Sequential Lonsdaleite to Diamond Formation in Ureilite Meteorites via In Situ Chemical Fluid/Vapor Deposition
Ureilite meteorites are arguably our only large suite of samples from the mantle of a dwarf planet and typically contain greater abundances of diamond than any known rock. Some also contain lonsdaleite, which may be harder than diamond. Here, we use electron microscopy to map the relative distributi...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 119; no. 38; pp. 1 - 8 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
20.09.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ureilite meteorites are arguably our only large suite of samples from the mantle of a dwarf planet and typically contain greater abundances of diamond than any known rock. Some also contain lonsdaleite, which may be harder than diamond. Here, we use electron microscopy to map the relative distribution of coexisting lonsdaleite, diamond, and graphite in ureilites. These maps show that lonsdaleite tends to occur as polycrystalline grains, sometimes with distinctive fold morphologies, partially replaced by diamond + graphite in rims and cross-cutting veins. These observations provide strong evidence for how the carbon phases formed in ureilites, which, despite much conjecture and seemingly conflicting observations, has not been resolved. We suggest that lonsdaleite formed by pseudomorphic replacement of primary graphite shapes, facilitated by a supercritical C-H-O-S fluid during rapid decompression and cooling. Diamond + graphite formed after lonsdaleite via ongoing reaction with C-H-O-S gas. This graphite > lonsdaleite > diamond + graphite formation process is akin to industrial chemical vapor deposition but operates at higher pressure (∼1–100 bar) and provides a pathway toward manufacture of shaped lonsdaleite for industrial application. It also provides a unique model for ureilites that can reconcile all conflicting observations relating to diamond formation. |
---|---|
AbstractList | Ureilite meteorites are arguably our only large suite of samples from the mantle of a dwarf planet and typically contain greater abundances of diamond than any known rock. Some also contain lonsdaleite, which may be harder than diamond. Here, we use electron microscopy to map the relative distribution of coexisting lonsdaleite, diamond, and graphite in ureilites. These maps show that lonsdaleite tends to occur as polycrystalline grains, sometimes with distinctive fold morphologies, partially replaced by diamond + graphite in rims and cross-cutting veins. These observations provide strong evidence for how the carbon phases formed in ureilites, which, despite much conjecture and seemingly conflicting observations, has not been resolved. We suggest that lonsdaleite formed by pseudomorphic replacement of primary graphite shapes, facilitated by a supercritical C-H-O-S fluid during rapid decompression and cooling. Diamond + graphite formed after lonsdaleite via ongoing reaction with C-H-O-S gas. This graphite > lonsdaleite > diamond + graphite formation process is akin to industrial chemical vapor deposition but