Adsorption of Humic Acid on Goethite: Isotherms, Charge Adjustments, and Potential Profiles
The adsorption of natural organic matter (NOM) on mineral (hydr)oxide plays an important role in the evaluation of the speciation of toxic metal ions in the environment. Because both NOM and mineral oxide have variable charges that adjust upon adsorption, a good understanding of proton binding is re...
Saved in:
Published in | Langmuir Vol. 20; no. 3; pp. 689 - 700 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
03.02.2004
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The adsorption of natural organic matter (NOM) on mineral (hydr)oxide plays an important role in the evaluation of the speciation of toxic metal ions in the environment. Because both NOM and mineral oxide have variable charges that adjust upon adsorption, a good understanding of proton binding is required before the binding of metal ions can be understood. In this study, the adsorption of purified Aldrich humic acid (PAHA) on goethite was examined as a function of the environmental conditions (pH, salt concentration, and free concentration of PAHA) together with the proton adsorption to PAHA, goethite, and their mixtures. The induced charges on both components were separated on the basis of the difference between the charge/pH curves of the mixture and those of the single components. The electrostatic potential profile across the adsorbed layer was obtained as a numerical solution of the Poisson−Boltzmann equation using the charge density of the adsorbed PAHA and the goethite surface. From the quantitative evaluation of the induced charge on both components, it is revealed that the degree of the charge adjustment is related to the electrostatic affinity between the PAHA segments and the goethite surface, the electrostatic repulsion between the PAHA segments, and the electrostatic shielding by salt ions. Considering the charge distribution of the adsorbed PAHA at the goethite surface, it is concluded that the change of the charge adjustment is sensitive to that of the conformation of the adsorbed PAHA. From the detailed inspection of the assumptions made and the comparison with the reported theoretical calculations, the obtained potential profiles are considered to broadly reflect the true potential profiles. Because a charge adjustment is not frequently considered in detail in relation to the NOM adsorption on metal (hydr)oxides, the obtained results can form the basis for the further development of modeling of the adsorption of NOM on (hydr)oxide surfaces. |
---|---|
AbstractList | The adsorption of natural organic matter (NOM) on mineral (hydr)oxide plays an important role in the evaluation of the speciation of toxic metal ions in the environment. Because both NOM and mineral oxide have variable charges that adjust upon adsorption, a good understanding of proton binding is required before the binding of metal ions can be understood. In this study, the adsorption of purified Aldrich humic acid (PAHA) on goethite was examined as a function of the environmental conditions (pH, salt concentration, and free concentration of PAHA) together with the proton adsorption to PAHA, goethite, and their mixtures. The induced charges on both components were separated on the basis of the difference between the charge/pH curves of the mixture and those of the single components. The electrostatic potential profile across the adsorbed layer was obtained as a numerical solution of the Poisson-Boltzmann equation using the charge density of the adsorbed PAHA and the goethite surface. From the quantitative evaluation of the induced charge on both components, it is revealed that the degree of the charge adjustment is related to the electrostatic affinity between the PAHA segments and the goethite surface, the electrostatic repulsion between the PAHA segments, and the electrostatic shielding by salt ions. Considering the charge distribution of the adsorbed PAHA at the goethite surface, it is concluded that the change of the charge adjustment is sensitive to that of the conformation of the adsorbed PAHA. From the detailed inspection of the assumptions made and the comparison with the reported theoretical calculations, the obtained potential profiles are considered to broadly reflect the true potential profiles. Because a charge adjustment is not frequently considered in detail in relation to the NOM adsorption on metal (hydr)oxides, the obtained results can form the basis for the further development of modeling of the adsorption of NOM on (hydr)oxide surfaces. The adsorption of natural organic matter (NOM) on mineral (hydr)oxide plays an important role in the evaluation of the speciation of toxic metal ions in the environment. Because both NOM and mineral oxide have variable charges that adjust upon adsorption, a good understanding of proton binding is required before the binding of metal ions can be understood. In this study, the adsorption of purified Aldrich humic acid (PAHA) on goethite was examined as a function of the environmental conditions (pH, salt concentration, and free concentration of PAHA) together with the proton adsorption to PAHA, goethite, and their mixtures. The induced charges on both components were separated on the basis of the difference between the charge/pH curves of the mixture and those of the single components. The electrostatic potential profile across the adsorbed layer was obtained as a numerical solution of the Poisson−Boltzmann equation using the charge density of the adsorbed PAHA and the goethite surface. From the quantitative evaluation of the induced charge on both components, it is revealed that the degree of the charge adjustment is related to the electrostatic affinity between the PAHA segments and the goethite surface, the electrostatic repulsion between the PAHA segments, and the electrostatic shielding by salt ions. Considering the charge distribution of the adsorbed PAHA at the goethite surface, it is concluded that the change of the charge adjustment is sensitive to that of the conformation of the adsorbed PAHA. From the detailed inspection of the assumptions made and the comparison with the reported theoretical calculations, the obtained potential profiles are considered to broadly reflect the true potential profiles. Because a charge adjustment is not frequently considered in detail in relation to the NOM adsorption on metal (hydr)oxides, the obtained results can form the basis for the further development of modeling of the adsorption of NOM on (hydr)oxide surfaces. The adsorption of natural organic matter (NOM) on mineral (hydr)oxide plays an important role in the evaluation of the speciation of toxic metal ions in the environment. Because both NOM and mineral oxide have variable charges that adjust upon adsorption, a good understanding of proton binding is required before the binding of metal ions can be understood. In this study, the adsorption of purified Aldrich humic acid (PAHA) on goethite was examined as a function of the environmental conditions (pH, salt concentration, and free concentration of PAHA) together with the proton adsorption to PAHA, goethite, and their mixtures. The induced charges on both components were separated on the basis of the difference between the charge/pH curves of the mixture and those of the single components. The electrostatic potential profile across the adsorbed layer was obtained as a numerical solution of the Poisson-Boltzmann equation using the charge density of the adsorbed PAHA and the goethite surface. From the quantitative evaluation of the induced charge on both components, it is revealed that the degree of the charge adjustment is related to the electrostatic affinity between the PAHA segments and the goethite surface, the electrostatic repulsion between the PAHA segments, and the electrostatic shielding by salt ions. Considering the charge distribution of the adsorbed PAHA at the goethite surface, it is concluded that the change of the charge adjustment is sensitive to that of the conformation of the adsorbed PAHA. From the detailed inspection of the assumptions made and the comparison with the reported theoretical calculations, the obtained potential profiles are considered to broadly reflect the true potential profiles. Because a charge adjustment is not frequently considered in detail in relation to the NOM adsorption on metal (hydr)oxides, the obtained results can form the basis for the further development of modeling of the adsorption of NOM on (hydr)oxide surfaces.The adsorption of natural organic matter (NOM) on mineral (hydr)oxide plays an important role in the evaluation of the speciation of toxic metal ions in the environment. Because both NOM and mineral oxide have variable charges that adjust upon adsorption, a good understanding of proton binding is required before the binding of metal ions can be understood. In this study, the adsorption of purified Aldrich humic acid (PAHA) on goethite was examined as a function of the environmental conditions (pH, salt concentration, and free concentration of PAHA) together with the proton adsorption to PAHA, goethite, and their mixtures. The induced charges on both components were separated on the basis of the difference between the charge/pH curves of the mixture and those of the single components. The electrostatic potential profile across the adsorbed layer was obtained as a numerical solution of the Poisson-Boltzmann equation using the charge density of the adsorbed PAHA and the goethite surface. From the quantitative evaluation of the induced charge on both components, it is revealed that the degree of the charge adjustment is related to the electrostatic affinity between the PAHA segments and the goethite surface, the electrostatic repulsion between the PAHA segments, and the electrostatic shielding by salt ions. Considering the charge distribution of the adsorbed PAHA at the goethite surface, it is concluded that the change of the charge adjustment is sensitive to that of the conformation of the adsorbed PAHA. From the detailed inspection of the assumptions made and the comparison with the reported theoretical calculations, the obtained potential profiles are considered to broadly reflect the true potential profiles. Because a charge adjustment is not frequently considered in detail in relation to the NOM adsorption on metal (hydr)oxides, the obtained results can form the basis for the further development of modeling of the adsorption of NOM on (hydr)oxide surfaces. |
Author | Nagasaki, Shinya van Riemsdijk, Willem H Koopal, Luuk K Saito, Takumi Tanaka, Satoru |
Author_xml | – sequence: 1 givenname: Takumi surname: Saito fullname: Saito, Takumi – sequence: 2 givenname: Luuk K surname: Koopal fullname: Koopal, Luuk K – sequence: 3 givenname: Willem H surname: van Riemsdijk fullname: van Riemsdijk, Willem H – sequence: 4 givenname: Shinya surname: Nagasaki fullname: Nagasaki, Shinya – sequence: 5 givenname: Satoru surname: Tanaka fullname: Tanaka, Satoru |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15773093$$D View this record in MEDLINE/PubMed |
BookMark | eNptkVFrFDEUhYNU7Lb64B-QeVEQHJuZTCYzfdtdtFsouOgKfTJkkptu1plkm2So7ZOv_k1_iVm2VpC-5HIu3zlcco7QgXUWEHpZ4PcFLouTXmBSNbi-e4ImBS1xTpuSHaAJZhXJWVWTQ3QUwgZj3JKqfYYOC8oYSWKCvk1VcH4bjbOZ09liHIzMptKoLC3OHMS1iXD6--ev7Dy4uAY_hHfZfC38FWRTtRlDHMDGtBNWZUsXkzCiz5beadNDeI6eatEHeHE_j9HXjx9W80V-8ensfD69yEVV1zFXnZJdpRmrCqzbljWSkSRlDSCSpqB1V6hSsLZpu4p2uqRlqxqgulAUly05Rqf73BtxBdbY9HArvDSBO2F4bzov_C2_GT23_W5sxy5wQijBJJnf7M1b765HCJEPJkjoe2HBjYHXrGSYsiaBr-7BsRtA8a03wy7273cm4O0ekN6F4EH_QzDfVcUfqkrsyX-sNFHsiohemP5RR753mBDhx0O08N_TiYRRvlp-4Zezy88zNlvwVeJf73khA9-40dtUwSO5fwBFzLOb |
CitedBy_id | crossref_primary_10_1088_1742_6596_429_1_012039 crossref_primary_10_1016_j_gca_2012_04_023 crossref_primary_10_1246_bcsj_20170419 crossref_primary_10_1016_j_chemosphere_2009_12_063 crossref_primary_10_1016_j_chemosphere_2023_140846 crossref_primary_10_1016_j_jcis_2014_05_029 crossref_primary_10_1016_j_watres_2020_115894 crossref_primary_10_1016_S1001_0742_09_60308_9 crossref_primary_10_1016_j_colsurfa_2024_135952 crossref_primary_10_1016_j_chemgeo_2017_04_012 crossref_primary_10_1007_s13762_016_0938_y crossref_primary_10_1016_j_jcis_2010_10_041 crossref_primary_10_2136_sssaj2005_0250 crossref_primary_10_1016_j_clay_2018_07_006 crossref_primary_10_1016_S1002_0160_15_30008_4 crossref_primary_10_1007_s11270_010_0546_2 crossref_primary_10_1021_es506243d crossref_primary_10_1039_D2EM00330A crossref_primary_10_1016_j_chemosphere_2023_138927 crossref_primary_10_5194_bg_7_27_2010 crossref_primary_10_1016_j_gca_2011_07_015 crossref_primary_10_1016_j_jece_2016_11_046 crossref_primary_10_1016_j_scitotenv_2021_151574 crossref_primary_10_3390_molecules24081619 crossref_primary_10_1016_j_jcis_2012_12_038 crossref_primary_10_1016_j_aca_2014_01_022 crossref_primary_10_1021_es072059c crossref_primary_10_1016_j_envpol_2011_02_011 crossref_primary_10_1016_j_colsurfa_2006_04_053 crossref_primary_10_2136_sssaj2016_04_0110 crossref_primary_10_1016_j_chemosphere_2006_05_009 crossref_primary_10_1016_j_watres_2020_116405 crossref_primary_10_1016_j_seppur_2020_116949 crossref_primary_10_1016_j_apgeochem_2022_105220 crossref_primary_10_1016_j_colsurfa_2020_125486 crossref_primary_10_1016_j_cscee_2023_100598 crossref_primary_10_1021_acs_langmuir_5b00101 crossref_primary_10_1016_j_scitotenv_2009_01_043 crossref_primary_10_1016_j_chemosphere_2012_04_053 crossref_primary_10_1016_j_geoderma_2007_05_003 crossref_primary_10_1016_j_cis_2016_01_006 crossref_primary_10_1246_cl_130589 crossref_primary_10_1021_acsearthspacechem_1c00288 crossref_primary_10_1016_j_chemosphere_2024_143356 crossref_primary_10_1021_acs_est_5b04136 crossref_primary_10_1007_s11356_017_1020_0 crossref_primary_10_1007_s11356_024_32319_9 crossref_primary_10_1021_es1012142 crossref_primary_10_4491_eer_2009_14_1_041 crossref_primary_10_1039_C5EN00141B crossref_primary_10_1016_j_jece_2016_12_018 crossref_primary_10_1021_la051730t crossref_primary_10_1021_es305175e crossref_primary_10_1016_j_jclepro_2023_139533 crossref_primary_10_1177_0003702821991219 crossref_primary_10_1016_j_chemosphere_2011_04_024 crossref_primary_10_1016_j_jece_2015_03_026 crossref_primary_10_1021_acs_est_1c03993 crossref_primary_10_1016_j_heliyon_2023_e22931 crossref_primary_10_1039_C9EN00348G crossref_primary_10_1016_j_watres_2007_12_015 crossref_primary_10_1007_s11356_020_11422_7 crossref_primary_10_1016_j_gexplo_2014_02_005 crossref_primary_10_1016_j_chemosphere_2008_12_019 crossref_primary_10_1039_C0SM00648C crossref_primary_10_1039_C5EM00176E crossref_primary_10_1039_C8EN01327F crossref_primary_10_1524_ract_92_9_567_54984 crossref_primary_10_1016_j_jhazmat_2010_08_028 crossref_primary_10_1039_C5EN00215J crossref_primary_10_1016_j_geoderma_2016_05_007 crossref_primary_10_1016_j_chemosphere_2013_11_065 crossref_primary_10_1021_jp911482a crossref_primary_10_1016_j_envpol_2010_11_006 crossref_primary_10_1021_la2037247 crossref_primary_10_1007_s13762_011_0020_8 crossref_primary_10_1007_s11270_014_1985_y crossref_primary_10_1016_j_colsurfa_2010_10_032 crossref_primary_10_1016_j_colsurfa_2004_10_139 crossref_primary_10_1016_j_colsurfa_2010_11_075 crossref_primary_10_1016_j_gca_2004_07_002 crossref_primary_10_1016_j_watres_2009_06_022 crossref_primary_10_2136_sssaj2009_0119 crossref_primary_10_3389_fenvs_2022_1023277 crossref_primary_10_2136_sssaj2005_0340 crossref_primary_10_1016_j_seppur_2016_10_006 crossref_primary_10_1016_j_colsurfa_2015_07_045 crossref_primary_10_1016_j_watres_2011_10_002 crossref_primary_10_1111_j_1751_1097_2012_01135_x crossref_primary_10_1071_EN09066 crossref_primary_10_1021_acs_est_1c06880 crossref_primary_10_1021_acs_est_7b05412 crossref_primary_10_1021_acs_est_3c02028 crossref_primary_10_1016_j_watres_2023_120509 crossref_primary_10_1007_s11368_016_1383_8 crossref_primary_10_1016_j_watres_2011_11_042 crossref_primary_10_1021_es5026917 crossref_primary_10_1021_la200570n crossref_primary_10_1016_j_jhazmat_2014_07_039 crossref_primary_10_1021_jp902123k crossref_primary_10_1007_s11356_020_11970_y crossref_primary_10_1016_j_watres_2013_01_053 crossref_primary_10_1021_acs_est_9b05169 crossref_primary_10_1016_j_watres_2024_121501 crossref_primary_10_1016_j_watres_2009_03_005 crossref_primary_10_1021_la201968b crossref_primary_10_1016_j_seppur_2014_08_004 crossref_primary_10_1016_j_cis_2015_07_002 crossref_primary_10_1016_j_colsurfa_2008_10_038 crossref_primary_10_1016_j_jece_2024_113594 crossref_primary_10_1016_j_colsurfa_2008_04_043 crossref_primary_10_1021_acs_est_0c02065 crossref_primary_10_1111_ejss_12803 crossref_primary_10_1016_j_watres_2015_02_034 |
Cites_doi | 10.1023/A:1009627214459 10.1016/0021-9797(91)90075-J 10.1016/0016-7037(94)90334-4 10.1016/0009-2541(81)90086-3 10.1006/jcis.2000.6982 10.1016/S0016-7037(97)00338-4 10.1021/es00146a006 10.1016/S0927-7757(99)00429-X 10.1006/jcis.1996.0575 10.1006/jcis.1995.1475 10.1016/0016-7037(96)00059-2 10.1016/0016-7037(82)90292-7 10.1524/ract.1993.62.12.35 10.1016/S0016-7037(99)00269-0 10.1016/S0016-7037(99)00228-8 10.1021/es0002520 10.1016/S0016-7037(99)00268-9 10.1021/la970624r 10.1016/S0016-7037(02)01042-6 10.1016/S0021-9797(78)80009-5 10.1006/jcis.1996.0242 10.1021/es9802450 10.1021/es000123j 10.1016/S0016-7037(00)00536-6 10.1524/ract.1994.65.2.111 10.1006/jcis.1999.6419 10.1016/S0927-7757(02)00191-7 10.1016/0021-9797(78)90217-5 10.1021/la9701440 10.1006/jcis.1998.5904 10.1021/es990260k 10.1524/ract.1992.5859.1.113 10.1021/ma970334h 10.1021/es0258879 10.1021/es980112e 10.1016/S0169-7722(97)00032-6 10.1016/S0016-7037(99)00176-3 10.1016/S0927-7757(98)00637-2 10.1016/0021-9797(89)90397-4 10.1351/pac200173122005 10.1021/es9709942 10.1016/0021-9797(87)90481-4 10.1021/es00050a007 10.1021/es950012y 10.1006/jcis.1999.6317 10.1016/S0016-7037(01)00695-0 10.1021/la970836o 10.1016/S0016-7037(99)00266-5 10.1021/es00149a004 10.1006/jcis.1998.6050 10.1039/a908722b 10.1016/0021-9797(89)90285-3 |
ContentType | Journal Article |
Copyright | Copyright © 2004 American Chemical Society Wageningen University & Research |
Copyright_xml | – notice: Copyright © 2004 American Chemical Society – notice: Wageningen University & Research |
DBID | BSCLL AAYXX CITATION NPM 7X8 QVL |
DOI | 10.1021/la034806z |
DatabaseName | Istex CrossRef PubMed MEDLINE - Academic NARCIS:Publications |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5827 |
EndPage | 700 |
ExternalDocumentID | oai_library_wur_nl_wurpubs_335303 15773093 10_1021_la034806z ark_67375_TPS_XBXRB7BH_T b414539822 |
Genre | Journal Article |
GroupedDBID | - .K2 02 4.4 53G 55A 5GY 5VS 7~N AABXI ABDEX ABFLS ABMVS ABPTK ABUCX ACGFS ACJ ACNCT ACS AEESW AENEX AFEFF AFFNX ALMA_UNASSIGNED_HOLDINGS ANTXH AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F20 F5P GNL IH9 IHE JG JG~ K2 LG6 OHM RNS ROL TN5 UI2 UPT VF5 VG9 W1F X --- -~X 6TJ AAHBH ABJNI ABQRX ADHLV AGXLV AHGAQ BSCLL CUPRZ GGK YQT ~02 AAYXX ABBLG ABLBI ACRPL ADNMO AEYZD AGQPQ ANPPW CITATION NPM VXZ 7X8 186 1WB HR QVL |
ID | FETCH-LOGICAL-a466t-dbdcb4f77410f9978c734f7c6eeaf995effb1d2a7989b45bf2529d8e5f1d50293 |
IEDL.DBID | ACS |
ISSN | 0743-7463 |
IngestDate | Tue Jan 05 18:41:13 EST 2021 Fri Jul 11 04:28:15 EDT 2025 Wed Feb 19 01:40:05 EST 2025 Thu Apr 24 23:04:42 EDT 2025 Tue Jul 01 01:45:51 EDT 2025 Wed Oct 30 09:41:05 EDT 2024 Thu Aug 27 13:41:55 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a466t-dbdcb4f77410f9978c734f7c6eeaf995effb1d2a7989b45bf2529d8e5f1d50293 |
Notes | ark:/67375/TPS-XBXRB7BH-T istex:081D4424C2FC8D6311EF46D52BCC83E183DCACED ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 15773093 |
PQID | 67270578 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | wageningen_narcis_oai_library_wur_nl_wurpubs_335303 proquest_miscellaneous_67270578 pubmed_primary_15773093 crossref_primary_10_1021_la034806z crossref_citationtrail_10_1021_la034806z istex_primary_ark_67375_TPS_XBXRB7BH_T acs_journals_10_1021_la034806z |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ANTXH ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX QVL |
PublicationCentury | 2000 |
PublicationDate | 2004-02-03 |
PublicationDateYYYYMMDD | 2004-02-03 |
PublicationDate_xml | – month: 02 year: 2004 text: 2004-02-03 day: 03 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Langmuir |
PublicationTitleAlternate | Langmuir |
PublicationYear | 2004 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Davis J. A. (la034806zb00025/la034806zb00025_1) 1978; 63 Vermeer A. W. P. (la034806zb00030/la034806zb00030_1) 1999; 212 Hiemstra T. (la034806zb00021/la034806zb00021_1) 1999; 210 Koopal L. K. (la034806zb00017/la034806zb00017_1) 2001; 73 Tipping E. (la034806zb00032/la034806zb00032_1) 1981; 33 Hiemstra T. (la034806zb00048/la034806zb00048_1) 1989; 133 Keizer M. G. (la034806zb00051/la034806zb00051_1) 1998 Vermeer A. W. P. (la034806zb00040/la034806zb00040_1) 1997; 13 Kim J. I. (la034806zb00007/la034806zb00007_1) 1993; 62 Lenhart J. J. (la034806zb00028/la034806zb00028_1) 1999; 63 Shubin V. (la034806zb00045/la034806zb00045_1) 1997; 30 Fokkink L. G. J. (la034806zb00059/la034806zb00059_1) 1987; 118 Hiemstra T. (la034806zb00020/la034806zb00020_1) 1996; 179 McCarthy J. F. (la034806zb00003/la034806zb00003_1) 1998; 30 Rietra R. (la034806zb00022/la034806zb00022_1) 1999; 63 Christl I. (la034806zb00016/la034806zb00016_1) 1999; 63 Avena M. J. (la034806zb00057/la034806zb00057_1) 1998; 32 Gu B. H. (la034806zb00056/la034806zb00056_1) 1996; 60 Vermeer A. W. P. (la034806zb00029/la034806zb00029_1) 1999; 33 Vermeer A. W. P. (la034806zb00041/la034806zb00041_1) 1998; 14 Au K. K. (la034806zb00036/la034806zb00036_1) 1999; 63 Schlautman M. A. (la034806zb00034/la034806zb00034_1) 1994; 58 Kinniburgh D. G. (la034806zb00049/la034806zb00049_1) 1993 Hayes K. F. (la034806zb00026/la034806zb00026_1) 1991; 142 Filius J. D. (la034806zb00038/la034806zb00038_1) 2000; 64 Zhou Q. H. (la034806zb00039/la034806zb00039_1) 2001; 65 Christl I. (la034806zb00011/la034806zb00011_1) 2001; 35 Dzombak D. A. (la034806zb00013/la034806zb00013_1) 1990 Buffle J. (la034806zb00001/la034806zb00001_1) 1985 Au K. K. (la034806zb00043/la034806zb00043_1) 1998; 32 Christl I. (la034806zb00031/la034806zb00031_1) 2001; 65 Venema P. (la034806zb00014/la034806zb00014_1) 1996; 183 Wang L. L. (la034806zb00035/la034806zb00035_1) 1997; 61 Kinniburgh D. G. (la034806zb00010/la034806zb00010_1) 1999; 151 Davis J. A. (la034806zb00012/la034806zb00012_1) 1978; 67 Gu B. H. (la034806zb00033/la034806zb00033_1) 1994; 28 Shampine L. F. (la034806zb00055/la034806zb00055_1) 2000 Czerwinski K. R. (la034806zb00008/la034806zb00008_1) 1994; 65 Milne C. J. (la034806zb00018/la034806zb00018_1) 2001; 35 Tipping E. (la034806zb00027/la034806zb00027_1) 1982; 46 Tipping E. (la034806zb00009/la034806zb00009_1) 1998; 4 Choppin G. R. (la034806zb00002/la034806zb00002_1) 1992; 58 Vermöhlen K. (la034806zb00037/la034806zb00037_1) 2000; 163 Vermeer A. W. P. (la034806zb00042/la034806zb00042_1) 1998; 14 Buleva M. (la034806zb00060/la034806zb00060_1) 2002; 209 Dzombak D. A. (la034806zb00005/la034806zb00005_1) 1986; 20 Robertson A. P. (la034806zb00015/la034806zb00015_1) 1998; 32 Bryan N. D. (la034806zb00053/la034806zb00053_1) 2000; 2 Filius J. D. (la034806zb00044/la034806zb00044_1) 2003; 67 Milne C. J. (la034806zb00019/la034806zb00019_1) 2003; 37 la034806zb00050/la034806zb00050_1 Liu A. G. (la034806zb00004/la034806zb00004_1) 1999; 218 Milne C. J. (la034806zb00047/la034806zb00047_1) 1995; 175 Benedetti M. F. (la034806zb00054/la034806zb00054_1) 1996; 30 Kinniburgh D. G. (la034806zb00052/la034806zb00052_1) 1993 Marinsky J. A. (la034806zb00006/la034806zb00006_1) 1986; 20 Koopal L. K. (la034806zb00061/la034806zb00061_1) 1989; 128 Hiemstra T. (la034806zb00024/la034806zb00024_1) 2002 la034806zb00058/la034806zb00058_1 Avena M. J. (la034806zb00046/la034806zb00046_1) 1999; 217 Rietra R. (la034806zb00023/la034806zb00023_1) 2000; 229 |
References_xml | – ident: la034806zb00058/la034806zb00058_1 – volume: 4 start-page: 3 year: 1998 ident: la034806zb00009/la034806zb00009_1 publication-title: Aquat. Geochem. doi: 10.1023/A:1009627214459 – volume: 142 start-page: 448 year: 1991 ident: la034806zb00026/la034806zb00026_1 publication-title: J. Colloid Interface Sci. doi: 10.1016/0021-9797(91)90075-J – volume: 58 start-page: 4293 year: 1994 ident: la034806zb00034/la034806zb00034_1 publication-title: J. Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(94)90334-4 – volume: 33 start-page: 81 year: 1981 ident: la034806zb00032/la034806zb00032_1 publication-title: Chem. Geol. doi: 10.1016/0009-2541(81)90086-3 – volume: 229 start-page: 199 year: 2000 ident: la034806zb00023/la034806zb00023_1 publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.2000.6982 – volume-title: version 4 year: 1998 ident: la034806zb00051/la034806zb00051_1 – volume: 61 start-page: 5313 year: 1997 ident: la034806zb00035/la034806zb00035_1 publication-title: J. Geochim. Cosmochim. Acta doi: 10.1016/S0016-7037(97)00338-4 – volume: 20 start-page: 349 year: 1986 ident: la034806zb00006/la034806zb00006_1 publication-title: Environ. Sci. Technol. doi: 10.1021/es00146a006 – volume: 163 start-page: 45 year: 2000 ident: la034806zb00037/la034806zb00037_1 publication-title: J. Colloids Surf., A doi: 10.1016/S0927-7757(99)00429-X – volume: 183 start-page: 515 year: 1996 ident: la034806zb00014/la034806zb00014_1 publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.1996.0575 – volume-title: Solving Boundary Value Problems for Ordinary Differential Equations in MATLAB with bvp4c year: 2000 ident: la034806zb00055/la034806zb00055_1 – volume: 175 start-page: 448 year: 1995 ident: la034806zb00047/la034806zb00047_1 publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.1995.1475 – volume: 60 start-page: 1943 year: 1996 ident: la034806zb00056/la034806zb00056_1 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(96)00059-2 – volume: 46 start-page: 75 year: 1982 ident: la034806zb00027/la034806zb00027_1 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(82)90292-7 – volume-title: FIT User Guide year: 1993 ident: la034806zb00052/la034806zb00052_1 – volume: 62 start-page: 35 year: 1993 ident: la034806zb00007/la034806zb00007_1 publication-title: Radiochim. Acta doi: 10.1524/ract.1993.62.12.35 – start-page: 3773 volume-title: Encyclopedia of Surface and Colloid Science year: 2002 ident: la034806zb00024/la034806zb00024_1 – volume: 63 start-page: 2891 year: 1999 ident: la034806zb00028/la034806zb00028_1 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/S0016-7037(99)00269-0 – volume: 63 start-page: 3009 year: 1999 ident: la034806zb00022/la034806zb00022_1 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/S0016-7037(99)00228-8 – volume: 35 start-page: 2512 year: 2001 ident: la034806zb00011/la034806zb00011_1 publication-title: Environ. Sci. Technol. doi: 10.1021/es0002520 – volume: 63 start-page: 2903 year: 1999 ident: la034806zb00036/la034806zb00036_1 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/S0016-7037(99)00268-9 – volume: 14 start-page: 2810 year: 1998 ident: la034806zb00041/la034806zb00041_1 publication-title: Langmuir doi: 10.1021/la970624r – volume: 67 start-page: 1463 year: 2003 ident: la034806zb00044/la034806zb00044_1 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/S0016-7037(02)01042-6 – volume-title: Surface Complexation Modeling: Hydrous Ferric Oxide year: 1990 ident: la034806zb00013/la034806zb00013_1 – volume: 63 start-page: 480 year: 1978 ident: la034806zb00025/la034806zb00025_1 publication-title: J. Colloid Interface Sci. doi: 10.1016/S0021-9797(78)80009-5 – volume: 179 start-page: 488 year: 1996 ident: la034806zb00020/la034806zb00020_1 publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.1996.0242 – volume: 32 start-page: 2900 year: 1998 ident: la034806zb00043/la034806zb00043_1 publication-title: Environ. Sci. Technol. doi: 10.1021/es9802450 – volume: 35 start-page: 2049 year: 2001 ident: la034806zb00018/la034806zb00018_1 publication-title: Environ. Sci. Technol. doi: 10.1021/es000123j – volume: 65 start-page: 803 year: 2001 ident: la034806zb00039/la034806zb00039_1 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/S0016-7037(00)00536-6 – volume: 65 start-page: 111 year: 1994 ident: la034806zb00008/la034806zb00008_1 publication-title: Radiochim. Acta doi: 10.1524/ract.1994.65.2.111 – volume: 218 start-page: 225 year: 1999 ident: la034806zb00004/la034806zb00004_1 publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.1999.6419 – volume: 209 start-page: 289 year: 2002 ident: la034806zb00060/la034806zb00060_1 publication-title: Colloids Surf., A doi: 10.1016/S0927-7757(02)00191-7 – volume: 67 start-page: 90 year: 1978 ident: la034806zb00012/la034806zb00012_1 publication-title: J. Colloid Interface Sci. doi: 10.1016/0021-9797(78)90217-5 – volume: 13 start-page: 4413 year: 1997 ident: la034806zb00040/la034806zb00040_1 publication-title: Langmuir doi: 10.1021/la9701440 – volume: 210 start-page: 182 year: 1999 ident: la034806zb00021/la034806zb00021_1 publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.1998.5904 – volume: 33 start-page: 3892 year: 1999 ident: la034806zb00029/la034806zb00029_1 publication-title: Environ. Sci. Technol. doi: 10.1021/es990260k – volume: 58 start-page: 113 year: 1992 ident: la034806zb00002/la034806zb00002_1 publication-title: Radiochim. Acta doi: 10.1524/ract.1992.5859.1.113 – volume-title: Complexation Reactions in Aquatic Systems: An Analytical Approach year: 1985 ident: la034806zb00001/la034806zb00001_1 – volume-title: Guide to the Wallingford Titrator year: 1993 ident: la034806zb00049/la034806zb00049_1 – volume: 30 start-page: 5944 year: 1997 ident: la034806zb00045/la034806zb00045_1 publication-title: Macromolecules doi: 10.1021/ma970334h – volume: 37 start-page: 958 year: 2003 ident: la034806zb00019/la034806zb00019_1 publication-title: Environ. Sci. Technol. doi: 10.1021/es0258879 – volume: 32 start-page: 2572 year: 1998 ident: la034806zb00057/la034806zb00057_1 publication-title: Environ. Sci. Technol. doi: 10.1021/es980112e – volume: 30 start-page: 49 year: 1998 ident: la034806zb00003/la034806zb00003_1 publication-title: J. Contam. Hydrol. doi: 10.1016/S0169-7722(97)00032-6 – volume: 64 start-page: 51 year: 2000 ident: la034806zb00038/la034806zb00038_1 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/S0016-7037(99)00176-3 – volume: 151 start-page: 147 year: 1999 ident: la034806zb00010/la034806zb00010_1 publication-title: J. Colloids Surf., A doi: 10.1016/S0927-7757(98)00637-2 – volume: 128 start-page: 188 year: 1989 ident: la034806zb00061/la034806zb00061_1 publication-title: J. Colloid Interface Sci. doi: 10.1016/0021-9797(89)90397-4 – volume: 73 start-page: 2005 year: 2001 ident: la034806zb00017/la034806zb00017_1 publication-title: Pure Appl. Chem. doi: 10.1351/pac200173122005 – volume: 32 start-page: 2519 year: 1998 ident: la034806zb00015/la034806zb00015_1 publication-title: Environ. Sci. Technol. doi: 10.1021/es9709942 – volume: 118 start-page: 454 year: 1987 ident: la034806zb00059/la034806zb00059_1 publication-title: J. Colloid Interface Sci. doi: 10.1016/0021-9797(87)90481-4 – volume: 28 start-page: 38 year: 1994 ident: la034806zb00033/la034806zb00033_1 publication-title: Environ. Sci. Technol. doi: 10.1021/es00050a007 – volume: 30 start-page: 1805 year: 1996 ident: la034806zb00054/la034806zb00054_1 publication-title: Environ. Sci. Technol. doi: 10.1021/es950012y – volume: 217 start-page: 37 year: 1999 ident: la034806zb00046/la034806zb00046_1 publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.1999.6317 – volume: 65 start-page: 3435 year: 2001 ident: la034806zb00031/la034806zb00031_1 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/S0016-7037(01)00695-0 – volume: 14 start-page: 4210 year: 1998 ident: la034806zb00042/la034806zb00042_1 publication-title: Langmuir doi: 10.1021/la970836o – volume: 63 start-page: 2929 year: 1999 ident: la034806zb00016/la034806zb00016_1 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/S0016-7037(99)00266-5 – volume: 20 start-page: 669 year: 1986 ident: la034806zb00005/la034806zb00005_1 publication-title: Environ. Sci. Technol. doi: 10.1021/es00149a004 – volume: 212 start-page: 176 year: 1999 ident: la034806zb00030/la034806zb00030_1 publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.1998.6050 – volume: 2 start-page: 1291 year: 2000 ident: la034806zb00053/la034806zb00053_1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/a908722b – volume: 133 start-page: 105 year: 1989 ident: la034806zb00048/la034806zb00048_1 publication-title: J. Colloid Interface Sci. doi: 10.1016/0021-9797(89)90285-3 – ident: la034806zb00050/la034806zb00050_1 |
SSID | ssj0009349 |
Score | 2.1613517 |
Snippet | The adsorption of natural organic matter (NOM) on mineral (hydr)oxide plays an important role in the evaluation of the speciation of toxic metal ions in the... |
SourceID | wageningen proquest pubmed crossref istex acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 689 |
SubjectTerms | donnan model parameters fulvic-acid humate interactions iron-oxide metal-ion binding natural organic-matter oxide-water interface polyelectrolyte adsorption surface ionization weak polyelectrolytes |
Title | Adsorption of Humic Acid on Goethite: Isotherms, Charge Adjustments, and Potential Profiles |
URI | http://dx.doi.org/10.1021/la034806z https://api.istex.fr/ark:/67375/TPS-XBXRB7BH-T/fulltext.pdf https://www.ncbi.nlm.nih.gov/pubmed/15773093 https://www.proquest.com/docview/67270578 http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F335303 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB6V9kB74P0Ij2IBQhxISeLYSbjtLpQFCbSiW2lPtRLHrkqXBK0TFfXElb_JL2Gcx24RC5wiW5NE8czY32ReAE8VwtBEopHDEX27eN56buzblmERlVTLkKehTXD-8JGPD8P3MzbbgCd_8eAH_st56tEw9vj5JdgKOCqvxT-jg1VlXdpiXFtrMwo57csHXbzVHj3S_Hb0bNlV_LYOV-7A9hnqctEkN104bPavwus-ZaeNMTndq6tsT57_WcHxX99xDa50YJMMWum4DhuquAGXR32Pt5twNMhNuWh2DVJqgrw9kWQgT3KCE29LZSMT1auf33-Qd6ZJ1fpiXhDroT9WZJB_rk0To45zaZGTSVnZ0CN84aRtBG5uweH-m-lo7HYdF9w05Lxy8yyXWagREvqeTtDAlBHFoeRKpThmSuvMz4M0SuIkC1mmAxYkeayY9nPmIXK4DZtFWai7QDwWp4mtZm83CYlWqKS-DjKJJhDavrF2YBdZIjqNMaJxhge-WC6TA897bgnZ1Su3bTPm60gfL0m_tkU61hE9a1i-pEgXpzaqLWJiOjkQs-Hs0zAajsXUgUe9TAhkh3WgpIUqayOs1xrxbezAnVZUVm9jUWR9yg7QleyIwraDMsJW8O7-yYmzeiGKub3gE4yglCGGuPe_tbgP223EUOB69AFsVotaPUQwVGW7jTL8ArmdA30 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagPbQceD_Co7UQQhxISeI4D27ZFWULbbWiW2lPtRLHrtouCVpvVNQTV_4mv4QZJ7tb0EpwimxNEsce299kxt8Q8koBDE0lGDkRoG8X9lvPTXxMGRYzybQMozzEA84Hh9HgOPw05uOOJgfPwkAjDDzJWCf-kl3AfzfJPRYmXnR1k6wDCAlQm7P-0ZJgl7VQFyk34zBicxah67fiDiTNHzvQOnbm91Xw8hbZvIQpXdkzTtf2nN07bfIi21obanKx08yKHXn1F5Hj_33OXXK7g540a3XlHrmhqvtkoz_P-PaAnGSlqad2DaG1pjDSZ5Jm8qykUPGxVhinqN7_-vGT7hl7cOureUvRX3-qaFaeN8ZGrENdXpV0WM8wEAleOGzTgpuH5Hj3w6g_cLv8C24eRtHMLYtSFqEGgOh7OgVzU8YMijJSKocyV1oXfhnkcZqkRcgLHfAgLRPFtV9yD3DEI7JW1ZV6QqjHkzxFbntcMiTYpJL5OigkGERgCSfaIVvQS6KbP0ZY13jgi0U3OeTNfNCE7NjLMYnGZJXoy4Xot5ayY5XQazvyC4l8eoExbjEXo-GRGPfGX3pxbyBGDtmeq4aA4UB3Sl6pujECfdiAdhOHPG41Zvk2HsfoYXYIW6qQqDA5lBHI5939oROXzVRUE7ygogjGOCCKp__qi22yMRgd7Iv9vcPPz8hmG0sUuB57TtZm00a9AJg0K7bs_PgNERwL3g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaglaAceD_Co7UQQhxISeI4D27ZhWXLo6zoVtoTVuIHKl2Sap1VUU9c-Zv8EmaS7G5BK8EpsjVJHHtsf5MZf0PIEw0wNJVg5ESAvl3Ybz038TFlWMwkMzKM8hAPOH_Yj4aH4dsJn3SGIp6FgUZYeJJtnPg4q0-U6RgG_BfT3GNh4kVnF8kmuutQo7P-wYpkl7VwF2k34zBiCyah87fiLiTtH7vQJnbo93UQ8wrZOoVpXTbnnM7tO4Nr5OOyxU24yfHuvC525dlfZI7__0nXydUOgtKs1Zkb5IIub5LL_UXmt1vkc6ZsNWvWEloZCiN-JGkmjxSFijeVxnhF_fLXj590zzYHuL7Z5xT99l80zdTXuW0i16EuLxUdVTUGJMELR216cHubHA5ej_tDt8vD4OZhFNWuKpQsQgNA0fdMCmanjBkUZaR1DmWujSl8FeRxmqRFyAsT8CBViebGV9wDPHGHbJRVqe8R6vEkT5HjHpcOCbapZL4JCgmGEVjEiXHINvSU6OaRFY2LPPDFspsc8mwxcEJ2LOaYTGO6TvTxUvSkpe5YJ_S0Gf2lRD47xli3mIvx6EBMepNPvbg3FGOH7CzUQ8BwoFslL3U1twJ92YB6E4fcbbVm9TYex-hpdghbqZEoMUmUFcjr3f2pE6fzmSineEFlEYxxQBb3_9UXO-TS6NVAvN_bf_eAbLUhRYHrsYdko57N9SNAS3Wx3UyR37WmDmE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adsorption+of+humic+acid+on+goethite%3A+isotherms%2C+charge+adjustments%2C+and+potential+profiles&rft.jtitle=Langmuir&rft.au=Saito%2C+Takumi&rft.au=Koopal%2C+Luuk+K&rft.au=van+Riemsdijk%2C+Willem+H&rft.au=Nagasaki%2C+Shinya&rft.date=2004-02-03&rft.issn=0743-7463&rft.volume=20&rft.issue=3&rft.spage=689&rft_id=info:doi/10.1021%2Fla034806z&rft_id=info%3Apmid%2F15773093&rft.externalDocID=15773093 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7463&client=summon |