Sequential Lonsdaleite to Diamond Formation in Ureilite Meteorites via In Situ Chemical Fluid/Vapor Deposition

Ureilite meteorites are arguably our only large suite of samples from the mantle of a dwarf planet and typically contain greater abundances of diamond than any known rock. Some also contain lonsdaleite, which may be harder than diamond. Here, we use electron microscopy to map the relative distributi...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 119; no. 38; pp. 1 - 8
Main Authors Tomkins, Andrew G., Wilson, Nicholas C., MacRae, Colin, Salek, Alan, Field, Matthew R., Brand, Helen E. A., Langendam, Andrew D., Stephen, Natasha R., Torpy, Aaron, Pintér, Zsanett, Jennings, Lauren A., McCulloch, Dougal G.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 20.09.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ureilite meteorites are arguably our only large suite of samples from the mantle of a dwarf planet and typically contain greater abundances of diamond than any known rock. Some also contain lonsdaleite, which may be harder than diamond. Here, we use electron microscopy to map the relative distribution of coexisting lonsdaleite, diamond, and graphite in ureilites. These maps show that lonsdaleite tends to occur as polycrystalline grains, sometimes with distinctive fold morphologies, partially replaced by diamond + graphite in rims and cross-cutting veins. These observations provide strong evidence for how the carbon phases formed in ureilites, which, despite much conjecture and seemingly conflicting observations, has not been resolved. We suggest that lonsdaleite formed by pseudomorphic replacement of primary graphite shapes, facilitated by a supercritical C-H-O-S fluid during rapid decompression and cooling. Diamond + graphite formed after lonsdaleite via ongoing reaction with C-H-O-S gas. This graphite > lonsdaleite > diamond + graphite formation process is akin to industrial chemical vapor deposition but operates at higher pressure (∼1–100 bar) and provides a pathway toward manufacture of shaped lonsdaleite for industrial application. It also provides a unique model for ureilites that can reconcile all conflicting observations relating to diamond formation.
AbstractList Ureilite meteorites are arguably our only large suite of samples from the mantle of a dwarf planet and typically contain greater abundances of diamond than any known rock. Some also contain lonsdaleite, which may be harder than diamond. Here, we use electron microscopy to map the relative distribution of coexisting lonsdaleite, diamond, and graphite in ureilites. These maps show that lonsdaleite tends to occur as polycrystalline grains, sometimes with distinctive fold morphologies, partially replaced by diamond + graphite in rims and cross-cutting veins. These observations provide strong evidence for how the carbon phases formed in ureilites, which, despite much conjecture and seemingly conflicting observations, has not been resolved. We suggest that lonsdaleite formed by pseudomorphic replacement of primary graphite shapes, facilitated by a supercritical C-H-O-S fluid during rapid decompression and cooling. Diamond + graphite formed after lonsdaleite via ongoing reaction with C-H-O-S gas. This graphite > lonsdaleite > diamond + graphite formation process is akin to industrial chemical vapor deposition but operates at higher pressure (∼1–100 bar) and provides a pathway toward manufacture of shaped lonsdaleite for industrial application. It also provides a unique model for ureilites that can reconcile all conflicting observations relating to diamond formation.
