Adsorption of Humic Acid on Goethite:  Isotherms, Charge Adjustments, and Potential Profiles

The adsorption of natural organic matter (NOM) on mineral (hydr)oxide plays an important role in the evaluation of the speciation of toxic metal ions in the environment. Because both NOM and mineral oxide have variable charges that adjust upon adsorption, a good understanding of proton binding is re...

Full description

Saved in:
Bibliographic Details
Published inLangmuir Vol. 20; no. 3; pp. 689 - 700
Main Authors Saito, Takumi, Koopal, Luuk K, van Riemsdijk, Willem H, Nagasaki, Shinya, Tanaka, Satoru
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 03.02.2004
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The adsorption of natural organic matter (NOM) on mineral (hydr)oxide plays an important role in the evaluation of the speciation of toxic metal ions in the environment. Because both NOM and mineral oxide have variable charges that adjust upon adsorption, a good understanding of proton binding is required before the binding of metal ions can be understood. In this study, the adsorption of purified Aldrich humic acid (PAHA) on goethite was examined as a function of the environmental conditions (pH, salt concentration, and free concentration of PAHA) together with the proton adsorption to PAHA, goethite, and their mixtures. The induced charges on both components were separated on the basis of the difference between the charge/pH curves of the mixture and those of the single components. The electrostatic potential profile across the adsorbed layer was obtained as a numerical solution of the Poisson−Boltzmann equation using the charge density of the adsorbed PAHA and the goethite surface. From the quantitative evaluation of the induced charge on both components, it is revealed that the degree of the charge adjustment is related to the electrostatic affinity between the PAHA segments and the goethite surface, the electrostatic repulsion between the PAHA segments, and the electrostatic shielding by salt ions. Considering the charge distribution of the adsorbed PAHA at the goethite surface, it is concluded that the change of the charge adjustment is sensitive to that of the conformation of the adsorbed PAHA. From the detailed inspection of the assumptions made and the comparison with the reported theoretical calculations, the obtained potential profiles are considered to broadly reflect the true potential profiles. Because a charge adjustment is not frequently considered in detail in relation to the NOM adsorption on metal (hydr)oxides, the obtained results can form the basis for the further development of modeling of the adsorption of NOM on (hydr)oxide surfaces.
AbstractList The adsorption of natural organic matter (NOM) on mineral (hydr)oxide plays an important role in the evaluation of the speciation of toxic metal ions in the environment. Because both NOM and mineral oxide have variable charges that adjust upon adsorption, a good understanding of proton binding is required before the binding of metal ions can be understood. In this study, the adsorption of purified Aldrich humic acid (PAHA) on goethite was examined as a function of the environmental conditions (pH, salt concentration, and free concentration of PAHA) together with the proton adsorption to PAHA, goethite, and their mixtures. The induced charges on both components were separated on the basis of the difference between the charge/pH curves of the mixture and those of the single components. The electrostatic potential profile across the adsorbed layer was obtained as a numerical solution of the Poisson-Boltzmann equation using the charge density of the adsorbed PAHA and the goethite surface. From the quantitative evaluation of the induced charge on both components, it is revealed that the degree of the charge adjustment is related to the electrostatic affinity between the PAHA segments and the goethite surface, the electrostatic repulsion between the PAHA segments, and the electrostatic shielding by salt ions. Considering the charge distribution of the adsorbed PAHA at the goethite surface, it is concluded that the change of the charge adjustment is sensitive to that of the conformation of the adsorbed PAHA. From the detailed inspection of the assumptions made and the comparison with the reported theoretical calculations, the obtained potential profiles are considered to broadly reflect the true potential profiles. Because a charge adjustment is not frequently considered in detail in relation to the NOM adsorption on metal (hydr)oxides, the obtained results can form the basis for the further development of modeling of the adsorption of NOM on (hydr)oxide surfaces.
The adsorption of natural organic matter (NOM) on mineral (hydr)oxide plays an important role in the evaluation of the speciation of toxic metal ions in the environment. Because both NOM and mineral oxide have variable charges that adjust upon adsorption, a good understanding of proton binding is required before the binding of metal ions can be understood. In this study, the adsorption of purified Aldrich humic acid (PAHA) on goethite was examined as a function of the environmental conditions (pH, salt concentration, and free concentration of PAHA) together with the proton adsorption to PAHA, goethite, and their mixtures. The induced charges on both components were separated on the basis of the difference between the charge/pH curves of the mixture and those of the single components. The electrostatic potential profile across the adsorbed layer was obtained as a numerical solution of the Poisson−Boltzmann equation using the charge density of the adsorbed PAHA and the goethite surface. From the quantitative evaluation of the induced charge on both components, it is revealed that the degree of the charge adjustment is related to the electrostatic affinity between the PAHA segments and the goethite surface, the electrostatic repulsion between the PAHA segments, and the electrostatic shielding by salt ions. Considering the charge distribution of the adsorbed PAHA at the goethite surface, it is concluded that the change of the charge adjustment is sensitive to that of the conformation of the adsorbed PAHA. From the detailed inspection of the assumptions made and the comparison with the reported theoretical calculations, the obtained potential profiles are considered to broadly reflect the true potential profiles. Because a charge adjustment is not frequently considered in detail in relation to the NOM adsorption on metal (hydr)oxides, the obtained results can form the basis for the further development of modeling of the adsorption of NOM on (hydr)oxide surfaces.
The adsorption of natural organic matter (NOM) on mineral (hydr)oxide plays an important role in the evaluation of the speciation of toxic metal ions in the environment. Because both NOM and mineral oxide have variable charges that adjust upon adsorption, a good understanding of proton binding is required before the binding of metal ions can be understood. In this study, the adsorption of purified Aldrich humic acid (PAHA) on goethite was examined as a function of the environmental conditions (pH, salt concentration, and free concentration of PAHA) together with the proton adsorption to PAHA, goethite, and their mixtures. The induced charges on both components were separated on the basis of the difference between the charge/pH curves of the mixture and those of the single components. The electrostatic potential profile across the adsorbed layer was obtained as a numerical solution of the Poisson-Boltzmann equation using the charge density of the adsorbed PAHA and the goethite surface. From the quantitative evaluation of the induced charge on both components, it is revealed that the degree of the charge adjustment is related to the electrostatic affinity between the PAHA segments and the goethite surface, the electrostatic repulsion between the PAHA segments, and the electrostatic shielding by salt ions. Considering the charge distribution of the adsorbed PAHA at the goethite surface, it is concluded that the change of the charge adjustment is sensitive to that of the conformation of the adsorbed PAHA. From the detailed inspection of the assumptions made and the comparison with the reported theoretical calculations, the obtained potential profiles are considered to broadly reflect the true potential profiles. Because a charge adjustment is not frequently considered in detail in relation to the NOM adsorption on metal (hydr)oxides, the obtained results can form the basis for the further development of modeling of the adsorption of NOM on (hydr)oxide surfaces.The adsorption of natural organic matter (NOM) on mineral (hydr)oxide plays an important role in the evaluation of the speciation of toxic metal ions in the environment. Because both NOM and mineral oxide have variable charges that adjust upon adsorption, a good understanding of proton binding is required before the binding of metal ions can be understood. In this study, the adsorption of purified Aldrich humic acid (PAHA) on goethite was examined as a function of the environmental conditions (pH, salt concentration, and free concentration of PAHA) together with the proton adsorption to PAHA, goethite, and their mixtures. The induced charges on both components were separated on the basis of the difference between the charge/pH curves of the mixture and those of the single components. The electrostatic potential profile across the adsorbed layer was obtained as a numerical solution of the Poisson-Boltzmann equation using the charge density of the adsorbed PAHA and the goethite surface. From the quantitative evaluation of the induced charge on both components, it is revealed that the degree of the charge adjustment is related to the electrostatic affinity between the PAHA segments and the goethite surface, the electrostatic repulsion between the PAHA segments, and the electrostatic shielding by salt ions. Considering the charge distribution of the adsorbed PAHA at the goethite surface, it is concluded that the change of the charge adjustment is sensitive to that of the conformation of the adsorbed PAHA. From the detailed inspection of the assumptions made and the comparison with the reported theoretical calculations, the obtained potential profiles are considered to broadly reflect the true potential profiles. Because a charge adjustment is not frequently considered in detail in relation to the NOM adsorption on metal (hydr)oxides, the obtained results can form the basis for the further development of modeling of the adsorption of NOM on (hydr)oxide surfaces.
Author Nagasaki, Shinya
van Riemsdijk, Willem H
Koopal, Luuk K
Saito, Takumi
Tanaka, Satoru
Author_xml – sequence: 1
  givenname: Takumi
  surname: Saito
  fullname: Saito, Takumi
– sequence: 2
  givenname: Luuk K
  surname: Koopal
  fullname: Koopal, Luuk K
– sequence: 3
  givenname: Willem H
  surname: van Riemsdijk
  fullname: van Riemsdijk, Willem H
– sequence: 4
  givenname: Shinya
  surname: Nagasaki
  fullname: Nagasaki, Shinya
– sequence: 5
  givenname: Satoru
  surname: Tanaka
  fullname: Tanaka, Satoru
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15773093$$D View this record in MEDLINE/PubMed
BookMark eNptkVFrFDEUhYNU7Lb64B-QeVEQHJuZTCYzfdtdtFsouOgKfTJkkptu1plkm2So7ZOv_k1_iVm2VpC-5HIu3zlcco7QgXUWEHpZ4PcFLouTXmBSNbi-e4ImBS1xTpuSHaAJZhXJWVWTQ3QUwgZj3JKqfYYOC8oYSWKCvk1VcH4bjbOZ09liHIzMptKoLC3OHMS1iXD6--ev7Dy4uAY_hHfZfC38FWRTtRlDHMDGtBNWZUsXkzCiz5beadNDeI6eatEHeHE_j9HXjx9W80V-8ensfD69yEVV1zFXnZJdpRmrCqzbljWSkSRlDSCSpqB1V6hSsLZpu4p2uqRlqxqgulAUly05Rqf73BtxBdbY9HArvDSBO2F4bzov_C2_GT23_W5sxy5wQijBJJnf7M1b765HCJEPJkjoe2HBjYHXrGSYsiaBr-7BsRtA8a03wy7273cm4O0ekN6F4EH_QzDfVcUfqkrsyX-sNFHsiohemP5RR753mBDhx0O08N_TiYRRvlp-4Zezy88zNlvwVeJf73khA9-40dtUwSO5fwBFzLOb
CitedBy_id crossref_primary_10_1088_1742_6596_429_1_012039
crossref_primary_10_1016_j_gca_2012_04_023
crossref_primary_10_1246_bcsj_20170419
crossref_primary_10_1016_j_chemosphere_2009_12_063
crossref_primary_10_1016_j_chemosphere_2023_140846
crossref_primary_10_1016_j_jcis_2014_05_029
crossref_primary_10_1016_j_watres_2020_115894
crossref_primary_10_1016_S1001_0742_09_60308_9
crossref_primary_10_1016_j_colsurfa_2024_135952
crossref_primary_10_1016_j_chemgeo_2017_04_012
crossref_primary_10_1007_s13762_016_0938_y
crossref_primary_10_1016_j_jcis_2010_10_041
crossref_primary_10_2136_sssaj2005_0250
crossref_primary_10_1016_j_clay_2018_07_006
crossref_primary_10_1016_S1002_0160_15_30008_4
crossref_primary_10_1007_s11270_010_0546_2
crossref_primary_10_1021_es506243d
crossref_primary_10_1039_D2EM00330A
crossref_primary_10_1016_j_chemosphere_2023_138927
crossref_primary_10_5194_bg_7_27_2010
crossref_primary_10_1016_j_gca_2011_07_015
crossref_primary_10_1016_j_jece_2016_11_046
crossref_primary_10_1016_j_scitotenv_2021_151574
crossref_primary_10_3390_molecules24081619
crossref_primary_10_1016_j_jcis_2012_12_038
crossref_primary_10_1016_j_aca_2014_01_022
crossref_primary_10_1021_es072059c
crossref_primary_10_1016_j_envpol_2011_02_011
crossref_primary_10_1016_j_colsurfa_2006_04_053
crossref_primary_10_2136_sssaj2016_04_0110
crossref_primary_10_1016_j_chemosphere_2006_05_009
crossref_primary_10_1016_j_watres_2020_116405
crossref_primary_10_1016_j_seppur_2020_116949
crossref_primary_10_1016_j_apgeochem_2022_105220
crossref_primary_10_1016_j_colsurfa_2020_125486
crossref_primary_10_1016_j_cscee_2023_100598
crossref_primary_10_1021_acs_langmuir_5b00101
crossref_primary_10_1016_j_scitotenv_2009_01_043
crossref_primary_10_1016_j_chemosphere_2012_04_053
crossref_primary_10_1016_j_geoderma_2007_05_003
crossref_primary_10_1016_j_cis_2016_01_006
crossref_primary_10_1246_cl_130589
crossref_primary_10_1021_acsearthspacechem_1c00288
crossref_primary_10_1016_j_chemosphere_2024_143356
crossref_primary_10_1021_acs_est_5b04136
crossref_primary_10_1007_s11356_017_1020_0
crossref_primary_10_1007_s11356_024_32319_9
crossref_primary_10_1021_es1012142
crossref_primary_10_4491_eer_2009_14_1_041
crossref_primary_10_1039_C5EN00141B
crossref_primary_10_1016_j_jece_2016_12_018
crossref_primary_10_1021_la051730t
crossref_primary_10_1021_es305175e
crossref_primary_10_1016_j_jclepro_2023_139533
crossref_primary_10_1177_0003702821991219
crossref_primary_10_1016_j_chemosphere_2011_04_024
crossref_primary_10_1016_j_jece_2015_03_026
crossref_primary_10_1021_acs_est_1c03993
crossref_primary_10_1016_j_heliyon_2023_e22931
crossref_primary_10_1039_C9EN00348G
crossref_primary_10_1016_j_watres_2007_12_015
crossref_primary_10_1007_s11356_020_11422_7
crossref_primary_10_1016_j_gexplo_2014_02_005
crossref_primary_10_1016_j_chemosphere_2008_12_019
crossref_primary_10_1039_C0SM00648C
crossref_primary_10_1039_C5EM00176E
crossref_primary_10_1039_C8EN01327F
crossref_primary_10_1524_ract_92_9_567_54984
crossref_primary_10_1016_j_jhazmat_2010_08_028
crossref_primary_10_1039_C5EN00215J
crossref_primary_10_1016_j_geoderma_2016_05_007
crossref_primary_10_1016_j_chemosphere_2013_11_065
crossref_primary_10_1021_jp911482a
crossref_primary_10_1016_j_envpol_2010_11_006
crossref_primary_10_1021_la2037247
crossref_primary_10_1007_s13762_011_0020_8
crossref_primary_10_1007_s11270_014_1985_y
crossref_primary_10_1016_j_colsurfa_2010_10_032
crossref_primary_10_1016_j_colsurfa_2004_10_139
crossref_primary_10_1016_j_colsurfa_2010_11_075
crossref_primary_10_1016_j_gca_2004_07_002
crossref_primary_10_1016_j_watres_2009_06_022
crossref_primary_10_2136_sssaj2009_0119
crossref_primary_10_3389_fenvs_2022_1023277
crossref_primary_10_2136_sssaj2005_0340
crossref_primary_10_1016_j_seppur_2016_10_006
crossref_primary_10_1016_j_colsurfa_2015_07_045
crossref_primary_10_1016_j_watres_2011_10_002
crossref_primary_10_1111_j_1751_1097_2012_01135_x
crossref_primary_10_1071_EN09066
crossref_primary_10_1021_acs_est_1c06880
crossref_primary_10_1021_acs_est_7b05412
crossref_primary_10_1021_acs_est_3c02028
crossref_primary_10_1016_j_watres_2023_120509
crossref_primary_10_1007_s11368_016_1383_8
crossref_primary_10_1016_j_watres_2011_11_042
crossref_primary_10_1021_es5026917
crossref_primary_10_1021_la200570n
crossref_primary_10_1016_j_jhazmat_2014_07_039
crossref_primary_10_1021_jp902123k
crossref_primary_10_1007_s11356_020_11970_y
crossref_primary_10_1016_j_watres_2013_01_053
crossref_primary_10_1021_acs_est_9b05169
crossref_primary_10_1016_j_watres_2024_121501
crossref_primary_10_1016_j_watres_2009_03_005
crossref_primary_10_1021_la201968b
crossref_primary_10_1016_j_seppur_2014_08_004
crossref_primary_10_1016_j_cis_2015_07_002
crossref_primary_10_1016_j_colsurfa_2008_10_038
crossref_primary_10_1016_j_jece_2024_113594
crossref_primary_10_1016_j_colsurfa_2008_04_043
crossref_primary_10_1021_acs_est_0c02065
crossref_primary_10_1111_ejss_12803
crossref_primary_10_1016_j_watres_2015_02_034
Cites_doi 10.1023/A:1009627214459
10.1016/0021-9797(91)90075-J
10.1016/0016-7037(94)90334-4
10.1016/0009-2541(81)90086-3
10.1006/jcis.2000.6982
10.1016/S0016-7037(97)00338-4
10.1021/es00146a006
10.1016/S0927-7757(99)00429-X
10.1006/jcis.1996.0575
10.1006/jcis.1995.1475
10.1016/0016-7037(96)00059-2
10.1016/0016-7037(82)90292-7
10.1524/ract.1993.62.12.35
10.1016/S0016-7037(99)00269-0
10.1016/S0016-7037(99)00228-8
10.1021/es0002520
10.1016/S0016-7037(99)00268-9
10.1021/la970624r
10.1016/S0016-7037(02)01042-6
10.1016/S0021-9797(78)80009-5
10.1006/jcis.1996.0242
10.1021/es9802450
10.1021/es000123j
10.1016/S0016-7037(00)00536-6
10.1524/ract.1994.65.2.111
10.1006/jcis.1999.6419
10.1016/S0927-7757(02)00191-7
10.1016/0021-9797(78)90217-5
10.1021/la9701440
10.1006/jcis.1998.5904
10.1021/es990260k
10.1524/ract.1992.5859.1.113
10.1021/ma970334h
10.1021/es0258879
10.1021/es980112e
10.1016/S0169-7722(97)00032-6
10.1016/S0016-7037(99)00176-3
10.1016/S0927-7757(98)00637-2
10.1016/0021-9797(89)90397-4
10.1351/pac200173122005
10.1021/es9709942
10.1016/0021-9797(87)90481-4
10.1021/es00050a007
10.1021/es950012y
10.1006/jcis.1999.6317
10.1016/S0016-7037(01)00695-0
10.1021/la970836o
10.1016/S0016-7037(99)00266-5
10.1021/es00149a004
10.1006/jcis.1998.6050
10.1039/a908722b
10.1016/0021-9797(89)90285-3
ContentType Journal Article
Copyright Copyright © 2004 American Chemical Society
Wageningen University & Research
Copyright_xml – notice: Copyright © 2004 American Chemical Society
– notice: Wageningen University & Research
DBID BSCLL
AAYXX
CITATION
NPM
7X8
QVL
DOI 10.1021/la034806z
DatabaseName Istex
CrossRef
PubMed
MEDLINE - Academic
NARCIS:Publications
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5827
EndPage 700
ExternalDocumentID oai_library_wur_nl_wurpubs_335303
15773093
10_1021_la034806z
ark_67375_TPS_XBXRB7BH_T
b414539822
Genre Journal Article
GroupedDBID -
.K2
02
4.4
53G
55A
5GY
5VS
7~N
AABXI
ABDEX
ABFLS
ABMVS
ABPTK
ABUCX
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
AFFNX
ALMA_UNASSIGNED_HOLDINGS
ANTXH
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F20
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
OHM
RNS
ROL
TN5
UI2
UPT
VF5
VG9
W1F
X
---
-~X
6TJ
AAHBH
ABJNI
ABQRX
ADHLV
AGXLV
AHGAQ
BSCLL
CUPRZ
GGK
YQT
~02
AAYXX
ABBLG
ABLBI
ACRPL
ADNMO
AEYZD
AGQPQ
ANPPW
CITATION
NPM
VXZ
7X8
186
1WB
HR
QVL
ID FETCH-LOGICAL-a466t-dbdcb4f77410f9978c734f7c6eeaf995effb1d2a7989b45bf2529d8e5f1d50293
IEDL.DBID ACS
ISSN 0743-7463
IngestDate Tue Jan 05 18:41:13 EST 2021
Fri Jul 11 04:28:15 EDT 2025
Wed Feb 19 01:40:05 EST 2025
Thu Apr 24 23:04:42 EDT 2025
Tue Jul 01 01:45:51 EDT 2025
Wed Oct 30 09:41:05 EDT 2024
Thu Aug 27 13:41:55 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a466t-dbdcb4f77410f9978c734f7c6eeaf995effb1d2a7989b45bf2529d8e5f1d50293
Notes ark:/67375/TPS-XBXRB7BH-T
istex:081D4424C2FC8D6311EF46D52BCC83E183DCACED
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 15773093
PQID 67270578
PQPubID 23479
PageCount 12
ParticipantIDs wageningen_narcis_oai_library_wur_nl_wurpubs_335303
proquest_miscellaneous_67270578
pubmed_primary_15773093
crossref_primary_10_1021_la034806z
crossref_citationtrail_10_1021_la034806z
istex_primary_ark_67375_TPS_XBXRB7BH_T
acs_journals_10_1021_la034806z
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ANTXH
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
QVL
PublicationCentury 2000
PublicationDate 2004-02-03
PublicationDateYYYYMMDD 2004-02-03
PublicationDate_xml – month: 02
  year: 2004
  text: 2004-02-03
  day: 03
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Langmuir
PublicationTitleAlternate Langmuir
PublicationYear 2004
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Davis J. A. (la034806zb00025/la034806zb00025_1) 1978; 63
Vermeer A. W. P. (la034806zb00030/la034806zb00030_1) 1999; 212
Hiemstra T. (la034806zb00021/la034806zb00021_1) 1999; 210
Koopal L. K. (la034806zb00017/la034806zb00017_1) 2001; 73
Tipping E. (la034806zb00032/la034806zb00032_1) 1981; 33
Hiemstra T. (la034806zb00048/la034806zb00048_1) 1989; 133
Keizer M. G. (la034806zb00051/la034806zb00051_1) 1998
Vermeer A. W. P. (la034806zb00040/la034806zb00040_1) 1997; 13
Kim J. I. (la034806zb00007/la034806zb00007_1) 1993; 62
Lenhart J. J. (la034806zb00028/la034806zb00028_1) 1999; 63
Shubin V. (la034806zb00045/la034806zb00045_1) 1997; 30
Fokkink L. G. J. (la034806zb00059/la034806zb00059_1) 1987; 118
Hiemstra T. (la034806zb00020/la034806zb00020_1) 1996; 179
McCarthy J. F. (la034806zb00003/la034806zb00003_1) 1998; 30
Rietra R. (la034806zb00022/la034806zb00022_1) 1999; 63
Christl I. (la034806zb00016/la034806zb00016_1) 1999; 63
Avena M. J. (la034806zb00057/la034806zb00057_1) 1998; 32
Gu B. H. (la034806zb00056/la034806zb00056_1) 1996; 60
Vermeer A. W. P. (la034806zb00029/la034806zb00029_1) 1999; 33
Vermeer A. W. P. (la034806zb00041/la034806zb00041_1) 1998; 14
Au K. K. (la034806zb00036/la034806zb00036_1) 1999; 63
Schlautman M. A. (la034806zb00034/la034806zb00034_1) 1994; 58
Kinniburgh D. G. (la034806zb00049/la034806zb00049_1) 1993
Hayes K. F. (la034806zb00026/la034806zb00026_1) 1991; 142
Filius J. D. (la034806zb00038/la034806zb00038_1) 2000; 64
Zhou Q. H. (la034806zb00039/la034806zb00039_1) 2001; 65
Christl I. (la034806zb00011/la034806zb00011_1) 2001; 35
Dzombak D. A. (la034806zb00013/la034806zb00013_1) 1990
Buffle J. (la034806zb00001/la034806zb00001_1) 1985
Au K. K. (la034806zb00043/la034806zb00043_1) 1998; 32
Christl I. (la034806zb00031/la034806zb00031_1) 2001; 65
Venema P. (la034806zb00014/la034806zb00014_1) 1996; 183
Wang L. L. (la034806zb00035/la034806zb00035_1) 1997; 61
Kinniburgh D. G. (la034806zb00010/la034806zb00010_1) 1999; 151
Davis J. A. (la034806zb00012/la034806zb00012_1) 1978; 67
Gu B. H. (la034806zb00033/la034806zb00033_1) 1994; 28
Shampine L. F. (la034806zb00055/la034806zb00055_1) 2000
Czerwinski K. R. (la034806zb00008/la034806zb00008_1) 1994; 65
Milne C. J. (la034806zb00018/la034806zb00018_1) 2001; 35
Tipping E. (la034806zb00027/la034806zb00027_1) 1982; 46
Tipping E. (la034806zb00009/la034806zb00009_1) 1998; 4
Choppin G. R. (la034806zb00002/la034806zb00002_1) 1992; 58
Vermöhlen K. (la034806zb00037/la034806zb00037_1) 2000; 163
Vermeer A. W. P. (la034806zb00042/la034806zb00042_1) 1998; 14
Buleva M. (la034806zb00060/la034806zb00060_1) 2002; 209
Dzombak D. A. (la034806zb00005/la034806zb00005_1) 1986; 20
Robertson A. P. (la034806zb00015/la034806zb00015_1) 1998; 32
Bryan N. D. (la034806zb00053/la034806zb00053_1) 2000; 2
Filius J. D. (la034806zb00044/la034806zb00044_1) 2003; 67
Milne C. J. (la034806zb00019/la034806zb00019_1) 2003; 37
la034806zb00050/la034806zb00050_1
Liu A. G. (la034806zb00004/la034806zb00004_1) 1999; 218
Milne C. J. (la034806zb00047/la034806zb00047_1) 1995; 175
Benedetti M. F. (la034806zb00054/la034806zb00054_1) 1996; 30
Kinniburgh D. G. (la034806zb00052/la034806zb00052_1) 1993
Marinsky J. A. (la034806zb00006/la034806zb00006_1) 1986; 20
Koopal L. K. (la034806zb00061/la034806zb00061_1) 1989; 128
Hiemstra T. (la034806zb00024/la034806zb00024_1) 2002
la034806zb00058/la034806zb00058_1
Avena M. J. (la034806zb00046/la034806zb00046_1) 1999; 217
Rietra R. (la034806zb00023/la034806zb00023_1) 2000; 229
References_xml – ident: la034806zb00058/la034806zb00058_1
– volume: 4
  start-page: 3
  year: 1998
  ident: la034806zb00009/la034806zb00009_1
  publication-title: Aquat. Geochem.
  doi: 10.1023/A:1009627214459
– volume: 142
  start-page: 448
  year: 1991
  ident: la034806zb00026/la034806zb00026_1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/0021-9797(91)90075-J
– volume: 58
  start-page: 4293
  year: 1994
  ident: la034806zb00034/la034806zb00034_1
  publication-title: J. Geochim. Cosmochim. Acta
  doi: 10.1016/0016-7037(94)90334-4
– volume: 33
  start-page: 81
  year: 1981
  ident: la034806zb00032/la034806zb00032_1
  publication-title: Chem. Geol.
  doi: 10.1016/0009-2541(81)90086-3
– volume: 229
  start-page: 199
  year: 2000
  ident: la034806zb00023/la034806zb00023_1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.2000.6982
– volume-title: version 4
  year: 1998
  ident: la034806zb00051/la034806zb00051_1
– volume: 61
  start-page: 5313
  year: 1997
  ident: la034806zb00035/la034806zb00035_1
  publication-title: J. Geochim. Cosmochim. Acta
  doi: 10.1016/S0016-7037(97)00338-4
– volume: 20
  start-page: 349
  year: 1986
  ident: la034806zb00006/la034806zb00006_1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00146a006
– volume: 163
  start-page: 45
  year: 2000
  ident: la034806zb00037/la034806zb00037_1
  publication-title: J. Colloids Surf., A
  doi: 10.1016/S0927-7757(99)00429-X
– volume: 183
  start-page: 515
  year: 1996
  ident: la034806zb00014/la034806zb00014_1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.1996.0575
– volume-title: Solving Boundary Value Problems for Ordinary Differential Equations in MATLAB with bvp4c
  year: 2000
  ident: la034806zb00055/la034806zb00055_1
– volume: 175
  start-page: 448
  year: 1995
  ident: la034806zb00047/la034806zb00047_1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.1995.1475
– volume: 60
  start-page: 1943
  year: 1996
  ident: la034806zb00056/la034806zb00056_1
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/0016-7037(96)00059-2
– volume: 46
  start-page: 75
  year: 1982
  ident: la034806zb00027/la034806zb00027_1
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/0016-7037(82)90292-7
– volume-title: FIT User Guide
  year: 1993
  ident: la034806zb00052/la034806zb00052_1
– volume: 62
  start-page: 35
  year: 1993
  ident: la034806zb00007/la034806zb00007_1
  publication-title: Radiochim. Acta
  doi: 10.1524/ract.1993.62.12.35
– start-page: 3773
  volume-title: Encyclopedia of Surface and Colloid Science
  year: 2002
  ident: la034806zb00024/la034806zb00024_1
– volume: 63
  start-page: 2891
  year: 1999
  ident: la034806zb00028/la034806zb00028_1
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/S0016-7037(99)00269-0
– volume: 63
  start-page: 3009
  year: 1999
  ident: la034806zb00022/la034806zb00022_1
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/S0016-7037(99)00228-8
– volume: 35
  start-page: 2512
  year: 2001
  ident: la034806zb00011/la034806zb00011_1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0002520
– volume: 63
  start-page: 2903
  year: 1999
  ident: la034806zb00036/la034806zb00036_1
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/S0016-7037(99)00268-9
– volume: 14
  start-page: 2810
  year: 1998
  ident: la034806zb00041/la034806zb00041_1
  publication-title: Langmuir
  doi: 10.1021/la970624r
– volume: 67
  start-page: 1463
  year: 2003
  ident: la034806zb00044/la034806zb00044_1
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/S0016-7037(02)01042-6
– volume-title: Surface Complexation Modeling:  Hydrous Ferric Oxide
  year: 1990
  ident: la034806zb00013/la034806zb00013_1
– volume: 63
  start-page: 480
  year: 1978
  ident: la034806zb00025/la034806zb00025_1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/S0021-9797(78)80009-5
– volume: 179
  start-page: 488
  year: 1996
  ident: la034806zb00020/la034806zb00020_1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.1996.0242
– volume: 32
  start-page: 2900
  year: 1998
  ident: la034806zb00043/la034806zb00043_1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es9802450
– volume: 35
  start-page: 2049
  year: 2001
  ident: la034806zb00018/la034806zb00018_1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es000123j
– volume: 65
  start-page: 803
  year: 2001
  ident: la034806zb00039/la034806zb00039_1
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/S0016-7037(00)00536-6
– volume: 65
  start-page: 111
  year: 1994
  ident: la034806zb00008/la034806zb00008_1
  publication-title: Radiochim. Acta
  doi: 10.1524/ract.1994.65.2.111
– volume: 218
  start-page: 225
  year: 1999
  ident: la034806zb00004/la034806zb00004_1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.1999.6419
– volume: 209
  start-page: 289
  year: 2002
  ident: la034806zb00060/la034806zb00060_1
  publication-title: Colloids Surf., A
  doi: 10.1016/S0927-7757(02)00191-7
– volume: 67
  start-page: 90
  year: 1978
  ident: la034806zb00012/la034806zb00012_1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/0021-9797(78)90217-5
– volume: 13
  start-page: 4413
  year: 1997
  ident: la034806zb00040/la034806zb00040_1
  publication-title: Langmuir
  doi: 10.1021/la9701440
– volume: 210
  start-page: 182
  year: 1999
  ident: la034806zb00021/la034806zb00021_1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.1998.5904
– volume: 33
  start-page: 3892
  year: 1999
  ident: la034806zb00029/la034806zb00029_1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es990260k
– volume: 58
  start-page: 113
  year: 1992
  ident: la034806zb00002/la034806zb00002_1
  publication-title: Radiochim. Acta
  doi: 10.1524/ract.1992.5859.1.113
– volume-title: Complexation Reactions in Aquatic Systems:  An Analytical Approach
  year: 1985
  ident: la034806zb00001/la034806zb00001_1
– volume-title: Guide to the Wallingford Titrator
  year: 1993
  ident: la034806zb00049/la034806zb00049_1
– volume: 30
  start-page: 5944
  year: 1997
  ident: la034806zb00045/la034806zb00045_1
  publication-title: Macromolecules
  doi: 10.1021/ma970334h
– volume: 37
  start-page: 958
  year: 2003
  ident: la034806zb00019/la034806zb00019_1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0258879
– volume: 32
  start-page: 2572
  year: 1998
  ident: la034806zb00057/la034806zb00057_1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es980112e
– volume: 30
  start-page: 49
  year: 1998
  ident: la034806zb00003/la034806zb00003_1
  publication-title: J. Contam. Hydrol.
  doi: 10.1016/S0169-7722(97)00032-6
– volume: 64
  start-page: 51
  year: 2000
  ident: la034806zb00038/la034806zb00038_1
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/S0016-7037(99)00176-3
– volume: 151
  start-page: 147
  year: 1999
  ident: la034806zb00010/la034806zb00010_1
  publication-title: J. Colloids Surf., A
  doi: 10.1016/S0927-7757(98)00637-2
– volume: 128
  start-page: 188
  year: 1989
  ident: la034806zb00061/la034806zb00061_1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/0021-9797(89)90397-4
– volume: 73
  start-page: 2005
  year: 2001
  ident: la034806zb00017/la034806zb00017_1
  publication-title: Pure Appl. Chem.
  doi: 10.1351/pac200173122005
– volume: 32
  start-page: 2519
  year: 1998
  ident: la034806zb00015/la034806zb00015_1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es9709942
– volume: 118
  start-page: 454
  year: 1987
  ident: la034806zb00059/la034806zb00059_1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/0021-9797(87)90481-4
– volume: 28
  start-page: 38
  year: 1994
  ident: la034806zb00033/la034806zb00033_1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00050a007
– volume: 30
  start-page: 1805
  year: 1996
  ident: la034806zb00054/la034806zb00054_1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es950012y
– volume: 217
  start-page: 37
  year: 1999
  ident: la034806zb00046/la034806zb00046_1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.1999.6317
– volume: 65
  start-page: 3435
  year: 2001
  ident: la034806zb00031/la034806zb00031_1
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/S0016-7037(01)00695-0
– volume: 14
  start-page: 4210
  year: 1998
  ident: la034806zb00042/la034806zb00042_1
  publication-title: Langmuir
  doi: 10.1021/la970836o
– volume: 63
  start-page: 2929
  year: 1999
  ident: la034806zb00016/la034806zb00016_1
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/S0016-7037(99)00266-5
– volume: 20
  start-page: 669
  year: 1986
  ident: la034806zb00005/la034806zb00005_1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00149a004
– volume: 212
  start-page: 176
  year: 1999
  ident: la034806zb00030/la034806zb00030_1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.1998.6050
– volume: 2
  start-page: 1291
  year: 2000
  ident: la034806zb00053/la034806zb00053_1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/a908722b
– volume: 133
  start-page: 105
  year: 1989
  ident: la034806zb00048/la034806zb00048_1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/0021-9797(89)90285-3
– ident: la034806zb00050/la034806zb00050_1
SSID ssj0009349
Score 2.1613517
Snippet The adsorption of natural organic matter (NOM) on mineral (hydr)oxide plays an important role in the evaluation of the speciation of toxic metal ions in the...
SourceID wageningen
proquest
pubmed
crossref
istex
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 689
SubjectTerms donnan model parameters
fulvic-acid
humate interactions
iron-oxide
metal-ion binding
natural organic-matter
oxide-water interface
polyelectrolyte adsorption
surface ionization
weak polyelectrolytes
Title Adsorption of Humic Acid on Goethite:  Isotherms, Charge Adjustments, and Potential Profiles
URI http://dx.doi.org/10.1021/la034806z
https://api.istex.fr/ark:/67375/TPS-XBXRB7BH-T/fulltext.pdf
https://www.ncbi.nlm.nih.gov/pubmed/15773093
https://www.proquest.com/docview/67270578
http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F335303
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB6V9kB74P0Ij2IBQhxISeLYSbjtLpQFCbSiW2lPtRLHrkqXBK0TFfXElb_JL2Gcx24RC5wiW5NE8czY32ReAE8VwtBEopHDEX27eN56buzblmERlVTLkKehTXD-8JGPD8P3MzbbgCd_8eAH_st56tEw9vj5JdgKOCqvxT-jg1VlXdpiXFtrMwo57csHXbzVHj3S_Hb0bNlV_LYOV-7A9hnqctEkN104bPavwus-ZaeNMTndq6tsT57_WcHxX99xDa50YJMMWum4DhuquAGXR32Pt5twNMhNuWh2DVJqgrw9kWQgT3KCE29LZSMT1auf33-Qd6ZJ1fpiXhDroT9WZJB_rk0To45zaZGTSVnZ0CN84aRtBG5uweH-m-lo7HYdF9w05Lxy8yyXWagREvqeTtDAlBHFoeRKpThmSuvMz4M0SuIkC1mmAxYkeayY9nPmIXK4DZtFWai7QDwWp4mtZm83CYlWqKS-DjKJJhDavrF2YBdZIjqNMaJxhge-WC6TA897bgnZ1Su3bTPm60gfL0m_tkU61hE9a1i-pEgXpzaqLWJiOjkQs-Hs0zAajsXUgUe9TAhkh3WgpIUqayOs1xrxbezAnVZUVm9jUWR9yg7QleyIwraDMsJW8O7-yYmzeiGKub3gE4yglCGGuPe_tbgP223EUOB69AFsVotaPUQwVGW7jTL8ArmdA30
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagPbQceD_Co7UQQhxISeI4D27ZFWULbbWiW2lPtRLHrtouCVpvVNQTV_4mv4QZJ7tb0EpwimxNEsce299kxt8Q8koBDE0lGDkRoG8X9lvPTXxMGRYzybQMozzEA84Hh9HgOPw05uOOJgfPwkAjDDzJWCf-kl3AfzfJPRYmXnR1k6wDCAlQm7P-0ZJgl7VQFyk34zBicxah67fiDiTNHzvQOnbm91Xw8hbZvIQpXdkzTtf2nN07bfIi21obanKx08yKHXn1F5Hj_33OXXK7g540a3XlHrmhqvtkoz_P-PaAnGSlqad2DaG1pjDSZ5Jm8qykUPGxVhinqN7_-vGT7hl7cOureUvRX3-qaFaeN8ZGrENdXpV0WM8wEAleOGzTgpuH5Hj3w6g_cLv8C24eRtHMLYtSFqEGgOh7OgVzU8YMijJSKocyV1oXfhnkcZqkRcgLHfAgLRPFtV9yD3DEI7JW1ZV6QqjHkzxFbntcMiTYpJL5OigkGERgCSfaIVvQS6KbP0ZY13jgi0U3OeTNfNCE7NjLMYnGZJXoy4Xot5ayY5XQazvyC4l8eoExbjEXo-GRGPfGX3pxbyBGDtmeq4aA4UB3Sl6pujECfdiAdhOHPG41Zvk2HsfoYXYIW6qQqDA5lBHI5939oROXzVRUE7ygogjGOCCKp__qi22yMRgd7Iv9vcPPz8hmG0sUuB57TtZm00a9AJg0K7bs_PgNERwL3g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaglaAceD_Co7UQQhxISeI4D27ZhWXLo6zoVtoTVuIHKl2Sap1VUU9c-Zv8EmaS7G5BK8EpsjVJHHtsf5MZf0PIEw0wNJVg5ESAvl3Ybz038TFlWMwkMzKM8hAPOH_Yj4aH4dsJn3SGIp6FgUZYeJJtnPg4q0-U6RgG_BfT3GNh4kVnF8kmuutQo7P-wYpkl7VwF2k34zBiCyah87fiLiTtH7vQJnbo93UQ8wrZOoVpXTbnnM7tO4Nr5OOyxU24yfHuvC525dlfZI7__0nXydUOgtKs1Zkb5IIub5LL_UXmt1vkc6ZsNWvWEloZCiN-JGkmjxSFijeVxnhF_fLXj590zzYHuL7Z5xT99l80zdTXuW0i16EuLxUdVTUGJMELR216cHubHA5ej_tDt8vD4OZhFNWuKpQsQgNA0fdMCmanjBkUZaR1DmWujSl8FeRxmqRFyAsT8CBViebGV9wDPHGHbJRVqe8R6vEkT5HjHpcOCbapZL4JCgmGEVjEiXHINvSU6OaRFY2LPPDFspsc8mwxcEJ2LOaYTGO6TvTxUvSkpe5YJ_S0Gf2lRD47xli3mIvx6EBMepNPvbg3FGOH7CzUQ8BwoFslL3U1twJ92YB6E4fcbbVm9TYex-hpdghbqZEoMUmUFcjr3f2pE6fzmSineEFlEYxxQBb3_9UXO-TS6NVAvN_bf_eAbLUhRYHrsYdko57N9SNAS3Wx3UyR37WmDmE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adsorption+of+humic+acid+on+goethite%3A+isotherms%2C+charge+adjustments%2C+and+potential+profiles&rft.jtitle=Langmuir&rft.au=Saito%2C+Takumi&rft.au=Koopal%2C+Luuk+K&rft.au=van+Riemsdijk%2C+Willem+H&rft.au=Nagasaki%2C+Shinya&rft.date=2004-02-03&rft.issn=0743-7463&rft.volume=20&rft.issue=3&rft.spage=689&rft_id=info:doi/10.1021%2Fla034806z&rft_id=info%3Apmid%2F15773093&rft.externalDocID=15773093
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7463&client=summon