, R, Murray, KJ, Hoffmann, N, Lu, M (B41) 2023; 41
Dong, J, Wei, J, Li, H, Zhao, S, Guan, W (B60) 2021; 31
References_xml – ident: e_1_3_4_55_2
  doi: 10.1093/jimb/kuab072
– ident: e_1_3_4_64_2
  doi: 10.1007/s10295-015-1682-x
– ident: e_1_3_4_43_2
  doi: 10.1021/acschembio.7b01089
– ident: e_1_3_4_29_2
  doi: 10.1016/j.tig.2023.07.008
– ident: e_1_3_4_2_2
  doi: 10.1021/acs.jnatprod.9b01285
– ident: e_1_3_4_48_2
  doi: 10.1186/1471-2180-10-198
– ident: e_1_3_4_46_2
  doi: 10.1186/s12934-020-01359-4
– ident: e_1_3_4_53_2
  doi: 10.1038/s41598-020-63912-w
– ident: e_1_3_4_27_2
  doi: 10.1016/j.mimet.2022.106545
– ident: e_1_3_4_50_2
  doi: 10.1099/13500872-140-9-2271
– ident: e_1_3_4_8_2
  doi: 10.1016/j.biortech.2017.05.065
– ident: e_1_3_4_61_2
  doi: 10.4014/jmb.2106.06083
– ident: e_1_3_4_65_2
  doi: 10.1038/s41467-021-25462-1
– ident: e_1_3_4_39_2
  doi: 10.1111/j.1365-2958.2004.04143.x
– ident: e_1_3_4_49_2
  doi: 10.1046/j.1365-2958.2003.03698.x
– ident: e_1_3_4_28_2
  doi: 10.1093/nar/gkab335
– ident: e_1_3_4_36_2
  doi: 10.1128/JB.187.9.3227-3237.2005
– ident: e_1_3_4_15_2
  doi: 10.1007/s00284-022-02867-9
– ident: e_1_3_4_47_2
  doi: 10.1038/s41598-018-23622-w
– ident: e_1_3_4_62_2
  doi: 10.1186/s12934-019-1055-7
– ident: e_1_3_4_37_2
  doi: 10.1111/mmi.14405
– ident: e_1_3_4_6_2
  doi: 10.1186/s12934-016-0437-3
– ident: e_1_3_4_33_2
  doi: 10.1074/jbc.RA118.005314
– ident: e_1_3_4_42_2
  doi: 10.1038/s41587-023-01690-2
– ident: e_1_3_4_51_2
  doi: 10.1128/aem.59.7.2220-2228.1993
– ident: e_1_3_4_63_2
  doi: 10.1073/pnas.0914833107
– ident: e_1_3_4_44_2
  doi: 10.1002/cmdc.200700297
– ident: e_1_3_4_16_2
  doi: 10.1016/j.ymben.2016.12.006
– ident: e_1_3_4_23_2
  doi: 10.1099/mgen.0.000692
– ident: e_1_3_4_5_2
  doi: 10.1016/j.drudis.2015.01.009
– ident: e_1_3_4_35_2
  doi: 10.1038/ismej.2015.230
– ident: e_1_3_4_56_2
  doi: 10.1038/s41598-022-14199-6
– volume: 1
  start-page: 289
  year: 1951
  ident: e_1_3_4_31_2
  article-title: Rimocidin, a new antibiotic
  publication-title: Antibiot Chemother (Northfield)
– ident: e_1_3_4_41_2
  doi: 10.1038/s41429-020-00400-3
– ident: e_1_3_4_30_2
  doi: 10.1186/s12934-021-01522-5
– ident: e_1_3_4_57_2
  doi: 10.1186/s12934-023-02215-x
– ident: e_1_3_4_32_2
  doi: 10.1016/j.chembiol.2004.02.017
– ident: e_1_3_4_20_2
  doi: 10.17113/ftb.55.01.17.4617
– ident: e_1_3_4_67_2
  doi: 10.1073/pnas.2222045120
– ident: e_1_3_4_24_2
  doi: 10.1007/BF00339722
– ident: e_1_3_4_18_2
  doi: 10.1039/c6np00017g
– ident: e_1_3_4_59_2
  doi: 10.1002/biot.201400838
– ident: e_1_3_4_9_2
  doi: 10.1016/j.copbio.2022.102870
– ident: e_1_3_4_7_2
  doi: 10.1007/s00253-022-11821-5
– ident: e_1_3_4_52_2
  doi: 10.1038/s41467-022-29924-y
– ident: e_1_3_4_11_2
  doi: 10.1016/j.biotechadv.2018.10.003
– ident: e_1_3_4_19_2
  doi: 10.1007/s00253-019-09970-1
– ident: e_1_3_4_13_2
  doi: 10.3389/fmicb.2020.00406
– ident: e_1_3_4_17_2
  doi: 10.1111/j.1574-6976.2005.00009.x
– ident: e_1_3_4_45_2
  doi: 10.7164/antibiotics.23.432
