A Multi‐Phase Mass Flow Model
Geomorphic mass flows are often complex in terms of material composition and its evolution in space and time. The simulation of those hazardous phenomena would strongly benefit from a multi‐phase model, considering the motion and—importantly—interaction of phases characterized by different physical...
Saved in:
Published in | Journal of geophysical research. Earth surface Vol. 124; no. 12; pp. 2920 - 2942 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
01.12.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Geomorphic mass flows are often complex in terms of material composition and its evolution in space and time. The simulation of those hazardous phenomena would strongly benefit from a multi‐phase model, considering the motion and—importantly—interaction of phases characterized by different physical aspects including densities, frictions, viscosities, fractions, and their mechanical responses. However, such a genuine multi‐phase model is still lacking. Here, we present a first‐ever, multi‐mechanical, multi‐phase mass flow model composed of three different phases: the coarse solid fraction, fine‐solid fraction, and viscous fluid. The coarse solid component, called solid, represents boulders, cobbles, gravels, or blocks of ice. Fine‐solid represents fine particles and sand, whereas water and very fine particles, including colloids, silt, and clay, constitute the viscous fluid component in the mixture. The involved materials display distinct mechanical responses and dynamic behaviors. Therefore, the solid, fine‐solid, and fluid phases are described by Coulomb‐plastic, shear‐ and pressure‐dependent plasticity‐dominated viscoplastic, and viscosity‐dominated viscoplastic rheologies. They are supposed to best represent those materials. The new model is flexible and addresses some long‐standing issues of multi‐phase mass flows on how to reliably describe the flow dynamics, runout, and deposition morphology of such type of phenomena. With reference to some benchmark simulations, the essence of the model and its applicability are discussed.
Key Points
We introduce a new multi‐mechanical, multi‐phase model accounting for the complexity of geomorphic mass flows
Solid, fine‐solid, and fluid fractions can be considered separately, allowing to simulate a broad range of possible material compositions
Benchmark tests on generic landscapes yield plausible results indicating the potential use of the new model for complex real events |
---|---|
AbstractList | Geomorphic mass flows are often complex in terms of material composition and its evolution in space and time. The simulation of those hazardous phenomena would strongly benefit from a multi‐phase model, considering the motion and—importantly—interaction of phases characterized by different physical aspects including densities, frictions, viscosities, fractions, and their mechanical responses. However, such a genuine multi‐phase model is still lacking. Here, we present a first‐ever, multi‐mechanical, multi‐phase mass flow model composed of three different phases: the coarse solid fraction, fine‐solid fraction, and viscous fluid. The coarse solid component, called solid, represents boulders, cobbles, gravels, or blocks of ice. Fine‐solid represents fine particles and sand, whereas water and very fine particles, including colloids, silt, and clay, constitute the viscous fluid component in the mixture. The involved materials display distinct mechanical responses and dynamic behaviors. Therefore, the solid, fine‐solid, and fluid phases are described by Coulomb‐plastic, shear‐ and pressure‐dependent plasticity‐dominated viscoplastic, and viscosity‐dominated viscoplastic rheologies. They are supposed to best represent those materials. The new model is flexible and addresses some long‐standing issues of multi‐phase mass flows on how to reliably describe the flow dynamics, runout, and deposition morphology of such type of phenomena. With reference to some benchmark simulations, the essence of the model and its applicability are discussed.
Key Points
We introduce a new multi‐mechanical, multi‐phase model accounting for the complexity of geomorphic mass flows
Solid, fine‐solid, and fluid fractions can be considered separately, allowing to simulate a broad range of possible material compositions
Benchmark tests on generic landscapes yield plausible results indicating the potential use of the new model for complex real events |
Author | Mergili, Martin Pudasaini, Shiva P. |
Author_xml | – sequence: 1 givenname: Shiva P. orcidid: 0000-0002-6741-0827 surname: Pudasaini fullname: Pudasaini, Shiva P. email: pudasaini@geo.uni-bonn.de organization: University of Bonn – sequence: 2 givenname: Martin orcidid: 0000-0001-5085-4846 surname: Mergili fullname: Mergili, Martin organization: University of Vienna |
BookMark | eNpNj81KAzEUhYNUsNbu3DsvMHrvzUwyWZbiVEsHRXQd0vzgSOxIo5TufASf0Scxoohncw7f4sB3zEabYeMZO0U4RyB1QYBq2QLUBNUBGxMKVSpAHP1t4EdsmtIT5DQZIY3Z2azo3uJr__n-cftoki86k1LRxmFXdIPz8YQdBhOTn_72hD20l_fzq3J1s7iez1alqYSkUgRBaCXxxgVsaqwU99Y0mAkPwgdTIdTBBWpwbZ3M06Hnxkrn1jJYzyeM__zu-uj3-mXbP5vtXiPobzn9X04vF3ctYeb8C8qKRC4 |
CitedBy_id | crossref_primary_10_1016_j_enggeo_2022_106917 crossref_primary_10_1155_2022_2864271 crossref_primary_10_1063_5_0046670 crossref_primary_10_3390_w15030424 crossref_primary_10_1007_s00445_020_01411_6 crossref_primary_10_1016_j_geomorph_2024_109110 crossref_primary_10_1016_j_advwatres_2024_104691 crossref_primary_10_1016_j_cageo_2020_104640 crossref_primary_10_1016_j_enggeo_2021_106072 crossref_primary_10_1007_s10346_023_02146_z crossref_primary_10_1093_gji_ggac482 crossref_primary_10_1016_j_ijmultiphaseflow_2020_103292 crossref_primary_10_1007_s10346_021_01690_w crossref_primary_10_1016_j_sedgeo_2025_106825 crossref_primary_10_2113_EEG_D_20_00110 crossref_primary_10_1016_j_ijnonlinmec_2024_104860 crossref_primary_10_1016_j_enggeo_2025_107959 crossref_primary_10_3390_w16202992 crossref_primary_10_1007_s10064_023_03480_1 crossref_primary_10_1007_s10346_025_02456_4 crossref_primary_10_1029_2024GL109768 crossref_primary_10_1061_JHEND8_HYENG_13736 crossref_primary_10_1007_s10665_020_10066_3 crossref_primary_10_1016_j_coastaleng_2019_103623 crossref_primary_10_1016_j_euromechflu_2022_10_003 crossref_primary_10_1029_2024JF007904 crossref_primary_10_1007_s10064_024_03790_y crossref_primary_10_1007_s10346_024_02321_w crossref_primary_10_1016_j_enggeo_2024_107693 crossref_primary_10_1016_j_enggeo_2021_106188 crossref_primary_10_1007_s10346_022_01897_5 crossref_primary_10_1007_s40571_023_00699_3 crossref_primary_10_1063_5_0230878 crossref_primary_10_1080_19475705_2024_2432365 crossref_primary_10_1016_j_enggeo_2023_107186 crossref_primary_10_1142_S1793962322500556 crossref_primary_10_1016_j_enggeo_2024_107901 crossref_primary_10_1029_2022EA002590 crossref_primary_10_1016_j_enggeo_2020_105856 crossref_primary_10_1002_esp_5881 crossref_primary_10_3390_geosciences13060178 crossref_primary_10_1680_jgeot_22_00135 crossref_primary_10_5194_nhess_21_3015_2021 crossref_primary_10_3390_w17050695 crossref_primary_10_1063_5_0256049 crossref_primary_10_1007_s10346_022_01901_y crossref_primary_10_1016_j_euromechflu_2022_02_004 crossref_primary_10_1016_j_jfluidstructs_2020_103162 crossref_primary_10_1016_j_geomorph_2021_107664 crossref_primary_10_5194_esurf_10_165_2022 crossref_primary_10_1016_j_ijnonlinmec_2020_103638 crossref_primary_10_1007_s12650_020_00628_z crossref_primary_10_1007_s10346_024_02424_4 crossref_primary_10_1007_s11069_022_05376_x crossref_primary_10_1016_j_ijmultiphaseflow_2020_103416 crossref_primary_10_1007_s10346_022_01977_6 crossref_primary_10_1038_s41467_021_26959_5 crossref_primary_10_1016_j_catena_2024_108308 crossref_primary_10_1016_j_enggeo_2022_106798 crossref_primary_10_1051_e3sconf_202341502022 crossref_primary_10_1007_s10346_021_01804_4 crossref_primary_10_1016_j_enggeo_2019_105440 crossref_primary_10_1016_j_enggeo_2022_106797 crossref_primary_10_1140_epjp_s13360_024_04908_7 crossref_primary_10_5194_nhess_22_3765_2022 crossref_primary_10_1016_j_enggeo_2021_106154 crossref_primary_10_1007_s10706_023_02450_4 crossref_primary_10_1016_j_enggeo_2020_105877 crossref_primary_10_5194_gmd_17_781_2024 crossref_primary_10_1017_jfm_2021_348 crossref_primary_10_3390_w16091285 crossref_primary_10_1007_s10346_025_02484_0 crossref_primary_10_1007_s10346_024_02221_z crossref_primary_10_1016_j_enggeo_2025_107995 crossref_primary_10_1016_j_enggeo_2021_106384 crossref_primary_10_1007_s10346_022_01989_2 crossref_primary_10_1016_j_ocemod_2021_101769 crossref_primary_10_1007_s10346_023_02159_8 crossref_primary_10_1007_s10346_020_01478_4 crossref_primary_10_1016_j_enggeo_2025_108043 crossref_primary_10_1007_s10346_023_02174_9 crossref_primary_10_5194_hess_24_93_2020 crossref_primary_10_1002_geot_201900075 crossref_primary_10_1063_5_0234639 crossref_primary_10_21105_joss_06079 crossref_primary_10_1007_s10346_023_02151_2 crossref_primary_10_1007_s40098_024_00988_5 crossref_primary_10_3390_geosciences13120378 crossref_primary_10_1063_5_0211644 crossref_primary_10_3390_app14020564 crossref_primary_10_1007_s11831_024_10198_0 crossref_primary_10_1126_science_ads2659 crossref_primary_10_1002_nag_3814 crossref_primary_10_1016_j_jcp_2024_112975 crossref_primary_10_1080_00288306_2020_1824999 crossref_primary_10_1002_esp_5841 crossref_primary_10_1016_j_oceaneng_2022_111152 crossref_primary_10_1016_j_jhydrol_2023_129465 crossref_primary_10_1002_esp_4870 crossref_primary_10_1016_j_scitotenv_2021_151660 crossref_primary_10_1016_j_earscirev_2022_104135 crossref_primary_10_1029_2023WR036914 crossref_primary_10_1007_s11629_021_7209_1 crossref_primary_10_2139_ssrn_4057017 crossref_primary_10_1007_s10346_023_02081_z crossref_primary_10_1007_s10346_019_01333_1 crossref_primary_10_1016_j_enggeo_2020_105771 crossref_primary_10_3389_feart_2021_628652 crossref_primary_10_5194_tc_17_591_2023 crossref_primary_10_1016_j_enggeo_2022_106546 crossref_primary_10_1016_j_ijnonlinmec_2023_104349 crossref_primary_10_5194_se_15_437_2024 crossref_primary_10_1016_j_enggeo_2022_106783 crossref_primary_10_1016_j_enggeo_2023_107015 crossref_primary_10_1063_5_0241151 crossref_primary_10_3390_app10186501 crossref_primary_10_1029_2022JF006870 crossref_primary_10_1016_j_enggeo_2024_107600 crossref_primary_10_1007_s10346_021_01670_0 crossref_primary_10_1016_j_enggeo_2024_107722 crossref_primary_10_1016_j_coldregions_2024_104123 crossref_primary_10_1016_j_euromechflu_2024_12_008 crossref_primary_10_1016_j_compgeo_2024_106581 crossref_primary_10_1007_s10064_023_03205_4 crossref_primary_10_1016_j_scitotenv_2023_163262 crossref_primary_10_1051_e3sconf_202341501013 crossref_primary_10_3389_feart_2022_908078 crossref_primary_10_1007_s10346_023_02126_3 crossref_primary_10_1038_s44304_025_00059_6 crossref_primary_10_5194_nhess_21_3539_2021 crossref_primary_10_3390_app12063093 crossref_primary_10_1016_j_geomorph_2022_108550 crossref_primary_10_3390_geosciences12030134 crossref_primary_10_5194_nhess_22_3041_2022 crossref_primary_10_1016_j_enggeo_2023_107314 crossref_primary_10_1016_j_geomorph_2021_107960 crossref_primary_10_1016_j_enggeo_2021_106343 crossref_primary_10_1016_j_enggeo_2022_106763 crossref_primary_10_1080_1064119X_2021_2020942 crossref_primary_10_3390_su13147955 crossref_primary_10_1016_j_earscirev_2024_104948 crossref_primary_10_1007_s00603_020_02180_6 crossref_primary_10_3390_rs15215256 crossref_primary_10_1080_19475705_2024_2373112 crossref_primary_10_1016_j_enggeo_2019_105429 crossref_primary_10_1007_s11440_022_01653_y crossref_primary_10_1016_j_enggeo_2021_106457 crossref_primary_10_1007_s11440_021_01296_5 crossref_primary_10_3390_app132312610 crossref_primary_10_1016_j_envsoft_2025_106366 crossref_primary_10_24850_j_tyca_16_4_10 crossref_primary_10_1007_s10064_024_03983_5 crossref_primary_10_1016_j_compgeo_2024_106210 crossref_primary_10_1109_JPHOT_2023_3281670 crossref_primary_10_1029_2020JF005657 crossref_primary_10_3390_rs15194691 crossref_primary_10_1016_j_icarus_2021_114850 crossref_primary_10_5194_esurf_12_219_2024 crossref_primary_10_1029_2022JF006826 crossref_primary_10_1016_j_enggeo_2022_106957 crossref_primary_10_1016_j_enggeo_2024_107804 crossref_primary_10_1007_s10346_020_01568_3 crossref_primary_10_1029_2023WR036887 crossref_primary_10_1016_j_compgeo_2025_107118 crossref_primary_10_5194_gmd_14_1841_2021 crossref_primary_10_5194_tc_15_3159_2021 crossref_primary_10_1016_j_ijsrc_2022_09_005 crossref_primary_10_1029_2022JF006712 crossref_primary_10_3390_app15010357 crossref_primary_10_1016_j_enggeo_2020_105581 crossref_primary_10_1111_1755_6724_15207 crossref_primary_10_1007_s10346_024_02358_x crossref_primary_10_1061__ASCE_GT_1943_5606_0002932 crossref_primary_10_2110_jsr_2020_020 crossref_primary_10_3390_geosciences10110424 crossref_primary_10_3390_geotechnics2030025 crossref_primary_10_5194_nhess_20_505_2020 crossref_primary_10_1126_science_abh4455 crossref_primary_10_1029_2021JF006245 crossref_primary_10_1007_s11069_022_05669_1 crossref_primary_10_3390_w17030406 crossref_primary_10_1016_j_compgeo_2025_107105 crossref_primary_10_1016_j_powtec_2021_03_053 crossref_primary_10_5194_esurf_10_775_2022 crossref_primary_10_1029_2021WR030688 crossref_primary_10_5194_gmd_15_2423_2022 crossref_primary_10_1007_s10064_022_02871_0 crossref_primary_10_5194_nhess_22_1627_2022 crossref_primary_10_1016_j_geomorph_2020_107431 crossref_primary_10_1016_j_geomorph_2021_107992 crossref_primary_10_1002_esp_5687 crossref_primary_10_1080_00221686_2020_1744746 crossref_primary_10_3390_w16111594 crossref_primary_10_1016_j_ijnonlinmec_2022_104204 crossref_primary_10_1029_2021JF006587 |
ContentType | Journal Article |
Copyright | 2019. The Authors. |
Copyright_xml | – notice: 2019. The Authors. |
DBID | 24P |
DOI | 10.1029/2019JF005204 |
DatabaseName | Wiley Online Library Open Access |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2169-9011 |
EndPage | 2942 |
ExternalDocumentID | JGRF21102 |
Genre | article |
GrantInformation_xml | – fundername: German Research Foundation (DFG) funderid: PU 386/5-1 |
GroupedDBID | 05W 0R~ 1OC 24P 31~ 33P 3V. 50Y 52M 702 7XC 8-1 88I 8FE 8FG 8FH 8G5 A00 AAESR AAHHS AAHQN AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABJCF ABJNI ACAHQ ACCFJ ACCZN ACGFS ACGOD ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEQDE AEUYN AEUYR AFBPY AFFPM AFGKR AFKRA AFPWT AFRAH AFWVQ AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ARAPS ASPBG AVWKF AZFZN AZQEC AZVAB BFHJK BGLVJ BMXJE BRXPI CCPQU DPXWK DRFUL DRSTM EBS EJD FEDTE G-S GODZA HGLYW HVGLF HZ~ L6V LATKE LEEKS LITHE LK5 LOXES LUTES LYRES M2P M7R M7S MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- P-X P2W P62 PATMY PCBAR PQQKQ PROAC PTHSS PYCSY R.K RNS ROL SUPJJ WBKPD WIN WXSBR WYJ ~OA ~~A |
ID | FETCH-LOGICAL-a4672-6f621c7238df1851493eca817233f6efa4105fdf281bcd75fdd1e3ac7ddb7fce3 |
IEDL.DBID | 24P |
ISSN | 2169-9003 |
IngestDate | Wed Jan 22 16:34:59 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a4672-6f621c7238df1851493eca817233f6efa4105fdf281bcd75fdd1e3ac7ddb7fce3 |
ORCID | 0000-0002-6741-0827 0000-0001-5085-4846 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2019JF005204 |
PageCount | 23 |
ParticipantIDs | wiley_primary_10_1029_2019JF005204_JGRF21102 |
PublicationCentury | 2000 |
PublicationDate | December 2019 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: December 2019 |
PublicationDecade | 2010 |
PublicationTitle | Journal of geophysical research. Earth surface |
PublicationYear | 2019 |
SSID | ssj0000816912 |
Score | 2.5436141 |
Snippet | Geomorphic mass flows are often complex in terms of material composition and its evolution in space and time. The simulation of those hazardous phenomena would... |
SourceID | wiley |
SourceType | Publisher |
StartPage | 2920 |
SubjectTerms | benchmark test landslide multi‐phase flow numerical model |
Title | A Multi‐Phase Mass Flow Model |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2019JF005204 |
Volume | 124 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aL15EUfHtHjwabPNsjkVcy0KliIXeljzxUFrRFq_-BH-jv8SZ7FLq0VsgIZCEmfnmyzwIuQmKc82sp9w4QUWSoAelkTQ4dD90lCwh3zF6UsOJqKZy2hJumAvT1IdYE24oGVlfo4Bb99EWG8AamWC5TFXmOA6xTXYwuxZr5zMxXnMs2FTC5A9PBgOKpF0b-w5b3G1u8BeaZttS7pO9FhQWg-YVD8hWnB-S60GRs2N_vr7Hr2BrihHg3KKcLT4LbGA2OyKT8uHlfkjbdgbUgjZiVCXFeh6bfIUEVhJcEx697QOC4DypmCxGXKaQGCBJHzQMQy9y63UITicf-THpzBfzeEIKxgFXmb6Em06Cc-GEtxxEKTDfdbqrTsltPk791pSsqPNXMzP15pnr6vG5RP-Pnf1v-TnZxYkmqOOCdJbvq3gJpnnprvL9_wIleINl |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB20HvQiiorf3YNHg22STbrHIq61dkuRFnpbdvOBh7IVqXj1J_gb_SXOZJdSj95yCIEkzLw3k8k8gBurhNC8MEwkpWTSx-gH4yRmtqTwQ7uYe8p3ZGM1mMnhPJ43Oqf0F6buD7FOuJFlBH9NBk4J6abbADXJROhKhmko5JDbsCMV12SZXE7WSRZSlUjCiyfHAaOsXVP8jkvcbS7wl5sGcEkPYL9hhVG_vsZD2HLVEbT7Ufge-_P1PXlFsIkyJLpRulh-RqRgtjiGWfowvR-wRs-AFeiOOFNe8a4hlS_rESYxNhHOFD2kEEJ45XxBJZfeeo5U0liNQ9t1ojDa2lJ748QJtKpl5U4h4gKJVdKL8ai9FEKW0hQCbcly0yl1R53BbdhO_lb3rMjDWzNP8s0958PHl5QCQH7-v-lt2B1Ms1E-eho_X8AeTaorPC6htXr_cFeI06vyOtzFL2idhtE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60gngRRcV3c_BosE2yu82xqGtdbSliobdlNw88lG2Rild_gr_RX-JMdin16C2HEJiEmfnmkW8ArmwsZSIKw6UuFVc-QjsY6YjbksKPxEXCU75jOIoHE5VNo2mTcKO_MDU_xCrhRpoR7DUp-ML6hmyAODLRc-ksDX0cahO2Qr2PmJ3VeJVjoaESOhQ8BS44Je2a3nc84mb9gL_QNPiWdA92G1DI-vUr7sOGqw6g3Wfhd-zP1_f4DX0NGyLOZels_slogNnsECbp_evtgDfjDHiB1kjw2Meia2jIl_XoJTE0kc4UPUQQUvrY-YI6Lr31ApGksQkubdfJwiTWlok3Th5Bq5pX7hiYkIirdC_Cm_ZKSlUqU0hUJStMp0w68QlcB3HyRU1ZkYdSs9D5usx59vCSUvwnTv-3vQ3b47s0f34cPZ3BDu2p-zvOobV8_3AX6KWX5WV4il__A4YD |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Multi%E2%80%90Phase+Mass+Flow+Model&rft.jtitle=Journal+of+geophysical+research.+Earth+surface&rft.au=Pudasaini%2C+Shiva+P.&rft.au=Mergili%2C+Martin&rft.date=2019-12-01&rft.issn=2169-9003&rft.eissn=2169-9011&rft.volume=124&rft.issue=12&rft.spage=2920&rft.epage=2942&rft_id=info:doi/10.1029%2F2019JF005204&rft.externalDBID=10.1029%252F2019JF005204&rft.externalDocID=JGRF21102 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-9003&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-9003&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-9003&client=summon |