operates at higher pressure (∼1–100 bar) and provides a pathway toward manufacture of shaped lonsdaleite for industrial application. It also provides a unique model for ureilites that can reconcile all conflicting observations relating to diamond formation. We report on lonsdaleite and diamond formation in ureilite meteorites, which likely come from the mantle of a destroyed inner solar system dwarf planet. In these meteorites, folded graphite crystals have been pseudomorphed by lonsdaleite. This occurred at mildly elevated pressures through reaction between graphite and supercritical C-H-O-S fluids. Ongoing reaction during cooling then promoted partial replacement of lonsdaleite by diamond + graphite. This process is akin to industrial chemical vapor deposition but operates at higher pressure (∼1–100 bar) and provides a pathway toward manufacture of shaped lonsdaleite for industrial application. Ureilite meteorites are arguably our only large suite of samples from the mantle of a dwarf planet and typically contain greater abundances of diamond than any known rock. Some also contain lonsdaleite, which may be harder than diamond. Here, we use electron microscopy to map the relative distribution of coexisting lonsdaleite, diamond, and graphite in ureilites. These maps show that lonsdaleite tends to occur as polycrystalline grains, sometimes with distinctive fold morphologies, partially replaced by diamond + graphite in rims and cross-cutting veins. These observations provide strong evidence for how the carbon phases formed in ureilites, which, despite much conjecture and seemingly conflicting observations, has not been resolved. We suggest that lonsdaleite formed by pseudomorphic replacement of primary graphite shapes, facilitated by a supercritical C-H-O-S fluid during rapid decompression and cooling. Diamond + graphite formed after lonsdaleite via ongoing reaction with C-H-O-S gas. This graphite > lonsdaleite > diamond + graphite formation process is akin to industrial chemical vapor deposition but operates at higher pressure (∼1–100 bar) and provides a pathway toward manufacture of shaped lonsdaleite for industrial application. It also provides a unique model for ureilites that can reconcile all conflicting observations relating to diamond formation. Ureilite meteorites are arguably our only large suite of samples from the mantle of a dwarf planet and typically contain greater abundances of diamond than any known rock. Some also contain lonsdaleite, which may be harder than diamond. Here, we use electron microscopy to map the relative distribution of coexisting lonsdaleite, diamond, and graphite in ureilites. These maps show that lonsdaleite tends to occur as polycrystalline grains, sometimes with distinctive fold morphologies, partially replaced by diamond + graphite in rims and cross-cutting veins. These observations provide strong evidence for how the carbon phases formed in ureilites, which, despite much conjecture and seemingly conflicting observations, has not been resolved. We suggest that lonsdaleite formed by pseudomorphic replacement of primary graphite shapes, facilitated by a supercritical C-H-O-S fluid during rapid decompression and cooling. Diamond + graphite formed after lonsdaleite via ongoing reaction with C-H-O-S gas. This graphite > lonsdaleite > diamond + graphite formation process is akin to industrial chemical vapor deposition but operates at higher pressure (∼1-100 bar) and provides a pathway toward manufacture of shaped lonsdaleite for industrial application. It also provides a unique model for ureilites that can reconcile all conflicting observations relating to diamond formation.Ureilite meteorites are arguably our only large suite of samples from the mantle of a dwarf planet and typically contain greater abundances of diamond than any known rock. Some also contain lonsdaleite, which may be harder than diamond. Here, we use electron microscopy to map the relative distribution of coexisting lonsdaleite, diamond, and graphite in ureilites. These maps show that lonsdaleite tends to occur as polycrystalline grains, sometimes with distinctive fold morphologies, partially replaced by diamond + graphite in rims and cross-cutting veins. These observations provide strong evidence for how the carbon phases formed in ureilites, which, despite much conjecture and seemingly conflicting observations, has not been resolved. We suggest that lonsdaleite formed by pseudomorphic replacement of primary graphite shapes, facilitated by a supercritical C-H-O-S fluid during rapid decompression and cooling. Diamond + graphite formed after lonsdaleite via ongoing reaction with C-H-O-S gas. This graphite > lonsdaleite > diamond + graphite formation process is akin to industrial chemical vapor deposition but operates at higher pressure (∼1-100 bar) and provides a pathway toward manufacture of shaped lonsdaleite for industrial application. It also provides a unique model for ureilites that can reconcile all conflicting observations relating to diamond formation. |
Author | Wilson, Nicholas C. Field, Matthew R. McCulloch, Dougal G. Salek, Alan Tomkins, Andrew G. Pintér, Zsanett Brand, Helen E. A. Torpy, Aaron Stephen, Natasha R. MacRae, Colin Langendam, Andrew D. Jennings, Lauren A. |
Author_xml | – sequence: 1 givenname: Andrew G. surname: Tomkins fullname: Tomkins, Andrew G. – sequence: 2 givenname: Nicholas C. surname: Wilson fullname: Wilson, Nicholas C. – sequence: 3 givenname: Colin surname: MacRae fullname: MacRae, Colin – sequence: 4 givenname: Alan surname: Salek fullname: Salek, Alan – sequence: 5 givenname: Matthew R. surname: Field fullname: Field, Matthew R. – sequence: 6 givenname: Helen E. A. surname: Brand fullname: Brand, Helen E. A. – sequence: 7 givenname: Andrew D. surname: Langendam fullname: Langendam, Andrew D. – sequence: 8 givenname: Natasha R. surname: Stephen fullname: Stephen, Natasha R. – sequence: 9 givenname: Aaron surname: Torpy fullname: Torpy, Aaron – sequence: 10 givenname: Zsanett surname: Pintér fullname: Pintér, Zsanett – sequence: 11 givenname: Lauren A. surname: Jennings fullname: Jennings, Lauren A. – sequence: 12 givenname: Dougal G. surname: McCulloch fullname: McCulloch, Dougal G. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36095186$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1v1DAQxS1URLeFMyeQJS69pOuvxMkFCW27UGkRh1KulhNPqFeJHWynEv89DtsWqMTJI_n3nt7MO0FHzjtA6DUl55RIvp6cjueMkbqmgtLmGVpR0tCiEg05QitCmCxqwcQxOolxTwhpypq8QMe8yhOtqxVy1_BjBpesHvDOu2j0ADYBTh5fWD16Z_DWh1En6x22Dt8EsMMCfIYEPuQp4jur8ZXD1zbNeHMLo-2y2XaYrVl_05MP-AImH-1i8RI97_UQ4dX9e4putpdfN5-K3ZePV5sPu0KLqkpFSzrSmF5qUTYGpJSdYQJaAbpkre4rIXhlZAs9LylI3mpa67LUpuVtaww0_BS9P_hOczuC6fKGQQ9qCnbU4afy2qp_f5y9Vd_9nWpE05REZIOze4Pg84FiUqONHQyDduDnqJikglScC5bRd0_QvZ-Dy-stVFXWlRR1pt7-negxykMVGSgPQBd8jAF61dn0--45oB0UJWqpXC2Vqz-VZ936ie7B-v-KNwfFPiYfHnEmGZE5DP8FKzW6uQ |
CitedBy_id | crossref_primary_10_1016_j_epsl_2023_118201 crossref_primary_10_1038_s42004_024_01200_8 crossref_primary_10_1016_j_lithos_2024_107775 crossref_primary_10_1063_5_0138911 crossref_primary_10_1557_s43579_023_00411_9 crossref_primary_10_1073_pnas_2304890120 crossref_primary_10_1016_j_earscirev_2023_104502 crossref_primary_10_1016_j_scib_2025_03_003 crossref_primary_10_1111_maps_14082 crossref_primary_10_1016_j_gca_2024_04_027 crossref_primary_10_1073_pnas_2305559120 crossref_primary_10_1088_1361_6463_ad85ef |
Cites_doi | 10.1557/JMR.2003.0377 10.1111/j.1945-5100.2002.tb00876.x 10.1038/328141a0 10.7185/geochemlet.2018 10.1063/1.1841236 10.1016/0016-7037(95)00333-9 10.1016/S0016-7037(97)00254-8 10.1111/j.1945-5100.1993.tb00633.x 10.1038/ncomms10970 10.1016/j.diamond.2005.07.028 10.1016/j.gca.2019.11.032 10.2138/rmg.2009.70.3 10.1016/j.gca.2015.04.035 10.1016/j.gca.2010.03.038 10.1016/0925-9635(91)90005-U 10.1111/maps.13755 10.2465/jmps.150906 10.1029/GL015i012p01445 10.1111/maps.13471 10.1126/sciadv.aao3561 10.1080/00387010.2011.627527 10.1029/JB081i014p02467 10.1021/acsearthspacechem.7b00034 10.1111/j.1945-5100.2006.tb00489.x 10.1038/s41467-018-03808-6 10.1111/j.1945-5100.2010.01128.x 10.1002/jemt.20205 10.1111/j.1945-5100.2010.01111.x 10.1111/maps.12401 10.1016/j.diamond.2019.107640 10.1016/j.gca.2008.06.028 10.1111/j.1945-5100.2010.01094.x 10.1103/PhysRevB.62.11089 10.1111/j.1945-5100.2010.01136.x 10.1111/j.1945-5100.1992.tb00215.x 10.1016/0016-7037(80)90119-2 10.1016/j.gca.2021.06.022 10.1016/j.vacuum.2010.05.009 10.1016/0008-6223(96)00170-4 10.1029/JB087iS01p0A353 10.1038/ncomms6447 10.1111/j.1945-5100.2011.01320.x 10.1007/978-1-4419-9583-4 10.1016/j.diamond.2011.08.005 10.1134/S1063776117010125 10.1016/j.gca.2010.05.026 10.1023/A:1021868820084 10.1126/science.155.3765.995 10.1073/pnas.1919067117 10.2138/am.2013.4341 10.1016/S0168-9002(02)02045-4 10.1111/j.1945-5100.2006.tb00197.x 10.1134/S1028334X11110201 10.1021/acs.nanolett.8b04421 10.1016/j.gca.2012.06.022 10.1016/j.gca.2016.11.026 10.1007/s00710-013-0272-8 10.1111/j.1945-5100.2010.01103.x 10.1016/S0925-9635(02)00312-6 10.1002/2017TC004702 10.1002/cvde.201106921 10.1016/j.chemer.2014.01.004 |
ContentType | Journal Article |
Copyright | Copyright © 2022 the Author(s) Copyright National Academy of Sciences Sep 20, 2022 Copyright © 2022 the Author(s). Published by PNAS. 2022 |
Copyright_xml | – notice: Copyright © 2022 the Author(s) – notice: Copyright National Academy of Sciences Sep 20, 2022 – notice: Copyright © 2022 the Author(s). Published by PNAS. 2022 |
DBID | AAYXX CITATION NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.2208814119 |
DatabaseName | CrossRef PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 8 |
ExternalDocumentID | PMC9499504 36095186 10_1073_pnas_2208814119 27207095 |
Genre | Journal Article |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABOCM ABPLY ABPPZ ABTLG ABZEH ACGOD ACIWK ACNCT ACPRK AENEX AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS BKOMP CS3 D0L DIK DU5 E3Z EBS F5P FRP GX1 H13 HH5 HYE JENOY JLS JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-a466t-b0c09df7a459de777cd24eb4ea52baf64436d7bef351e73ba18a55adb3bbdde93 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:37:45 EDT 2025 Fri Jul 11 12:43:06 EDT 2025 Mon Jun 30 09:59:15 EDT 2025 Thu Apr 03 07:02:37 EDT 2025 Tue Jul 01 01:03:23 EDT 2025 Thu Apr 24 22:55:12 EDT 2025 Thu May 29 08:49:01 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 38 |
Keywords | meteorite diamond lonsdaleite ureilite chemical vapor deposition |
Language | English |
License | This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a466t-b0c09df7a459de777cd24eb4ea52baf64436d7bef351e73ba18a55adb3bbdde93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Edited by Timothy Grove, Massachusetts Institute of Technology, Cambridge, MA; received May 22, 2022; accepted August 5, 2022 Author contributions: A.G.T., D.G.M., N.C.W., C.M. designed research; A.G.T., N.C.W., C.M., A.S., M.R.F., H.E.A.B., A.D.L., N.R.S., A.T., L.A.J., and D.G.M. performed research; A.G.T., N.C.W., C.M., A.S., M.R.F., H.E.A.B., A.T., Z.P., L.A.J., and D.G.M. analyzed data; and A.G.T., D.G.M. wrote the paper. |
ORCID | 0000-0003-4548-1955 0000-0003-3952-922X 0000-0001-9470-0857 0000-0002-7229-332X 0000-0003-2788-331X 0000-0003-1002-2644 0000-0002-1644-164X |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC9499504 |
PMID | 36095186 |
PQID | 2716586748 |
PQPubID | 42026 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9499504 proquest_miscellaneous_2714063342 proquest_journals_2716586748 pubmed_primary_36095186 crossref_citationtrail_10_1073_pnas_2208814119 crossref_primary_10_1073_pnas_2208814119 jstor_primary_27207095 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-20 |
PublicationDateYYYYMMDD | 2022-09-20 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2022 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_4_3_2 e_1_3_4_1_2 e_1_3_4_61_2 e_1_3_4_9_2 e_1_3_4_63_2 e_1_3_4_7_2 e_1_3_4_40_2 e_1_3_4_5_2 e_1_3_4_23_2 e_1_3_4_44_2 e_1_3_4_21_2 e_1_3_4_42_2 e_1_3_4_27_2 e_1_3_4_48_2 e_1_3_4_25_2 e_1_3_4_46_2 e_1_3_4_29_2 e_1_3_4_30_2 e_1_3_4_51_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_57_2 e_1_3_4_55_2 e_1_3_4_32_2 e_1_3_4_59_2 e_1_3_4_53_2 e_1_3_4_15_2 e_1_3_4_38_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_2_2 e_1_3_4_60_2 e_1_3_4_8_2 e_1_3_4_41_2 e_1_3_4_6_2 e_1_3_4_22_2 e_1_3_4_45_2 e_1_3_4_20_2 e_1_3_4_43_2 e_1_3_4_26_2 e_1_3_4_49_2 e_1_3_4_64_2 e_1_3_4_24_2 e_1_3_4_47_2 e_1_3_4_28_2 Mittlefehldt D. W. (e_1_3_4_4_2) e_1_3_4_52_2 e_1_3_4_50_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_58_2 e_1_3_4_54_2 e_1_3_4_10_2 e_1_3_4_31_2 e_1_3_4_16_2 e_1_3_4_37_2 e_1_3_4_14_2 e_1_3_4_35_2 e_1_3_4_56_2 e_1_3_4_18_2 e_1_3_4_39_2 Egerton R. F. (e_1_3_4_62_2) 2011 |