We report on lonsdaleite and diamond formation in ureilite meteorites, which likely come from the mantle of a destroyed inner solar system dwarf planet. In these meteorites, folded graphite crystals have been pseudomorphed by lonsdaleite. This occurred at mildly elevated pressures through reaction between graphite and supercritical C-H-O-S fluids. Ongoing reaction during cooling then promoted partial replacement of lonsdaleite by diamond + graphite. This process is akin to industrial chemical vapor deposition but operates at higher pressure (∼1–100 bar) and provides a pathway toward manufacture of shaped lonsdaleite for industrial application. Ureilite meteorites are arguably our only large suite of samples from the mantle of a dwarf planet and typically contain greater abundances of diamond than any known rock. Some also contain lonsdaleite, which may be harder than diamond. Here, we use electron microscopy to map the relative distribution of coexisting lonsdaleite, diamond, and graphite in ureilites. These maps show that lonsdaleite tends to occur as polycrystalline grains, sometimes with distinctive fold morphologies, partially replaced by diamond + graphite in rims and cross-cutting veins. These observations provide strong evidence for how the carbon phases formed in ureilites, which, despite much conjecture and seemingly conflicting observations, has not been resolved. We suggest that lonsdaleite formed by pseudomorphic replacement of primary graphite shapes, facilitated by a supercritical C-H-O-S fluid during rapid decompression and cooling. Diamond + graphite formed after lonsdaleite via ongoing reaction with C-H-O-S gas. This graphite > lonsdaleite > diamond + graphite formation process is akin to industrial chemical vapor deposition but operates at higher pressure (∼1–100 bar) and provides a pathway toward manufacture of shaped lonsdaleite for industrial application. It also provides a unique model for ureilites that can reconcile all conflicting observations relating to diamond formation.
Ureilite meteorites are arguably our only large suite of samples from the mantle of a dwarf planet and typically contain greater abundances of diamond than any known rock. Some also contain lonsdaleite, which may be harder than diamond. Here, we use electron microscopy to map the relative distribution of coexisting lonsdaleite, diamond, and graphite in ureilites. These maps show that lonsdaleite tends to occur as polycrystalline grains, sometimes with distinctive fold morphologies, partially replaced by diamond + graphite in rims and cross-cutting veins. These observations provide strong evidence for how the carbon phases formed in ureilites, which, despite much conjecture and seemingly conflicting observations, has not been resolved. We suggest that lonsdaleite formed by pseudomorphic replacement of primary graphite shapes, facilitated by a supercritical C-H-O-S fluid during rapid decompression and cooling. Diamond + graphite formed after lonsdaleite via ongoing reaction with C-H-O-S gas. This graphite > lonsdaleite > diamond + graphite formation process is akin to industrial chemical vapor deposition but operates at higher pressure (∼1-100 bar) and provides a pathway toward manufacture of shaped lonsdaleite for industrial application. It also provides a unique model for ureilites that can reconcile all conflicting observations relating to diamond formation.Ureilite meteorites are arguably our only large suite of samples from the mantle of a dwarf planet and typically contain greater abundances of diamond than any known rock. Some also contain lonsdaleite, which may be harder than diamond. Here, we use electron microscopy to map the relative distribution of coexisting lonsdaleite, diamond, and graphite in ureilites. These maps show that lonsdaleite tends to occur as polycrystalline grains, sometimes with distinctive fold morphologies, partially replaced by diamond + graphite in rims and cross-cutting veins. These observations provide strong evidence for how the carbon phases formed in ureilites, which, despite much conjecture and seemingly conflicting observations, has not been resolved. We suggest that lonsdaleite formed by pseudomorphic replacement of primary graphite shapes, facilitated by a supercritical C-H-O-S fluid during rapid decompression and cooling. Diamond + graphite formed after lonsdaleite via ongoing reaction with C-H-O-S gas. This graphite > lonsdaleite > diamond + graphite formation process is akin to industrial chemical vapor deposition but operates at higher pressure (∼1-100 bar) and provides a pathway toward manufacture of shaped lonsdaleite for industrial application. It also provides a unique model for ureilites that can reconcile all conflicting observations relating to diamond formation.
Author Wilson, Nicholas C.
Field, Matthew R.
McCulloch, Dougal G.
Salek, Alan
Tomkins, Andrew G.
Pintér, Zsanett
Brand, Helen E. A.
Torpy, Aaron
Stephen, Natasha R.
MacRae, Colin
Langendam, Andrew D.
Jennings, Lauren A.
Author_xml – sequence: 1
  givenname: Andrew G.
  surname: Tomkins
  fullname: Tomkins, Andrew G.
– sequence: 2
  givenname: Nicholas C.
  surname: Wilson
  fullname: Wilson, Nicholas C.
