A Novel Heat Pulse Method in Determining “Effective” Thermal Properties in Frozen Soil

Accurate and fast measurements of thermal properties are frequently required for characterizing the heat‐water dynamics in frozen soil. Measuring the thermal properties of frozen soil without inducing ice thaw has proven challenging with conventional heat pulse (HP) methods. In this study, based on...

Full description

Saved in:
Bibliographic Details
Published inWater resources research Vol. 60; no. 12
Main Authors Wu, Xiao‐long, Zhao, Ying
Format Journal Article
LanguageEnglish
Published Washington John Wiley & Sons, Inc 01.12.2024
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Accurate and fast measurements of thermal properties are frequently required for characterizing the heat‐water dynamics in frozen soil. Measuring the thermal properties of frozen soil without inducing ice thaw has proven challenging with conventional heat pulse (HP) methods. In this study, based on an Infinite Line Source (ILS) semi‐analytical model that applies a constant temperature lower than the freezing point at the heat source to prevent the initiation of ice thaw in the frozen soil, we propose a novel HP‐based approach to measure thermal properties, applicable at temperatures below or above 0°C. Laboratory experiments and numerical modeling were utilized to validate the applicability of the approach and optimization strategies of the measurement. We found that the proposed HP‐based approach effectively maintained the maximum spatial temperature below the freezing point and therefore estimated the bulk thermal properties of quartz sand and ice contents. An optimized measurement strategy was proposed to monitor the temperature variations 2–4 cm away from the center of the heat probe after 60 s. This progress can largely facilitate the determination of the thermal properties of multi‐phase and ‐component frozen soil such as thermal conductivity, heat flux, and ice content in cold areas across soil science, hydrology, engineering, and climate science. Plain Language Summary Frozen soil thermal properties are essential for understanding the potential impacts of varying temperatures on water and heat exchange within the surface soil and the subsurface environment. The conventional method, using the single pulse heating strategy to measure the thermal properties of frozen soil, has difficulty avoiding the ice‐melt process. Ice melt may lead to biased outputs due to the ice melting around the heating probe. In this study, we proposed a novel method to maintain a constant temperature on the heat source surface to avoid the overheating challenge within the measurement. The mathematical model and the proposed workflow can successfully estimate the bulk soil thermal conductivity, heat flux, and soil ice content in cold regions. Key Points A novel approach has been developed using an Infinite Line Source model to predict frozen soil thermal properties and water/ice contents The proposed method offers distinct advantages for measurements, especially in frozen soil with temperatures near the freezing point Further application is valuable regarding its potential merits in minimizing ice melting in the measurement
AbstractList Accurate and fast measurements of thermal properties are frequently required for characterizing the heat‐water dynamics in frozen soil. Measuring the thermal properties of frozen soil without inducing ice thaw has proven challenging with conventional heat pulse (HP) methods. In this study, based on an Infinite Line Source (ILS) semi‐analytical model that applies a constant temperature lower than the freezing point at the heat source to prevent the initiation of ice thaw in the frozen soil, we propose a novel HP‐based approach to measure thermal properties, applicable at temperatures below or above 0°C. Laboratory experiments and numerical modeling were utilized to validate the applicability of the approach and optimization strategies of the measurement. We found that the proposed HP‐based approach effectively maintained the maximum spatial temperature below the freezing point and therefore estimated the bulk thermal properties of quartz sand and ice contents. An optimized measurement strategy was proposed to monitor the temperature variations 2–4 cm away from the center of the heat probe after 60 s. This progress can largely facilitate the determination of the thermal properties of multi‐phase and ‐component frozen soil such as thermal conductivity, heat flux, and ice content in cold areas across soil science, hydrology, engineering, and climate science. Plain Language Summary Frozen soil thermal properties are essential for understanding the potential impacts of varying temperatures on water and heat exchange within the surface soil and the subsurface environment. The conventional method, using the single pulse heating strategy to measure the thermal properties of frozen soil, has difficulty avoiding the ice‐melt process. Ice melt may lead to biased outputs due to the ice melting around the heating probe. In this study, we proposed a novel method to maintain a constant temperature on the heat source surface to avoid the overheating challenge within the measurement. The mathematical model and the proposed workflow can successfully estimate the bulk soil thermal conductivity, heat flux, and soil ice content in cold regions. Key Points A novel approach has been developed using an Infinite Line Source model to predict frozen soil thermal properties and water/ice contents The proposed method offers distinct advantages for measurements, especially in frozen soil with temperatures near the freezing point Further application is valuable regarding its potential merits in minimizing ice melting in the measurement
Accurate and fast measurements of thermal properties are frequently required for characterizing the heat‐water dynamics in frozen soil. Measuring the thermal properties of frozen soil without inducing ice thaw has proven challenging with conventional heat pulse (HP) methods. In this study, based on an Infinite Line Source (ILS) semi‐analytical model that applies a constant temperature lower than the freezing point at the heat source to prevent the initiation of ice thaw in the frozen soil, we propose a novel HP‐based approach to measure thermal properties, applicable at temperatures below or above 0°C. Laboratory experiments and numerical modeling were utilized to validate the applicability of the approach and optimization strategies of the measurement. We found that the proposed HP‐based approach effectively maintained the maximum spatial temperature below the freezing point and therefore estimated the bulk thermal properties of quartz sand and ice contents. An optimized measurement strategy was proposed to monitor the temperature variations 2–4 cm away from the center of the heat probe after 60 s. This progress can largely facilitate the determination of the thermal properties of multi‐phase and ‐component frozen soil such as thermal conductivity, heat flux, and ice content in cold areas across soil science, hydrology, engineering, and climate science.
Abstract Accurate and fast measurements of thermal properties are frequently required for characterizing the heat‐water dynamics in frozen soil. Measuring the thermal properties of frozen soil without inducing ice thaw has proven challenging with conventional heat pulse (HP) methods. In this study, based on an Infinite Line Source (ILS) semi‐analytical model that applies a constant temperature lower than the freezing point at the heat source to prevent the initiation of ice thaw in the frozen soil, we propose a novel HP‐based approach to measure thermal properties, applicable at temperatures below or above 0°C. Laboratory experiments and numerical modeling were utilized to validate the applicability of the approach and optimization strategies of the measurement. We found that the proposed HP‐based approach effectively maintained the maximum spatial temperature below the freezing point and therefore estimated the bulk thermal properties of quartz sand and ice contents. An optimized measurement strategy was proposed to monitor the temperature variations 2–4 cm away from the center of the heat probe after 60 s. This progress can largely facilitate the determination of the thermal properties of multi‐phase and ‐component frozen soil such as thermal conductivity, heat flux, and ice content in cold areas across soil science, hydrology, engineering, and climate science.
Accurate and fast measurements of thermal properties are frequently required for characterizing the heat‐water dynamics in frozen soil. Measuring the thermal properties of frozen soil without inducing ice thaw has proven challenging with conventional heat pulse (HP) methods. In this study, based on an Infinite Line Source (ILS) semi‐analytical model that applies a constant temperature lower than the freezing point at the heat source to prevent the initiation of ice thaw in the frozen soil, we propose a novel HP‐based approach to measure thermal properties, applicable at temperatures below or above 0°C. Laboratory experiments and numerical modeling were utilized to validate the applicability of the approach and optimization strategies of the measurement. We found that the proposed HP‐based approach effectively maintained the maximum spatial temperature below the freezing point and therefore estimated the bulk thermal properties of quartz sand and ice contents. An optimized measurement strategy was proposed to monitor the temperature variations 2–4 cm away from the center of the heat probe after 60 s. This progress can largely facilitate the determination of the thermal properties of multi‐phase and ‐component frozen soil such as thermal conductivity, heat flux, and ice content in cold areas across soil science, hydrology, engineering, and climate science. Frozen soil thermal properties are essential for understanding the potential impacts of varying temperatures on water and heat exchange within the surface soil and the subsurface environment. The conventional method, using the single pulse heating strategy to measure the thermal properties of frozen soil, has difficulty avoiding the ice‐melt process. Ice melt may lead to biased outputs due to the ice melting around the heating probe. In this study, we proposed a novel method to maintain a constant temperature on the heat source surface to avoid the overheating challenge within the measurement. The mathematical model and the proposed workflow can successfully estimate the bulk soil thermal conductivity, heat flux, and soil ice content in cold regions. A novel approach has been developed using an Infinite Line Source model to predict frozen soil thermal properties and water/ice contents The proposed method offers distinct advantages for measurements, especially in frozen soil with temperatures near the freezing point Further application is valuable regarding its potential merits in minimizing ice melting in the measurement
Author Wu, Xiao‐long
Zhao, Ying
Author_xml – sequence: 1
  givenname: Xiao‐long
  orcidid: 0000-0001-6027-9582
  surname: Wu
  fullname: Wu, Xiao‐long
  organization: Queen's University
– sequence: 2
  givenname: Ying
  orcidid: 0000-0003-0346-5631
  surname: Zhao
  fullname: Zhao, Ying
  email: yzhaosoils@gmail.com
  organization: University of Saskatchewan
BookMark eNp9kc1qVDEUx4NUcDq68wECblx4a77uTbIsY2sLVcu0UHATMvee22bIJGOSaamrPkh9uT6JqaMgBV0dOOf3_5-vXbQTYgCEXlOyRwnT7xlh4mJOuGy5fIYmVAvRSC35DpoQInhDuZYv0G7OS0KoaDs5QV_38ed4DR4fgS34dOMz4E9QruKAXcAfoEBaueDCJX64uz8YR-iLu4aHux_4_KqWrMenKa4hFQf5UXGY4ncI-Cw6_xI9H231e_U7TtHZ4cH57Kg5-fLxeLZ_0ljRSdoMoMeFGjvb21EwQXhPFoprqwE6LUGC0GpkihMFHOigJPQadMs7olhNTdHx1nWIdmnWya1sujXROvMrEdOlsXW63oPR1RC0ZQvBQUhLdWc112LBhoF0sraYordbr3WK3zaQi1m53IP3NkDcZMNp16pWqXrSKXrzBF3GTQp1z0oJJQXRhFSKbak-xZwTjKZ3xRYXQ0nWeUOJeXyc-ftxVfTuiejPVv_A-Ra_cR5u_8uai_lszmSrKf8JHbKpnA
CitedBy_id crossref_primary_10_1007_s10725_024_01270_7
crossref_primary_10_1080_15226514_2025_2454515
crossref_primary_10_1111_sum_70043
crossref_primary_10_1016_j_jsames_2025_105440
crossref_primary_10_1016_j_jsames_2025_105463
crossref_primary_10_1109_JSTARS_2024_3524376
Cites_doi 10.2136/sssaj1994.03615995005800050002x
10.1002/9781118411285
10.1029/2017RG000584
10.1002/saj2.20160
10.1137/0903022
10.1093/jxb/ert044
10.1016/j.agrformet.2019.04.004
10.1016/j.geoderma.2020.114277
10.4141/cjss09120
10.1016/j.jhydrol.2014.08.042
10.1007/s00231‐007‐0357‐1
10.1029/2021jd035445
10.1002/hyp.320
10.1016/j.still.2018.12.026
10.2136/Vzj2012.0053
10.1016/j.geoderma.2020.114694
10.1016/j.coldregions.2010.03.005
10.1016/j.coldregions.2009.05.011
10.2136/sssaj2014.12.0499
10.1201/9781315380476
10.1016/j.coldregions.2018.03.022
10.1029/2017JD028050
10.1016/j.coldregions.2023.104061
10.1002/ppp.2022
10.1201/9780203710968
10.1016/j.advwatres.2013.07.016
10.1002/2016JF003852
10.2136/vzj2014.12.0179
10.1016/j.geoderma.2023.116770
10.1016/j.jconhyd.2023.104219
10.1016/j.coldregions.2014.03.007
10.1007/BF01133567
10.1103/PhysRevB.22.3065
10.5281/zenodo.13323319
10.2136/vzj2012.0057
10.1029/2001WR000930
10.1016/j.coldregions.2020.103060
10.1002/ppp.465
10.1029/2022wr032137
10.1002/2014WR015640
10.1002/2015JD024451
10.1016/j.jhydrol.2024.130802
10.2136/sssaj2007.0283
10.1029/2010WR010085
ContentType Journal Article
Copyright 2024. The Author(s).
2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. The Author(s).
– notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7QH
7QL
7T7
7TG
7U9
7UA
8FD
C1K
F1W
FR3
H94
H96
KL.
KR7
L.G
M7N
P64
7S9
L.6
DOA
DOI 10.1029/2024WR037537
DatabaseName Wiley Online Library Open Access (WRLC)
CrossRef
Aqualine
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Meteorological & Geoastrophysical Abstracts
Virology and AIDS Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
AIDS and Cancer Research Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Virology and AIDS Abstracts
Technology Research Database
Aqualine
Water Resources Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA

CrossRef
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Economics
EISSN 1944-7973
EndPage n/a
ExternalDocumentID oai_doaj_org_article_9e69e9a2b43e47a196a9394b2dd06728
10_1029_2024WR037537
WRCR27591
Genre researchArticle
GrantInformation_xml – fundername: Taishan Scholars Project Foundation
  funderid: tsqn202211185
– fundername: Key Program of the National Natural Science Foundation of China
  funderid: 42320104006
GroupedDBID -~X
..I
.DC
05W
0R~
123
1OB
1OC
24P
31~
33P
3V.
50Y
5VS
6TJ
7WY
7XC
8-1
8CJ
8FE
8FG
8FH
8FL
8G5
8R4
8R5
8WZ
A00
A6W
AAESR
AAHBH
AAHHS
AAIHA
AAIKC
AAMNW
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAYJJ
AAYOK
AAZKR
ABCUV
ABJCF
ABJNI
ABPPZ
ABTAH
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACCMX
ACCZN
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AENEX
AEQDE
AEUYN
AEUYR
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFWVQ
AFZJQ
AIDBO
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
ASPBG
ATCPS
AVWKF
AZFZN
AZQEC
AZVAB
BDRZF
BENPR
BEZIV
BFHJK
BGLVJ
BHPHI
BKSAR
BMXJE
BPHCQ
BRXPI
CCPQU
CS3
D0L
D1J
DCZOG
DDYGU
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
F5P
FEDTE
FRNLG
G-S
GNUQQ
GODZA
GROUPED_ABI_INFORM_COMPLETE
GUQSH
HCIFZ
HVGLF
HZ~
K60
K6~
L6V
LATKE
LEEKS
LITHE
LK5
LOXES
LUTES
LYRES
M0C
M2O
M7R
M7S
MEWTI
MSFUL
MSSTM
MVM
MW2
MXFUL
MXSTM
MY~
O9-
OHT
OK1
P-X
P2P
P2W
PALCI
PATMY
PCBAR
PQBIZ
PQBZA
PQQKQ
PROAC
PTHSS
PYCSY
Q2X
R.K
RIWAO
RJQFR
ROL
SAMSI
SUPJJ
TAE
TN5
TWZ
UQL
VJK
VOH
WBKPD
WXSBR
WYJ
XOL
XSW
YHZ
YV5
ZCG
ZY4
ZZTAW
~02
~KM
~OA
~~A
AAYXX
ADXHL
AETEA
AGQPQ
CITATION
GROUPED_DOAJ
PHGZM
PHGZT
7QH
7QL
7T7
7TG
7U9
7UA
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F1W
FR3
H94
H96
KL.
KR7
L.G
M7N
P64
WIN
7S9
L.6
ID FETCH-LOGICAL-a4671-de9fb8f6acaf42403c0b839a9ee697e7e498f28308e3e1d87ec9e95360828e3
IEDL.DBID DOA
ISSN 0043-1397
IngestDate Wed Aug 27 01:27:13 EDT 2025
Fri Jul 11 00:06:49 EDT 2025
Wed Aug 13 07:26:31 EDT 2025
Tue Jul 01 05:15:49 EDT 2025
Thu Apr 24 22:56:47 EDT 2025
Wed Jan 22 17:13:48 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a4671-de9fb8f6acaf42403c0b839a9ee697e7e498f28308e3e1d87ec9e95360828e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6027-9582
0000-0003-0346-5631
OpenAccessLink https://doaj.org/article/9e69e9a2b43e47a196a9394b2dd06728
PQID 3148740900
PQPubID 105507
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_9e69e9a2b43e47a196a9394b2dd06728
proquest_miscellaneous_3165858897
proquest_journals_3148740900
crossref_citationtrail_10_1029_2024WR037537
crossref_primary_10_1029_2024WR037537
wiley_primary_10_1029_2024WR037537_WRCR27591
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2024
2024-12-00
20241201
2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: December 2024
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Water resources research
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2015; 79
2015; 14
1990; 11
2014; 519
2012
2010
2020; 84
2021; 126
2018; 123
1980; 22
2013; 64
2020; 368
2003; 14
2021; 382
2016; 121
2011; 32
2003; 39
2024; 442
2024
2008; 72
2016; 38
1959
2010; 62
2019; 189
2018; 151
2020; 31
2020; 174
2011; 91
2024; 217
2013; 12
1982; 3
1994; 58
2013; 60
2022; 58
2017
2023; 257
2001; 15
2016
2008; 44
2024; 631
2011; 47
2018; 56
2017; 122
2014; 50
2014; 103
2009; 59
2019; 274
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
Therrien R. (e_1_2_9_30_1) 2010
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_42_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_24_1
Zhang X. (e_1_2_9_43_1) 2016; 38
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_47_1
Zhou Y. (e_1_2_9_49_1) 2011; 32
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 151
  start-page: 188
  year: 2018
  end-page: 195
  article-title: Sensitivity analysis of temperature changes for determining thermal properties of partially frozen soil with a dual probe heat pulse sensor
  publication-title: Cold Regions Science and Technology
– volume: 58
  start-page: 1288
  issue: 5
  year: 1994
  end-page: 1294
  article-title: Measurement of soil thermal properties with a dual‐probe heat‐pulse technique
  publication-title: Soil Science Society of America Journal
– volume: 103
  start-page: 74
  year: 2014
  end-page: 81
  article-title: Freezing and thawing characteristics of frozen soils: Bound water content and hysteresis phenomenon
  publication-title: Cold Regions Science and Technology
– volume: 62
  start-page: 98
  issue: 2–3
  year: 2010
  end-page: 106
  article-title: Coupled water and heat flow in a grass field with aggregated Andisol during soil‐freezing periods
  publication-title: Cold Regions Science and Technology
– volume: 11
  start-page: 353
  issue: 2
  year: 1990
  end-page: 372
  article-title: Thermophysical properties of ice, snow, and sea ice
  publication-title: International Journal of Thermophysics
– volume: 44
  start-page: 1241
  issue: 10
  year: 2008
  end-page: 1246
  article-title: Thermal conductivity of sands
  publication-title: Heat and Mass Transfer
– volume: 442
  year: 2024
  article-title: Optimized measurement of frozen soil thermal properties using a heat‐pulse sensor
  publication-title: Geoderma
– volume: 122
  start-page: 50
  issue: 1
  year: 2017
  end-page: 75
  article-title: Applicability of the ecosystem type approach to model permafrost dynamics across the Alaska North Slope
  publication-title: Journal of Geophysical Research: Earth Surface
– volume: 59
  start-page: 34
  issue: 1
  year: 2009
  end-page: 41
  article-title: Measurement of unfrozen water content and relative permittivity of frozen unsaturated soil using NMR and TDR
  publication-title: Cold Regions Science and Technology
– volume: 22
  start-page: 3065
  issue: 6
  year: 1980
  end-page: 3071
  article-title: Thermal conductivity of ice
  publication-title: Physical Review B
– year: 2024
– volume: 14
  start-page: 343
  issue: 4
  year: 2003
  end-page: 347
  article-title: Determination of frozen soil thermal properties by heated needle probe
  publication-title: Permafrost and Periglacial Processes
– volume: 32
  start-page: 309
  issue: S1
  year: 2011
  end-page: 0313
  article-title: Semi‐analytical solution for temperature field of one‐dimensional soil freezing problem
  publication-title: Rock and Soil Mechanics
– volume: 174
  year: 2020
  article-title: A new thermo‐time domain reflectometry approach to quantify soil ice content at temperatures near the freezing point
  publication-title: Cold Regions Science and Technology
– volume: 31
  start-page: 156
  issue: 1
  year: 2020
  end-page: 171
  article-title: Modeling permafrost changes on the Qinghai‐Tibetan plateau from 1966 to 2100: A case study from two boreholes along the Qinghai‐Tibet engineering corridor
  publication-title: Permafrost and Periglacial Processes
– volume: 274
  start-page: 95
  year: 2019
  end-page: 105
  article-title: A new thermal conductivity model for sandy and peat soils
  publication-title: Agricultural and Forest Meteorology
– volume: 72
  start-page: 1025
  issue: 4
  year: 2008
  end-page: 1032
  article-title: In situ monitoring of soil thermal properties and heat flux during freezing and thawing
  publication-title: Soil Science Society of America Journal
– volume: 56
  start-page: 567
  issue: 4
  year: 2018
  end-page: 620
  article-title: Development and application of the heat pulse method for soil physical measurements
  publication-title: Reviews of Geophysics
– year: 2016
– volume: 60
  start-page: 160
  year: 2013
  end-page: 177
  article-title: The mathematical representation of freezing and thawing processes in variably‐saturated, non‐deformable soils
  publication-title: Advances in Water Resources
– volume: 189
  start-page: 64
  year: 2019
  end-page: 72
  article-title: Thermal properties of sandy and peat soils under unfrozen and frozen conditions
  publication-title: Soil and Tillage Research
– volume: 382
  year: 2021
  article-title: A review and evaluation of 39 thermal conductivity models for frozen soils
  publication-title: Geoderma
– year: 2012
– volume: 91
  start-page: 235
  issue: 2
  year: 2011
  end-page: 246
  article-title: Soil ice content measurement using a heat pulse probe method
  publication-title: Canadian Journal of Soil Science
– volume: 126
  issue: 24
  year: 2021
  article-title: Improving ground heat flux estimation: Considering the effect of freeze/thaw process on the seasonally frozen ground
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 15
  start-page: 3095
  issue: 16
  year: 2001
  end-page: 3111
  article-title: Estimating areal snowmelt infiltration into frozen soils
  publication-title: Hydrological Processes
– volume: 79
  start-page: 1275
  issue: 5
  year: 2015
  end-page: 1288
  article-title: Evaluation of TDR method for quantifying ice melting caused by heat pulse method for better estimating thermal properties of frozen soils
  publication-title: Soil Science Society of America Journal
– volume: 368
  year: 2020
  article-title: Review of algorithms and parameterizations to determine unfrozen water content in frozen soil
  publication-title: Geoderma
– volume: 64
  start-page: 3951
  issue: 13
  year: 2013
  end-page: 3963
  article-title: Measurement of the matric potential of soil water in the rhizosphere
  publication-title: Journal of Experimental Botany
– year: 1959
– volume: 14
  start-page: 1
  issue: 8
  year: 2015
  end-page: 9
  article-title: Determining soil ice contents during freezing and thawing with thermo‐time domain reflectometry
  publication-title: Vadose Zone Journal
– volume: 217
  year: 2024
  article-title: Accuracy evaluation of heat pulse method to determine ice thermal conductivity
  publication-title: Cold Regions Science and Technology
– volume: 121
  start-page: 5259
  issue: 10
  year: 2016
  end-page: 5280
  article-title: Development of an enthalpy based frozen soil model and its validation in a cold region in China
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 84
  start-page: 1519
  issue: 5
  year: 2020
  end-page: 1526
  article-title: Advances in thermo‐time domain reflectometry technique: Measuring ice content in partially frozen soils
  publication-title: Soil Science Society of America Journal
– volume: 519
  start-page: 1328
  year: 2014
  end-page: 1338
  article-title: Soil freezing and thawing processes affected by the different landscape in the middle reaches of the Heihe River Basin, Gansu. China
  publication-title: Journal of Hydrology
– volume: 47
  issue: 5
  year: 2011
  article-title: Evaluation of the heat pulse probe method for determining frozen soil moisture content
  publication-title: Water Resources Research
– volume: 631
  year: 2024
  article-title: Miscellaneous methods for determination of unfrozen water content in frozen soils
  publication-title: Journal of Hydrology
– volume: 12
  start-page: 1
  issue: 1
  year: 2013
  end-page: 11
  article-title: Numerical evaluation of a sensible heat balance method to determine rates of soil freezing and thawing
  publication-title: Vadose Zone Journal
– volume: 58
  issue: 12
  year: 2022
  article-title: A semi‐analytical solution for heat transport in rock with parallel fractures and a heat source in both fracture and matrix
  publication-title: Water Resources Research
– volume: 50
  start-page: 9630
  issue: 12
  year: 2014
  end-page: 9655
  article-title: Simultaneous measurement of unfrozen water content and ice content in frozen soil using gamma ray attenuation and TDR
  publication-title: Water Resources Research
– volume: 12
  issue: 1
  year: 2013
  article-title: Unfrozen water content in representative bentonites of different origin subjected to cyclic freezing and thawing
  publication-title: Vadose Zone Journal
– year: 2017
– start-page: 830
  year: 2010
– volume: 257
  year: 2023
  article-title: Insight into heat dissipation in fractured rock influenced by groundwater influx and heat source configurations using numerical analysis
  publication-title: Journal of Contaminant Hydrology
– volume: 38
  start-page: 1644
  issue: 6
  year: 2016
  end-page: 1657
  article-title: Study of the freezing and thawing features of soil: Current situation and outlook
  publication-title: Journal of Glaciology and Geocryology
– volume: 123
  start-page: 13346
  issue: 23
  year: 2018
  end-page: 13367
  article-title: The improved freeze‐thaw process of a climate‐vegetation model: Calibration and validation tests in the source region of the Yellow River
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 39
  issue: 2
  year: 2003
  article-title: A thermodielectric analyzer to measure the freezing and moisture characteristic of porous media
  publication-title: Water Resources Research
– volume: 3
  start-page: 357
  issue: 3
  year: 1982
  end-page: 366
  article-title: An improved method for numerical inversion of Laplace transforms
  publication-title: SIAM Journal on Scientific and Statistical Computing
– ident: e_1_2_9_4_1
  doi: 10.2136/sssaj1994.03615995005800050002x
– ident: e_1_2_9_12_1
  doi: 10.1002/9781118411285
– ident: e_1_2_9_15_1
  doi: 10.1029/2017RG000584
– ident: e_1_2_9_33_1
  doi: 10.1002/saj2.20160
– ident: e_1_2_9_8_1
  doi: 10.1137/0903022
– ident: e_1_2_9_37_1
  doi: 10.1093/jxb/ert044
– ident: e_1_2_9_47_1
  doi: 10.1016/j.agrformet.2019.04.004
– ident: e_1_2_9_17_1
  doi: 10.1016/j.geoderma.2020.114277
– ident: e_1_2_9_24_1
  doi: 10.4141/cjss09120
– ident: e_1_2_9_42_1
  doi: 10.1016/j.jhydrol.2014.08.042
– ident: e_1_2_9_7_1
  doi: 10.1007/s00231‐007‐0357‐1
– ident: e_1_2_9_35_1
  doi: 10.1029/2021jd035445
– ident: e_1_2_9_11_1
  doi: 10.1002/hyp.320
– ident: e_1_2_9_46_1
  doi: 10.1016/j.still.2018.12.026
– ident: e_1_2_9_19_1
  doi: 10.2136/Vzj2012.0053
– ident: e_1_2_9_16_1
  doi: 10.1016/j.geoderma.2020.114694
– start-page: 830
  volume-title: HydroGeoSphere: A three‐dimensional numerical model describing fully‐integrated subsurface and surface flow and solute transport
  year: 2010
  ident: e_1_2_9_30_1
– ident: e_1_2_9_34_1
  doi: 10.1016/j.coldregions.2010.03.005
– ident: e_1_2_9_36_1
  doi: 10.1016/j.coldregions.2009.05.011
– volume: 38
  start-page: 1644
  issue: 6
  year: 2016
  ident: e_1_2_9_43_1
  article-title: Study of the freezing and thawing features of soil: Current situation and outlook
  publication-title: Journal of Glaciology and Geocryology
– ident: e_1_2_9_14_1
  doi: 10.2136/sssaj2014.12.0499
– ident: e_1_2_9_13_1
  doi: 10.1201/9781315380476
– ident: e_1_2_9_20_1
  doi: 10.1016/j.coldregions.2018.03.022
– ident: e_1_2_9_41_1
  doi: 10.1029/2017JD028050
– ident: e_1_2_9_6_1
  doi: 10.1016/j.coldregions.2023.104061
– ident: e_1_2_9_29_1
  doi: 10.1002/ppp.2022
– ident: e_1_2_9_5_1
  doi: 10.1201/9780203710968
– ident: e_1_2_9_23_1
  doi: 10.1016/j.advwatres.2013.07.016
– ident: e_1_2_9_25_1
  doi: 10.1002/2016JF003852
– ident: e_1_2_9_32_1
  doi: 10.2136/vzj2014.12.0179
– ident: e_1_2_9_45_1
  doi: 10.1016/j.geoderma.2023.116770
– ident: e_1_2_9_38_1
  doi: 10.1016/j.jconhyd.2023.104219
– ident: e_1_2_9_31_1
  doi: 10.1016/j.coldregions.2014.03.007
– ident: e_1_2_9_10_1
  doi: 10.1007/BF01133567
– ident: e_1_2_9_28_1
  doi: 10.1103/PhysRevB.22.3065
– ident: e_1_2_9_40_1
  doi: 10.5281/zenodo.13323319
– ident: e_1_2_9_22_1
  doi: 10.2136/vzj2012.0057
– ident: e_1_2_9_3_1
  doi: 10.1029/2001WR000930
– volume: 32
  start-page: 309
  issue: 1
  year: 2011
  ident: e_1_2_9_49_1
  article-title: Semi‐analytical solution for temperature field of one‐dimensional soil freezing problem
  publication-title: Rock and Soil Mechanics
– ident: e_1_2_9_21_1
  doi: 10.1016/j.coldregions.2020.103060
– ident: e_1_2_9_18_1
– ident: e_1_2_9_27_1
  doi: 10.1002/ppp.465
– ident: e_1_2_9_39_1
  doi: 10.1029/2022wr032137
– ident: e_1_2_9_48_1
  doi: 10.1002/2014WR015640
– ident: e_1_2_9_2_1
  doi: 10.1002/2015JD024451
– ident: e_1_2_9_9_1
  doi: 10.1016/j.jhydrol.2024.130802
– ident: e_1_2_9_26_1
  doi: 10.2136/sssaj2007.0283
– ident: e_1_2_9_44_1
  doi: 10.1029/2010WR010085
SSID ssj0014567
Score 2.5576634
Snippet Accurate and fast measurements of thermal properties are frequently required for characterizing the heat‐water dynamics in frozen soil. Measuring the thermal...
Abstract Accurate and fast measurements of thermal properties are frequently required for characterizing the heat‐water dynamics in frozen soil. Measuring the...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms climate
Climate and hydrology
Climate science
cold
Cold regions
Freezing
Freezing point
Frozen ground
frozen soil
frozen soils
Heat conductivity
Heat exchange
Heat flux
heat pulse method
Heat pulses
Heat transfer
Heating
Hydrology
Ice
Ice melting
ice thermal conductivity
ice water content
infinite line source model
Laboratory experimentation
Laboratory experiments
Mathematical models
Melting points
Numerical models
Overheating
Pulse heating
quartz
sand
Soil
Soil analysis
Soil conductivity
Soil properties
Soil sciences
Soil surfaces
Soil temperature
Temperature
Temperature requirements
Temperature variations
Thermal conductivity
Thermal properties
Thermodynamic properties
water
Workflow
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access (WRLC)
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT9swELY29sBeEAwQHR3ypPE0oiWxW9uPha2qJoGqMgTaS2Qn5w2pSqaWIsETP2T7c_wS7hI3Kg-btLcoPkeO7Tt_9p2_Y-yD96n12ttIJrGIpBIqMn0XRyB8DyQihDily8mnZ_3Rhfx61bsKB250F6bhh2gP3EgzantNCm7dPJANEEcm7trl5YRSuAr1kr2i27UU0pfKcetFQHCglh5mQjoh8B3rf1qt_WxJqpn7n8HNVdBarzrDTbYR4CIfNOO7xV5A-YatL28Tz_E5ZDH_ebfNvg_4WXULUz5CA8vHC1z1-GmdIZpfl_xzCHzBtYo_PvxuaIvR1j0-_OE4WdBAT_mYjuZnxLFKNYaz6h5Kfl5dT3fY-fDLt5NRFHInRBZNXxIVYLzTvm9z6yVx7uWxQyxkDUDfKFAgjfZE_qVBQFJoBbkBcuUSpR2IXbZWViXsMW4hUR5BnpYJSI2fRUThROFtXsRFrF2HfVx2XpYHWnHKbjHNavd2arLVru6ww1b6V0On8Re5YxqHVoZIsOsX1exHFnQqM_grYGzqpACpLNoSa4SRLi0KcjDrDusuRzELmjnPBO7_FG5q47jD3rfFqFPkKLElVAuSQVzW09pgO47q0f9nY7PLyckkVT2TvP0_8X32mgqa6JguW7uZLeAdYpwbd1BP5CcHovII
  priority: 102
  providerName: Wiley-Blackwell
Title A Novel Heat Pulse Method in Determining “Effective” Thermal Properties in Frozen Soil
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024WR037537
https://www.proquest.com/docview/3148740900
https://www.proquest.com/docview/3165858897
https://doaj.org/article/9e69e9a2b43e47a196a9394b2dd06728
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELagF7ggfsVCqYwEJ4hwbCe2j6WwWiG1Wm1BrbhETjJWK60StO0iwakPAi_XJ2HGcVbLAbhwi5JJZI3HM58z428YexGC9MEGn-lcqEwbZTJX1iIDFQrQiBCEpMPJh0fl7JP-cFqcbrX6opqwgR54UNwbB6UD52WtFWjj0WC8U07Xsm0pixiP-WLMGzdTKX-AsMCMuWXCOKnkXUhHu319sqDWr9T7fCsYRc7-34DmNlyN8WZ6l91JQJHvDwO8x25Ad5_dGs8RX-B16l9-9u0B-7zPj_qvsOQzdK18vsZ4xw9jb2h-3vF3qeQFoxS_vvoxEBajl7u--snRTNA1L_mcfsqviF2V3piu-u_Q8eP-fPmQHU_ffzyYZalrQubR6eVZCy7UNpS-8UET214jakRB3gFq0oAB7Wwg2i8LCvLWGmhQwYUqicwO1CO20_UdPGbcQ24Cwjurc9AWP4tYolZt8E0rWmHrCXs1Kq9qEqE49bVYVjGxLV21reoJe7mR_jIQafxB7i3Nw0aG6K_jDTSKKhlF9S-jmLDdcRartCYvKoU7P4PbWSEm7PnmMa4mSpH4Dvo1ySAiK6x1OI7Xcfb_OtjqZHGwkKZw-ZP_Meyn7DZ9PRYGyV22c7lawzPEPJf1Hrsp9XwvGvkvzaT6EQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3BbtQwELWgHMoFUQpioS1Gak8lIom9sX0shdUC3dVqW9SKi-Uk41JplaBtF4me-iHwc_0SZhJvtD2AxC1KxlHi8cw8e-w3jO16nzqvvYtkEotIKqEik-VxBML3QSJCiFM6nDwaZ8Mv8tNZ_yzUOaWzMC0_RLfgRpbR-GsycFqQDmwDRJKJ03Z5OqUarkLdZw9klioqYZDKSZdGQHSglilmgjph5zu2f7va-k5Maqj77-DNVdTahJ3BY_Yo4EV-0Cp4g92D6glbXx4nvsTrUMb8289N9vWAj-sfMOND9LB8ssCwx0dNiWh-UfH3YecLBit-e_Or5S1GZ3d785vjaEEPPeMTWpufE8kqtRjM62uo-HF9MXvKjgcfTg6HUSieEDn0fUlUgvG59pkrnJdEulfEOYIhZwAyo0CBNNoT-5cGAUmpFRQGKJdLnHYgnrG1qq7gOeMOEuUR5WmZgNT4WoQUuSi9K8q4jHXeY_vLzrNF4BWn8hYz2-S3U2NXu7rH9jrp7y2fxl_k3pEeOhliwW5u1PNzG4zKGvwVMC7NpQCpHDoTZ4SReVqWlGHWPba11KINpnlpBU4AFc5q47jHXneP0agoU-IqqBckg8Csr7XB73jTaP-fH2tPp4fTVPVN8uL_xF-x9eHJ6MgefRx_fskeklC7VWaLrV3NF7CNgOcq32kG9R8iUvV0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTtwwELYoSG0vqPRHbKHUldpTGzWJvWv7SKGr7Q-r1dIK1IvlJGNAWiVoYZHgxIPQl-NJmEm80XIoUm9RMo4S2zPz2TP-hrH33qfOa-8imcQikkqoyPSyOALhuyARIcQpHU7eG_YGv-X3w-5h2HCjszANP0S74UaaUdtrUvDTwgeyAeLIxFW7PBhTCVehHrEVivdRSlcqR20UAcGBmkeYCemExHds_3mx9T2XVDP334Obi6C19jr9Z2w1wEW-3YzvGluC8jl7Mj9NfIbXoYr58eUL9mebD6sLmPABGlg-mqHX43t1hWh-UvLdkPiCvorfXt80tMVo626v_3KcLGigJ3xEW_NT4lilFv1pdQUl369OJi_Zfv_rr51BFGonRA5NXxIVYHymfc_lzkvi3MvjDLGQMwA9o0CBNNoT-ZcGAUmhFeQGKJRLlHYgXrHlsiphnXEHifII8rRMQGp8LSKKTBTe5UVcxDrrsI_zzrN5oBWn6hYTW4e3U2MXu7rDPrTSpw2dxj_kvtA4tDJEgl3fqKZHNuiUNfgrYFyaSQFSObQlzggjs7QoKMCsO2xzPoo2aOaZFbj-U7iojeMOe9c-Rp2iQIkroZqRDOKyrtYGv-NTPfoPfqw9GO-MU9U1yev_E3_LHo92-_bnt-GPDfaUZJpEmU22fD6dwRuEO-fZVj2n7wC3NfSm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Heat+Pulse+Method+in+Determining+%E2%80%9CEffective%E2%80%9D+Thermal+Properties+in+Frozen+Soil&rft.jtitle=Water+resources+research&rft.au=Xiao%E2%80%90long+Wu&rft.au=Zhao%2C+Ying&rft.date=2024-12-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0043-1397&rft.eissn=1944-7973&rft.volume=60&rft.issue=12&rft_id=info:doi/10.1029%2F2024WR037537&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1397&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1397&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1397&client=summon