References_xml | – ident: e_1_3_4_50_2 doi: 10.1557/JMR.2003.0377 – ident: e_1_3_4_22_2 doi: 10.1111/j.1945-5100.2002.tb00876.x – ident: e_1_3_4_23_2 doi: 10.1038/328141a0 – ident: e_1_3_4_53_2 doi: 10.7185/geochemlet.2018 – ident: e_1_3_4_9_2 doi: 10.1063/1.1841236 – ident: e_1_3_4_26_2 doi: 10.1016/0016-7037(95)00333-9 – ident: e_1_3_4_36_2 doi: 10.1016/S0016-7037(97)00254-8 – ident: e_1_3_4_37_2 doi: 10.1111/j.1945-5100.1993.tb00633.x – ident: e_1_3_4_11_2 doi: 10.1038/ncomms10970 – ident: e_1_3_4_59_2 doi: 10.1038/328141a0 – ident: e_1_3_4_49_2 doi: 10.1016/j.diamond.2005.07.028 – ident: e_1_3_4_28_2 doi: 10.1016/j.gca.2019.11.032 – ident: e_1_3_4_52_2 doi: 10.2138/rmg.2009.70.3 – ident: e_1_3_4_25_2 doi: 10.1016/j.gca.2015.04.035 – ident: e_1_3_4_16_2 doi: 10.1016/j.gca.2010.03.038 – ident: e_1_3_4_45_2 doi: 10.1016/0925-9635(91)90005-U – ident: e_1_3_4_2_2 doi: 10.1111/maps.13755 – ident: e_1_3_4_17_2 doi: 10.2465/jmps.150906 – ident: e_1_3_4_24_2 doi: 10.1029/GL015i012p01445 – ident: e_1_3_4_1_2 doi: 10.1111/maps.13471 – ident: e_1_3_4_14_2 doi: 10.1126/sciadv.aao3561 – ident: e_1_3_4_21_2 doi: 10.1080/00387010.2011.627527 – ident: e_1_3_4_27_2 doi: 10.1029/JB081i014p02467 – ident: e_1_3_4_56_2 doi: 10.1021/acsearthspacechem.7b00034 – ident: e_1_3_4_39_2 doi: 10.1111/j.1945-5100.2006.tb00489.x – ident: e_1_3_4_29_2 doi: 10.1038/s41467-018-03808-6 – ident: e_1_3_4_58_2 doi: 10.1111/j.1945-5100.2010.01128.x – ident: e_1_3_4_60_2 doi: 10.1002/jemt.20205 – ident: e_1_3_4_54_2 doi: 10.1111/j.1945-5100.2010.01111.x – start-page: 4.14.195 volume-title: (Planetary Materials Reviews in Mineralogy, 1998) ident: e_1_3_4_4_2 – ident: e_1_3_4_5_2 doi: 10.1111/maps.12401 – ident: e_1_3_4_7_2 doi: 10.1016/j.diamond.2019.107640 – ident: e_1_3_4_38_2 doi: 10.1016/j.gca.2008.06.028 – ident: e_1_3_4_46_2 doi: 10.1111/j.1945-5100.2010.01094.x – ident: e_1_3_4_63_2 doi: 10.1103/PhysRevB.62.11089 – ident: e_1_3_4_40_2 doi: 10.1111/j.1945-5100.2010.01136.x – ident: e_1_3_4_31_2 doi: 10.1111/j.1945-5100.1992.tb00215.x – ident: e_1_3_4_35_2 doi: 10.1016/0016-7037(80)90119-2 – ident: e_1_3_4_19_2 doi: 10.1016/j.gca.2021.06.022 – ident: e_1_3_4_51_2 doi: 10.1016/j.vacuum.2010.05.009 – ident: e_1_3_4_10_2 doi: 10.1016/0008-6223(96)00170-4 – ident: e_1_3_4_32_2 doi: 10.1029/JB087iS01p0A353 – ident: e_1_3_4_12_2 doi: 10.1038/ncomms6447 – ident: e_1_3_4_30_2 doi: 10.1111/j.1945-5100.2011.01320.x – start-page: 491 volume-title: Electron Energy-Loss Spectroscopy in the Electron Microscope year: 2011 ident: e_1_3_4_62_2 doi: 10.1007/978-1-4419-9583-4 – ident: e_1_3_4_43_2 doi: 10.1016/j.diamond.2011.08.005 – ident: e_1_3_4_13_2 doi: 10.1134/S1063776117010125 – ident: e_1_3_4_34_2 doi: 10.1016/j.gca.2010.05.026 – ident: e_1_3_4_44_2 doi: 10.1023/A:1021868820084 – ident: e_1_3_4_6_2 doi: 10.1126/science.155.3765.995 – ident: e_1_3_4_18_2 doi: 10.1073/pnas.1919067117 – ident: e_1_3_4_3_2 doi: 10.2138/am.2013.4341 – ident: e_1_3_4_64_2 doi: 10.1016/S0168-9002(02)02045-4 – ident: e_1_3_4_33_2 doi: 10.1111/j.1945-5100.2006.tb00197.x – ident: e_1_3_4_15_2 doi: 10.1134/S1028334X11110201 – ident: e_1_3_4_8_2 doi: 10.1021/acs.nanolett.8b04421 – ident: e_1_3_4_20_2 doi: 10.1016/j.gca.2012.06.022 – ident: e_1_3_4_42_2 doi: 10.1016/j.gca.2016.11.026 – ident: e_1_3_4_61_2 doi: 10.1007/s00710-013-0272-8 – ident: e_1_3_4_47_2 doi: 10.1111/j.1945-5100.2010.01103.x – ident: e_1_3_4_48_2 doi: 10.1016/S0925-9635(02)00312-6 – ident: e_1_3_4_55_2 doi: 10.1002/2017TC004702 – ident: e_1_3_4_57_2 doi: 10.1002/cvde.201106921 – ident: e_1_3_4_41_2 doi: 10.1016/j.chemer.2014.01.004 |
SSID | ssj0009580 |
Score | 2.4891586 |
Snippet | Ureilite meteorites are arguably our only large suite of samples from the mantle of a dwarf planet and typically contain greater abundances of diamond than any... We report on lonsdaleite and diamond formation in ureilite meteorites, which likely come from the mantle of a destroyed inner solar system dwarf planet. In... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1 |
SubjectTerms | Chemical vapor deposition Cross cutting Decompression Diamond machining Dwarf planets Electron microscopy Graphite Industrial applications Meteorites Meteors & meteorites Physical Sciences Planetary mantles Ureilites Vapors |
Title | Sequential Lonsdaleite to Diamond Formation in Ureilite Meteorites via In Situ Chemical Fluid/Vapor Deposition |
URI | https://www.jstor.org/stable/27207095 https://www.ncbi.nlm.nih.gov/pubmed/36095186 https://www.proquest.com/docview/2716586748 https://www.proquest.com/docview/2714063342 https://pubmed.ncbi.nlm.nih.gov/PMC9499504 |
Volume | 119 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbKeOEFMWBQGMhIPAxV6ZLYrpvHCVYVtJWJtahvkZ24WrSRojblgb-LP5C72PnRqUzASxQljuPkvpzPl-_uCHk71IoZHhovSgLm8UAlnk6jFAw5wYRvQl9oDE4-nwzGM_5pLuadzq8Wa2lT6H7yc2dcyf9IFY6BXDFK9h8kW3cKB2Af5AtbkDBs_0rGlyUPukCn9xncA7nBYEGiOfkhwypCaW9UxSaiX2O2MsiEhQ8ZLOXlKkOX649MgY7oXWbFplcnDxjdbMpn-arAOgeVVDG72pbsRT3zrSuewaRyLJ40YSpOd6x7Xu9i0hQ9ni6_XTtPt6VUNjW-mgSSgFJcea8bT-65Sr4oy13EYkO1ewge_NqG6ziwOz8GLIHx147f0DzuGGJbgYcwqXIbdt03VmeDyeMNuK06Wit1p4gtem0CGaejg50zB6g6LHecq3U_DEH1BrzqYitH9-RzPJqdncXT0_n0HrkfwuKkpJOO26mehzbwyQ21Sigl2fGt7rdsIUuH3bXQuc3XbRlA00fkoVu50BMLw33SMfljsl-9PHrkEpi_e0LyBpe0hUtaLKnDJa1xSbOcVrikDS4p4JJ-zCnikla4pCUuj0tU0gaVT8lsdDp9P_ZcXQ9P8cGg8LSf-FG6kIqLKDVSyiQNudHcKBFqtQALnQ1Sqc2CicBIplUwVEKoVDOtYTaO2AHZy5e5eU4oE6kM9DANmGYc9pUwZqF04icLEcHav0v61RuOE5f0Hmuv3MQl-UKyGEUSNyLpkqP6gu8238ufmx6UIqvbIaVB-njTw0qGsdMWcJ0MwNjH0j5d8qY-Dbocf9Cp3Cw3ZRuwrxnjYZc8syKvO2eYGTIYDrpEboGhboB54rfP5NlVmS8e808Jn7-4e1gvyYPmszwke8VqY16BwV3o1yW-fwNWj9wR |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sequential+Lonsdaleite+to+Diamond+Formation+in+Ureilite+Meteorites+via+In+Situ+Chemical+Fluid%2FVapor+Deposition&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Tomkins%2C+Andrew+G&rft.au=Wilson%2C+Nicholas+C&rft.au=MacRae%2C+Colin&rft.au=Salek%2C+Alan&rft.date=2022-09-20&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=119&rft.issue=38&rft.spage=1&rft_id=info:doi/10.1073%2Fpnas.2208814119&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |