Characterizing Subsurface Structures From Hard and Soft Data With Multiple‐Condition Fusion Neural Network
Accurately inferring realistic subsurface structures poses a considerable challenge due to the impact of morphology on flow and transport behaviors. Traditional subsurface characterization relies on two primary types of data: hard data, derived from direct subsurface measurements, and soft data, enc...
Saved in:
Published in | Water resources research Vol. 60; no. 11 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Washington
John Wiley & Sons, Inc
01.11.2024
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Accurately inferring realistic subsurface structures poses a considerable challenge due to the impact of morphology on flow and transport behaviors. Traditional subsurface characterization relies on two primary types of data: hard data, derived from direct subsurface measurements, and soft data, encompassing remotely sensed geophysical information and its interpretation. Existing deep‐learning‐based methodologies predominantly focus on the transition from multiple observations to subsurface structures. However, implicit non‐linear correlations among diverse data sources often remain underutilized, leading to potential bias and errors. In this study, we introduce a multiple‐condition fusion network (MCF‐Net) to characterize subsurface structures based on both hard and soft data. To harness the full potential of multiple‐source subsurface observations, two distinct neural networks extract implicit features from hard and soft data. The integration of these features is achieved through multiple‐condition fusion blocks, designed to capture representative characteristics. These blocks are also adept at reconstructing heterogeneous structures and facilitating hydrological parameterization. MCF‐Net exhibits accuracy in estimating subsurface structures across various types of subsurface observations. Experimental results underscore the utility and superiority of MCF‐Net in applications of hydrogeological modeling.
Key Points
A novel approach for describing complex subsurface structures using sparse observations (hard data) and auxiliary variables (soft data)
The proposed deep learning network is able to establish the implicit relationship among multiple observations
The proposed approach can be easily extended and widely used for reservoir characterization, hydrogeophysical modeling, and other fields |
---|---|
AbstractList | Accurately inferring realistic subsurface structures poses a considerable challenge due to the impact of morphology on flow and transport behaviors. Traditional subsurface characterization relies on two primary types of data: hard data, derived from direct subsurface measurements, and soft data, encompassing remotely sensed geophysical information and its interpretation. Existing deep‐learning‐based methodologies predominantly focus on the transition from multiple observations to subsurface structures. However, implicit non‐linear correlations among diverse data sources often remain underutilized, leading to potential bias and errors. In this study, we introduce a multiple‐condition fusion network (MCF‐Net) to characterize subsurface structures based on both hard and soft data. To harness the full potential of multiple‐source subsurface observations, two distinct neural networks extract implicit features from hard and soft data. The integration of these features is achieved through multiple‐condition fusion blocks, designed to capture representative characteristics. These blocks are also adept at reconstructing heterogeneous structures and facilitating hydrological parameterization. MCF‐Net exhibits accuracy in estimating subsurface structures across various types of subsurface observations. Experimental results underscore the utility and superiority of MCF‐Net in applications of hydrogeological modeling. Accurately inferring realistic subsurface structures poses a considerable challenge due to the impact of morphology on flow and transport behaviors. Traditional subsurface characterization relies on two primary types of data: hard data, derived from direct subsurface measurements, and soft data, encompassing remotely sensed geophysical information and its interpretation. Existing deep‐learning‐based methodologies predominantly focus on the transition from multiple observations to subsurface structures. However, implicit non‐linear correlations among diverse data sources often remain underutilized, leading to potential bias and errors. In this study, we introduce a multiple‐condition fusion network (MCF‐Net) to characterize subsurface structures based on both hard and soft data. To harness the full potential of multiple‐source subsurface observations, two distinct neural networks extract implicit features from hard and soft data. The integration of these features is achieved through multiple‐condition fusion blocks, designed to capture representative characteristics. These blocks are also adept at reconstructing heterogeneous structures and facilitating hydrological parameterization. MCF‐Net exhibits accuracy in estimating subsurface structures across various types of subsurface observations. Experimental results underscore the utility and superiority of MCF‐Net in applications of hydrogeological modeling. A novel approach for describing complex subsurface structures using sparse observations (hard data) and auxiliary variables (soft data) The proposed deep learning network is able to establish the implicit relationship among multiple observations The proposed approach can be easily extended and widely used for reservoir characterization, hydrogeophysical modeling, and other fields Accurately inferring realistic subsurface structures poses a considerable challenge due to the impact of morphology on flow and transport behaviors. Traditional subsurface characterization relies on two primary types of data: hard data, derived from direct subsurface measurements, and soft data, encompassing remotely sensed geophysical information and its interpretation. Existing deep‐learning‐based methodologies predominantly focus on the transition from multiple observations to subsurface structures. However, implicit non‐linear correlations among diverse data sources often remain underutilized, leading to potential bias and errors. In this study, we introduce a multiple‐condition fusion network (MCF‐Net) to characterize subsurface structures based on both hard and soft data. To harness the full potential of multiple‐source subsurface observations, two distinct neural networks extract implicit features from hard and soft data. The integration of these features is achieved through multiple‐condition fusion blocks, designed to capture representative characteristics. These blocks are also adept at reconstructing heterogeneous structures and facilitating hydrological parameterization. MCF‐Net exhibits accuracy in estimating subsurface structures across various types of subsurface observations. Experimental results underscore the utility and superiority of MCF‐Net in applications of hydrogeological modeling. Key Points A novel approach for describing complex subsurface structures using sparse observations (hard data) and auxiliary variables (soft data) The proposed deep learning network is able to establish the implicit relationship among multiple observations The proposed approach can be easily extended and widely used for reservoir characterization, hydrogeophysical modeling, and other fields Abstract Accurately inferring realistic subsurface structures poses a considerable challenge due to the impact of morphology on flow and transport behaviors. Traditional subsurface characterization relies on two primary types of data: hard data, derived from direct subsurface measurements, and soft data, encompassing remotely sensed geophysical information and its interpretation. Existing deep‐learning‐based methodologies predominantly focus on the transition from multiple observations to subsurface structures. However, implicit non‐linear correlations among diverse data sources often remain underutilized, leading to potential bias and errors. In this study, we introduce a multiple‐condition fusion network (MCF‐Net) to characterize subsurface structures based on both hard and soft data. To harness the full potential of multiple‐source subsurface observations, two distinct neural networks extract implicit features from hard and soft data. The integration of these features is achieved through multiple‐condition fusion blocks, designed to capture representative characteristics. These blocks are also adept at reconstructing heterogeneous structures and facilitating hydrological parameterization. MCF‐Net exhibits accuracy in estimating subsurface structures across various types of subsurface observations. Experimental results underscore the utility and superiority of MCF‐Net in applications of hydrogeological modeling. |
Author | Liu, Gang Ma, Xiaogang Chen, Qiyu Cui, Zhesi Luo, Jian |
Author_xml | – sequence: 1 givenname: Zhesi orcidid: 0000-0002-5586-8822 surname: Cui fullname: Cui, Zhesi organization: China University of Geosciences – sequence: 2 givenname: Qiyu orcidid: 0000-0003-3052-9223 surname: Chen fullname: Chen, Qiyu email: chenqiyu403@163.com organization: China University of Geosciences – sequence: 3 givenname: Jian orcidid: 0000-0001-7202-996X surname: Luo fullname: Luo, Jian organization: Georgia Institute of Technology – sequence: 4 givenname: Xiaogang orcidid: 0000-0002-9110-7369 surname: Ma fullname: Ma, Xiaogang organization: University of Idaho – sequence: 5 givenname: Gang orcidid: 0000-0002-9651-4473 surname: Liu fullname: Liu, Gang organization: China University of Geosciences |
BookMark | eNp9kctuEzEUhi1UJNLCjgewxIYFA_b4Nl6ioaGVCkgJKEvLnrFbB2ccfFFVVjwCz8iTMCEIoUqw-qVzvvOf2yk4meJkAXiK0UuMWvmqRS3drBDpsEAPwAJLShshBTkBC4QoaTCR4hE4zXmLEKaMiwUI_Y1Oeig2-a9-uobranJNTg8WrkuqQ6nJZrhMcQcvdBqhnka4jq7AN7pouPHlBr6rofh9sD--fe_jNPri4wSXNR_kva1Jh1nKbUyfH4OHTodsn_zWM_Bpef6xv2iuPry97F9fNZpyIRvLLOucaY0zjo-27QwiyLpOMDJKM7I54ZBBxgyjw3o0hBEqeIstJwPmyJAzcHn0HaPeqn3yO53uVNRe_QrEdK10Kn4IVnHKiZMWC-0ENYh13GjB-SCRkXbEePZ6fvTap_il2lzUzufBhqAnG2tWBDPaUiIZmdFn99BtrGmaN50pQtAMMjFTL47UkGLOybo_A2KkDm9Uf79xxtt7-OCLPty4JO3Dv4rIsejWB3v33wZqs-pXrWBCkp84GLHp |
CitedBy_id | crossref_primary_10_1007_s12145_025_01723_1 crossref_primary_10_1002_gj_5177 crossref_primary_10_3390_jmse13030435 crossref_primary_10_1016_j_apsoil_2025_105910 crossref_primary_10_1007_s13201_025_02421_5 |
Cites_doi | 10.1016/s0167‐9473(99)00069‐9 10.1016/j.advwatres.2017.09.029 10.1109/CVPR.2019.00835 10.1007/s11004‐021‐09934‐0 10.1029/2020gl088690 10.1007/s11004‐022‐09994‐w 10.1145/3422622 10.1016/j.jrmge.2015.07.004 10.1126/science.aau0323 10.1049/el:20080522 10.1029/2022wr032610 10.1038/s41558‐021‐01263‐8 10.1029/98jb02128 10.1029/2019wr025787 10.1190/1.1440639 10.1016/j.enggeo.2023.107332 10.1109/tgrs.2022.3144666 10.1111/1365‐2478.12428 10.1016/j.cageo.2021.104762 10.1109/tmi.2020.2975344 10.1002/2016gl070348 10.1016/j.jhydrol.2022.127970 10.1016/j.cma.2020.113636 10.1016/j.cageo.2022.105290 10.1029/2021gl095823 10.1029/2021jb023689 10.1016/j.enggeo.2021.106127 10.5194/hess‐22‐5485‐2018 10.1029/2021wr031865 10.1109/CVPR.2017.632 10.1029/2022jb026310 10.1016/j.enggeo.2021.106235 10.1016/j.cageo.2021.104923 10.1029/2019jb018519 10.1029/2018wr024581 10.1029/2022wr033161 10.1007/s11004‐022‐10003‐3 10.5194/se‐15‐367‐2024 10.1016/j.envsoft.2015.01.004 10.1016/j.enggeo.2023.107255 10.1109/tgrs.2022.3183080 10.1016/j.cageo.2022.105280 10.1023/a:1014009426274 10.1029/2023wr035408 10.1029/2021jb022581 10.1038/s41893‐020‐0532‐7 10.1016/j.cageo.2019.104404 10.1016/j.advwatres.2011.12.001 10.5281/zenodo.8260600 10.1109/tgrs.2022.3203606 10.3389/frwa.2020.00005 10.1038/s41467‐019‐13793‐z 10.1029/2008wr007621 10.1016/j.enggeo.2021.106348 10.1016/j.jappgeo.2018.09.037 10.5194/hess‐22‐6547‐2018 10.1109/tmm.2015.2476655 10.1109/ICPR.2010.579 10.1016/j.earscirev.2023.104370 10.1002/9781119325888 10.3390/rs13234860 10.5281/zenodo.8279310 10.1029/2023wr035932 10.1007/s11004‐016‐9667‐5 10.1007/s10596‐022‐10152‐8 10.1016/j.jappgeo.2015.12.005 10.1007/s10596‐020‐09978‐x 10.1007/bf02288916 10.1007/s12182‐019‐0328‐4 10.1007/978-94-015-6844-9_2 10.1103/physreve.96.043309 10.1016/j.enggeo.2020.105857 10.1016/j.jhydrol.2023.129498 10.1002/2014wr016460 |
ContentType | Journal Article |
Copyright | 2024. The Author(s). 2024. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024. The Author(s). – notice: 2024. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7QH 7QL 7T7 7TG 7U9 7UA 8FD C1K F1W FR3 H94 H96 KL. KR7 L.G M7N P64 7S9 L.6 DOA |
DOI | 10.1029/2024WR038170 |
DatabaseName | Wiley Online Library Open Access (WRLC) CrossRef Aqualine Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Meteorological & Geoastrophysical Abstracts Virology and AIDS Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database AIDS and Cancer Research Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Virology and AIDS Abstracts Technology Research Database Aqualine Water Resources Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts AIDS and Cancer Research Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Meteorological & Geoastrophysical Abstracts - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Civil Engineering Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access (Activated by CARLI) url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Economics Geology |
EISSN | 1944-7973 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_6463f9e17af74b0586ba766c90b9ed11 10_1029_2024WR038170 WRCR27579 |
Genre | researchArticle |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 42172333; 41902304; 42372345 – fundername: Knowledge Innovation Program of Wuhan‐Shuguang Project funderid: 2022010801020206 |
GroupedDBID | -~X ..I .DC 05W 0R~ 123 1OB 1OC 24P 31~ 33P 50Y 5VS 6TJ 7WY 7XC 8-1 8CJ 8FE 8FG 8FH 8FL 8G5 8R4 8R5 8WZ A6W AAESR AAHBH AAIHA AAIKC AAMMB AAMNW AANHP AANLZ AASGY AAXRX AAYCA AAYJJ AAYOK AAZKR ABCUV ABJCF ABJNI ABPPZ ABUWG ACAHQ ACBWZ ACCMX ACCZN ACGFO ACGFS ACIWK ACKIV ACNCT ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADOZA ADXAS ADXHL ADZMN AEFGJ AEIGN AENEX AETEA AEUYN AEUYR AFBPY AFGKR AFKRA AFRAH AFWVQ AFZJQ AGQPQ AGXDD AIDBO AIDQK AIDYY AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB ASPBG ATCPS AVWKF AZFZN AZQEC AZVAB BDRZF BENPR BEZIV BFHJK BGLVJ BHPHI BKSAR BMXJE BPHCQ BRXPI CCPQU CS3 D0L D1J DCZOG DDYGU DPXWK DRFUL DRSTM DU5 DWQXO EBS EJD F5P FEDTE FRNLG G-S GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HVGLF HZ~ K60 K6~ L6V LATKE LEEKS LITHE LK5 LOXES LUTES LYRES M0C M2O M7R M7S MEWTI MSFUL MSSTM MVM MW2 MXFUL MXSTM MY~ O9- OHT OK1 P-X P2P P2W PALCI PATMY PCBAR PHGZM PHGZT PQBIZ PQBZA PQQKQ PROAC PTHSS PYCSY Q2X R.K RIWAO RJQFR ROL SAMSI SUPJJ TAE TN5 TWZ UQL VJK VOH WBKPD WXSBR XOL XSW YHZ YV5 ZCG ZY4 ZZTAW ~02 ~KM ~OA ~~A AAYXX CITATION PQGLB PUEGO WIN 7QH 7QL 7T7 7TG 7U9 7UA 8FD C1K F1W FR3 H94 H96 KL. KR7 L.G M7N P64 7S9 L.6 |
ID | FETCH-LOGICAL-a4679-e5e58fb2bfbf6de28b030ef8753d9bd52bff0b0bbcdf1adb35347621e63c160b3 |
IEDL.DBID | DOA |
ISSN | 0043-1397 |
IngestDate | Wed Aug 27 00:26:21 EDT 2025 Fri Jul 11 12:38:20 EDT 2025 Sun Aug 24 03:43:57 EDT 2025 Wed Aug 27 16:40:18 EDT 2025 Thu Apr 24 23:10:20 EDT 2025 Sun Jul 06 04:45:05 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a4679-e5e58fb2bfbf6de28b030ef8753d9bd52bff0b0bbcdf1adb35347621e63c160b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3052-9223 0000-0002-5586-8822 0000-0002-9110-7369 0000-0001-7202-996X 0000-0002-9651-4473 |
OpenAccessLink | https://doaj.org/article/6463f9e17af74b0586ba766c90b9ed11 |
PQID | 3133054257 |
PQPubID | 105507 |
PageCount | 23 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6463f9e17af74b0586ba766c90b9ed11 proquest_miscellaneous_3154243953 proquest_journals_3133054257 crossref_primary_10_1029_2024WR038170 crossref_citationtrail_10_1029_2024WR038170 wiley_primary_10_1029_2024WR038170_WRCR27579 |
PublicationCentury | 2000 |
PublicationDate | November 2024 2024-11-00 20241101 2024-11-01 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: November 2024 |
PublicationDecade | 2020 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Water resources research |
PublicationYear | 2024 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | 2020; 63 2021; 288 2019; 55 2019; 10 2017; 49 2019; 16 2023; 620 2022; 26 2017; 110 2020; 125 2022; 610 2019; 363 2023; 171 2020; 3 2020; 2 2021; 157 2023; 172 2013; 51 2016; 43 2020; 47 2021; 152 2020; 136 2022; 127 1989 1976; 41 2015; 17 2012 2023; 59 2015; 51 2010 2002; 34 2017; 65 2024; 60 2023; 326 2023; 128 2020; 39 2023; 324 2016; 125 2018; 22 2024; 15 1952; 17 2022; 49 2021; 57 2015; 67 2021; 13 2017; 96 2021; 53 2010; 46 2023 2022; 60 2021; 376 2000; 34 2021 2018; 159 2018; 236 2022; 12 2019 2021; 291 2022; 58 2021; 294 2017 2020; 24 1998; 103 2008; 44 2015 2022; 54 2020; 279 2023; 239 2016; 8 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 Richardson E. (e_1_2_8_54_1) 2021 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 Lee J. (e_1_2_8_40_1) 2012 Kingma D. P. (e_1_2_8_37_1) 2015 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_71_1 |
References_xml | – volume: 279 year: 2020 article-title: Physics‐guided deep learning for predicting geological drilling risk of wellbore instability using seismic attributes data publication-title: Engineering Geology – volume: 44 start-page: 800 issue: 13 year: 2008 end-page: 801 article-title: Scope of validity of PSNR in image/video quality assessment publication-title: Electronics Letters – volume: 60 start-page: 1 year: 2022 end-page: 14 article-title: A fine‐grained genetic landform classification network based on multimodal feature extraction and regional geological context publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 127 issue: 5 year: 2022 article-title: High‐resolution 3D shallow S wave velocity structure of Tongzhou, subcenter of Beijing, inferred from multimode Rayleigh waves by beamforming seismic noise at a dense array publication-title: Journal of Geophysical Research: Solid Earth – volume: 236 year: 2018 – volume: 51 start-page: 5332 issue: 7 year: 2015 end-page: 5352 article-title: Uncertainty in training image‐based inversion of hydraulic head data constrained to ERT data: Workflow and case study publication-title: Water Resources Research – volume: 65 start-page: 544 issue: 2 year: 2017 end-page: 562 article-title: Statistical facies classification from multiple seismic attributes: Comparison between Bayesian classification and expectation–maximization method and application in petrophysical inversion publication-title: Geophysical Prospecting – volume: 17 start-page: 1887 issue: 11 year: 2015 end-page: 1898 article-title: Large‐margin multi‐modal deep learning for RGB‐D object recognition publication-title: IEEE Transactions on Multimedia – volume: 55 start-page: 10443 issue: 12 year: 2019 end-page: 10465 article-title: Multiscale data fusion for surface soil moisture estimation: A spatial hierarchical approach publication-title: Water Resources Research – volume: 34 start-page: 1 year: 2002 end-page: 21 article-title: Conditional simulation of complex geological structures using multiple‐point statistics publication-title: Mathematical Geology – volume: 46 issue: 11 year: 2010 article-title: The direct sampling method to perform multiple‐point geostatistical simulations publication-title: Water Resources Research – volume: 51 start-page: 168 year: 2013 end-page: 196 article-title: Connectivity metrics for subsurface flow and transport publication-title: Advances in Water Resources – volume: 13 issue: 23 year: 2021 article-title: Lithological mapping based on fully convolutional network and multi‐source geological data publication-title: Remote Sensing – volume: 60 start-page: 1 year: 2022 end-page: 14 article-title: Geological remote sensing interpretation using deep learning feature and an adaptive multisource data fusion network publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 16 start-page: 541 issue: 3 year: 2019 end-page: 549 article-title: Generating geologically realistic 3D reservoir facies models using deep learning of sedimentary architecture with generative adversarial networks publication-title: Petroleum Science – start-page: 21 year: 1989 end-page: 38 – volume: 324 year: 2023 article-title: An integrated machine learning framework with uncertainty quantification for three‐dimensional lithological modeling from multi‐source geophysical data and drilling data publication-title: Engineering Geology – volume: 326 year: 2023 article-title: Soil property recovery from incomplete in‐situ geotechnical test data using a hybrid deep generative framework publication-title: Engineering Geology – volume: 8 start-page: 35 issue: 1 year: 2016 end-page: 49 article-title: Effects of porosity on seismic velocities, elastic moduli and Poisson's ratios of solid materials and rocks publication-title: Journal of Rock Mechanics and Geotechnical Engineering – volume: 288 year: 2021 article-title: Detection method of karst features around tunnel construction by multi‐resistivity data‐fusion pseudo‐3D‐imaging based on the PCA approach publication-title: Engineering Geology – volume: 57 issue: 5 year: 2021 article-title: Simulation of fluvial patterns with GANs trained on a data set of satellite imagery publication-title: Water Resources Research – volume: 376 year: 2021 article-title: Deep‐learning‐based surrogate flow modeling and geological parameterization for data assimilation in 3D subsurface flow publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 291 year: 2021 article-title: Randomly generating three‐dimensional realistic schistous sand particles using deep learning: Variational autoencoder implementation publication-title: Engineering Geology – volume: 41 start-page: 621 issue: 4 year: 1976 end-page: 645 article-title: Velocities of seismic waves in porous rocks publication-title: Geophysics – volume: 363 issue: 6433 year: 2019 article-title: Machine learning for data‐driven discovery in solid Earth geoscience publication-title: Science – start-page: 8160 year: 2019 end-page: 8168 – volume: 58 issue: 7 year: 2022 article-title: GANSim‐3D for conditional Geomodeling: Theory and field application publication-title: Water Resources Research – volume: 171 year: 2023 article-title: Multi‐condition controlled sedimentary facies modeling based on generative adversarial network publication-title: Computers & Geosciences – volume: 2 year: 2020 article-title: Parametrization of stochastic inputs using generative adversarial networks with application in geology publication-title: Frontiers in Water – volume: 49 issue: 1 year: 2022 article-title: Stage‐wise stochastic deep learning inversion framework for subsurface sedimentary structure identification publication-title: Geophysical Research Letters – volume: 152 year: 2021 article-title: Deep generative models in inversion: The impact of the generator's nonlinearity and development of a new approach based on a variational autoencoder publication-title: Computers & Geosciences – volume: 54 start-page: 1017 issue: 6 year: 2022 end-page: 1042 article-title: Variational autoencoder or generative adversarial networks? A comparison of two deep learning methods for flow and transport data assimilation publication-title: Mathematical Geosciences – volume: 58 issue: 12 year: 2022 article-title: Characterization of subsurface hydrogeological structures with convolutional conditional neural processes on limited training data publication-title: Water Resources Research – volume: 294 year: 2021 article-title: Coupled characterization of stratigraphic and geo‐properties uncertainties–A conditional random field approach publication-title: Engineering Geology – volume: 620 year: 2023 article-title: A two‐stage downscaling hydrological modeling approach via convolutional conditional neural process and geostatistical bias correction publication-title: Journal of Hydrology – volume: 17 start-page: 401 issue: 4 year: 1952 end-page: 419 article-title: Multidimensional scaling: I. Theory and method publication-title: Psychometrika – volume: 49 start-page: 253 issue: 2 year: 2017 end-page: 273 article-title: Integration of uncertain data in geostatistical modelling publication-title: Mathematical Geosciences – volume: 239 year: 2023 article-title: Subsurface sedimentary structure identification using deep learning: A review publication-title: Earth‐Science Reviews – volume: 59 issue: 10 year: 2023 article-title: Predictive deep learning for high‐dimensional inverse modeling of hydraulic tomography in Gaussian and non‐Gaussian fields publication-title: Water Resources Research – volume: 172 year: 2023 article-title: Multiple‐point statistics and non‐colocational soft data integration publication-title: Computers & Geosciences – year: 2015 – volume: 10 issue: 1 year: 2019 article-title: Distributed sensing of earthquakes and ocean‐solid Earth interactions on seafloor telecom cables publication-title: Nature Communications – volume: 43 start-page: 9030 issue: 17 year: 2016 end-page: 9037 article-title: Mixed‐point geostatistical simulation: A combination of two‐and multiple‐point geostatistics publication-title: Geophysical Research Letters – volume: 22 start-page: 6547 issue: 12 year: 2018 end-page: 6566 article-title: Locality‐based 3‐D multiple‐point statistics reconstruction using 2‐D geological cross sections publication-title: Hydrology and Earth System Sciences – volume: 63 start-page: 139 issue: 11 year: 2020 end-page: 144 article-title: Generative adversarial networks publication-title: Communications of the ACM – volume: 12 start-page: 148 issue: 2 year: 2022 end-page: 155 article-title: Climate change experiences raise environmental concerns and promote Green voting publication-title: Nature Climate Change – volume: 125 start-page: 14 year: 2016 end-page: 25 article-title: Stochastic simulation of geological data using isometric mapping and multiple‐point geostatistics with data incorporation publication-title: Journal of Applied Geophysics – volume: 103 start-page: 30385 issue: B12 year: 1998 end-page: 30406 article-title: Velocity‐porosity relationships for water‐saturated siliciclastic sediments publication-title: Journal of Geophysical Research – volume: 159 start-page: 532 year: 2018 end-page: 539 article-title: Estimating S‐wave velocities from 3D 9‐component shallow seismic data using local Rayleigh‐wave dispersion curves–A field study publication-title: Journal of Applied Geophysics – volume: 26 start-page: 1135 issue: 5 year: 2022 end-page: 1150 article-title: Automatic reconstruction method of 3D geological models based on deep convolutional generative adversarial networks publication-title: Computational Geosciences – start-page: 2366 year: 2010 end-page: 2369 – volume: 96 issue: 4 year: 2017 article-title: Reconstruction of three‐dimensional porous media using generative adversarial neural networks publication-title: Physical Review E – volume: 128 issue: 1 year: 2023 article-title: Machine learning developments and applications in solid‐Earth geosciences: Fad or future? publication-title: Journal of Geophysical Research: Solid Earth – volume: 127 issue: 3 year: 2022 article-title: Geophysical inversion using a variational autoencoder to model an assembled spatial prior uncertainty publication-title: Journal of Geophysical Research: Solid Earth – volume: 58 issue: 7 year: 2022 article-title: High‐dimensional groundwater flow inverse modeling by upscaled effective model on principal components publication-title: Water Resources Research – volume: 136 year: 2020 article-title: 3D stochastic modeling framework for quaternary sediments using multiple‐point statistics: A case study in Minjiang Estuary area, southeast China publication-title: Computers & Geosciences – volume: 34 start-page: 1 issue: 1 year: 2000 end-page: 15 article-title: Computing the cumulative distribution function of the Kolmogorov–Smirnov statistic publication-title: Computational Statistics & Data Analysis – year: 2012 – volume: 610 year: 2022 article-title: Deep convolutional generative adversarial networks for modeling complex hydrological structures in Monte‐Carlo simulation publication-title: Journal of Hydrology – volume: 53 start-page: 1413 issue: 7 year: 2021 end-page: 1444 article-title: GANSim: Conditional facies simulation using an improved progressive growing of generative adversarial networks (GANs) publication-title: Mathematical Geosciences – volume: 67 start-page: 1 year: 2015 end-page: 11 article-title: A simple and efficient method for global sensitivity analysis based on cumulative distribution functions publication-title: Environmental Modelling & Software – start-page: 2287 year: 2021 end-page: 2296 – volume: 22 start-page: 5485 issue: 10 year: 2018 end-page: 5508 article-title: Contributions to uncertainty related to hydrostratigraphic modeling using multiple‐point statistics publication-title: Hydrology and Earth System Sciences – volume: 60 issue: 1 year: 2024 article-title: Characterization of subsurface hydrogeological structures with convolutional conditional neural processes on limited training data publication-title: Water Resources Research – volume: 54 start-page: 831 issue: 5 year: 2022 end-page: 855 article-title: Application of Bayesian generative adversarial networks to geological facies modeling publication-title: Mathematical Geosciences – year: 2023 – volume: 125 issue: 4 year: 2020 article-title: Seismic P wave velocity model from 3‐D surface and borehole seismic data at the Alpine Fault DFDP‐2 drill site (Whataroa, New Zealand) publication-title: Journal of Geophysical Research: Solid Earth – volume: 157 year: 2021 article-title: Hybrid parallel framework for multiple‐point geostatistics on Tianhe‐2: A robust solution for large‐scale simulation publication-title: Computers & Geosciences – volume: 3 start-page: 658 issue: 8 year: 2020 end-page: 666 article-title: Hydrological limits to carbon capture and storage publication-title: Nature Sustainability – volume: 60 start-page: 1 year: 2022 end-page: 19 article-title: An open‐source package for deep‐learning‐based seismic facies classification: Benchmarking experiments on the SEG 2020 open data publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 110 start-page: 387 year: 2017 end-page: 405 article-title: Inversion using a new low‐dimensional representation of complex binary geological media based on a deep neural network publication-title: Advances in Water Resources – volume: 15 start-page: 367 issue: 3 year: 2024 end-page: 386 article-title: Comparison of surface‐wave techniques to estimate S‐and P‐wave velocity models from active seismic data publication-title: Solid Earth – start-page: 1125 year: 2017 end-page: 1134 – volume: 39 start-page: 2772 issue: 9 year: 2020 end-page: 2781 article-title: Hi‐net: Hybrid‐fusion network for multi‐modal MR image synthesis publication-title: IEEE Transactions on Medical Imaging – volume: 24 start-page: 1673 issue: 4 year: 2020 end-page: 1692 article-title: Generative adversarial network as a stochastic subsurface model reconstruction publication-title: Computational Geosciences – volume: 47 issue: 17 year: 2020 article-title: Automated seismic source characterization using deep graph neural networks publication-title: Geophysical Research Letters – ident: e_1_2_8_18_1 doi: 10.1016/s0167‐9473(99)00069‐9 – ident: e_1_2_8_38_1 doi: 10.1016/j.advwatres.2017.09.029 – ident: e_1_2_8_52_1 doi: 10.1109/CVPR.2019.00835 – ident: e_1_2_8_60_1 doi: 10.1007/s11004‐021‐09934‐0 – ident: e_1_2_8_67_1 doi: 10.1029/2020gl088690 – ident: e_1_2_8_20_1 doi: 10.1007/s11004‐022‐09994‐w – ident: e_1_2_8_23_1 doi: 10.1145/3422622 – ident: e_1_2_8_71_1 doi: 10.1016/j.jrmge.2015.07.004 – ident: e_1_2_8_5_1 doi: 10.1126/science.aau0323 – ident: e_1_2_8_32_1 doi: 10.1049/el:20080522 – ident: e_1_2_8_77_1 doi: 10.1029/2022wr032610 – ident: e_1_2_8_29_1 doi: 10.1038/s41558‐021‐01263‐8 – volume-title: Adam: A method for stochastic optimization year: 2015 ident: e_1_2_8_37_1 – ident: e_1_2_8_19_1 doi: 10.1029/98jb02128 – volume-title: 25th Annual Report, Stanford Center for Reservoir Forecasting year: 2012 ident: e_1_2_8_40_1 – ident: e_1_2_8_47_1 doi: 10.1029/2019wr025787 – ident: e_1_2_8_65_1 doi: 10.1190/1.1440639 – ident: e_1_2_8_11_1 doi: 10.1016/j.enggeo.2023.107332 – ident: e_1_2_8_6_1 doi: 10.1109/tgrs.2022.3144666 – ident: e_1_2_8_24_1 doi: 10.1111/1365‐2478.12428 – ident: e_1_2_8_42_1 doi: 10.1016/j.cageo.2021.104762 – ident: e_1_2_8_78_1 doi: 10.1109/tmi.2020.2975344 – ident: e_1_2_8_12_1 doi: 10.1002/2016gl070348 – ident: e_1_2_8_8_1 doi: 10.1016/j.jhydrol.2022.127970 – ident: e_1_2_8_64_1 doi: 10.1016/j.cma.2020.113636 – ident: e_1_2_8_31_1 doi: 10.1016/j.cageo.2022.105290 – ident: e_1_2_8_72_1 doi: 10.1029/2021gl095823 – ident: e_1_2_8_51_1 doi: 10.1029/2021jb023689 – ident: e_1_2_8_63_1 doi: 10.1016/j.enggeo.2021.106127 – ident: e_1_2_8_4_1 doi: 10.5194/hess‐22‐5485‐2018 – ident: e_1_2_8_61_1 doi: 10.1029/2021wr031865 – ident: e_1_2_8_33_1 doi: 10.1109/CVPR.2017.632 – ident: e_1_2_8_41_1 doi: 10.1029/2022jb026310 – ident: e_1_2_8_57_1 doi: 10.1016/j.enggeo.2021.106235 – ident: e_1_2_8_16_1 doi: 10.1016/j.cageo.2021.104923 – ident: e_1_2_8_39_1 doi: 10.1029/2019jb018519 – ident: e_1_2_8_35_1 doi: 10.1029/2018wr024581 – ident: e_1_2_8_14_1 doi: 10.1029/2022wr033161 – ident: e_1_2_8_3_1 doi: 10.1007/s11004‐022‐10003‐3 – ident: e_1_2_8_36_1 doi: 10.5194/se‐15‐367‐2024 – ident: e_1_2_8_50_1 doi: 10.1016/j.envsoft.2015.01.004 – ident: e_1_2_8_76_1 doi: 10.1016/j.enggeo.2023.107255 – ident: e_1_2_8_27_1 doi: 10.1109/tgrs.2022.3183080 – ident: e_1_2_8_34_1 doi: 10.1016/j.cageo.2022.105280 – ident: e_1_2_8_62_1 doi: 10.1023/a:1014009426274 – ident: e_1_2_8_26_1 doi: 10.1029/2023wr035408 – ident: e_1_2_8_43_1 doi: 10.1029/2021jb022581 – ident: e_1_2_8_55_1 doi: 10.1038/s41893‐020‐0532‐7 – ident: e_1_2_8_9_1 doi: 10.1016/j.cageo.2019.104404 – ident: e_1_2_8_53_1 doi: 10.1016/j.advwatres.2011.12.001 – ident: e_1_2_8_13_1 doi: 10.5281/zenodo.8260600 – ident: e_1_2_8_48_1 doi: 10.1109/tgrs.2022.3203606 – ident: e_1_2_8_7_1 doi: 10.3389/frwa.2020.00005 – ident: e_1_2_8_58_1 doi: 10.1038/s41467‐019‐13793‐z – start-page: 2287 volume-title: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition year: 2021 ident: e_1_2_8_54_1 – ident: e_1_2_8_44_1 doi: 10.1029/2008wr007621 – ident: e_1_2_8_22_1 doi: 10.1016/j.enggeo.2021.106348 – ident: e_1_2_8_49_1 doi: 10.1016/j.jappgeo.2018.09.037 – ident: e_1_2_8_10_1 doi: 10.5194/hess‐22‐6547‐2018 – ident: e_1_2_8_68_1 doi: 10.1109/tmm.2015.2476655 – ident: e_1_2_8_30_1 doi: 10.1109/ICPR.2010.579 – ident: e_1_2_8_73_1 doi: 10.1016/j.earscirev.2023.104370 – ident: e_1_2_8_56_1 doi: 10.1002/9781119325888 – ident: e_1_2_8_69_1 doi: 10.3390/rs13234860 – ident: e_1_2_8_25_1 doi: 10.5281/zenodo.8279310 – ident: e_1_2_8_17_1 doi: 10.1029/2023wr035932 – ident: e_1_2_8_59_1 doi: 10.1007/s11004‐016‐9667‐5 – ident: e_1_2_8_70_1 doi: 10.1007/s10596‐022‐10152‐8 – ident: e_1_2_8_74_1 doi: 10.1016/j.jappgeo.2015.12.005 – ident: e_1_2_8_2_1 doi: 10.1007/s10596‐020‐09978‐x – ident: e_1_2_8_66_1 doi: 10.1007/bf02288916 – ident: e_1_2_8_75_1 doi: 10.1007/s12182‐019‐0328‐4 – ident: e_1_2_8_45_1 doi: 10.1007/978-94-015-6844-9_2 – ident: e_1_2_8_46_1 doi: 10.1103/physreve.96.043309 – ident: e_1_2_8_21_1 doi: 10.1016/j.enggeo.2020.105857 – ident: e_1_2_8_15_1 doi: 10.1016/j.jhydrol.2023.129498 – ident: e_1_2_8_28_1 doi: 10.1002/2014wr016460 |
SSID | ssj0014567 |
Score | 2.5586495 |
Snippet | Accurately inferring realistic subsurface structures poses a considerable challenge due to the impact of morphology on flow and transport behaviors.... Abstract Accurately inferring realistic subsurface structures poses a considerable challenge due to the impact of morphology on flow and transport behaviors.... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | deep learning Geology geophysics hydrogeological modeling Hydrogeology multiple data fusion Neural networks Observational learning Parameterization Remote sensing Structures subsurface characterization water |
SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access (WRLC) dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELZaemgvCPpQUyhypfbURs3DdpIjXVihSqBqKVpukccPqESTah-H9sRP4DfyS5hJvNFyoBK3KB5Llscz_uyZ-czYx0zL1MhcxU74MhamUrE2iYwBRAqSUsczKk4-PlFHZ-L7uTwPF25UC9PzQwwXbmQZnb8mA9cwD2QDxJGJp3YxnfQMc0_ZM6qupZS-TPwYoggIDopVhJmQTkh8x_5f13vf25I65v57cHMdtHa7zniLbQa4yPd7_W6zJ655yZ6vqonn-B1eMb_8-4pdjQb25X-4I3FyCsuZ18bx044mdolnaz6etb85Bey5biw_RTfMD_RC8-mvxSU_DvmFt9c3o5ai2ag2Pl7SlRonHg8cy0mfOP6anY0Pf46O4vCaQqzRGVaxk06WHjLw4JV1WQlo387TecVWYCU2-AQSAGN9qi3kMhfoKVOncpOqBPI3bKNpG_eWcakNdpUIH7QTzkoA64h3rcgMtpRFxD6vJrQ2gWqcXry4qruQd1bV69MfsU-D9J-eYuMBuW-km0GGiLG7H-3sog52Viuhcl-5tNC-EJDIUoEulDJVApWzaRqx3ZVm62Ct8zrHgzpCV_ReEfswNKOdUfBEN65dkgwKIHqTecS-dCviv4Otp5PRJCtkUb17nPgOe0ENfbnjLtvA5eHeI-5ZwF63uO8AeMr6Ow priority: 102 providerName: Wiley-Blackwell |
Title | Characterizing Subsurface Structures From Hard and Soft Data With Multiple‐Condition Fusion Neural Network |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024WR038170 https://www.proquest.com/docview/3133054257 https://www.proquest.com/docview/3154243953 https://doaj.org/article/6463f9e17af74b0586ba766c90b9ed11 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELagF7iglh8RaCsjwQkiEsd24mNZWFVIrdCWanuLPP5RK5UsancP5cQj8Iw8SWcSZ7U9ABdu0Xo2GtnjmW8y48-MvRZWlU5VOg8yNrl0RufWFSoHkCUoah0XdDj56FgfnsrPZ-ps46ov6gkb6IGHiXuvpa6iCWVtYy2hUI0GW2vtTAEm-OFUL8a8MZlK9QOEBfVYWyaMk1reC2Eo25fz2cBMdycY9Zz9d4DmJlzt4810mz1KQJEfDArusHuhe8wejOeIr_E53V9-fvOEXU7WvMs_MBZxcgerq2hd4Cc9QewKs2o-vVp841Sq57bz_AQdMP9ol5bPL5bn_Ch1Fv7--WuyoDo2LhifruhjGicGD9TleGgZf8pOp5--Tg7zdI9CbtENmjyooJoIAiJE7YNoAHd2iJSpeANe4UAsoABwPpbWQ6UqiT6yDLpypS6gesa2ukUXnjOurMO_KgQONsjgFYAPxLhWC4cjTZ2xt-OEti6RjNNdF5dtX-wWpt2c_oy9WUt_H8g1_iD3gdZmLUOU2P0PaChtMpT2X4aSsd1xZdu0T6_bClN0BK3otzL2aj2MO4zKJrYLixXJoADiNlVl7F1vEX9Vtp3PJjNRq9q8-B9qv2QP6e3D8cddtoVGE_YQBy1hn90X8st-b_i3hgACqQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKOZQL4leEFjASPUFE4thOcuAAW1Zb2l2hbavtLdiOTZHaBO2PUDnxCLwJ78STMJM40fYAEofeongSWfbM-LNn_A0hL5gSsRGJDC13WchNLkNlIhFqzWMtMHWc4eXk8USOTviHU3G6QX51d2Fafoj-wA0to_HXaOB4IO3ZBpAkE7btfDZtKeZ8VuWBvfwGe7bFm_09mOBdxobvjwej0JcVCBV4hTy0worMaaaddrK0LNOg6NYhcC9zXQpocJGOtDali1WpE5FwcBmxlYmJZaQT-O8NcpNLlmLJBMY_9mELQCNpF9JGaOUz7aG_r9d7e2UNbEoFXMG36yi5WeaGd8htj0_p21ah7pINW90jW9315QU8-7LpZ5f3yfmgp3v-DksgRS-0mjtlLD1qeGlXsJmnw3l9QTFDgKqqpEfg9-meWio6-7I8o2Of0Pj7x89BjeFz0BM6XOEZHkXiEOjLpM1Uf0BOrmWcH5LNqq7sI0KFMvCpALyiLLel0Lq0SPSWMgMtWRqQl92AFsZzm2OJjfOiibGzvFgf_oDs9tJfW06Pv8i9w7npZZCJu3lRzz8X3rALyWXichunyqVcRyKTWqVSmjzSuS3jOCA73cwW3j0siiROwM-iuwzI874ZDBujNaqy9QplQADgokgC8qrRiH92tphNB1OWijR__H_iz8jW6Hh8WBzuTw62yS0Uau9a7pBNUBX7BEDXUj9tFJ2ST9dtWX8AKwk5mA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKkYAL4lcEChiJniAicWwnOXCAXaKW0lW1pdregh3bFKkk1f4IlROPwJPwUDwJM4kTbQ8gcegtiieRZc-MP3tmPhPynCkRVyKRoeUuC3mVy1BVkQi15rEWmDrOsDh5fyJ3jvj7Y3G8QX71tTAdP8Rw4IaW0fprNPAz4zzZAHJkwq6dz6Ydw5xPqtyz599gy7Z4vTuG-d1mrHj3cbQT-lsFQgVOIQ-tsCJzmmmnnTSWZRr03DrE7SbXRkCDi3SkdWVcrIxORMLBY8RWJlUsI53Af6-QqxhfxBQyxg-GqAWAkbSPaCOy8on20N9X6729sAS2NwVcgLfrILld5Ypb5KaHp_RNp0-3yYat75DrffXyAp79rekn53fJ6Whge_4OKyBFJ7SaO1VZetjS0q5gL0-LefOVYoIAVbWhh-D26VgtFZ19WZ7QfZ_P-PvHz1GD0XNQE1qs8AiPIm8I9GXSJarfI0eXMs73yWbd1PYBoUJV8KkAuKIst0ZobSzyvKWsgpYsDciLfkDLylOb4w0bp2UbYmd5uT78AdkepM86So-_yL3FuRlkkIi7fdHMP5ferkvJZeJyG6fKpVxHIpNapVJWeaRza-I4IFv9zJbeOyzKJE7AzaK3DMizoRnsGoM1qrbNCmVAANCiSALystWIf3a2nE1HU5aKNH_4f-JPybWDcVF-2J3sPSI3UKartNwim6Ap9jFArqV-0uo5JZ8u27D-AAhSOMo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterizing+Subsurface+Structures+From+Hard+and+Soft+Data+With+Multiple%E2%80%90Condition+Fusion+Neural+Network&rft.jtitle=Water+resources+research&rft.au=Cui%2C+Zhesi&rft.au=Chen%2C+Qiyu&rft.au=Luo%2C+Jian&rft.au=Ma%2C+Xiaogang&rft.date=2024-11-01&rft.issn=0043-1397&rft.eissn=1944-7973&rft.volume=60&rft.issue=11&rft_id=info:doi/10.1029%2F2024WR038170&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2024WR038170 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1397&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1397&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1397&client=summon |