– sequence: 3
  givenname: Colin
  surname: MacRae
  fullname: MacRae, Colin
– sequence: 4
  givenname: Alan
  surname: Salek
  fullname: Salek, Alan
– sequence: 5
  givenname: Matthew R.
  surname: Field
  fullname: Field, Matthew R.
– sequence: 6
  givenname: Helen E. A.
  surname: Brand
  fullname: Brand, Helen E. A.
– sequence: 7
  givenname: Andrew D.
  surname: Langendam
  fullname: Langendam, Andrew D.
– sequence: 8
  givenname: Natasha R.
  surname: Stephen
  fullname: Stephen, Natasha R.
– sequence: 9
  givenname: Aaron
  surname: Torpy
  fullname: Torpy, Aaron
– sequence: 10
  givenname: Zsanett
  surname: Pintér
  fullname: Pintér, Zsanett
– sequence: 11
  givenname: Lauren A.
  surname: Jennings
  fullname: Jennings, Lauren A.
– sequence: 12
  givenname: Dougal G.
  surname: McCulloch
  fullname: McCulloch, Dougal G.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36095186$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1v1DAQxS1URLeFMyeQJS69pOuvxMkFCW27UGkRh1KulhNPqFeJHWynEv89DtsWqMTJI_n3nt7MO0FHzjtA6DUl55RIvp6cjueMkbqmgtLmGVpR0tCiEg05QitCmCxqwcQxOolxTwhpypq8QMe8yhOtqxVy1_BjBpesHvDOu2j0ADYBTh5fWD16Z_DWh1En6x22Dt8EsMMCfIYEPuQp4jur8ZXD1zbNeHMLo-2y2XaYrVl_05MP-AImH-1i8RI97_UQ4dX9e4putpdfN5-K3ZePV5sPu0KLqkpFSzrSmF5qUTYGpJSdYQJaAbpkre4rIXhlZAs9LylI3mpa67LUpuVtaww0_BS9P_hOczuC6fKGQQ9qCnbU4afy2qp_f5y9Vd_9nWpE05REZIOze4Pg84FiUqONHQyDduDnqJikglScC5bRd0_QvZ-Dy-stVFXWlRR1pt7-negxykMVGSgPQBd8jAF61dn0--45oB0UJWqpXC2Vqz-VZ936ie7B-v-KNwfFPiYfHnEmGZE5DP8FKzW6uQ
CitedBy_id crossref_primary_10_1016_j_epsl_2023_118201
crossref_primary_10_1038_s42004_024_01200_8
crossref_primary_10_1016_j_lithos_2024_107775
crossref_primary_10_1063_5_0138911
crossref_primary_10_1557_s43579_023_00411_9
crossref_primary_10_1073_pnas_2304890120
crossref_primary_10_1016_j_earscirev_2023_104502
crossref_primary_10_1016_j_scib_2025_03_003
crossref_primary_10_1111_maps_14082
crossref_primary_10_1016_j_gca_2024_04_027
crossref_primary_10_1073_pnas_2305559120
crossref_primary_10_1088_1361_6463_ad85ef
Cites_doi 10.1557/JMR.2003.0377
10.1111/j.1945-5100.2002.tb00876.x
10.1038/328141a0
10.7185/geochemlet.2018
10.1063/1.1841236
10.1016/0016-7037(95)00333-9
10.1016/S0016-7037(97)00254-8
10.1111/j.1945-5100.1993.tb00633.x
10.1038/ncomms10970
10.1016/j.diamond.2005.07.028
10.1016/j.gca.2019.11.032
10.2138/rmg.2009.70.3
10.1016/j.gca.2015.04.035
10.1016/j.gca.2010.03.038
10.1016/0925-9635(91)90005-U
10.1111/maps.13755
10.2465/jmps.150906
10.1029/GL015i012p01445
10.1111/maps.13471
10.1126/sciadv.aao3561
10.1080/00387010.2011.627527
10.1029/JB081i014p02467
10.1021/acsearthspacechem.7b00034
10.1111/j.1945-5100.2006.tb00489.x
10.1038/s41467-018-03808-6
10.1111/j.1945-5100.2010.01128.x
10.1002/jemt.20205
10.1111/j.1945-5100.2010.01111.x
10.1111/maps.12401
10.1016/j.diamond.2019.107640
10.1016/j.gca.2008.06.028
10.1111/j.1945-5100.2010.01094.x
10.1103/PhysRevB.62.11089
10.1111/j.1945-5100.2010.01136.x
10.1111/j.1945-5100.1992.tb00215.x
10.1016/0016-7037(80)90119-2
10.1016/j.gca.2021.06.022
10.1016/j.vacuum.2010.05.009
10.1016/0008-6223(96)00170-4
10.1029/JB087iS01p0A353
10.1038/ncomms6447
10.1111/j.1945-5100.2011.01320.x
10.1007/978-1-4419-9583-4
10.1016/j.diamond.2011.08.005
10.1134/S1063776117010125
10.1016/j.gca.2010.05.026
10.1023/A:1021868820084
10.1126/science.155.3765.995
10.1073/pnas.1919067117
10.2138/am.2013.4341
10.1016/S0168-9002(02)02045-4
10.1111/j.1945-5100.2006.tb00197.x
10.1134/S1028334X11110201
10.1021/acs.nanolett.8b04421
10.1016/j.gca.2012.06.022
10.1016/j.gca.2016.11.026
10.1007/s00710-013-0272-8
10.1111/j.1945-5100.2010.01103.x
10.1016/S0925-9635(02)00312-6
10.1002/2017TC004702
10.1002/cvde.201106921
10.1016/j.chemer.2014.01.004
ContentType Journal Article
Copyright Copyright © 2022 the Author(s)
Copyright National Academy of Sciences Sep 20, 2022
Copyright © 2022 the Author(s). Published by PNAS. 2022
Copyright_xml – notice: Copyright © 2022 the Author(s)
– notice: Copyright National Academy of Sciences Sep 20, 2022
– notice: Copyright © 2022 the Author(s). Published by PNAS. 2022
DBID AAYXX
CITATION
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.2208814119
DatabaseName CrossRef
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed

MEDLINE - Academic

Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 8
ExternalDocumentID PMC9499504
36095186
10_1073_pnas_2208814119
27207095
Genre Journal Article
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABOCM
ABPLY
ABPPZ
ABTLG
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
AENEX
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BKOMP
CS3
D0L
DIK
DU5
E3Z
EBS
F5P
FRP
GX1
H13
HH5
HYE
JENOY
JLS
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-a466t-b0c09df7a459de777cd24eb4ea52baf64436d7bef351e73ba18a55adb3bbdde93
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:37:45 EDT 2025
Fri Jul 11 12:43:06 EDT 2025
Mon Jun 30 09:59:15 EDT 2025
Thu Apr 03 07:02:37 EDT 2025
Tue Jul 01 01:03:23 EDT 2025
Thu Apr 24 22:55:12 EDT 2025
Thu May 29 08:49:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 38
Keywords meteorite
diamond
lonsdaleite
ureilite
chemical vapor deposition
Language English
License This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a466t-b0c09df7a459de777cd24eb4ea52baf64436d7bef351e73ba18a55adb3bbdde93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Edited by Timothy Grove, Massachusetts Institute of Technology, Cambridge, MA; received May 22, 2022; accepted August 5, 2022
Author contributions: A.G.T., D.G.M., N.C.W., C.M. designed research; A.G.T., N.C.W., C.M., A.S., M.R.F., H.E.A.B., A.D.L., N.R.S., A.T., L.A.J., and D.G.M. performed research; A.G.T., N.C.W., C.M., A.S., M.R.F., H.E.A.B., A.T., Z.P., L.A.J., and D.G.M. analyzed data; and A.G.T., D.G.M. wrote the paper.
ORCID 0000-0003-4548-1955
0000-0003-3952-922X
0000-0001-9470-0857
0000-0002-7229-332X
0000-0003-2788-331X
0000-0003-1002-2644
0000-0002-1644-164X
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC9499504
PMID 36095186
PQID 2716586748
PQPubID 42026
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9499504
proquest_miscellaneous_2714063342
proquest_journals_2716586748
pubmed_primary_36095186
crossref_citationtrail_10_1073_pnas_2208814119
crossref_primary_10_1073_pnas_2208814119
jstor_primary_27207095
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-20
PublicationDateYYYYMMDD 2022-09-20
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-20
  day: 20
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2022
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_4_3_2
e_1_3_4_1_2
e_1_3_4_61_2
e_1_3_4_9_2
e_1_3_4_63_2
e_1_3_4_7_2
e_1_3_4_40_2
e_1_3_4_5_2
e_1_3_4_23_2
e_1_3_4_44_2
e_1_3_4_21_2
e_1_3_4_42_2
e_1_3_4_27_2
e_1_3_4_48_2
e_1_3_4_25_2
e_1_3_4_46_2
e_1_3_4_29_2
e_1_3_4_30_2
e_1_3_4_51_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_57_2
e_1_3_4_55_2
e_1_3_4_32_2
e_1_3_4_59_2
e_1_3_4_53_2
e_1_3_4_15_2
e_1_3_4_38_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_2_2
e_1_3_4_60_2
e_1_3_4_8_2
e_1_3_4_41_2
e_1_3_4_6_2
e_1_3_4_22_2
e_1_3_4_45_2
e_1_3_4_20_2
e_1_3_4_43_2
e_1_3_4_26_2
e_1_3_4_49_2
e_1_3_4_64_2
e_1_3_4_24_2
e_1_3_4_47_2
e_1_3_4_28_2
Mittlefehldt D. W. (e_1_3_4_4_2)
e_1_3_4_52_2
e_1_3_4_50_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_58_2
e_1_3_4_54_2
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_16_2
e_1_3_4_37_2
e_1_3_4_14_2
e_1_3_4_35_2
e_1_3_4_56_2
e_1_3_4_18_2
e_1_3_4_39_2
Egerton R. F. (e_1_3_4_62_2) 2011
References_xml – ident: e_1_3_4_50_2
  doi: 10.1557/JMR.2003.0377
– ident: e_1_3_4_22_2
  doi: 10.1111/j.1945-5100.2002.tb00876.x
– ident: e_1_3_4_23_2
  doi: 10.1038/328141a0
– ident: e_1_3_4_53_2
  doi: 10.7185/geochemlet.2018
– ident: e_1_3_4_9_2
  doi: 10.1063/1.1841236
– ident: e_1_3_4_26_2
  doi: 10.1016/0016-7037(95)00333-9
– ident: e_1_3_4_36_2
  doi: 10.1016/S0016-7037(97)00254-8
– ident: e_1_3_4_37_2
  doi: 10.1111/j.1945-5100.1993.tb00633.x
– ident: e_1_3_4_11_2
  doi: 10.1038/ncomms10970
– ident: e_1_3_4_59_2
  doi: 10.1038/328141a0
– ident: e_1_3_4_49_2
  doi: 10.1016/j.diamond.2005.07.028
– ident: e_1_3_4_28_2
  doi: 10.1016/j.gca.2019.11.032
– ident: e_1_3_4_52_2
  doi: 10.2138/rmg.2009.70.3
– ident: e_1_3_4_25_2
  doi: 10.1016/j.gca.2015.04.035
– ident: e_1_3_4_16_2
  doi: 10.1016/j.gca.2010.03.038
– ident: e_1_3_4_45_2
  doi: 10.1016/0925-9635(91)90005-U
– ident: e_1_3_4_2_2
  doi: 10.1111/maps.13755
– ident: e_1_3_4_17_2
  doi: 10.2465/jmps.150906
– ident: e_1_3_4_24_2
  doi: 10.1029/GL015i012p01445
– ident: e_1_3_4_1_2
  doi: 10.1111/maps.13471
– ident: e_1_3_4_14_2
  doi: 10.1126/sciadv.aao3561
– ident: e_1_3_4_21_2
  doi: 10.1080/00387010.2011.627527
– ident: e_1_3_4_27_2
  doi: 10.1029/JB081i014p02467
– ident: e_1_3_4_56_2
  doi: 10.1021/acsearthspacechem.7b00034
– ident: e_1_3_4_39_2
  doi: 10.1111/j.1945-5100.2006.tb00489.x
– ident: e_1_3_4_29_2
  doi: 10.1038/s41467-018-03808-6
– ident: e_1_3_4_58_2
  doi: 10.1111/j.1945-5100.2010.01128.x
– ident: e_1_3_4_60_2
  doi: 10.1002/jemt.20205
– ident: e_1_3_4_54_2
  doi: 10.1111/j.1945-5100.2010.01111.x
– start-page: 4.14.195
  volume-title: (Planetary Materials Reviews in Mineralogy, 1998)
  ident: e_1_3_4_4_2
– ident: e_1_3_4_5_2
  doi: 10.1111/maps.12401
– ident: e_1_3_4_7_2
  doi: 10.1016/j.diamond.2019.107640
– ident: e_1_3_4_38_2
  doi: 10.1016/j.gca.2008.06.028
– ident: e_1_3_4_46_2
  doi: 10.1111/j.1945-5100.2010.01094.x
– ident: e_1_3_4_63_2
  doi: 10.1103/PhysRevB.62.11089
– ident: e_1_3_4_40_2
  doi: 10.1111/j.1945-5100.2010.01136.x
– ident: e_1_3_4_31_2
  doi: 10.1111/j.1945-5100.1992.tb00215.x
– ident: e_1_3_4_35_2
  doi: 10.1016/0016-7037(80)90119-2
– ident: e_1_3_4_19_2
  doi: 10.1016/j.gca.2021.06.022
– ident: e_1_3_4_51_2
  doi: 10.1016/j.vacuum.2010.05.009
– ident: e_1_3_4_10_2
  doi: 10.1016/0008-6223(96)00170-4
– ident: e_1_3_4_32_2
  doi: 10.1029/JB087iS01p0A353
– ident: e_1_3_4_12_2
  doi: 10.1038/ncomms6447
– ident: e_1_3_4_30_2
  doi: 10.1111/j.1945-5100.2011.01320.x
– start-page: 491
  volume-title: Electron Energy-Loss Spectroscopy in the Electron Microscope
  year: 2011
  ident: e_1_3_4_62_2
  doi: 10.1007/978-1-4419-9583-4
– ident: e_1_3_4_43_2
  doi: 10.1016/j.diamond.2011.08.005
– ident: e_1_3_4_13_2
  doi: 10.1134/S1063776117010125
– ident: e_1_3_4_34_2
  doi: 10.1016/j.gca.2010.05.026
– ident: e_1_3_4_44_2
  doi: 10.1023/A:1021868820084
– ident: e_1_3_4_6_2
  doi: 10.1126/science.155.3765.995
– ident: e_1_3_4_18_2
  doi: 10.1073/pnas.1919067117
– ident: e_1_3_4_3_2
  doi: 10.2138/am.2013.4341
– ident: e_1_3_4_64_2
  doi: 10.1016/S0168-9002(02)02045-4
– ident: e_1_3_4_33_2
  doi: 10.1111/j.1945-5100.2006.tb00197.x
– ident: e_1_3_4_15_2
  doi: 10.1134/S1028334X11110201
– ident: e_1_3_4_8_2
  doi: 10.1021/acs.nanolett.8b04421
– ident: e_1_3_4_20_2
  doi: 10.1016/j.gca.2012.06.022
– ident: e_1_3_4_42_2
  doi: 10.1016/j.gca.2016.11.026
– ident: e_1_3_4_61_2
  doi: 10.1007/s00710-013-0272-8
– ident: e_1_3_4_47_2
  doi: 10.1111/j.1945-5100.2010.01103.x
– ident: e_1_3_4_48_2
  doi: 10.1016/S0925-9635(02)00312-6
– ident: e_1_3_4_55_2
  doi: 10.1002/2017TC004702
– ident: e_1_3_4_57_2
  doi: 10.1002/cvde.201106921
– ident: e_1_3_4_41_2
  doi: 10.1016/j.chemer.2014.01.004
SSID ssj0009580
Score 2.4891586
Snippet Ureilite meteorites are arguably our only large suite of samples from the mantle of a dwarf planet and typically contain greater abundances of diamond than any...
We report on lonsdaleite and diamond formation in ureilite meteorites, which likely come from the mantle of a destroyed inner solar system dwarf planet. In...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Chemical vapor deposition
Cross cutting
Decompression
Diamond machining
Dwarf planets
Electron microscopy
Graphite
Industrial applications
Meteorites
Meteors & meteorites
Physical Sciences
Planetary mantles
Ureilites
Vapors
Title Sequential Lonsdaleite to Diamond Formation in Ureilite Meteorites via In Situ Chemical Fluid/Vapor Deposition
URI https://www.jstor.org/stable/27207095
https://www.ncbi.nlm.nih.gov/pubmed/36095186
https://www.proquest.com/docview/2716586748
https://www.proquest.com/docview/2714063342
https://pubmed.ncbi.nlm.nih.gov/PMC9499504
Volume 119
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbKeOEFMWBQGMhIPAxV6ZLYrpvHCVYVtJWJtahvkZ24WrSRojblgb-LP5C72PnRqUzASxQljuPkvpzPl-_uCHk71IoZHhovSgLm8UAlnk6jFAw5wYRvQl9oDE4-nwzGM_5pLuadzq8Wa2lT6H7yc2dcyf9IFY6BXDFK9h8kW3cKB2Af5AtbkDBs_0rGlyUPukCn9xncA7nBYEGiOfkhwypCaW9UxSaiX2O2MsiEhQ8ZLOXlKkOX649MgY7oXWbFplcnDxjdbMpn-arAOgeVVDG72pbsRT3zrSuewaRyLJ40YSpOd6x7Xu9i0hQ9ni6_XTtPt6VUNjW-mgSSgFJcea8bT-65Sr4oy13EYkO1ewge_NqG6ziwOz8GLIHx147f0DzuGGJbgYcwqXIbdt03VmeDyeMNuK06Wit1p4gtem0CGaejg50zB6g6LHecq3U_DEH1BrzqYitH9-RzPJqdncXT0_n0HrkfwuKkpJOO26mehzbwyQ21Sigl2fGt7rdsIUuH3bXQuc3XbRlA00fkoVu50BMLw33SMfljsl-9PHrkEpi_e0LyBpe0hUtaLKnDJa1xSbOcVrikDS4p4JJ-zCnikla4pCUuj0tU0gaVT8lsdDp9P_ZcXQ9P8cGg8LSf-FG6kIqLKDVSyiQNudHcKBFqtQALnQ1Sqc2CicBIplUwVEKoVDOtYTaO2AHZy5e5eU4oE6kM9DANmGYc9pUwZqF04icLEcHav0v61RuOE5f0Hmuv3MQl-UKyGEUSNyLpkqP6gu8238ufmx6UIqvbIaVB-njTw0qGsdMWcJ0MwNjH0j5d8qY-Dbocf9Cp3Cw3ZRuwrxnjYZc8syKvO2eYGTIYDrpEboGhboB54rfP5NlVmS8e808Jn7-4e1gvyYPmszwke8VqY16BwV3o1yW-fwNWj9wR
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sequential+Lonsdaleite+to+Diamond+Formation+in+Ureilite+Meteorites+via+In+Situ+Chemical+Fluid%2FVapor+Deposition&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Tomkins%2C+Andrew+G&rft.au=Wilson%2C+Nicholas+C&rft.au=MacRae%2C+Colin&rft.au=Salek%2C+Alan&rft.date=2022-09-20&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=119&rft.issue=38&rft.spage=1&rft_id=info:doi/10.1073%2Fpnas.2208814119&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon