Characterizing Subsurface Structures From Hard and Soft Data With Multiple‐Condition Fusion Neural Network

Accurately inferring realistic subsurface structures poses a considerable challenge due to the impact of morphology on flow and transport behaviors. Traditional subsurface characterization relies on two primary types of data: hard data, derived from direct subsurface measurements, and soft data, enc...

Full description

Saved in:
Bibliographic Details
Published inWater resources research Vol. 60; no. 11
Main Authors Cui, Zhesi, Chen, Qiyu, Luo, Jian, Ma, Xiaogang, Liu, Gang
Format Journal Article
LanguageEnglish
Published Washington John Wiley & Sons, Inc 01.11.2024
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Accurately inferring realistic subsurface structures poses a considerable challenge due to the impact of morphology on flow and transport behaviors. Traditional subsurface characterization relies on two primary types of data: hard data, derived from direct subsurface measurements, and soft data, encompassing remotely sensed geophysical information and its interpretation. Existing deep‐learning‐based methodologies predominantly focus on the transition from multiple observations to subsurface structures. However, implicit non‐linear correlations among diverse data sources often remain underutilized, leading to potential bias and errors. In this study, we introduce a multiple‐condition fusion network (MCF‐Net) to characterize subsurface structures based on both hard and soft data. To harness the full potential of multiple‐source subsurface observations, two distinct neural networks extract implicit features from hard and soft data. The integration of these features is achieved through multiple‐condition fusion blocks, designed to capture representative characteristics. These blocks are also adept at reconstructing heterogeneous structures and facilitating hydrological parameterization. MCF‐Net exhibits accuracy in estimating subsurface structures across various types of subsurface observations. Experimental results underscore the utility and superiority of MCF‐Net in applications of hydrogeological modeling. Key Points A novel approach for describing complex subsurface structures using sparse observations (hard data) and auxiliary variables (soft data) The proposed deep learning network is able to establish the implicit relationship among multiple observations The proposed approach can be easily extended and widely used for reservoir characterization, hydrogeophysical modeling, and other fields
AbstractList Accurately inferring realistic subsurface structures poses a considerable challenge due to the impact of morphology on flow and transport behaviors. Traditional subsurface characterization relies on two primary types of data: hard data, derived from direct subsurface measurements, and soft data, encompassing remotely sensed geophysical information and its interpretation. Existing deep‐learning‐based methodologies predominantly focus on the transition from multiple observations to subsurface structures. However, implicit non‐linear correlations among diverse data sources often remain underutilized, leading to potential bias and errors. In this study, we introduce a multiple‐condition fusion network (MCF‐Net) to characterize subsurface structures based on both hard and soft data. To harness the full potential of multiple‐source subsurface observations, two distinct neural networks extract implicit features from hard and soft data. The integration of these features is achieved through multiple‐condition fusion blocks, designed to capture representative characteristics. These blocks are also adept at reconstructing heterogeneous structures and facilitating hydrological parameterization. MCF‐Net exhibits accuracy in estimating subsurface structures across various types of subsurface observations. Experimental results underscore the utility and superiority of MCF‐Net in applications of hydrogeological modeling.
Accurately inferring realistic subsurface structures poses a considerable challenge due to the impact of morphology on flow and transport behaviors. Traditional subsurface characterization relies on two primary types of data: hard data, derived from direct subsurface measurements, and soft data, encompassing remotely sensed geophysical information and its interpretation. Existing deep‐learning‐based methodologies predominantly focus on the transition from multiple observations to subsurface structures. However, implicit non‐linear correlations among diverse data sources often remain underutilized, leading to potential bias and errors. In this study, we introduce a multiple‐condition fusion network (MCF‐Net) to characterize subsurface structures based on both hard and soft data. To harness the full potential of multiple‐source subsurface observations, two distinct neural networks extract implicit features from hard and soft data. The integration of these features is achieved through multiple‐condition fusion blocks, designed to capture representative characteristics. These blocks are also adept at reconstructing heterogeneous structures and facilitating hydrological parameterization. MCF‐Net exhibits accuracy in estimating subsurface structures across various types of subsurface observations. Experimental results underscore the utility and superiority of MCF‐Net in applications of hydrogeological modeling. A novel approach for describing complex subsurface structures using sparse observations (hard data) and auxiliary variables (soft data) The proposed deep learning network is able to establish the implicit relationship among multiple observations The proposed approach can be easily extended and widely used for reservoir characterization, hydrogeophysical modeling, and other fields
Accurately inferring realistic subsurface structures poses a considerable challenge due to the impact of morphology on flow and transport behaviors. Traditional subsurface characterization relies on two primary types of data: hard data, derived from direct subsurface measurements, and soft data, encompassing remotely sensed geophysical information and its interpretation. Existing deep‐learning‐based methodologies predominantly focus on the transition from multiple observations to subsurface structures. However, implicit non‐linear correlations among diverse data sources often remain underutilized, leading to potential bias and errors. In this study, we introduce a multiple‐condition fusion network (MCF‐Net) to characterize subsurface structures based on both hard and soft data. To harness the full potential of multiple‐source subsurface observations, two distinct neural networks extract implicit features from hard and soft data. The integration of these features is achieved through multiple‐condition fusion blocks, designed to capture representative characteristics. These blocks are also adept at reconstructing heterogeneous structures and facilitating hydrological parameterization. MCF‐Net exhibits accuracy in estimating subsurface structures across various types of subsurface observations. Experimental results underscore the utility and superiority of MCF‐Net in applications of hydrogeological modeling. Key Points A novel approach for describing complex subsurface structures using sparse observations (hard data) and auxiliary variables (soft data) The proposed deep learning network is able to establish the implicit relationship among multiple observations The proposed approach can be easily extended and widely used for reservoir characterization, hydrogeophysical modeling, and other fields
Abstract Accurately inferring realistic subsurface structures poses a considerable challenge due to the impact of morphology on flow and transport behaviors. Traditional subsurface characterization relies on two primary types of data: hard data, derived from direct subsurface measurements, and soft data, encompassing remotely sensed geophysical information and its interpretation. Existing deep‐learning‐based methodologies predominantly focus on the transition from multiple observations to subsurface structures. However, implicit non‐linear correlations among diverse data sources often remain underutilized, leading to potential bias and errors. In this study, we introduce a multiple‐condition fusion network (MCF‐Net) to characterize subsurface structures based on both hard and soft data. To harness the full potential of multiple‐source subsurface observations, two distinct neural networks extract implicit features from hard and soft data. The integration of these features is achieved through multiple‐condition fusion blocks, designed to capture representative characteristics. These blocks are also adept at reconstructing heterogeneous structures and facilitating hydrological parameterization. MCF‐Net exhibits accuracy in estimating subsurface structures across various types of subsurface observations. Experimental results underscore the utility and superiority of MCF‐Net in applications of hydrogeological modeling.
Author Liu, Gang
Ma, Xiaogang
Chen, Qiyu
Cui, Zhesi
Luo, Jian
Author_xml – sequence: 1
  givenname: Zhesi
  orcidid: 0000-0002-5586-8822
  surname: Cui
  fullname: Cui, Zhesi
  organization: China University of Geosciences
– sequence: 2
  givenname: Qiyu
  orcidid: 0000-0003-3052-9223
  surname: Chen
  fullname: Chen, Qiyu
  email: chenqiyu403@163.com
  organization: China University of Geosciences
– sequence: 3
  givenname: Jian
  orcidid: 0000-0001-7202-996X
  surname: Luo
  fullname: Luo, Jian
  organization: Georgia Institute of Technology
– sequence: 4
  givenname: Xiaogang
  orcidid: 0000-0002-9110-7369
  surname: Ma
  fullname: Ma, Xiaogang
  organization: University of Idaho
– sequence: 5
  givenname: Gang
  orcidid: 0000-0002-9651-4473
  surname: Liu
  fullname: Liu, Gang
  organization: China University of Geosciences
BookMark eNp9kctuEzEUhi1UJNLCjgewxIYFA_b4Nl6ioaGVCkgJKEvLnrFbB2ccfFFVVjwCz8iTMCEIoUqw-qVzvvOf2yk4meJkAXiK0UuMWvmqRS3drBDpsEAPwAJLShshBTkBC4QoaTCR4hE4zXmLEKaMiwUI_Y1Oeig2-a9-uobranJNTg8WrkuqQ6nJZrhMcQcvdBqhnka4jq7AN7pouPHlBr6rofh9sD--fe_jNPri4wSXNR_kva1Jh1nKbUyfH4OHTodsn_zWM_Bpef6xv2iuPry97F9fNZpyIRvLLOucaY0zjo-27QwiyLpOMDJKM7I54ZBBxgyjw3o0hBEqeIstJwPmyJAzcHn0HaPeqn3yO53uVNRe_QrEdK10Kn4IVnHKiZMWC-0ENYh13GjB-SCRkXbEePZ6fvTap_il2lzUzufBhqAnG2tWBDPaUiIZmdFn99BtrGmaN50pQtAMMjFTL47UkGLOybo_A2KkDm9Uf79xxtt7-OCLPty4JO3Dv4rIsejWB3v33wZqs-pXrWBCkp84GLHp
CitedBy_id crossref_primary_10_1007_s12145_025_01723_1
crossref_primary_10_1002_gj_5177
crossref_primary_10_3390_jmse13030435
crossref_primary_10_1016_j_apsoil_2025_105910
crossref_primary_10_1007_s13201_025_02421_5
Cites_doi 10.1016/s0167‐9473(99)00069‐9
10.1016/j.advwatres.2017.09.029
10.1109/CVPR.2019.00835
10.1007/s11004‐021‐09934‐0
10.1029/2020gl088690
10.1007/s11004‐022‐09994‐w
10.1145/3422622
10.1016/j.jrmge.2015.07.004
10.1126/science.aau0323
10.1049/el:20080522
10.1029/2022wr032610
10.1038/s41558‐021‐01263‐8
10.1029/98jb02128
10.1029/2019wr025787
10.1190/1.1440639
10.1016/j.enggeo.2023.107332
10.1109/tgrs.2022.3144666
10.1111/1365‐2478.12428
10.1016/j.cageo.2021.104762
10.1109/tmi.2020.2975344
10.1002/2016gl070348
10.1016/j.jhydrol.2022.127970
10.1016/j.cma.2020.113636
10.1016/j.cageo.2022.105290
10.1029/2021gl095823
10.1029/2021jb023689
10.1016/j.enggeo.2021.106127
10.5194/hess‐22‐5485‐2018
10.1029/2021wr031865
10.1109/CVPR.2017.632
10.1029/2022jb026310
10.1016/j.enggeo.2021.106235
10.1016/j.cageo.2021.104923
10.1029/2019jb018519
10.1029/2018wr024581
10.1029/2022wr033161
10.1007/s11004‐022‐10003‐3
10.5194/se‐15‐367‐2024
10.1016/j.envsoft.2015.01.004
10.1016/j.enggeo.2023.107255
10.1109/tgrs.2022.3183080
10.1016/j.cageo.2022.105280
10.1023/a:1014009426274
10.1029/2023wr035408
10.1029/2021jb022581
10.1038/s41893‐020‐0532‐7
10.1016/j.cageo.2019.104404
10.1016/j.advwatres.2011.12.001
10.5281/zenodo.8260600
10.1109/tgrs.2022.3203606
10.3389/frwa.2020.00005
10.1038/s41467‐019‐13793‐z
10.1029/2008wr007621
10.1016/j.enggeo.2021.106348
10.1016/j.jappgeo.2018.09.037
10.5194/hess‐22‐6547‐2018
10.1109/tmm.2015.2476655
10.1109/ICPR.2010.579
10.1016/j.earscirev.2023.104370
10.1002/9781119325888
10.3390/rs13234860
10.5281/zenodo.8279310
10.1029/2023wr035932
10.1007/s11004‐016‐9667‐5
10.1007/s10596‐022‐10152‐8
10.1016/j.jappgeo.2015.12.005
10.1007/s10596‐020‐09978‐x
10.1007/bf02288916
10.1007/s12182‐019‐0328‐4
10.1007/978-94-015-6844-9_2
10.1103/physreve.96.043309
10.1016/j.enggeo.2020.105857
10.1016/j.jhydrol.2023.129498
10.1002/2014wr016460
ContentType Journal Article
Copyright 2024. The Author(s).
2024. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. The Author(s).
– notice: 2024. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7QH
7QL
7T7
7TG
7U9
7UA
8FD
C1K
F1W
FR3
H94
H96
KL.
KR7
L.G
M7N
P64
7S9
L.6
DOA
DOI 10.1029/2024WR038170
DatabaseName Wiley Online Library Open Access (WRLC)
CrossRef
Aqualine
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Meteorological & Geoastrophysical Abstracts
Virology and AIDS Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
AIDS and Cancer Research Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Virology and AIDS Abstracts
Technology Research Database
Aqualine
Water Resources Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Civil Engineering Abstracts
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access (Activated by CARLI)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Economics
Geology
EISSN 1944-7973
EndPage n/a
ExternalDocumentID oai_doaj_org_article_6463f9e17af74b0586ba766c90b9ed11
10_1029_2024WR038170
WRCR27579
Genre researchArticle
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 42172333; 41902304; 42372345
– fundername: Knowledge Innovation Program of Wuhan‐Shuguang Project
  funderid: 2022010801020206
GroupedDBID -~X
..I
.DC
05W
0R~
123
1OB
1OC
24P
31~
33P
50Y
5VS
6TJ
7WY
7XC
8-1
8CJ
8FE
8FG
8FH
8FL
8G5
8R4
8R5
8WZ
A6W
AAESR
AAHBH
AAIHA
AAIKC
AAMMB
AAMNW
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAYJJ
AAYOK
AAZKR
ABCUV
ABJCF
ABJNI
ABPPZ
ABUWG
ACAHQ
ACBWZ
ACCMX
ACCZN
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADXHL
ADZMN
AEFGJ
AEIGN
AENEX
AETEA
AEUYN
AEUYR
AFBPY
AFGKR
AFKRA
AFRAH
AFWVQ
AFZJQ
AGQPQ
AGXDD
AIDBO
AIDQK
AIDYY
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
ASPBG
ATCPS
AVWKF
AZFZN
AZQEC
AZVAB
BDRZF
BENPR
BEZIV
BFHJK
BGLVJ
BHPHI
BKSAR
BMXJE
BPHCQ
BRXPI
CCPQU
CS3
D0L
D1J
DCZOG
DDYGU
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
F5P
FEDTE
FRNLG
G-S
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HVGLF
HZ~
K60
K6~
L6V
LATKE
LEEKS
LITHE
LK5
LOXES
LUTES
LYRES
M0C
M2O
M7R
M7S
MEWTI
MSFUL
MSSTM
MVM
MW2
MXFUL
MXSTM
MY~
O9-
OHT
OK1
P-X
P2P
P2W
PALCI
PATMY
PCBAR
PHGZM
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
PTHSS
PYCSY
Q2X
R.K
RIWAO
RJQFR
ROL
SAMSI
SUPJJ
TAE
TN5
TWZ
UQL
VJK
VOH
WBKPD
WXSBR
XOL
XSW
YHZ
YV5
ZCG
ZY4
ZZTAW
~02
~KM
~OA
~~A
AAYXX
CITATION
PQGLB
PUEGO
WIN
7QH
7QL
7T7
7TG
7U9
7UA
8FD
C1K
F1W
FR3
H94
H96
KL.
KR7
L.G
M7N
P64
7S9
L.6
ID FETCH-LOGICAL-a4679-e5e58fb2bfbf6de28b030ef8753d9bd52bff0b0bbcdf1adb35347621e63c160b3
IEDL.DBID DOA
ISSN 0043-1397
IngestDate Wed Aug 27 00:26:21 EDT 2025
Fri Jul 11 12:38:20 EDT 2025
Sun Aug 24 03:43:57 EDT 2025
Wed Aug 27 16:40:18 EDT 2025
Thu Apr 24 23:10:20 EDT 2025
Sun Jul 06 04:45:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a4679-e5e58fb2bfbf6de28b030ef8753d9bd52bff0b0bbcdf1adb35347621e63c160b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3052-9223
0000-0002-5586-8822
0000-0002-9110-7369
0000-0001-7202-996X
0000-0002-9651-4473
OpenAccessLink https://doaj.org/article/6463f9e17af74b0586ba766c90b9ed11
PQID 3133054257
PQPubID 105507
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_6463f9e17af74b0586ba766c90b9ed11
proquest_miscellaneous_3154243953
proquest_journals_3133054257
crossref_primary_10_1029_2024WR038170
crossref_citationtrail_10_1029_2024WR038170
wiley_primary_10_1029_2024WR038170_WRCR27579
PublicationCentury 2000
PublicationDate November 2024
2024-11-00
20241101
2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: November 2024
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Water resources research
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2020; 63
2021; 288
2019; 55
2019; 10
2017; 49
2019; 16
2023; 620
2022; 26
2017; 110
2020; 125
2022; 610
2019; 363
2023; 171
2020; 3
2020; 2
2021; 157
2023; 172
2013; 51
2016; 43
2020; 47
2021; 152
2020; 136
2022; 127
1989
1976; 41
2015; 17
2012
2023; 59
2015; 51
2010
2002; 34
2017; 65
2024; 60
2023; 326
2023; 128
2020; 39
2023; 324
2016; 125
2018; 22
2024; 15
1952; 17
2022; 49
2021; 57
2015; 67
2021; 13
2017; 96
2021; 53
2010; 46
2023
2022; 60
2021; 376
2000; 34
2021
2018; 159
2018; 236
2022; 12
2019
2021; 291
2022; 58
2021; 294
2017
2020; 24
1998; 103
2008; 44
2015
2022; 54
2020; 279
2023; 239
2016; 8
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
Richardson E. (e_1_2_8_54_1) 2021
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
Lee J. (e_1_2_8_40_1) 2012
Kingma D. P. (e_1_2_8_37_1) 2015
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – volume: 279
  year: 2020
  article-title: Physics‐guided deep learning for predicting geological drilling risk of wellbore instability using seismic attributes data
  publication-title: Engineering Geology
– volume: 44
  start-page: 800
  issue: 13
  year: 2008
  end-page: 801
  article-title: Scope of validity of PSNR in image/video quality assessment
  publication-title: Electronics Letters
– volume: 60
  start-page: 1
  year: 2022
  end-page: 14
  article-title: A fine‐grained genetic landform classification network based on multimodal feature extraction and regional geological context
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 127
  issue: 5
  year: 2022
  article-title: High‐resolution 3D shallow S wave velocity structure of Tongzhou, subcenter of Beijing, inferred from multimode Rayleigh waves by beamforming seismic noise at a dense array
  publication-title: Journal of Geophysical Research: Solid Earth
– volume: 236
  year: 2018
– volume: 51
  start-page: 5332
  issue: 7
  year: 2015
  end-page: 5352
  article-title: Uncertainty in training image‐based inversion of hydraulic head data constrained to ERT data: Workflow and case study
  publication-title: Water Resources Research
– volume: 65
  start-page: 544
  issue: 2
  year: 2017
  end-page: 562
  article-title: Statistical facies classification from multiple seismic attributes: Comparison between Bayesian classification and expectation–maximization method and application in petrophysical inversion
  publication-title: Geophysical Prospecting
– volume: 17
  start-page: 1887
  issue: 11
  year: 2015
  end-page: 1898
  article-title: Large‐margin multi‐modal deep learning for RGB‐D object recognition
  publication-title: IEEE Transactions on Multimedia
– volume: 55
  start-page: 10443
  issue: 12
  year: 2019
  end-page: 10465
  article-title: Multiscale data fusion for surface soil moisture estimation: A spatial hierarchical approach
  publication-title: Water Resources Research
– volume: 34
  start-page: 1
  year: 2002
  end-page: 21
  article-title: Conditional simulation of complex geological structures using multiple‐point statistics
  publication-title: Mathematical Geology
– volume: 46
  issue: 11
  year: 2010
  article-title: The direct sampling method to perform multiple‐point geostatistical simulations
  publication-title: Water Resources Research
– volume: 51
  start-page: 168
  year: 2013
  end-page: 196
  article-title: Connectivity metrics for subsurface flow and transport
  publication-title: Advances in Water Resources
– volume: 13
  issue: 23
  year: 2021
  article-title: Lithological mapping based on fully convolutional network and multi‐source geological data
  publication-title: Remote Sensing
– volume: 60
  start-page: 1
  year: 2022
  end-page: 14
  article-title: Geological remote sensing interpretation using deep learning feature and an adaptive multisource data fusion network
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 16
  start-page: 541
  issue: 3
  year: 2019
  end-page: 549
  article-title: Generating geologically realistic 3D reservoir facies models using deep learning of sedimentary architecture with generative adversarial networks
  publication-title: Petroleum Science
– start-page: 21
  year: 1989
  end-page: 38
– volume: 324
  year: 2023
  article-title: An integrated machine learning framework with uncertainty quantification for three‐dimensional lithological modeling from multi‐source geophysical data and drilling data
  publication-title: Engineering Geology
– volume: 326
  year: 2023
  article-title: Soil property recovery from incomplete in‐situ geotechnical test data using a hybrid deep generative framework
  publication-title: Engineering Geology
– volume: 8
  start-page: 35
  issue: 1
  year: 2016
  end-page: 49
  article-title: Effects of porosity on seismic velocities, elastic moduli and Poisson's ratios of solid materials and rocks
  publication-title: Journal of Rock Mechanics and Geotechnical Engineering
– volume: 288
  year: 2021
  article-title: Detection method of karst features around tunnel construction by multi‐resistivity data‐fusion pseudo‐3D‐imaging based on the PCA approach
  publication-title: Engineering Geology
– volume: 57
  issue: 5
  year: 2021
  article-title: Simulation of fluvial patterns with GANs trained on a data set of satellite imagery
  publication-title: Water Resources Research
– volume: 376
  year: 2021
  article-title: Deep‐learning‐based surrogate flow modeling and geological parameterization for data assimilation in 3D subsurface flow
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 291
  year: 2021
  article-title: Randomly generating three‐dimensional realistic schistous sand particles using deep learning: Variational autoencoder implementation
  publication-title: Engineering Geology
– volume: 41
  start-page: 621
  issue: 4
  year: 1976
  end-page: 645
  article-title: Velocities of seismic waves in porous rocks
  publication-title: Geophysics
– volume: 363
  issue: 6433
  year: 2019
  article-title: Machine learning for data‐driven discovery in solid Earth geoscience
  publication-title: Science
– start-page: 8160
  year: 2019
  end-page: 8168
– volume: 58
  issue: 7
  year: 2022
  article-title: GANSim‐3D for conditional Geomodeling: Theory and field application
  publication-title: Water Resources Research
– volume: 171
  year: 2023
  article-title: Multi‐condition controlled sedimentary facies modeling based on generative adversarial network
  publication-title: Computers & Geosciences
– volume: 2
  year: 2020
  article-title: Parametrization of stochastic inputs using generative adversarial networks with application in geology
  publication-title: Frontiers in Water
– volume: 49
  issue: 1
  year: 2022
  article-title: Stage‐wise stochastic deep learning inversion framework for subsurface sedimentary structure identification
  publication-title: Geophysical Research Letters
– volume: 152
  year: 2021
  article-title: Deep generative models in inversion: The impact of the generator's nonlinearity and development of a new approach based on a variational autoencoder
  publication-title: Computers & Geosciences
– volume: 54
  start-page: 1017
  issue: 6
  year: 2022
  end-page: 1042
  article-title: Variational autoencoder or generative adversarial networks? A comparison of two deep learning methods for flow and transport data assimilation
  publication-title: Mathematical Geosciences
– volume: 58
  issue: 12
  year: 2022
  article-title: Characterization of subsurface hydrogeological structures with convolutional conditional neural processes on limited training data
  publication-title: Water Resources Research
– volume: 294
  year: 2021
  article-title: Coupled characterization of stratigraphic and geo‐properties uncertainties–A conditional random field approach
  publication-title: Engineering Geology
– volume: 620
  year: 2023
  article-title: A two‐stage downscaling hydrological modeling approach via convolutional conditional neural process and geostatistical bias correction
  publication-title: Journal of Hydrology
– volume: 17
  start-page: 401
  issue: 4
  year: 1952
  end-page: 419
  article-title: Multidimensional scaling: I. Theory and method
  publication-title: Psychometrika
– volume: 49
  start-page: 253
  issue: 2
  year: 2017
  end-page: 273
  article-title: Integration of uncertain data in geostatistical modelling
  publication-title: Mathematical Geosciences
– volume: 239
  year: 2023
  article-title: Subsurface sedimentary structure identification using deep learning: A review
  publication-title: Earth‐Science Reviews
– volume: 59
  issue: 10
  year: 2023
  article-title: Predictive deep learning for high‐dimensional inverse modeling of hydraulic tomography in Gaussian and non‐Gaussian fields
  publication-title: Water Resources Research
– volume: 172
  year: 2023
  article-title: Multiple‐point statistics and non‐colocational soft data integration
  publication-title: Computers & Geosciences
– year: 2015
– volume: 10
  issue: 1
  year: 2019
  article-title: Distributed sensing of earthquakes and ocean‐solid Earth interactions on seafloor telecom cables
  publication-title: Nature Communications
– volume: 43
  start-page: 9030
  issue: 17
  year: 2016
  end-page: 9037
  article-title: Mixed‐point geostatistical simulation: A combination of two‐and multiple‐point geostatistics
  publication-title: Geophysical Research Letters
– volume: 22
  start-page: 6547
  issue: 12
  year: 2018
  end-page: 6566
  article-title: Locality‐based 3‐D multiple‐point statistics reconstruction using 2‐D geological cross sections
  publication-title: Hydrology and Earth System Sciences
– volume: 63
  start-page: 139
  issue: 11
  year: 2020
  end-page: 144
  article-title: Generative adversarial networks
  publication-title: Communications of the ACM
– volume: 12
  start-page: 148
  issue: 2
  year: 2022
  end-page: 155
  article-title: Climate change experiences raise environmental concerns and promote Green voting
  publication-title: Nature Climate Change
– volume: 125
  start-page: 14
  year: 2016
  end-page: 25
  article-title: Stochastic simulation of geological data using isometric mapping and multiple‐point geostatistics with data incorporation
  publication-title: Journal of Applied Geophysics
– volume: 103
  start-page: 30385
  issue: B12
  year: 1998
  end-page: 30406
  article-title: Velocity‐porosity relationships for water‐saturated siliciclastic sediments
  publication-title: Journal of Geophysical Research
– volume: 159
  start-page: 532
  year: 2018
  end-page: 539
  article-title: Estimating S‐wave velocities from 3D 9‐component shallow seismic data using local Rayleigh‐wave dispersion curves–A field study
  publication-title: Journal of Applied Geophysics
– volume: 26
  start-page: 1135
  issue: 5
  year: 2022
  end-page: 1150
  article-title: Automatic reconstruction method of 3D geological models based on deep convolutional generative adversarial networks
  publication-title: Computational Geosciences
– start-page: 2366
  year: 2010
  end-page: 2369
– volume: 96
  issue: 4
  year: 2017
  article-title: Reconstruction of three‐dimensional porous media using generative adversarial neural networks
  publication-title: Physical Review E
– volume: 128
  issue: 1
  year: 2023
  article-title: Machine learning developments and applications in solid‐Earth geosciences: Fad or future?
  publication-title: Journal of Geophysical Research: Solid Earth
– volume: 127
  issue: 3
  year: 2022
  article-title: Geophysical inversion using a variational autoencoder to model an assembled spatial prior uncertainty
  publication-title: Journal of Geophysical Research: Solid Earth
– volume: 58
  issue: 7
  year: 2022
  article-title: High‐dimensional groundwater flow inverse modeling by upscaled effective model on principal components
  publication-title: Water Resources Research
– volume: 136
  year: 2020
  article-title: 3D stochastic modeling framework for quaternary sediments using multiple‐point statistics: A case study in Minjiang Estuary area, southeast China
  publication-title: Computers & Geosciences
– volume: 34
  start-page: 1
  issue: 1
  year: 2000
  end-page: 15
  article-title: Computing the cumulative distribution function of the Kolmogorov–Smirnov statistic
  publication-title: Computational Statistics & Data Analysis
– year: 2012
– volume: 610
  year: 2022
  article-title: Deep convolutional generative adversarial networks for modeling complex hydrological structures in Monte‐Carlo simulation
  publication-title: Journal of Hydrology
– volume: 53
  start-page: 1413
  issue: 7
  year: 2021
  end-page: 1444
  article-title: GANSim: Conditional facies simulation using an improved progressive growing of generative adversarial networks (GANs)
  publication-title: Mathematical Geosciences
– volume: 67
  start-page: 1
  year: 2015
  end-page: 11
  article-title: A simple and efficient method for global sensitivity analysis based on cumulative distribution functions
  publication-title: Environmental Modelling & Software
– start-page: 2287
  year: 2021
  end-page: 2296
– volume: 22
  start-page: 5485
  issue: 10
  year: 2018
  end-page: 5508
  article-title: Contributions to uncertainty related to hydrostratigraphic modeling using multiple‐point statistics
  publication-title: Hydrology and Earth System Sciences
– volume: 60
  issue: 1
  year: 2024
  article-title: Characterization of subsurface hydrogeological structures with convolutional conditional neural processes on limited training data
  publication-title: Water Resources Research
– volume: 54
  start-page: 831
  issue: 5
  year: 2022
  end-page: 855
  article-title: Application of Bayesian generative adversarial networks to geological facies modeling
  publication-title: Mathematical Geosciences
– year: 2023
– volume: 125
  issue: 4
  year: 2020
  article-title: Seismic P wave velocity model from 3‐D surface and borehole seismic data at the Alpine Fault DFDP‐2 drill site (Whataroa, New Zealand)
  publication-title: Journal of Geophysical Research: Solid Earth
– volume: 157
  year: 2021
  article-title: Hybrid parallel framework for multiple‐point geostatistics on Tianhe‐2: A robust solution for large‐scale simulation
  publication-title: Computers & Geosciences
– volume: 3
  start-page: 658
  issue: 8
  year: 2020
  end-page: 666
  article-title: Hydrological limits to carbon capture and storage
  publication-title: Nature Sustainability
– volume: 60
  start-page: 1
  year: 2022
  end-page: 19
  article-title: An open‐source package for deep‐learning‐based seismic facies classification: Benchmarking experiments on the SEG 2020 open data
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 110
  start-page: 387
  year: 2017
  end-page: 405
  article-title: Inversion using a new low‐dimensional representation of complex binary geological media based on a deep neural network
  publication-title: Advances in Water Resources
– volume: 15
  start-page: 367
  issue: 3
  year: 2024
  end-page: 386
  article-title: Comparison of surface‐wave techniques to estimate S‐and P‐wave velocity models from active seismic data
  publication-title: Solid Earth
– start-page: 1125
  year: 2017
  end-page: 1134
– volume: 39
  start-page: 2772
  issue: 9
  year: 2020
  end-page: 2781
  article-title: Hi‐net: Hybrid‐fusion network for multi‐modal MR image synthesis
  publication-title: IEEE Transactions on Medical Imaging
– volume: 24
  start-page: 1673
  issue: 4
  year: 2020
  end-page: 1692
  article-title: Generative adversarial network as a stochastic subsurface model reconstruction
  publication-title: Computational Geosciences
– volume: 47
  issue: 17
  year: 2020
  article-title: Automated seismic source characterization using deep graph neural networks
  publication-title: Geophysical Research Letters
– ident: e_1_2_8_18_1
  doi: 10.1016/s0167‐9473(99)00069‐9
– ident: e_1_2_8_38_1
  doi: 10.1016/j.advwatres.2017.09.029
– ident: e_1_2_8_52_1
  doi: 10.1109/CVPR.2019.00835
– ident: e_1_2_8_60_1
  doi: 10.1007/s11004‐021‐09934‐0
– ident: e_1_2_8_67_1
  doi: 10.1029/2020gl088690
– ident: e_1_2_8_20_1
  doi: 10.1007/s11004‐022‐09994‐w
– ident: e_1_2_8_23_1
  doi: 10.1145/3422622
– ident: e_1_2_8_71_1
  doi: 10.1016/j.jrmge.2015.07.004
– ident: e_1_2_8_5_1
  doi: 10.1126/science.aau0323
– ident: e_1_2_8_32_1
  doi: 10.1049/el:20080522
– ident: e_1_2_8_77_1
  doi: 10.1029/2022wr032610
– ident: e_1_2_8_29_1
  doi: 10.1038/s41558‐021‐01263‐8
– volume-title: Adam: A method for stochastic optimization
  year: 2015
  ident: e_1_2_8_37_1
– ident: e_1_2_8_19_1
  doi: 10.1029/98jb02128
– volume-title: 25th Annual Report, Stanford Center for Reservoir Forecasting
  year: 2012
  ident: e_1_2_8_40_1
– ident: e_1_2_8_47_1
  doi: 10.1029/2019wr025787
– ident: e_1_2_8_65_1
  doi: 10.1190/1.1440639
– ident: e_1_2_8_11_1
  doi: 10.1016/j.enggeo.2023.107332
– ident: e_1_2_8_6_1
  doi: 10.1109/tgrs.2022.3144666
– ident: e_1_2_8_24_1
  doi: 10.1111/1365‐2478.12428
– ident: e_1_2_8_42_1
  doi: 10.1016/j.cageo.2021.104762
– ident: e_1_2_8_78_1
  doi: 10.1109/tmi.2020.2975344
– ident: e_1_2_8_12_1
  doi: 10.1002/2016gl070348
– ident: e_1_2_8_8_1
  doi: 10.1016/j.jhydrol.2022.127970
– ident: e_1_2_8_64_1
  doi: 10.1016/j.cma.2020.113636
– ident: e_1_2_8_31_1
  doi: 10.1016/j.cageo.2022.105290
– ident: e_1_2_8_72_1
  doi: 10.1029/2021gl095823
– ident: e_1_2_8_51_1
  doi: 10.1029/2021jb023689
– ident: e_1_2_8_63_1
  doi: 10.1016/j.enggeo.2021.106127
– ident: e_1_2_8_4_1
  doi: 10.5194/hess‐22‐5485‐2018
– ident: e_1_2_8_61_1
  doi: 10.1029/2021wr031865
– ident: e_1_2_8_33_1
  doi: 10.1109/CVPR.2017.632
– ident: e_1_2_8_41_1
  doi: 10.1029/2022jb026310
– ident: e_1_2_8_57_1
  doi: 10.1016/j.enggeo.2021.106235
– ident: e_1_2_8_16_1
  doi: 10.1016/j.cageo.2021.104923
– ident: e_1_2_8_39_1
  doi: 10.1029/2019jb018519
– ident: e_1_2_8_35_1
  doi: 10.1029/2018wr024581
– ident: e_1_2_8_14_1
  doi: 10.1029/2022wr033161
– ident: e_1_2_8_3_1
  doi: 10.1007/s11004‐022‐10003‐3
– ident: e_1_2_8_36_1
  doi: 10.5194/se‐15‐367‐2024
– ident: e_1_2_8_50_1
  doi: 10.1016/j.envsoft.2015.01.004
– ident: e_1_2_8_76_1
  doi: 10.1016/j.enggeo.2023.107255
– ident: e_1_2_8_27_1
  doi: 10.1109/tgrs.2022.3183080
– ident: e_1_2_8_34_1
  doi: 10.1016/j.cageo.2022.105280
– ident: e_1_2_8_62_1
  doi: 10.1023/a:1014009426274
– ident: e_1_2_8_26_1
  doi: 10.1029/2023wr035408
– ident: e_1_2_8_43_1
  doi: 10.1029/2021jb022581
– ident: e_1_2_8_55_1
  doi: 10.1038/s41893‐020‐0532‐7
– ident: e_1_2_8_9_1
  doi: 10.1016/j.cageo.2019.104404
– ident: e_1_2_8_53_1
  doi: 10.1016/j.advwatres.2011.12.001
– ident: e_1_2_8_13_1
  doi: 10.5281/zenodo.8260600
– ident: e_1_2_8_48_1
  doi: 10.1109/tgrs.2022.3203606
– ident: e_1_2_8_7_1
  doi: 10.3389/frwa.2020.00005
– ident: e_1_2_8_58_1
  doi: 10.1038/s41467‐019‐13793‐z
– start-page: 2287
  volume-title: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition
  year: 2021
  ident: e_1_2_8_54_1
– ident: e_1_2_8_44_1
  doi: 10.1029/2008wr007621
– ident: e_1_2_8_22_1
  doi: 10.1016/j.enggeo.2021.106348
– ident: e_1_2_8_49_1
  doi: 10.1016/j.jappgeo.2018.09.037
– ident: e_1_2_8_10_1
  doi: 10.5194/hess‐22‐6547‐2018
– ident: e_1_2_8_68_1
  doi: 10.1109/tmm.2015.2476655
– ident: e_1_2_8_30_1
  doi: 10.1109/ICPR.2010.579
– ident: e_1_2_8_73_1
  doi: 10.1016/j.earscirev.2023.104370
– ident: e_1_2_8_56_1
  doi: 10.1002/9781119325888
– ident: e_1_2_8_69_1
  doi: 10.3390/rs13234860
– ident: e_1_2_8_25_1
  doi: 10.5281/zenodo.8279310
– ident: e_1_2_8_17_1
  doi: 10.1029/2023wr035932
– ident: e_1_2_8_59_1
  doi: 10.1007/s11004‐016‐9667‐5
– ident: e_1_2_8_70_1
  doi: 10.1007/s10596‐022‐10152‐8
– ident: e_1_2_8_74_1
  doi: 10.1016/j.jappgeo.2015.12.005
– ident: e_1_2_8_2_1
  doi: 10.1007/s10596‐020‐09978‐x
– ident: e_1_2_8_66_1
  doi: 10.1007/bf02288916
– ident: e_1_2_8_75_1
  doi: 10.1007/s12182‐019‐0328‐4
– ident: e_1_2_8_45_1
  doi: 10.1007/978-94-015-6844-9_2
– ident: e_1_2_8_46_1
  doi: 10.1103/physreve.96.043309
– ident: e_1_2_8_21_1
  doi: 10.1016/j.enggeo.2020.105857
– ident: e_1_2_8_15_1
  doi: 10.1016/j.jhydrol.2023.129498
– ident: e_1_2_8_28_1
  doi: 10.1002/2014wr016460
SSID ssj0014567
Score 2.5586495
Snippet Accurately inferring realistic subsurface structures poses a considerable challenge due to the impact of morphology on flow and transport behaviors....
Abstract Accurately inferring realistic subsurface structures poses a considerable challenge due to the impact of morphology on flow and transport behaviors....
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms deep learning
Geology
geophysics
hydrogeological modeling
Hydrogeology
multiple data fusion
Neural networks
Observational learning
Parameterization
Remote sensing
Structures
subsurface characterization
water
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access (WRLC)
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELZaemgvCPpQUyhypfbURs3DdpIjXVihSqBqKVpukccPqESTah-H9sRP4DfyS5hJvNFyoBK3KB5Llscz_uyZ-czYx0zL1MhcxU74MhamUrE2iYwBRAqSUsczKk4-PlFHZ-L7uTwPF25UC9PzQwwXbmQZnb8mA9cwD2QDxJGJp3YxnfQMc0_ZM6qupZS-TPwYoggIDopVhJmQTkh8x_5f13vf25I65v57cHMdtHa7zniLbQa4yPd7_W6zJ655yZ6vqonn-B1eMb_8-4pdjQb25X-4I3FyCsuZ18bx044mdolnaz6etb85Bey5biw_RTfMD_RC8-mvxSU_DvmFt9c3o5ai2ag2Pl7SlRonHg8cy0mfOP6anY0Pf46O4vCaQqzRGVaxk06WHjLw4JV1WQlo387TecVWYCU2-AQSAGN9qi3kMhfoKVOncpOqBPI3bKNpG_eWcakNdpUIH7QTzkoA64h3rcgMtpRFxD6vJrQ2gWqcXry4qruQd1bV69MfsU-D9J-eYuMBuW-km0GGiLG7H-3sog52Viuhcl-5tNC-EJDIUoEulDJVApWzaRqx3ZVm62Ct8zrHgzpCV_ReEfswNKOdUfBEN65dkgwKIHqTecS-dCviv4Otp5PRJCtkUb17nPgOe0ENfbnjLtvA5eHeI-5ZwF63uO8AeMr6Ow
  priority: 102
  providerName: Wiley-Blackwell
Title Characterizing Subsurface Structures From Hard and Soft Data With Multiple‐Condition Fusion Neural Network
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024WR038170
https://www.proquest.com/docview/3133054257
https://www.proquest.com/docview/3154243953
https://doaj.org/article/6463f9e17af74b0586ba766c90b9ed11
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELagF7iglh8RaCsjwQkiEsd24mNZWFVIrdCWanuLPP5RK5UsancP5cQj8Iw8SWcSZ7U9ABdu0Xo2GtnjmW8y48-MvRZWlU5VOg8yNrl0RufWFSoHkCUoah0XdDj56FgfnsrPZ-ps46ov6gkb6IGHiXuvpa6iCWVtYy2hUI0GW2vtTAEm-OFUL8a8MZlK9QOEBfVYWyaMk1reC2Eo25fz2cBMdycY9Zz9d4DmJlzt4810mz1KQJEfDArusHuhe8wejOeIr_E53V9-fvOEXU7WvMs_MBZxcgerq2hd4Cc9QewKs2o-vVp841Sq57bz_AQdMP9ol5bPL5bn_Ch1Fv7--WuyoDo2LhifruhjGicGD9TleGgZf8pOp5--Tg7zdI9CbtENmjyooJoIAiJE7YNoAHd2iJSpeANe4UAsoABwPpbWQ6UqiT6yDLpypS6gesa2ukUXnjOurMO_KgQONsjgFYAPxLhWC4cjTZ2xt-OEti6RjNNdF5dtX-wWpt2c_oy9WUt_H8g1_iD3gdZmLUOU2P0PaChtMpT2X4aSsd1xZdu0T6_bClN0BK3otzL2aj2MO4zKJrYLixXJoADiNlVl7F1vEX9Vtp3PJjNRq9q8-B9qv2QP6e3D8cddtoVGE_YQBy1hn90X8st-b_i3hgACqQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKOZQL4leEFjASPUFE4thOcuAAW1Zb2l2hbavtLdiOTZHaBO2PUDnxCLwJ78STMJM40fYAEofeongSWfbM-LNn_A0hL5gSsRGJDC13WchNLkNlIhFqzWMtMHWc4eXk8USOTviHU3G6QX51d2Fafoj-wA0to_HXaOB4IO3ZBpAkE7btfDZtKeZ8VuWBvfwGe7bFm_09mOBdxobvjwej0JcVCBV4hTy0worMaaaddrK0LNOg6NYhcC9zXQpocJGOtDali1WpE5FwcBmxlYmJZaQT-O8NcpNLlmLJBMY_9mELQCNpF9JGaOUz7aG_r9d7e2UNbEoFXMG36yi5WeaGd8htj0_p21ah7pINW90jW9315QU8-7LpZ5f3yfmgp3v-DksgRS-0mjtlLD1qeGlXsJmnw3l9QTFDgKqqpEfg9-meWio6-7I8o2Of0Pj7x89BjeFz0BM6XOEZHkXiEOjLpM1Uf0BOrmWcH5LNqq7sI0KFMvCpALyiLLel0Lq0SPSWMgMtWRqQl92AFsZzm2OJjfOiibGzvFgf_oDs9tJfW06Pv8i9w7npZZCJu3lRzz8X3rALyWXichunyqVcRyKTWqVSmjzSuS3jOCA73cwW3j0siiROwM-iuwzI874ZDBujNaqy9QplQADgokgC8qrRiH92tphNB1OWijR__H_iz8jW6Hh8WBzuTw62yS0Uau9a7pBNUBX7BEDXUj9tFJ2ST9dtWX8AKwk5mA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKkYAL4lcEChiJniAicWwnOXCAXaKW0lW1pdregh3bFKkk1f4IlROPwJPwUDwJM4kTbQ8gcegtiieRZc-MP3tmPhPynCkRVyKRoeUuC3mVy1BVkQi15rEWmDrOsDh5fyJ3jvj7Y3G8QX71tTAdP8Rw4IaW0fprNPAz4zzZAHJkwq6dz6Ydw5xPqtyz599gy7Z4vTuG-d1mrHj3cbQT-lsFQgVOIQ-tsCJzmmmnnTSWZRr03DrE7SbXRkCDi3SkdWVcrIxORMLBY8RWJlUsI53Af6-QqxhfxBQyxg-GqAWAkbSPaCOy8on20N9X6729sAS2NwVcgLfrILld5Ypb5KaHp_RNp0-3yYat75DrffXyAp79rekn53fJ6Whge_4OKyBFJ7SaO1VZetjS0q5gL0-LefOVYoIAVbWhh-D26VgtFZ19WZ7QfZ_P-PvHz1GD0XNQE1qs8AiPIm8I9GXSJarfI0eXMs73yWbd1PYBoUJV8KkAuKIst0ZobSzyvKWsgpYsDciLfkDLylOb4w0bp2UbYmd5uT78AdkepM86So-_yL3FuRlkkIi7fdHMP5ferkvJZeJyG6fKpVxHIpNapVJWeaRza-I4IFv9zJbeOyzKJE7AzaK3DMizoRnsGoM1qrbNCmVAANCiSALystWIf3a2nE1HU5aKNH_4f-JPybWDcVF-2J3sPSI3UKartNwim6Ap9jFArqV-0uo5JZ8u27D-AAhSOMo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterizing+Subsurface+Structures+From+Hard+and+Soft+Data+With+Multiple%E2%80%90Condition+Fusion+Neural+Network&rft.jtitle=Water+resources+research&rft.au=Cui%2C+Zhesi&rft.au=Chen%2C+Qiyu&rft.au=Luo%2C+Jian&rft.au=Ma%2C+Xiaogang&rft.date=2024-11-01&rft.issn=0043-1397&rft.eissn=1944-7973&rft.volume=60&rft.issue=11&rft_id=info:doi/10.1029%2F2024WR038170&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2024WR038170
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1397&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1397&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1397&client=summon