– ident: e_1_3_4_66_2
  doi: 10.1038/s41467-021-25461-2
– ident: e_1_3_4_4_2
  doi: 10.1007/s10295-015-1723-5
– ident: e_1_3_4_70_2
  doi: 10.1111/j.1574-6968.1997.tb13882.x
– ident: e_1_3_4_21_2
  doi: 10.1128/genomeA.00063-13
– ident: e_1_3_4_54_2
  doi: 10.1111/j.1574-6968.2000.tb09095.x
– ident: e_1_3_4_68_2
  doi: 10.1038/nbt.3026
– ident: e_1_3_4_38_2
  doi: 10.1038/srep42867
– ident: e_1_3_4_22_2
  doi: 10.1128/spectrum.02434-21
– ident: e_1_3_4_25_2
  doi: 10.1128/MMBR.00004-06
– ident: e_1_3_4_72_2
  doi: 10.1186/s13059-014-0550-8
– ident: e_1_3_4_10_2
  doi: 10.1016/j.synbio.2017.07.003
– ident: e_1_3_4_40_2
  doi: 10.1002/anie.202208573
– ident: e_1_3_4_60_2
  doi: 10.1111/j.1574-6968.2012.02609.x
– ident: e_1_3_4_58_2
  doi: 10.3109/07388551.2014.989423
– ident: e_1_3_4_69_2
  doi: 10.1093/nar/gkr1288
– volume: 14
  start-page: 2349
  year: 2013
  ident: e_1_3_4_73_2
  article-title: Orange: data mining toolbox in Python
  publication-title: J Mach Learn Res
– ident: e_1_3_4_14_2
  doi: 10.1007/s00253-009-2428-3
– ident: e_1_3_4_71_2
  doi: 10.1038/nmeth.1923
– ident: e_1_3_4_3_2
  doi: 10.1038/s41564-022-01110-2
– ident: e_1_3_4_12_2
  doi: 10.3389/fbioe.2021.632230
– ident: e_1_3_4_34_2
  doi: 10.1016/j.tim.2008.09.008
– ident: e_1_3_4_26_2
  doi: 10.1128/genomeA.00517-14
– volume: 3
  start-page: 619
  year: 2008
  end-page: 626
  ident: B43
  article-title: Total synthesis and initial structure-activity relationships of longicatenamycin A
  publication-title: ChemMedChem
  doi: 10.1002/cmdc.200700297
– volume: 2
  start-page: 87
  year: 2017
  end-page: 96
  ident: B9
  article-title: Systems metabolic engineering strategies for the production of amino acids
  publication-title: Synth Syst Biotechnol
  doi: 10.1016/j.synbio.2017.07.003
– volume: 7
  year: 2021
  ident: B22
  article-title: Bilateral symmetry of linear streptomycete chromosomes
  publication-title: Microb Genom
  doi: 10.1099/mgen.0.000692
– volume: 83
  start-page: 770
  year: 2020
  end-page: 803
  ident: B1
  article-title: Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019
  publication-title: J Nat Prod
  doi: 10.1021/acs.jnatprod.9b01285
– volume: 2
  year: 2014
  ident: B25
  article-title: Genome sequences of the oxytetracycline production strain Streptomyces rimosus R6-500 and two mutants with chromosomal rearrangements
  publication-title: Genome Announc
  doi: 10.1128/genomeA.00517-14
– volume: 10
  year: 2020
  ident: B52
  article-title: Telomeric and sub-telomeric regions undergo rapid turnover within a Streptomyces population
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-63912-w
– volume: 48
  year: 2021
  ident: B54
  article-title: Streptomyces clavuligerus: the omics era
  publication-title: J Ind Microbiol Biotechnol
  doi: 10.1093/jimb/kuab072
– volume: 11
  start-page: 199
  year: 2016
  end-page: 211
  ident: B58
  article-title: Minimal genome: worthwhile or worthless efforts toward being smaller?
  publication-title: Biotechnol J
  doi: 10.1002/biot.201400838
– volume: 21
  start-page: 204
  year: 2016
  end-page: 207
  ident: B4
  article-title: An analysis of FDA-approved drugs: natural products and their derivatives
  publication-title: Drug Discov Today
  doi: 10.1016/j.drudis.2015.01.009
– volume: 1
  start-page: 289
  year: 1951
  end-page: 290
  ident: B30
  article-title: Rimocidin, a new antibiotic
  publication-title: Antibiot Chemother (Northfield)
– volume: 40
  year: 2012
  ident: B68
  article-title: SLiCE: a novel bacterial cell extract-based DNA cloning method
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr1288
– volume: 13
  start-page: 1029
  year: 2018
  end-page: 1037
  ident: B42
  article-title: Discovery of the tyrobetaine natural products and their biosynthetic gene cluster via metabologenomics
  publication-title: ACS Chem Biol
  doi: 10.1021/acschembio.7b01089
– volume: 41
  start-page: 447
  year: 2023
  end-page: 449
  ident: B41
  article-title: Integrative analysis of multimodal mass spectrometry data in MZmine 3
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-023-01690-2
– volume: 10
  year: 2022
  ident: B21
  article-title: Reference-grade genome and large linear plasmid of Streptomyces rimosus: pushing the limits of nanopore sequencing
  publication-title: Microbiol Spectr
  doi: 10.1128/spectrum.02434-21
– volume: 74
  start-page: 307
  year: 2021
  end-page: 316
  ident: B40
  article-title: Longicatenamides A-D, two diastereomeric pairs of cyclic hexapeptides produced by combined-culture of Streptomyces sp. KUSC_F05 and Tsukamurella pulmonis TP-B0596
  publication-title: J Antibiot (Tokyo)
  doi: 10.1038/s41429-020-00400-3
– volume: 140 (Pt 9)
  start-page: 2271
  year: 1994
  end-page: 2277
  ident: B49
  article-title: The 387 kb linear plasmid pPZG101 of Streptomyces rimosus and its interactions with the chromosome
  publication-title: Microbiology (Reading)
  doi: 10.1099/13500872-140-9-2271
– volume: 70
  start-page: 704
  year: 2006
  end-page: 728
  ident: B24
  article-title: Genetics of Streptomyces rimosus, the oxytetracycline producer
  publication-title: Microbiol Mol Biol Rev
  doi: 10.1128/MMBR.00004-06
– volume: 7
  year: 2017
  ident: B37
  article-title: The propensity of the bacterial rodlin protein RdlB to form amyloid fibrils determines its function in Streptomyces coelicolor
  publication-title: Sci Rep
  doi: 10.1038/srep42867
– volume: 186
  start-page: 143
  year: 2000
  end-page: 150
  ident: B53
  article-title: A new beginning with new ends: linearisation of circular chromosomes during bacterial evolution
  publication-title: FEMS Microbiol Lett
  doi: 10.1111/j.1574-6968.2000.tb09095.x
– volume: 32
  start-page: 1262
  year: 2014
  end-page: 1267
  ident: B67
  article-title: Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3026
– volume: 15
  year: 2014
  ident: B71
  article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
  publication-title: Genome Biol
  doi: 10.1186/s13059-014-0550-8
– volume: 23
  start-page: 432
  year: 1970
  end-page: 436
  ident: B44
  article-title: A new peptide antibiotic complex S-520. II. further characterization and degradative studies
  publication-title: J Antibiot (Tokyo)
  doi: 10.7164/antibiotics.23.432
– volume: 20
  year: 2021
  ident: B29
  article-title: Multiple copies of the oxytetracycline gene cluster in selected Streptomyces rimosus strains can provide significantly increased titers
  publication-title: Microb Cell Fact
  doi: 10.1186/s12934-021-01522-5
– volume: 30
  start-page: 187
  year: 2006
  end-page: 214
  ident: B16
  article-title: Genetic improvement of processes yielding microbial products
  publication-title: FEMS Microbiol Rev
  doi: 10.1111/j.1574-6976.2005.00009.x
– volume: 50
  start-page: 411
  year: 2003
  end-page: 425
  ident: B48
  article-title: End-to-end fusion of linear deleted chromosomes initiates a cycle of genome instability in Streptomyces ambofaciens
  publication-title: Mol Microbiol
  doi: 10.1046/j.1365-2958.2003.03698.x
– volume: 49
  start-page: W29
  year: 2021
  end-page: W35
  ident: B27
  article-title: antiSMASH 6.0: improving cluster detection and comparison capabilities
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkab335
– volume: 12
  year: 2021
  ident: B64
  article-title: Dynamics of the compartmentalized Streptomyces chromosome during metabolic differentiation
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-25462-1
– volume: 79
  year: 2023
  ident: B8
  article-title: Biosystem design of Corynebacterium glutamicum for bioproduction
  publication-title: Curr Opin Biotechnol
  doi: 10.1016/j.copbio.2022.102870
– volume: 293
  start-page: 19982
  year: 2018
  end-page: 19995
  ident: B32
  article-title: Discovery of the actinoplanic acid pathway in Streptomyces rapamycinicus reveals a genetically conserved synergism with rapamycin
  publication-title: J Biol Chem
  doi: 10.1074/jbc.RA118.005314
– volume: 12
  year: 2021
  ident: B65
  article-title: Spatial rearrangement of the Streptomyces venezuelae linear chromosome during sporogenic development
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-25461-2
– volume: 9
  start-page: 357
  year: 2012
  end-page: 359
  ident: B70
  article-title: Fast gapped-read alignment with Bowtie 2
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1923
– volume: 61
  year: 2022
  ident: B39
  article-title: Momomycin, an antiproliferative cryptic metabolite from the oxytetracycline producer Streptomyces rimosus
  publication-title: Angew Chem Int Ed Engl
  doi: 10.1002/anie.202208573
– volume: 39
  start-page: 228
  year: 2017
  end-page: 236
  ident: B15
  article-title: Rational synthetic pathway refactoring of natural products biosynthesis in actinobacteria
  publication-title: Metab Eng
  doi: 10.1016/j.ymben.2016.12.006
– volume: 103
  start-page: 6645
  year: 2019
  end-page: 6655
  ident: B18
  article-title: Heterologous production of chlortetracycline in an industrial grade Streptomyces rimosus host
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-019-09970-1
– volume: 187
  start-page: 3227
  year: 2005
  end-page: 3237
  ident: B35
  article-title: Dynamics of FtsZ assembly during sporulation in Streptomyces coelicolor A3(2)
  publication-title: J Bacteriol
  doi: 10.1128/JB.187.9.3227-3237.2005
– volume: 36
  start-page: 416
  year: 2016
  end-page: 423
  ident: B57
  article-title: On the road to synthetic life: the minimal cell and genome-scale engineering
  publication-title: Crit Rev Biotechnol
  doi: 10.3109/07388551.2014.989423
– volume: 59
  start-page: 2220
  year: 1993
  end-page: 2228
  ident: B50
  article-title: Genetic instability and strain degeneration in Streptomyces rimosus
  publication-title: Appl Environ Microbiol
  doi: 10.1128/aem.59.7.2220-2228.1993
– volume: 12
  year: 2022
  ident: B55
  article-title: Comparative genomic analysis of Streptomyces rapamycinicus NRRL 5491 and its mutant overproducing rapamycin
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-14199-6
– volume: 43
  start-page: 343
  year: 2016
  end-page: 370
  ident: B63
  article-title: Genetic manipulation of secondary metabolite biosynthesis for improved production in Streptomyces and other actinomycetes
  publication-title: J Ind Microbiol Biotechnol
  doi: 10.1007/s10295-015-1682-x
– volume: 333
  start-page: 169
  year: 2012
  end-page: 179
  ident: B59
  article-title: Sequential deletion of all the polyketide synthase and nonribosomal peptide synthetase biosynthetic gene clusters and a 900-kb subtelomeric sequence of the linear chromosome of Streptomyces coelicolor
  publication-title: FEMS Microbiol Lett
  doi: 10.1111/j.1574-6968.2012.02609.x
– volume: 79
  year: 2022
  ident: B14
  article-title: Improvement of rimocidin biosynthesis by increasing supply of precursor malonyl-CoA via over-expression of acetyl-CoA carboxylase in Streptomyces rimosus M527
  publication-title: Curr Microbiol
  doi: 10.1007/s00284-022-02867-9
– volume: 7
  start-page: 726
  year: 2022
  end-page: 735
  ident: B2
  article-title: Compendium of specialized metabolite biosynthetic diversity encoded in bacterial genomes
  publication-title: Nat Microbiol
  doi: 10.1038/s41564-022-01110-2
– volume: 14
  start-page: 2349
  year: 2013
  end-page: 2353
  ident: B72
  article-title: Orange: data mining toolbox in Python
  publication-title: J Mach Learn Res
– volume: 10
  start-page: 1731
  year: 2016
  end-page: 1741
  ident: B34
  article-title: Contributions of ancestral inter-species recombination to the genetic diversity of extant Streptomyces lineages
  publication-title: ISME J
  doi: 10.1038/ismej.2015.230
– volume: 55
  start-page: 3
  year: 2017
  end-page: 13
  ident: B19
  article-title: Biosynthesis of oxytetracycline by Streptomyces rimosus: past, present and future directions in the developmentof tetracycline antibiotics
  publication-title: Food Technol Biotechnol
  doi: 10.17113/ftb.55.01.17.4617
– volume: 245
  start-page: 1575
  year: 2017
  end-page: 1587
  ident: B7
  article-title: Production of amino acids - genetic and metabolic engineering approaches
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2017.05.065
– volume: 22
  year: 2023
  ident: B56
  article-title: Systems biology of industrial oxytetracycline production in Streptomyces rimosus: the secrets of a mutagenized hyperproducer
  publication-title: Microb Cell Fact
  doi: 10.1186/s12934-023-02215-x
– volume: 31
  start-page: 1722
  year: 2021
  end-page: 1731
  ident: B60
  article-title: An efficient markerless deletion system suitable for the industrial strains of Streptomyces
  publication-title: J Microbiol Biotechnol
  doi: 10.4014/jmb.2106.06083
– volume: 200
  year: 2022
  ident: B26
  article-title: Simple and reliable in situ CRISPR-Cas9 nuclease visualization tool is ensuring efficient editing in Streptomyces species
  publication-title: J Microbiol Methods
  doi: 10.1016/j.mimet.2022.106545
– volume: 9
  year: 2021
  ident: B11
  article-title: Recent advances in silent gene cluster activation in Streptomyces
  publication-title: Front Bioeng Biotechnol
  doi: 10.3389/fbioe.2021.632230
– volume: 18
  start-page: 16
  year: 2019
  ident: B61
  article-title: Rational construction of genome-reduced and high-efficient industrial Streptomyces chassis based on multiple comparative genomic approaches
  publication-title: Microb Cell Fact
  doi: 10.1186/s12934-019-1055-7
– volume: 10
  year: 2010
  ident: B47
  article-title: Chromosomal instability in Streptomyces avermitilis: major deletion in the central region and stable circularized chromosome
  publication-title: BMC Microbiol
  doi: 10.1186/1471-2180-10-198
– volume: 15
  year: 2016
  ident: B5
  article-title: Recombinant pharmaceuticals from microbial cells: a 2015 update
  publication-title: Microb Cell Fact
  doi: 10.1186/s12934-016-0437-3
– volume: 11
  year: 2020
  ident: B12
  article-title: The application of regulatory cascades in Streptomyces: yield enhancement and metabolite mining
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2020.00406
– volume: 106
  start-page: 1855
  year: 2022
  end-page: 1878
  ident: B6
  article-title: Impact of novel microbial secondary metabolites on the pharma industry
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-022-11821-5
– volume: 11
  start-page: 357
  year: 2004
  end-page: 366
  ident: B31
  article-title: Starter unit choice determines the production of two tetraene macrolides, rimocidin and CE-108, in Streptomyces diastaticus var. 108
  publication-title: Chem Biol
  doi: 10.1016/j.chembiol.2004.02.017
– volume: 120
  year: 2023
  ident: B66
  article-title: Dissection of 3D chromosome organization in Streptomyces coelicolor A3(2) leads to biosynthetic gene cluster overexpression
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.2222045120
– volume: 17
  start-page: 37
  year: 2009
  end-page: 45
  ident: B33
  article-title: The rpoB gene as a tool for clinical microbiologists
  publication-title: Trends Microbiol
  doi: 10.1016/j.tim.2008.09.008
– volume: 19
  year: 2020
  ident: B45
  article-title: Comprehensive dissection of dispensable genomic regions in Streptomyces based on comparative analysis approach
  publication-title: Microb Cell Fact
  doi: 10.1186/s12934-020-01359-4
– volume: 113
  start-page: 123
  year: 2020
  end-page: 142
  ident: B36
  article-title: BldD, a master developmental repressor, activates antibiotic production in two Streptomyces species
  publication-title: Mol Microbiol
  doi: 10.1111/mmi.14405
– volume: 53
  start-page: 433
  year: 2004
  end-page: 443
  ident: B38
  article-title: The formation of the rodlet layer of streptomycetes is the result of the interplay between rodlins and chaplins
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.2004.04143.x
– volume: 215
  start-page: 231
  year: 1989
  end-page: 238
  ident: B23
  article-title: Molecular cloning of resistance genes and architecture of a linked gene cluster involved in biosynthesis of oxytetracycline by Streptomyces rimosus
  publication-title: Mol Gen Genet
  doi: 10.1007/BF00339722
– volume: 39
  start-page: 873
  year: 2023
  end-page: 887
  ident: B28
  article-title: Dynamics of the Streptomyces chromosome: chance and necessity
  publication-title: Trends Genet
  doi: 10.1016/j.tig.2023.07.008
– volume: 43
  start-page: 155
  year: 2016
  end-page: 176
  ident: B3
  article-title: Natural product discovery: past, present, and future
  publication-title: J Ind Microbiol Biotechnol
  doi: 10.1007/s10295-015-1723-5
– volume: 1
  year: 2013
  ident: B20
  article-title: Draft genome sequence of the oxytetracycline-producing bacterium Streptomyces rimosus ATCC 10970
  publication-title: Genome Announc
  doi: 10.1128/genomeA.00063-13
– volume: 107
  start-page: 2646
  year: 2010
  end-page: 2651
  ident: B62
  article-title: Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0914833107
– volume: 37
  start-page: 1
  year: 2019
  end-page: 20
  ident: B10
  article-title: Streptomycetes: surrogate hosts for the genetic manipulation of biosynthetic gene clusters and production of natural products
  publication-title: Biotechnol Adv
  doi: 10.1016/j.biotechadv.2018.10.003
– volume: 86
  start-page: 19
  year: 2010
  end-page: 25
  ident: B13
  article-title: Improvement of secondary metabolite production in Streptomyces by manipulating pathway regulation
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-009-2428-3
– volume: 155
  start-page: 223
  year: 1997
  end-page: 229
  ident: B69
  article-title: High efficiency intergeneric conjugal transfer of plasmid DNA from Escherichia coli to methyl DNA-restricting streptomycetes
  publication-title: FEMS Microbiol Lett
  doi: 10.1111/j.1574-6968.1997.tb13882.x
– volume: 8
  year: 2018
  ident: B46
  article-title: Genome plasticity is governed by double strand break DNA repair in Streptomyces
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-23622-w
– volume: 13
  year: 2022
  ident: B51
  article-title: Mutational meltdown of putative microbial altruists in Streptomyces coelicolor colonies
  publication-title: Nat Commun
  doi: 10.1038/s41467-022-29924-y
– volume: 33
  start-page: 963
  year: 2016
  end-page: 987
  ident: B17
  article-title: Engineering microbial hosts for production of bacterial natural products
  publication-title: Nat Prod Rep
  doi: 10.1039/c6np00017g
SSID ssj0001637129
Score 2.2839215
Snippet There is a critical need to develop novel antibiotics to combat antimicrobial resistance. Streptomyces species are very rich source of antibiotics, typically...
Most biosynthetic gene clusters (BGC) encoding the synthesis of important microbial secondary metabolites, such as antibiotics, are either silent or poorly...
ABSTRACTMost biosynthetic gene clusters (BGC) encoding the synthesis of important microbial secondary metabolites, such as antibiotics, are either silent or...
SourceID pubmedcentral
proquest
asm2
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0025024
SubjectTerms Amino acids
Anti-Bacterial Agents - biosynthesis
Antibiotics
Antimicrobial resistance
Applied and Industrial Microbiology
Biosynthesis
Chromosomes
Cryptic gene
Drug development
Gene clusters
Gene deletion
Gene rearrangement
Genes
Genome, Bacterial
Genomes
Genomic analysis
Industrial strains
Metabolism
Metabolites
Microorganisms
Multigene Family - genetics
Mutagenesis
Natural products
Oxytetracycline
Oxytetracycline - biosynthesis
Research Article
Secondary metabolites
Streptomyces - drug effects
Streptomyces - genetics
Streptomyces - metabolism
Streptomyces rimosus
Streptomyces rimosus - genetics
Streptomyces rimosus - metabolism
Transcriptomes
SummonAdditionalLinks – databaseName: American Society for Microbiology Open Access
  dbid: AAUOK
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEB9qi-CL1M9eWyWCIAhbL5-XPB7FUhTsiwfFl2WTm1DB2ztu98D77zvZr_ZUio8hM2SZyXxkJ_kNwHsnolGuwEy6KDOlREEmpWk4jyp6z1OlKt22-GYuZ-rLtb7eA9O_hekkWJ0V1aIp5A-WLeynRYtuXJ01kTsT6hEcaOEUGeTBdDq7-nr3d8XICUWyroz5T17ywbSG2I1HfyWZf96VvBd8Lg7haZc1smmr5mewh-VzeNz2kdy-gB9Xv7c1EmPYppeOyG7odLnOVi2aK0mede14WHvxG-csYbMukK2xp1hGlirUq3q52JLvYGtSYrWpXsLs4vP388usa5qQFeTz6kw7E3UgmQfNJ4VxlP9YL8kvSUQ5icqEKJFL1F5wsmcb5p4r5Ojmahwov5OvYL9clngELMSxjbYIPnBUZPiO08gSP0evnVcj-JAkmPc6y5sDhbB5L-u8kXUuiHLcCzkPHfZ4aoHx6yGWjwPLqgXeeIj4tNfc3dfI9DzUSfJSI3g3TJP1pJJIUeJyk2gk7cbU0nwEr1tFD6tJqw2FbjMCu7MFBoKEzL07U_68aRC6E4wrOe7J8X9L6ASeCEqX0r0Ebk5hv15v8A2lO7V_2-3tWxwUAhg
  priority: 102
  providerName: American Society for Microbiology
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9swDDdbx2Avx90-u-sODwaDQXZ17Djx0xjjSrmH7WWFspcQOzI3WJOuSeH6309KnHbdoI_GMgmSLMmW_BNj70zstTIFRNJ4GSkVF7ilEhyWXnlrBWWqqNriq54v1O0yWYYLtyaUVQ42sTPUZe3ojvxa0mM_g4fv6af174i6RlF2NbTQeMgeEXQZaXW6TA93LFqm6M9CMhMt8fWqx0duPna-P6J37qOiWcXHXum_UPPfism_XNDsnJ2F2JF_7oV9wR5A9ZQ97rtJ7p6xH9_udy3gQrej947A7_CMuYnWPaYr8p-Hpjy8L_-GkhNC6wr4BgaK2nPKU6_berVDC8I3KMpm2zxni9nN9y_zKLROiAq0fG2UGO0Th5x3iUgLbTAKyqxE6yQBZOqVdl6CkJDYWOCuzlxphQIBplRTh1GefMFGVV3BK8adn2Y-K5x1AhRufyNwlOF6ATYxVo3Ze-JgHnS_ybtjRZzlA6_zjtd5jJTTgcm5Cwjk1Ajj16klH_ZL1j38xiniySC5w98c9GbM3u6ncQ9RYqSooN4SjUSdpMbmY_ayF_T-azJLNDpwPWbZkQrsCQif-3im-nnX4XQTmCua7_T16f-6ZE9ijJSoJEHoCRu1my28wUintVedOv8BeYcB9w
  priority: 102
  providerName: ProQuest
Title Oxytetracycline hyper-production through targeted genome reduction of Streptomyces rimosus
URI https://www.ncbi.nlm.nih.gov/pubmed/38564716
https://journals.asm.org/doi/10.1128/msystems.00250-24
https://www.proquest.com/docview/3062893040
https://www.proquest.com/docview/3031662295
https://pubmed.ncbi.nlm.nih.gov/PMC11097637
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED_6wUZfRvfZbF3QYDAYuIss2ZYexkhHS9lYO8YCYS_GUk500Dip7UD93-_kj2zZSh_2ZITvsLnTfUgn_Q7gtQ5dLHWGgdBOBFKGGZlURMOZk84Y7itV_rTFeXw2kZ-m0XQL-vZWnQDLW5d2vp_UpLg6urmuP5DBv28vwKh38xb0uDxqAnoQym3YpcCU-IYGX7psv9lyiUVC4a2rbd7KuQf3hYpi8tgexD8r5-FmvPonCf37LOUfwel0Hx50WSUbt9PgIWxh_gjutX0m68fw4-KmrpAYbe1vQiK7pNVnESxbtFfSDOva9bD2YDjOmMdunSMrsKdYOOYr2MtqMa_Jt7CClFyuyicwOT35_vEs6JoqBBn5xCqIdOwiSzqxEU-yWFN-pIwgvyUQReJkbJ1ALjAyISd7V3ZmuESOeiZHlvI_8RR28kWOB8CsGymnMmssR0mOQXMaKeLnaCJt5ADeeAmmvVLTZsERqrQXe9qIPQ2JctQLObUdNrlvkXF1F8vbNcuyBea4i_iw19zvvxH--qgW5MUG8Gr9mqzLl0yyHBcrTyNotvqW5wN41ip6_bV-ogxAbUyBNYFH7t58k_-8bBC8PcwrOfbk-f-zvoC9kPIrf5CBx4ewUxUrfEn5UWWGsJ1MkyHsjseTi8_0PD45__pt2Ow2DBuL-AUmQBk0
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1da9RAcKgnoi_it6dVV1AEITab3Xw9iIharrbWlxYOX2KymaVCL7lecmj-lL_RmXzceQr31sdlZ5Nldj53ZmcAXsSeDXScoqNiqxytvZRYyqdhbrXNMsmRKs62OA4mp_rz1J_uwO_hLQynVQ4ysRXUeWn4jnxP8WO_mJxv9938wuGuURxdHVpodGRxiM1Pctmqtwcf6Xxfet7-p5MPE6fvKuCkJBRqx48D6xvalPFlmAYxGQhRpohxFaIKrQ6MVSgV-pknieAjk2dSo8Q4164hA0jRd6_AVVK8Ljt74TRc3-kEKiT92QdPSfLvzbp6zNWb1tZw-F39KK1m3qYW_M-0_TdD8y-Vt38Lbva2qnjfEddt2MHiDlzrulc2d-Hb119NjbTQNPy-EsUZ-bQLZ97VkKXzFn0TINGlm2MuuCLsDMUCB4jSCo6Lz-ty1pDEEgsinWpZ3YPTS0HqfRgVZYEPQRjrRjZKTWYkahI3saRRROslZn6c6TG8YgwmPa9VSevGeFEy4DppcZ14BOkOSE5MX_GcG2-cb1vyerVk3pX72Aa8O5zcejdrOh3D89U08SwHYtICyyXDKOIBbqQ-hgfdQa_-piI_IIMhGEO0QQIrAK4HvjlT_Dhr64Jz8VhSF-Gj7ft6BtcnJ1-OkqOD48PHcMMjK43TIWSwC6N6scQnZGXV2dOWtAV8v2xe-gOGHT18
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1di9NAcDh7KL6I31ZPXUERhNhudvP1IKLelTtP6iEeHL7EZDPLCTapTYrmr_nrnMlHaxX6do_LzibL7HzuzM4API1c6-soQUdFVjlauwmxlEfDzGqbppIjVZxtMfUPT_X7M-9sB373b2E4rbKXiY2gzgrDd-QjxY_9InK-xyPbpUWc7E9ez3843EGKI619O42WRI6x_knuW_nqaJ_O-pnrTg4-vzt0ug4DTkIConK8yLeeoQ0aTwaJH5GxEKaKmFghqsBq31iFUqGXupKIPzRZKjVKjDI9NmQMKfruJdgN2CsawO7bg-nJp_UNj68C0qZdKJX0wGjWVmcuXzaWh8Ov7AdJOXM3deJ_hu6_-Zp_KcDJdbjWWa7iTUtqN2AH85twue1lWd-CLx9_1RXSQlPza0sU5-ThLpx5W1GWTl90LYFEm3yOmeD6sDMUC-whCis4Sj6villN8kssiJDKZXkbTi8ErXdgkBc53gNh7Di0YWJSI1GT8IkkjUJaLzH1olQP4TljMO44r4wbp8YN4x7XcYPr2CXIcY_k2HT1z7kNx_dtS16slszb4h_bgPf6k1vvZk21Q3iymiYO5rBMkmOxZBhFHMFt1Ydwtz3o1d9U6PlkPvhDCDdIYAXA1cE3Z_Jv502VcC4lS8ojuL99X4_hCvFR_OFoevwArrpksnFuhPT3YFAtlviQTK4qfdTRtoCvF81OfwByNEMX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oxytetracycline+hyper-production+through+targeted+genome+reduction+of+Streptomyces+rimosus&rft.jtitle=mSystems&rft.au=P%C5%A1eni%C4%8Dnik%2C+Alen&rft.au=Slemc%2C+Lucija&rft.au=Avbelj%2C+Martina&rft.au=Tome%2C+Miha&rft.date=2024-05-16&rft.pub=American+Society+for+Microbiology&rft.eissn=2379-5077&rft.volume=9&rft.issue=5&rft_id=info:doi/10.1128%2Fmsystems.00250-24&rft_id=info%3Apmid%2F38564716&rft.externalDocID=PMC11097637
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-5077&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-5077&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-5077&client=summon